Solidifying Objectives:
protocol changes->metric->path selection->new B.A.T.M.A.N

In other words we are modifying the B.A.T.M.A.N protocol:
This raises the question of **HOW TO MODIFY B.A.T.M.A.N?** And also **HOW TO TEST?** that the changes give the desired effects which in our case is a better QoS in rural networks that use the MP and the B.A.T.M.A.N. So our actual scope is B.A.T.M.A.N and not the MP device. So in terms of testing we need the "new B.A.T.M.A.N" and the "old B.A.T.M.A.N" to be compared against each other. This can be done either on MP devices connected in a MP network where the devices will communicate with each other under a variety of set ups, environmental conditions and workloads. However since the MP device is not part of the main scope of the project we can simulate a MP network with regular machines that are wifi enabled. Whatever the approach we choose we need a test bed which raises the question of the parameters of this test bed.

Test bed parameters:
1) how many nodes in the test bed? Can be answered by characterizing existing MP networks so we look at Bo-Kaap and East-Temor or perhaps any other existing MP networks.
2) Distances between the nodes? Answered by taking average distances between nodes in existing networks.
3) Physical obstacles.
4) Network load. Workload here means the mathematical predictive model of the data generated and sent in MP networks meaning that we might have to create a workload model.

Conclusion:
Testing requires the creation of a test bed, which requires that we look at the existing MP networks.
So that is the initial task for the test bed.
I plan on accomplishing this by looking at the MP forums of where I am part of the mailing list and gathering all the necessary information. I also look at the evolution of the Bo-Kaap and the East Temor MP networks and see if I gather all the necessary parameters.

Next I discuss the B.A.T.M.A.N modifications.

How to modify B.A.T.M.A.N?
model: ->modify metric used->path selection->B.A.T.M.A.N-> "new B.A.T.M.A.N" we need QoS for instance bandwidth, data rates. So which other network properties would the "best path have"?
To answer this I believe I need to look at the characteristics of rural areas, more specifically the Mdumbi area, since this is our rural area of choice.