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Abstract

We describe a data visualisation system which uses spreadsheets as its user interface metaphor.

Similar systems implemented in the past were hampered by the contradiction between an impera-

tive formula language and the declarative spreadsheet framework. We have analysed spreadsheets

from a data visualisation point of view, and built a system that is an improvement over past ef-

forts to combine spreadsheets and data visualisation. Our prototype combines the following three

techniques: we store lists of values in each spreadsheet cell; we use the functional programming

language Scheme as the formula language and we make use of lazy evaluation. The novel combi-

nation of these techniques makes our system consistently declarative in nature, and gives it several

advantages such as small, uncluttered visual programs, the ability to deal with arbitrarily large

datasets and the use of advanced functional language features. We have demonstrated the validity

of our work through examples where real-world data is visualised, and through Green’sCognitive

Dimensions Framework, which shows that our extended spreadsheet metaphor is at least as usable

as commonly-used dataflow methods.
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Chapter 1

Introduction

1.1 Introduction

In this chapter we first set out the aims of our research project. We argue that a new paradigm for

data visualisation systems is needed, and suggest why spreadsheets are suitable for this role. Un-

fortunately current spreadsheets are lacking in several ways as user interfaces for data visualisation

systems. We have developed extensions to the spreadsheet paradigm to address these shortcomings.

We cover the main results of this research in Section 1.7, and finally provide a chapter-by-chapter

outline.

1.2 An Alternative User Interface for Data Visualisation

The aim of this research is to develop an alternative user interface paradigm for data visualisation

systems, based on the well-known spreadsheet user interaction paradigm. This work describes the

design of a software prototype,ViSSh(short for VisualisationSpreadSheet), which was used to

determine the usefulness of the new paradigm, as well as our experiences with this prototype.

Our contribution lies in the fact that we have taken the traditional spreadsheet paradigm, analy-

sed it and devised an extension of this paradigm that addresses the shortcomings that spreadsheets

have with respect to their use as data visualisation systems. This extension, however, retains the ba-

sic “feel” of the spreadsheet paradigm so that users familiar with products such asMicrosoft Excel

or Quattro Procan easily adapt to the new paradigm. Although there have been previous efforts

in this direction, we believe that ours is a novel improvement because of the consistently declara-

tive nature of our extended spreadsheet paradigm. We have also integrated and rationalised several

1



2 CHAPTER 1. INTRODUCTION

ideas that have been suggested in the literature. Furthermore, we provide a theoretical foundation

to support our extension of the spreadsheet paradigm; previous work has mostly glossed over the

theoretical implications and concentrated on the practical aspects.

This theoretical basis consists of an alternative, functional view of spreadsheets and a demon-

stration of the equivalence that exists between spreadsheets and dataflow systems. The importance

of these is described below.

1.2.1 Why Spreadsheets?

The reason for our using spreadsheets for data visualisation is simply that users of data visualisation

systems are not usually computer programmers. This fact has already been recognised by makers

of dataflow-based data visualisation systems such asIris Explorer [15]. These systems make use of

the dataflow programming paradigm; while this paradigm is not particularly complex in nature, it

does have its problems. Dataflow graphs tend to become cluttered if they are large or heavily-edited,

as is often the case with exploratory programming.

Spreadsheets are not as susceptible to this problem because the connections between cells are

implicit, as opposed to the explicit connections that exist between dataflow nodes. This results in

a programming environment that is not as demanding as textual programming languages such as

Fortran or C, but which has many of the positive qualities of these languages; the greatest of these

is the relative ease with which programs can be made easy to read. Large dataflow diagrams, by

comparison, tend to get very cluttered after heavy editing. The drawbacks of implicit connections

inherent in spreadsheets are dealt with below.

Spreadsheets do have problems when it comes to dealing with large datasets. Datasets consist-

ing of tens of thousands of items would need enormous, mostly-empty spreadsheets just to contain

the data (since spreadsheets manipulate blocks of data as rows or columns, a spreadsheet contain-

ing a thousand data points would need to be at least a thousand cells wide or tall). Such a huge

spreadsheet would be awkward to manipulate, and recalculations would take unacceptably long to

complete. Furthermore, spreadsheet formula languages are not generally flexible enough to be use-

ful for general-case data visualisation; most do not have any graphics primitives, for example (one

notable exception to this isForms/3[7], which has explicit built-in support for graphics).

These problems can be solved by analysing the spreadsheet paradigm from a functional point of

view. This allows us to make use of software techniques (such as lazy evaluation) which increase

the flexibility of the spreadsheet and provide the groundwork for demonstrating the equivalence that

exists between spreadsheets and dataflow systems; this equivalence is important because it implies
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that for any given spreadsheet there always exists an equivalent dataflow diagram, andvice versa.

This result guarantees that any dataset that can be visualised with an existing dataflow-based system

can also be visualised with a spreadsheet-based system.

We also use the equivalence in a more direct way to add functionality to our prototype that

overcomes one of the main deficiencies of spreadsheets, namely the fact that “is depended on by”

relationships are implicit and not visible (as opposed to “depends on” relationships, which can be

easily deduced by inspection of spreadsheet formulas). This functionality lets the user see a dataflow

diagram equivalent to the spreadsheet being edited, which makes all inter-cell dependencies explicit.

This is superior to simply using a dataflow editor because the algorithmically generated dataflow

diagram does not need “cosmetic” maintenance, since the algorithm used to generate it minimises

clutter.

1.3 Theoretical Foundations

We have based our work on a consistent theoretical framework. This framework was derived by tak-

ing the current spreadsheet paradigm, analysing it and then extending it where the analysis revealed

shortcomings with regard to data visualisation.

In Section 2.3 we define what we understand by a spreadsheet. Given the diversity that exists

in the marketplace at this moment in time, we have taken the elements common to most currently-

available spreadsheet software, and come up with the following definition:

A traditional spreadsheet is a program used to manipulate objects arranged in a tabular

fashion. These objects include text, numbers and formulas. Formulas are used to cal-

culate values for cells from those stored in other cells. A formula may only read values

from other cells and not write new values into those cells. The result of the formula

appears only in the cell the formula resides in.

This definition of the spreadsheet paradigm hints at the functional nature of spreadsheets, since

it reveals the fact that spreadsheets can be considered to beApplicative State Transition(AST)

systems [2] (see Section 2.5).

We started our theoretical analysis by looking at Isakowitz and Schocken’s analysis of spread-

sheets [23], where spreadsheets are described as consisting of four parts. These are formulas, stored

constants, comments and the binding of these three to rows and columns. Isakowitz and Schocken
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based their conclusions on the analysis of database systems; however, when we looked at their re-

sults from a functional point of view, as suggested by the fact that spreadsheets are AST systems,

we found that spreadsheets can also be described as a functional computational system coupled with

a grid-based editing layer (see Section 3.4). This led us to the following, alternative definition of a

spreadsheet:

A spreadsheet is a finite set of functions (the Dataflow Logic Layer) and a grid-based

visualisation of them (the Adjacency-based Editing Layer), which taken as a whole solve

a given problem.

The termDataflow Logic Layerin the definition above reflects a similarity we found between

this definition of spreadsheets and the dataflow programming paradigm: our definition essentially

states that spreadsheets are an editing environment for functional programs, while dataflow diagrams

(the most common way of representing dataflow systems) can be used as a shorthand notation for

mathematical functions (see Section 2.2).

We further explored this similarity between spreadsheets and dataflow systems, and arrived at

the conclusion that both systems are equivalent in nature; a proof for this conclusion can be found

in Section 3.5.

With these findings, namely the alternative functional definition of spreadsheets and the equiva-

lence of spreadsheets and dataflow systems, we set out to extend the spreadsheet paradigm to make

up for its shortcomings with respect to data visualisation.

1.4 Extensions to the Spreadsheet Paradigm

Although spreadsheets have many qualities that make their use desirable for data visualisation [30],

they also have shortcomings due to the fact that they were not originally designed to handle the

volumes of data commonly dealt with in a data visualisation environment. Using the theoretical

foundation we have described above, we have extended the spreadsheet paradigm so that it may be

used for data visualisation, while retaining its useful qualities (such as ease of modification, tidiness,

etc.)

The extensions we have made to the spreadsheet paradigm are threefold (Chapter 4 describes

these extensions at length): Firstly, we store multiple items in a single spreadsheet cell, instead of

a single value. We have opted to store lists of items in our sample implementation, but there is

no reason why other data structures could not be used. Secondly, we make use of a full-featured
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functional programming language instead of the specialised formula languages commonly used in

spreadsheet software. Making use of such a language makes the extended spreadsheet paradigm

much more flexible, since it both supports the current usage of specialised functions while allowing

more functions to be created when needed.

Finally, spreadsheet recalculations are implemented using a lazy evaluation model. Since data

visualisation typically involves discarding large volumes of data (in filtering operations or simply

because it lies outside the area being observed), lazy evaluation can greatly speed up recalculations.

This is because in a lazy evaluation environment, data processing is automatically deferred until

the results are needed; should those results never be requested, they would never be calculated.

More interestingly, these decisions are madedynamically at run-time, relieving the programmer

of the burden of optimising the program for any given input dataset. In an environment where data

decimation is common, such as data visualisation, this means that functions can be written under the

assumption that the entire dataset will be processed, even though an unknown percentage of it will

not be. This can allow even non-expert programmers (i.e., the intended users of data visualisation

systems) to run their visualisations with a high level of efficiency.

1.5 The ViSSh Prototype

After having devised an extended spreadsheet paradigm capable of coping with the demands im-

posed by data visualisation (described in detail in Chapter 4), we built a software prototype to

test our claims on real data. The prototype, which we namedViSSh(VisualisationSpreadSheet),

implements the extended spreadsheet paradigm in the following manner (Chapter 5 describes the

prototype in detail):

� Linked lists of values are stored in each spreadsheet cell.

� The programming languageSchemeis used as a formula language, since the fact that both

programs and data are lists of values simplified the design.

� Lazy evaluation was implemented as a layer over theSchemeinterpreter, since that language

does not natively support lazy evaluation.
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Spreadsheet A
Spreadsheet B

Spreadsheet C

Figure 1: This illustrates the concept of layered spreadsheets. One of the cells in Spreadsheet A evaluates a
cell in Spreadsheet B, causing a recalculation of Spreadsheet B and effectively treating the entire spreadsheet
as if it were a spreadsheet formula. Spreadsheet B can, in turn, evaluate cells from Spreadsheet C, and so
on. This mechanism allows spreadsheets to benefit from encapsulation, since only the result of the evaluated
cells are visible by the spreadsheet doing the evaluation. If each of the spreadsheets is running in a different
computer, a simple model of distributed spreadsheets ensues.

Additionally, the ViSSh program has several features that were found to be useful during its

development:

� Spreadsheets can functionally “call” other spreadsheets, allowing the development of modu-

lar function libraries, implemented entirely as spreadsheets. This follows from the functional

view of spreadsheets described in Section 1.3 above, and leads to a hierarchical view of lay-

ered spreadsheets (see Figure 1), which has several benefits, such as introducing the concept

of encapsulation into the spreadsheet paradigm and allowing for a simple model of distributed

spreadsheets (by allowing each of the linked spreadsheets to exist in a separate machine).

� Users can summon an equivalent dataflow view of the spreadsheet that illustrates the flow of

data between cells in the spreadsheet (see Section 5.2.4). This follows from the equivalence

of spreadsheets and dataflow systems described in Section 1.3 above and allows users to view

spreadsheet dependencies that are hidden in the tabular view of the spreadsheet (“which cells

depend on this one?”). It may also allow transfer of skills from current dataflow visualisation

systems.

� Users can summon a view of the spreadsheet in which each spreadsheet cell is represented by

a small icon. This was found to greatly simplify the task of spreadsheet navigation, since a

much larger area of the spreadsheet can be visually scanned at a time.

� ViSSh implements animation in a declarative fashion by processing list items in a definite

order, with a known delay between successive items. Since the declarative paradigm does
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not specify any ordering when operating on independent data items and is completely time-

independent, this implementation of animation does not affect the correctness of the visuali-

sation.

� Interaction with the rendered 3D environment in the context of spreadsheets is implemented

by having a type of spreadsheet cell that has an associated 3D representation, and triggers

a recalculation whenever that 3D representation is interacted with. Examples of this type of

cell are the1D Dragger, which looks like a double-headed arrow and reports how far it’s been

dragged along its longitudinal axis, and thePick Cellwhich reports which 3D object from a

given list has been selected by the user.

1.6 Cognitive Analysis

In order to demonstrate the usability of the extended spreadsheet paradigm, we visualised some real-

world datasets (two of the visualisations are described in detail in Chapter 6) and used the experience

gained to make a Cognitive Dimensions Framework [18] analysis of the prototype (Section 2.8.1

briefly describes the technique). We then took the results of this analysis and compared them with

published results obtained from existing data visualisation packages [18]. This comparison reveals

that, from a usability standpoint, ViSSh is quite suitable for use in data visualisation tasks. Since the

prototype was designed to be an implementation of the extended spreadsheet paradigm, the results

of this comparative analysis also apply to the extended paradigm itself.

1.7 Summary of Findings

In this dissertation we argue the case for using an extended spreadsheet paradigm as the user in-

terface for data visualisation systems, providing both a theoretical framework (outlined in Chap-

ters 3 and 4) and practical demonstrations of the practicality of our approach. These practical

demonstrations consist of a complete data visualisation system, described in Chapter 5, two case

studies involving real-world data (in Chapter 6) and finally, a cognitive analysis based around

Green’s Cognitive Dimensions Framework [18] to demonstrate the usability of the new spreadsheet

paradigm; see Chapter 7 for details.

We began the dissertation by noting that although the dataflow paradigm is quite suitable for data

visualisation tasks, the use of dataflow diagrams as the user interface has problems with scalability;
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namely, the clutter in a dataflow diagram is proportional to both the number of nodes in the diagram

and the amount of editing that the diagram is subjected to.

We then followed with an analytical study of the common features of current spreadsheets,

based on a survey of commercial and experimental designs, and found that spreadsheets can be

described entirely in functional terms (see Section 3.3.3). This alternate view of spreadsheets was

used as a basis to describe spreadsheets as visual environments for the editing and visualisation

of functional programs (Section 3.4). Based on this, we were able to show that spreadsheets are

equivalent to dataflow systems (Section 3.5 describes algorithms to convert a dataflow diagram into

a spreadsheet, and to reverse the process).

We have found that spreadsheets in their present form have certain shortcomings as far as their

use for data visualisation systems is concerned, mostly due to the fact that current spreadsheets

cannot deal with datasets containing more that a few hundred elements. However, we have found

that the combined use of compound datatypes (Section 4.3.1), functional programming languages as

formula languages (Section 4.3.3) and lazy evaluation (Section 4.3.2) address these shortcomings,

while retaining the basic spreadsheet “feel.” We have used these findings to define an extended

spreadsheet paradigm which consists of the traditional spreadsheet paradigm augmented by the

three features described above. This extended paradigm retains all the advantages associated with

spreadsheets with regard to exploratory programming, while allowing the efficient processing of

very large datasets within the context of data visualisation.

In order to test the extended spreadsheet paradigm, we have built a software prototype, which is

described in detail in Chapter 5. This program implements the extended spreadsheet paradigm, and

also includes certain features which, although not deemed fundamental enough to include in our

extended spreadsheet paradigm, are nevertheless quite useful. These are the ability for spreadsheets

to evaluate cells in other spreadsheets, effectively implementing function calls and encapsulation at

the spreadsheet level (this follows from the functional nature of spreadsheets discussed above); a

window that generates and displays a dataflow diagram equivalent to the spreadsheet currently being

edited (this is a very useful debugging tool that follows from our discovery of the equivalence of

spreadsheets and dataflow systems); and a “zoomed out” view of the spreadsheet which makes use

of small icons representing spreadsheet cells in order to give users a wider view of the spreadsheet

— this was found to be another useful debugging aid, supported by Nardi’s work that indicates that

users prefer to be able to view as much data as possible without scrolling [41].

Finally, we have used Green’s Cognitive Dimensions Framework [18] to compare our software

prototype to existing data visualisation systems. Based on this comparative study, we have arrived at
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the conclusion that our system (and hence the extended spreadsheet paradigm), is at least as usable

as existing dataflow systems, with several improvements (see Section 7.4).

1.8 Outline of this Dissertation

Chapter 2 In Chapter 2 we describe the work that we base our findings and extension of the

spreadsheet paradigm on. We first examine the dataflow paradigm, which underlies most current

data visualisation systems. Then we provide a working definition of a “Spreadsheet,” to ensure that

our discussion does not become obscured by ancillary features added to recent spreadsheet software

as a response to market pressures. This is followed by a description of the spreadsheet paradigm,

giving brief descriptions of several commercial and experimental spreadsheet systems which we

believe constitute the current state of the art in this field.

We then describe the dataflow programming paradigm and describe its pros and cons with regard

to data visualisation, followed by a discussion of spreadsheets and data visualisation, in which we

outline previous work in this area. This is followed by a discussion of the similarities that exist

between spreadsheets and dataflow systems.

Finally, we introduce Green’s Cognitive Dimensions framework [18], which we shall use in

Chapter 7 to measure the usability of the extended prototype, and provide a simple example to

explain the technique.

Chapter 3 This Chapter examines the underlying nature of spreadsheets. We begin by using

Isakowitz and Schocken’s segmented view of spreadsheets [23], and expanding on this from a func-

tional point of view to arrive at the conclusion that spreadsheets can be described as consisting of

a set of functions plus an editing layer. We then show that spreadsheets and dataflow systems are

equivalent in nature.

Chapter 4 In Chapter 4 we introduce the extended spreadsheet paradigm that forms the core of

this dissertation. We note what failings traditional spreadsheets have with respect to data visualisa-

tion systems, and show how these are overcome by the combined use ofCompound Datatypes(e.g.,

lists),Lazy Evaluationand the use of aFunctional languageas a formula language.

Chapter 5 We have built a prototype to test our extended spreadsheet paradigm, and described it

in detail in Chapter 5. This chapter describes ViSSh both from a user’s point of view and from our

point of view as its designers. All the program’s internals are described in detail, from the choice
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of rendering toolkit used to the details behind the dual data pipeline. The chapter also discusses

ViSSh’s animation capabilities as well as two features which are not part of the extended spread-

sheet metaphor, but which are useful when editing spreadsheets: the “Broad Overview” window,

which eases grid navigation, and the “Show Dependencies” window, which uses the equivalence of

spreadsheets and dataflow systems to render a dataflow diagram which corresponds to the current

spreadsheet. This is a useful debugging aid, as well as easing the transition from a dataflow-based

data visualisation system to ViSSh.

Chapter 6 During and after its development, ViSSh has been tested with real-world data both to

improve the program itself and to demonstrate the viability of the extended spreadsheet metaphor

as a user interface for a data visualisation system. Chapter 6 describes two such data visualisations:

seismic disturbance analysis and ATM network traffic analysis. These applications are described to

demonstrate the different features of ViSSh, and to illustrate the process of building visualisations

of data using ViSSh.

Chapter 7 In the previous chapters we have noted the advantages spreadsheets have for data

visualisation systems, as well as their shortcomings. We then built up the theoretical framework

needed to extend the spreadsheet paradigm to address these shortcomings, and devised an extended

spreadsheet paradigm based on this framework. A software prototype, implementing this extended

paradigm, was then built and in Chapter 7 we present a Cognitive Dimensions framework [18]

analysis of this prototype. This analysis reveals the cognitive properties of the prototype, which

when compared to those of existing data visualisation systems [18], indicate the suitability of the

extended spreadsheet paradigm as a data visualisation platform.

Chapter 8 Finally, in Chapter 8 we end this dissertation with some concluding remarks and sug-

gestions for future work.



Chapter 2

Background

2.1 Introduction

This chapter first examines the dataflow paradigm, which at the time of writing (2000) seems to be

the most popular with data visualisation system designers (e.g., apE [14], IBM’s Data Explorer [33],

Irix Explorer [15], AVS [61], etc). Then the spreadsheet paradigm is discussed, together with the

advantages it has for data visualisation over the dataflow paradigm, as well as its disadvantages in

this area. These disadvantages shall be addressed in a later chapter, where some basic extensions to

the spreadsheet paradigm will be discussed that will alleviate the problems.

Spreadsheets have been a part of computing almost since the emergence of the personal com-

puter (e.g., Bricklin and Frankston’sVisiCalc). Although more than twenty years have elapsed since

their invention, their basic nature (i.e., a grid populated by text, numbers and formulas in fixed rela-

tionships which updates itself when some part of it is altered) has remained unchanged, and as such

most computer users have been exposed to the spreadsheet paradigm at some time or another.

In order to more objectively quantify the cognitive differences between the dataflow and (ex-

tended) spreadsheet paradigms, we shall be using an analytical tool known as the Cognitive Dimen-

sions Framework [18, 17]. This analysis tool breaks down interactive systems environments along

fourteen mostly-orthogonal, cognitive axes. At the end of this chapter we shall briefly introduce the

technique, which shall be used in Chapter 7.

11
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2.2 The Dataflow Paradigm

Traditionally, data visualisation systems have used the dataflow paradigm. Its underlying mecha-

nism is semantically quite simple: a program is composed of a set of functional units connected

by data pipes. Data can be seen as “flowing” through the pipes into the functional units, each of

which implements a given function. The data that enters each of these functional units is treated as

the arguments to the function, while the results of these functions “flow” out of the functional units

through other pipes. These results may then flow into other functional units, where they form the

arguments to other functions, and so on. In this way a dataflow program can be seen as simply a

graphical notation for mathematical functions.

Semantically, dataflow systems are very different from Von Neumann machines. The dataflow

model has no concept of global memory or a program counter [56, pp. 173–177]; instead, the model

deals only with values and execution is governed bynode firing rules, the most common of which

is to trigger evaluation of the current node as soon as all inputs contain valid data. This data moves

from node to node in the form of discretetokens. Since dataflow systems have no state and their

behaviour is firmly based on mathematical functions, they are declarative in nature.

Dataflow diagramsare a very common editing metaphor for dataflow systems, since they di-

rectly represent the logical structure of dataflow systems. A dataflow diagram typically represents

each functional unit with a box containing the implemented function, with the data pipes repre-

sented as lines connecting the boxes. For example, the dataflow diagram in Figure 2 implements the

functionH � G � F � x����� .

A
B

F
H

G

Figure 2: This is an illustration of a dataflow diagram: Several boxes (representing functions) are joined
together by lines (representing “pipes” through which data flows). Data enters the system from A, flows to
the box labeled “F,” which applies some function to the data. The result of this function then flows to the box
labeled “G,” which applies another function, and so on until the transformed data leaves the system at B.

2.3 A Brief Definition of Spreadsheets

Although the term “spreadsheet” is quite well-known, enough variety exists in the field to merit a

brief definition, for the purposes of this document:
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A traditional spreadsheet is a program used to manipulate objects arranged in a tabular

fashion. These objects include text, numbers and formulas. Formulas are used to cal-

culate values for cells from those stored in other cells. A formula may only read values

from other cells and not write new values into those cells. The result of the formula

appears only in the cell the formula resides in.

This defines the “lowest common denominator” spreadsheet (such as the originalVisiCalc). Our

definition excludes hybrid systems such as those with embedded BASIC interpreters, that allow cells

to directly modify other cells. This leads to a lack of referential transparency, and as will be shown,

is not necessary for the functioning of spreadsheets.

2.4 The Spreadsheet Paradigm

In 1978, Daniel Bricklin and Robert Frankston released VisiCalc (see Figure 3). This was a flexible

analytical tool that gave non-programmers the ability to perform complex data analysis on non-

trivial volumes of data. The real impact of this program was that it allowed users to develop their

own data models, as opposed to relying on someone else’s programming skills [52]. It also gave

users the ability to perform speculative analysis of data quickly and easily. This could be useful, for

example, in forecasting the repercussions of a particular financial decision such as raising the profit

margin.

VisiCalc based its user interface metaphor on the journals and ledgers used by accountants, and

became a popular application with the financial community. The user interface itself is quite simple:

the user directly manipulates a workspace, which is divided into a regular rectangular grid of cells.

Into each grid cell the user writes either a number, a formula that will derive a result from other

numbers already on the spreadsheet, or a short descriptive phrase.

The tabular grid used to display and edit the spreadsheet is at the heart of the spreadsheet’s

usability. Tables have been in use since the days of Ptolemy [40], making them one of the earliest

computational tools in existence. The regular grid structure, coupled with a simple yet effective

way of locating items within it (by a row/column reference) makes tables, even very large ones,

easy to navigate (once an item has been located, it is easy to find it again — this fact has been

used by cartographers for centuries). Likewise, spreadsheet cells are arranged in rows and columns,

and addressed using a letter/number system, where the letters indicate the column number and the

number the row (e.g., cell B3 is the cell third from the left edge and second from the top edge of the

spreadsheet).
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Figure 3: This is what a typical VisiCalc screen looks like (this image was scanned from the reference card).
VisiCalc was the very first spreadsheet program, launched in 1979 for the Apple II computer.

Although the tabular representation of spreadsheets is inherently easier to navigate than other

methods, the reality of a limited display can make navigation a difficult exercise. The problem is

that although the grid-like nature of spreadsheets makes a given location easy to return to, actually

findingthe information in the first place may be a trying exercise. One way to alleviate this problem

is by the use of a lenticular interface, as suggested by Rao and Card’sTable Lens[50]. This system

always displays the entire spreadsheet, but compensates for the limited size of the screen by chang-

ing the size of the spreadsheet cells. The cell that is being edited at any given time is shown at full

size, while the size of all other cells diminishes with increasing distance from the current cell. Fig-

ure 4 illustrates this user interface technique. TheFocussystem [57] improves on this technique by
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also assigning attributes to groups of cells and restricting the display of cells to those with attributes

that match the ones specified by the user.

A B C D E F G H

1

2

3

4

5

6

D3 E3

D4 E4

Figure 4: This is a lenticular spreadsheet interface for a spreadsheet. The four spreadsheet cells comprising
the area of interest (in this case, cells D3, E3, D4 and E4) are shown magnified, while all other spreadsheet
cells are minimised.

Although the spreadsheet paradigm is quite simple, its pencil-and-paper implementation (e.g.,

a ledger) can be quite clumsy, since changing one number can involve large amounts of erasing and

tedious recalculation. On the other hand, this paradigm is ideally suited for a computer, since large

volumes of calculations can be quickly performed when the need arises.

Spreadsheets have been shown to be highly successful tools for interacting with numerical data,

such as applying algebraic operations, manipulating rows or columns and exploring “what-if” sce-

narios [9]. Their usability is not limited to single users, either; for example, Nardi and Miller [42]

have studied the possibilities of using spreadsheets in a collaborative environment. Although spread-

sheets seem to have evolved considerably since the early days of VisiCalc, in fact they have not

changed substantially since then. The basic grid structure remains the same, with most improve-

ments centering around “syntactic sugar” for the macro language used for the composing of formu-

las, and useful additions such as integrated charting packages. There are some interesting deviations

from this formula, for example Eriksson’sScheme in a Grid[16], which uses the functional pro-

gramming languageSchemeas a formula language; Piersol’sAnalytic Spreadsheet Package[49],

which uses the object-oriented languageSmalltalk 80for this same purpose, and Kriwaczek’sLogi-

Calc [29], which combines spreadsheets with the logic programming languageProlog. These vari-

ants do not stray far from the basic paradigm, however: the basic grid structure remains in place
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and Eriksson, Piersol and Kriwaczec have ensured that the basic spreadsheet “feel” remains intact

in their respective works.

The visual languageForms/3[7, 19] retains the concept of cells and formulas, but it does away

entirely with the grid structure normally associated with spreadsheets; instead, cells are labelled

by the user when they are created and these names are used by formulas instead of cell references.

This makes Forms/3 an interesting hybrid between “normal” programming languages (since the cell

labels resemble variable names) and spreadsheets (since automatic recalculation still holds). The

commercial program AgentSheets [1] works along similar lines as this, but implements recalcu-

lation using pervasive multi-threading. This has the effect of making all calculations that are not

interdependent run in parallel, thereby making the system highly suitable for simulation. A more

radical approach is taken by Lewis’sNoPumpG[31] andNoPumpII [65] prototypes, in which all

spreadsheet cells are free-floating and graphical interaction is used to modify cell values. Casady &

Greene’sSpreadsheet 2000[8] is conceptually similar to Lewis’s work, but does away with textual

formulas altogether. Instead, it uses a dataflow method in which small spreadsheets (which in tra-

ditional spreadsheets would be implemented as cell ranges) are linked together via operator nodes

(Figure 5 illustrates this). Myers’C32constraint-based system [39] is also similar to this, although

his use of spreadsheets is limited to the two-column variety currently known asproperty sheets.

The usefulness of the spreadsheet paradigm is not limited to spreadsheets, however: John-

son et al have extended the basic spreadsheet paradigm to use it as the basis for theACE pro-

gramming environment [25]. This provides users with a system that is spreadsheet-based but which

is so far beyond products such asMicrosoft Excelso as to be more accurately described as a general-

purpose programming environment.

Compared to more traditional programming paradigms, spreadsheets have several important

advantages. Nardi and Miller [40] remark that the biggest advantage of spreadsheets is not cognitive

but motivational: after only a few hours of work, spreadsheet users are rewarded by simple but

functioning programs. Levoy [30] found that for data visualisation tasks, compared to the commonly

used dataflow model [14, 15, 33], spreadsheets are “more expressive, more scalable, and easier to

program.” These advantages arise mainly from two properties of spreadsheets and their formula

languages [40]:

� High level, task-specific functions

The formula languages normally found in spreadsheets have most basic arithmetic operators

(addition, subtraction, multiplication, division, exponentiation, etc.), as well as many simple,

yet specialized functions such as time and date arithmetic. Since these high-level operations

are already present as primitives, they do not need to be built from other building blocks.
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Figure 5: This is a screenshot of SpreadSheet 2000. This program combines the spreadsheet and dataflow
paradigms to provide a system that is easier to navigate than traditional spreadsheets.

� Very basic control-flow constructs

Flow control is a difficult programming concept [40]. Therefore it makes sense that a pro-

gramming paradigm which somehow either eliminates or hides flow control will be easier

than one which exposes flow control. Spreadsheet formulas partially hide flow control be-

cause spreadsheet cells do not explicitly need to “call” each other — they simply use the

values stored in the other cells. Although this implicitly means that cells will have to be re-

calculated when the cells they depend on have been modified either by recalculation or user

interaction, this is handled automatically and so this fact is hidden from the user. Iteration

and recursion, both common control-flow constructs, are obviated by the fact that spreadsheet

formulas can operate on cell ranges, applying an operation to many values.
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As an illustration of these advantages, consider the simple operation of calculating the average

of 100 numbers. This is illustrated in Figure 6 — the C [27] code necessary to implement theAVG

function is not as readable as the spreadsheet formula. All the necessary punctuation, data typing,

etc. helps to obscure the workings of the function, and eases the introduction of bugs. In all fairness,

the functionality could have been encapsulated in a C function (the C function callavg(A,1,100)

is as readable as the spreadsheet formula=AVG(A1:A100) ), but the code to implement the function

(i.e., the code in Figure 6) would still be required. By contrast, in the spreadsheet version of the

code, the looping construct (thefor loop) is eliminated, together with the temporary variables

(variablesi andtotal ) and the fact that these variables have different data types. Additionally, the

contents of cells A1 to A100 are guaranteed to be current at all times. A C programmer would need

to enforce this by the addition of further code.

=AVG(A1:A100)

Averaging with a spreadsheet language

int i;
double total = 0.0;

for (i = 1;i <= 100;i++)
total += A[i];

return total / 100.0;

Averaging with the C programming language

Figure 6: This contrasts the procedure to be followed when the average of 100 numbers must be calculated,
using a typical spreadsheet formula or the C programming language [27]. The spreadsheet version is more
readable and concise than the C version, which is typical of the imperative paradigm — contrast the explicit
looping construct in the C code with the implicit spreadsheet expression. Imperative programs, being larger,
are also more error-prone: for example, when altering the example above to calculate the average of a different
range, the C programmer must remember to update the “100” in both thefor loop and thereturn statement.

2.5 Spreadsheets and the Declarative Paradigm

In his seminal 1977 Turing Award Lecture [2], John Backus outlined what he believed were the

main problems with the imperative programming paradigm. He then described a framework which

he believed can solve these problems, which is now widely known as the declarative programming

paradigm. To illustrate, he outlined several programming systems which implement this paradigm.

One of the systems he discussed was the Applicative State Transition (or AST) system. This is
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characterised by the fact that AST programs are mostly functional in nature, but unlike functional

languages such as pure Lisp, they keep track of state. However, in contrast with the imperative

programming paradigm, rules must be observed when updating this state.

The rules of AST systems are quite simple, however, and can be summarised into the following:

a program will accept an initial state and input at startup, but will not accept further input until an

output has been issued and the new state, if any, installed. In other words, AST systems combine

the purely functional and imperative programming paradigms by being “piecewise functional.”

Some examination of the spreadsheet paradigm will reveal that most spreadsheets fall under this

category, if one considers a spreadsheet to be a program, and the formulas in that spreadsheet to be

the statements that comprise that program. When a spreadsheet recalculation is triggered, each cell

is completely evaluated and its result stored before any other cells can be evaluated. The actual

process of evaluation of spreadsheet cells does not result in any state changes, since spreadsheet

formulas can only read the values stored in other cells, and not write to them. In the context of

spreadsheets, “input” means reading the contents of other cells, while “output” is the updating of

the value stored in the cell the formula resides in. The only way to change a cell’s state is by this

“output” operation, i.e. a cell may change only its own state. Therefore, spreadsheet recalculations

obey the rules stipulated by the definition of AST systems, and can therefore be considered to be

declarative in nature.

2.6 Data Visualisation and the Declarative Paradigm

The declarative programming paradigm, especially under the guise of dataflow diagrams (see Sec-

tion 2.2), can be quite intuitive and readily grasped by non-programmers. This has been taken

advantage of by the makers of recent data visualisation systems which, with few exceptions, have

used the declarative paradigm as a means of expressing the system that is being visualised. Systems

such as apE [14], SGI’s Iris Explorer [15], IBM’s Data Explorer [33] and Advanced Visual Systems’

AVS [61] have used the dataflow paradigm to allow their users to do extensive visualisation of large

volumes of data without needing to learn the skills needed when using traditional programming

languages. The premise behind the dataflow model is quite simple: the user interactively creates the

application as a directed graph of modules. Each of these modules consists of a “black box” with

several inputs and one output, which performs a relatively complex and specialised computation on

its inputs and places the result in its output. The modules are linked to each other (output of A to

input of B) by means of a directed graph typically called a visualisation network.
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The end result of this process is a set of “black boxes” connected to each other by “data pipes.”

Data flows through the pipes and is altered by whatever is inside the boxes. A system, such as this

one, in which the underlying paradigms carry over into its user interface is said to bereflexive[59,

pages 80–81]. Reflexive systems, from a user interface point of view, have the substantial advantage

of presenting the user with a view of the process that mimics the process itself. This translates into

a system that is more efficient, since there is no user interface layer that shields the user from the

underlying mechanism.

2.6.1 Limitations of the Dataflow Model

As was discussed above, most modern data visualisation systems use the dataflow programming

paradigm. Although the declarative nature of this paradigm makes complex visualisations possible

to the layperson, the choice of dataflow diagrams is not ideal. Dataflow diagrams are both easy to

create and to maintain, yet they have certain drawbacks. The largest of these is scalability [30].

As a visualisation network becomes more and more complex, the number of modules and their

associated interconnections steadily becomes more and more unmanageable; this is due to the fact

that connections between dataflow nodes (i.e. the arcs between nodes) are explicit, and after a few

dozen nodes have been placed, the screen the arcs connecting these nodes tend to become a tangled

mass as editing progresses.

2.7 Spreadsheets and Data Visualisation

After the launch of VisiCalc, spreadsheets gained in popularity with the financial community, as

evidenced by several similar programs which were written in the following years, such asLo-

tus 1,2,3[32], Quattro [4] and Microsoft Excel[35]. However, their use remained constrained

to financial calculations for most of the following two decades. The commercial success of these

spreadsheet programs eventually led researchers to experiment with the idea of using spreadsheets

(or at least the spreadsheet paradigm) in their respective fields, such as proving combinatorial iden-

tities [43, 44], user interface development [38], teaching computer graphics [34] and the object-

oriented programming paradigm [46]. Others have used the tabular grid as a visualisation aid,

without making full use of the spreadsheet paradigm; for example Van Wijk and Van Liere’sHy-

perSlice[62] makes use of the tabular grid to simplify the visualisation of multi-dimensional data.

It does not qualify as a spreadsheet, however, because each cell cannot be given an independent

formula; instead, a single multidimensional dataset is visualised by a set of cells, each of which
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presents a different “slice” through the data.

One of the first “true” data visualisation spreadsheets is described in Marc Levoy’s 1994 paper

“Spreadsheets for Images” [30]. This paper describes a system in which spreadsheet cells are pop-

ulated not only by numbers and formulas (written in the imperative scripting languageTcl of John

Ousterhout [45]), but also by graphical objects (such as images or movies) and user interface objects

(such as buttons or sliders). Levoy used the intrinsic extensibility of Tcl to add several functions that

would allow the user to perform various types of transformations on the images. Levoy found that,

compared to the commonly used dataflow model, spreadsheets are “more expressive, more scalable,

and easier to program” [30].

More recent work by Chi, Riedl, Barry and Konstan [9, 10] extends the work of Levoy by not

constraining the system to images, but instead allowing the user to visualise any type of information.

Although they also use the programming language Tcl, Chiet al make use of the data visualisation

toolkit VTK [54] as the underlying data visualisation engine (Levoy used the low-level graphics

toolkit OpenGL[53], writing the high-level visualisation routines himself). By using these toolkits,

Chi et al gave theirSpreadsheet for Visualisationprimitives for animation, dynamic visual filtering

as well as several well-known data visualisation algorithms such asmarching cubes.

Hasleret alhave also built a data visualisation spreadsheet (called theInteractive Image Spread-

Sheet, or IISS) [47] which operates in a similar way to Levoy’s work, but uses a different spreadsheet

language. It can arguably be deemed to be a better system due to the fact that it functions as a layer

above Khoral Research’s well-established data visualisation toolKhoros.

Spreadsheets can be considered to be adequate tools for data visualisation because they allow

data to be easily input, dynamically updated and readily viewed [34]. Additionally, they provide

a flexible and easy-to-learn environment for user programming [10], and give the user simple but

functioning programs after only a few hours of work [40]. Developers can create spreadsheet tem-

plates that users can modify with moderate ease to suit their own needs. Furthermore, developers

can do this without needing to worry about details such as memory management or input/output, as

these issues are dealt with by the spreadsheet software itself.

Spreadsheets have certain properties that elegantly address some of the problems that are met

when visualising multidimensional data, such as the mutable nature of visualisations and the need

to have different yet simultaneous views of the same data [9]. The mutable nature of visualisation is

addressed by the ease with which a user can make changes to the spreadsheet [30], while the multiple

representation issue is dealt with by the emphasis which the spreadsheet places upon operands,

as opposed to operators [9] (this means that operands are always visible, whereas operators, i.e.
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formulas, must be explicitly requested). Additionally, the fact that spreadsheets automatically keep

track of data dependencies between cells and update relevant cells when necessary frees the modeller

from one of the many tasks a traditional visualisation programmer is normally faced with. Also,

work by Chi, Riedl, Barry and Konstan [10] indicates that for exploratory programming tasks such

as data visualisation, temporary values may be as relevant as the end result itself. Since spreadsheet

users have access to these intermediate results (whereas these results are hidden by the dataflow

diagram), spreadsheets can be considered to be more suitable for data visualisation. However,

spreadsheets in their current form are not an ideal tool for data visualisation; they are optimised for

financial calculations, and so have two areas that need improvement: they can deal with datasets

containing at most a few hundred numbers (several orders of magnitude too small for practical data

visualisation), and their formula languages are too rigid for general visualisation use. In Chapter 4

we shall examine these shortcomings in detail, and suggest ways to extend the spreadsheet metaphor

to cope with them.

2.7.1 Spreadsheets and the Functional Paradigm

Although current spreadsheets, due mostly to market pressures, have grown far beyond the original

scope of early spreadsheets, the essential nature of these programs remains close to that of older

programs such as VisiCalc. As was shown in Section 2.5, such basic spreadsheets are declarative in

nature.

Although spreadsheets based on imperative languages do exist (in fact some commercial spread-

sheets, such asMicrosoft Excel[35] can be extended by routines written in a dialect of the BASIC

programming language [36]), the functional programming paradigm has some definite advantages,

especially with regard to the programming style normally associated with spreadsheets. Functional

languages can provide much greater modularity than imperative languages due to their use of high-

order functions and lazy evaluation [21]. This is particularly useful in a spreadsheet environment be-

cause spreadsheets consist of large numbers of disjoint cells. In this environment, enhancements in

modularity translate into an increased ability to compose complex functions that are not intractably

complex to debug.

Although the ability to debug spreadsheet models may not seem overly important, several

studies cited by Panko [48] indicates that errors in spreadsheet models are prevalent. Ronen be-

lieves that that this could be because, for many users, the spreadsheet program represents the user’s

first hands-on experience with a computing device of any kind. This also includes the first hands-

on experience with many disciplines which are, for most other computer users, normally acquired
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through training. These include such critical disciplines as programming and documentation [52].

Work by Isakowitz, Schocken and Lucas [23] indicates that 25% of a sample of spreadsheets col-

lected from ten large organizations contained errors. Isakowitz, Schocken and Lucas also mention

several studies that conclude that spreadsheet errors are not only prevalent, but also elusive.

Proponents of the functional programming paradigm have shown that functional programs are

exempt from several classes of bugs that appear in imperative programs [21]. They have also shown

that functional programs also have the potential for increased modularity due to the availability of

features such as high-order functions, which take other functions as arguments [21]. This increased

modularity would be desirable in a spreadsheet, since the spreadsheet’s grid architecture and re-

liance on primitive formulas (such asadd or average ) promotes modular programming. Given

this, it seems logical that spreadsheets with a functional basis would, sooner or later, merit investi-

gation.

Examples of this functional approach to spreadsheet design areScheme in a Grid[16], which

combines traditional spreadsheets with the functional language Scheme, and De Hoon’s MSc the-

sis [11], which discusses the implementation of a spreadsheet using the functional languageclean[5].

2.7.2 Spreadsheets and Dataflow

Systems such asScheme in a Grid[16] andFunSheet[11] demonstrate a link between spreadsheets

and the declarative programming paradigm. Some systems exploit this link by providing a dataflow

interpretation of spreadsheets, providing spreadsheet users with useful debugging information. Ac-

cording to Igarashi [22], the state of the art of this feature in current commercial systems, can be

found inMicrosoft Excel 97’sspreadsheet auditing tools. These can be used by users to query the

flow of data into or out of individual spreadsheet cells. This system is very similar to Shiozawa’s

Nattospread[55], which extends this capability to all cells that, directly or indirectly, contribute to

the result displayed in the selected cell. Shiozawa’s work is innovative in that it makes use of 3D to

attempt to reduce the clutter of the generated dataflow diagram (this clutter arises from the fact that

all nodes in the diagram retain the position of the original spreadsheet cells).

Igarashi [22] has described a system of three separate dataflow views of a spreadsheet, also

overlaying the dataflow graph over the spreadsheet. Firstly, there is aTransient Local View; this

allows the user to see the dependencies for the cell that the mouse cursor is currently over, in a

similar way thattooltipsare displayed when the mouse hovers over a user interface control. Then,

there is theStatic Global View. This overlays all dataflow information for the visible cells on the

cells themselves. If the spreadsheet is not carefully built, this can lead to clutter, which obscures
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both the spreadsheet and the dataflow graph. In order to remedy this problem, there is also an

Animated Global View. This presents the same information as the Static Global View, but makes

use of animated colouring of spreadsheet cells instead of drawing arrows to demonstrate the flow of

data. Since arrows are no longer drawn, the amount of clutter is significantly reduced.

2.8 The Ergonomics of Spreadsheets

Several researchers have worked on the cognitive aspects of programming in general and spread-

sheet programming in particular (e.g., Nardi [40]). One of the fruits of this research has been

analysis tools for the cognitive implications of different features of programming systems.

In particular, Green [18] has devised a useful cognitive analysis tool for information-based arti-

facts. Since both spreadsheets and dataflow diagrams belong to this class of programming environ-

ments, Green’s work can be used to fairly compare them from a cognitive point of view.

2.8.1 The Cognitive Dimensions Framework

Green proposes using a “broad brush” analysis method, as opposed to the fine-grained analysis of

simple tasks traditionally used by HCI researchers. The analysis tool, called a “cognitive dimen-

sions framework,” is task-specific, concentrating on process rather than content. It provides us with

a set of mutually-orthogonal cognitive dimensions, which in essence allow the broad description

of any visual programming environment by conceptually plotting points in a 13-dimensional set of

axes. Although the dimensions are meant to be orthogonal, Green admits that there is a certain

amount of interaction between them, such that changing one aspect of a visual programming en-

vironment to improve its position along a given axis is likely to affect the environment’s position

along several other axes. Using the Cognitive Dimensions Framework it is possible to quantify the

differences between existing programming environments, so they can be objectively compared and

conclusions drawn about the suitability of these environments for any given task. This is one of

the main reasons we decided to use this technique: it separates the interaction of the system being

investigated into several aspects, and rates these aspects. This is far more useful in this case than a

single usability measure, since it lets us concentrate on the “important” aspects of the system, given

its role as an exploratory programming environment (such as how easy it is make changes to an ex-

isting program), while overlooking less important aspects, again within the context of exploratory

programming (such as the ability to add a comment to every single line of code). These properties

make the Cognitive Dimensions Framework useful in our work, and so we shall be making use of
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the technique in Chapter 7.

The cognitive dimensions as defined by Green are the following:

� Abstraction Gradient. This deals with the minimum and maximum level of abstraction

describable within the environment (or, in this case, language), and includes such things as

procedure and data encapsulation. If anabstractionis defined as a grouping of elements to

be treated as one entity, then systems can be classified asabstraction-hating, meaning that

there is in general no way to implement abstractions (e.g., spreadsheets, which allow no ab-

stractions),abstraction-tolerant, meaning that although abstractions are supported, they are

not required (e.g., the C programming language, which has support for functions and abstract

datatypes, but does not require their use), andabstraction-hungry, meaning that abstractions

are required (e.g., the Java programming language, which requires everything to be imple-

mented as a class).

� Closeness of Mapping.This deals with how much the syntax of the language separates the

problem being solved from the program being used to solve it. This extends fromlow, mean-

ing that there is a lot of syntactic and semantic clutter (e.g., the C programming language, with

its semicolons, datatypes and obscure operator precedence) tohigh, meaning that users can

state their programs directly, without worrying about syntax (e.g., most visual programming

languages).

� Consistency.This asks the question: “Once a user has learned part of the language, how much

of the rest can be deduced?” This is also known as the “principle of least astonishment.” This

ranks fromlow (e.g., the commands used to control thevi text editor) tohigh (e.g. theLaTeX

document layout system, with its highly consistent command set).

� Diffusenessdeals with how many symbols are needed, on the average, to represent any

given meaning. This ranks fromhigh (e.g., the Cobol programming language expression

“MULTIPLY Num1 BY Num2 GIVING Result. ”) to low (e.g., a spreadsheet formula such as

“=SUM B1:B52”).

� Error-proneness asks if the design of the notation induces the making of careless mistakes.

This also ranks fromhigh to low.

� Hard Mental Operations. Are there places where the user needs to resort to external aids

(such as pencil and paper) to keep track of what is happening? This ranks fromhigh (e.g.,



26 CHAPTER 2. BACKGROUND

keeping track of operands in the stack of stack-based languages such asFORTHor PostScript)

to low.

� Hidden Dependenciesexist if two or more entities influence each other “behind the pro-

grammer’s back.” This is also known, especially in the functional programming literature, as

side effects. This ranges fromfew(e.g., the Scheme programming language) tomany(e.g., an

assembly-language program).

� Premature Commitment forces programmers to make a decision before they have all the

necessary information. This ranges fromlow (e.g., word-processing software) tohigh (e.g.,

circuit design software in which wires can be drawn only between components already in

place).

� Progressive Evaluationallows partially finished programs to be executed so that the pro-

grammer may obtain feedback on their progress. This can be eithergood(e.g., a spreadsheet)

or bad (e.g. a C program, which must have all its brackets matched, semicolons, etc.).

� Role-expressiveness.This asks if the user can see how each component of the program

relates to the whole. This can behigh (e.g., in a well-designed and commented C program),

or low (e.g., in a spreadsheet, which has no support for any way of expressing inter-component

relationships).

� Secondary Notationconsists of a set of primitives the programmer can use to convey more

meaning than is normally allowed by the semantics of the software environment. This can

range fromhigh (e.g., indenting of control constructs in C) tolow (e.g., WYSIWYG word-

processing software, by its nature, does not allow this sort of information coding).

� Viscosity deals with how difficult it is to make a single change to a program. This ranges

from low (e.g., a circuit design program that treats wires as rubber bands, so that moving a

component does not break connections between components) tohigh (e.g., a circuit design

program that doesnot treat wires as rubber bands, requiring each moving of a component to

be followed by a rewiring step).

� Visibility and Juxtaposability deals with the ease, or difficulty, of seeing how any two parts

of a program relate to each other. This also ranges fromhigh (e.g., theMicrosoft Visual

BASICGUI editing environment, in which double-clicking on a control takes the user to the
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event-handler subroutine for that control) tolow (e.g., early versions of the MS-DOS editor

edit, which did not allow separate views of the same document).

The cognitive dimensions framework has been designed to be easily mastered [18]; Mod-

ugnoet al [37] have verified that little experience is needed to correctly apply the technique. As a

result, the technique has now been in use for several years by members of the HCI community, and

as such has been used and commented on by several others (e.g., Blackwell [3], Modugnoet al [37],

Yazdani [67]) and has even been suggested as a teaching aid [66]. A useful tutorial illustrating how

this analysis technique can be applied can be found in [17].

In order to provide a feel for cognitive dimensions analysis, a very simple example is outlined

below. The information device being analysed is well-known by most researchers: a pencil and

paper pad.

2.8.2 Cognitive Dimensions Analysis of a Pencil and Pad

The information device being analysed here is possibly one of the oldest — paper was invented

several thousand years ago and the modern pencil has existed since Napoleonic times. The pencil

in question is enhanced by the addition of a small rubber eraser on the non-writing end, while the

pad consists of a ring binder filled with blank pieces of paper. For the purposes of this discussion,

the pencil and the pad are considered to be a single information device, the pencil-and-pad.

Abstraction Gradient

Being real, physical devices, the pencil and paper pad combination cannot be said to incorporate

any abstractions. Therefore the pencil-and-pad scores very low on this axis.

Closeness of Mapping

Closeness of mapping deals with how much the usage of the information device separates the prob-

lem being solved (in this case, drawing and writing) from the device itself. The pencil-and-pad is a

direct-manipulation device, and so the act of drawing is very closely mapped to the drawing itself

(e.g., to draw a circle, one moves one’s hand in a circular motion).

Therefore, the pencil-and-pad can be said to have a very high closeness of mapping.
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Consistency

This is also known as the “principle of least astonishment,” which states that once a part of the

system has been learned, the user should be able to infer the remaining parts of it.

It should be quite obvious that once the basic principles behind making marks on paper with the

pencil have been grasped, all further use will be quite intuitive. Therefore the pencil-and-pad can

be considered to be highly consistent.

Diffuseness

This cognitive dimension deals with how “verbose” a given information device is i.e., whether many

primitives are required on the average to express any given basic concept.

Again, the direct manipulation nature of the pencil-and-pad makes it a highly concise informa-

tion device — no extraneous gestures (besides the need to occasionally turn the page) are needed to

perform the primitives of drawing and erasing.

Hence the pencil-and-pad has a low degree of diffuseness.

Error-proneness

This cognitive dimension asks, “How easy is it to make mistakes with this system?”

Green differentiates between “mistakes” and “slips” [18], where a “slip” is doing something

one “didn’t mean” to do (i.e., one knows what the correct action is, but still makes an error), and

a “mistake” indicates an error caused by an underlying complexity in the system. The pencil-and-

pad can be prone to slips, since the crude user interface does not allow for any form of constraints

checking; however, this same lack of complexity prevents the user from making “mistakes.”

However, since the design of the pencil-and-pad does not aid the process of making errors, this

device can be said not to be error-prone.

Hard Mental Operations

The very simplicity of the pencil-and-pad means that there are very few mental operations involved

in its use; in fact, most of the time the user will be using motor skills. Although it could be argued

that most users will find drawing a convincing portrait to be “hard,” this difficulty is inherent in the

problem, not the information device itself.

Therefore, the pencil-and-pad has no hard mental operations.
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Hidden Dependencies

A hidden dependency is a relationship between two parts of a system such that the one depends on

the other, but this dependency is not fully visible.

The only interactions that can occur between the pencil and the pad can only happen when a

stroke is either drawn or erased, both interactions being fully visible to the user. Therefore the

pencil-and-pad can be said to have no hidden dependencies. Note that this could not be said if

carbon paper were inserted into the pad, since drawing on one page could affect other pages without

the knowledge of the user.

Premature Commitment

This occurs when the user is forced to make a decision before all necessary information is available.

The pencil-and-pad can be considered to have a certain amount of premature commitment for

the simple reason that pages have boundaries — the user must decide, before starting, in which

directions a drawing will grow, and how large it is likely to become. Guessing wrong will mean

that the user must erase parts of the markings on the paper. Although this is not a problem for

writing (where at most one partial word may have to be erased), for drawings significant parts of

the drawing may have to be erased, or worse the entire drawing may have to be scrapped.

Therefore the pencil-and-pad can be said to have a medium degree of premature commitment

for drawings, and a low degree for writing.

Progressive Evaluation

If a system supports progressive evaluation, then any partially-completed work can be tested at any

time.

The primitive nature of the pencil-and-pad imposes no constraints on evaluation of partially-

completed drawings, therefore progressive evaluation is fully supported by the pencil-and-pad.

Role-expressiveness

This cognitive dimension is used to find out how difficult it is to answer the question “what does

this part of the drawing do?”

The unstructured nature of the pencil-and-pad makes it simple for users to cluster related mark-

ings together, for example written words may be grouped into sentences.

The pencil-and-pad therefore has a large amount of support for role-expressiveness.
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Secondary Notation

This is extra information carried by other means than the official syntax. An example from text-

based programming languages could be the indenting of loop bodies relative to loop-delimiting

statements.

Again, the unstructured nature of the pencil-and-pad allows for secondary notation to be easily

added to any set of pencil markings, e.g., margin notes next to a written paragraph.

Viscosity

For the pencil-and-pad, viscosity is defined asthe cost of making small changes to an existing

drawing.

Since all markings on paper exist independently of all other markings, there is no cost associated

with adding new markings to an existing drawing. Erasing could be more problematic: a slip of the

wrist can cause markings to be accidentally erased.

Overall, however, we consider the pencil-and-pad to have a low viscosity.

Visibility and Juxtaposability

Visibility is defined asthe ability to view components easily, while juxtaposability is defined asthe

ability to place components side by side. These two are related in that, combined, they imply the

ease, or difficulty, of seeing how any two parts of a drawing relate to each other.

Complete visibility is ensured by the simple fact that an entire page can be viewed at a time.

Since the pad is in a ring binder, pages can be pulled out and later replaced. This means that

any number of pages can be placed side-by-side and compared (this is limited only by the size of

the desktop), and afterwards replaced.

Therefore, the pencil-and-pad can be said to score highly both in visibility and juxtaposability.

Summary of Results

Above, we have seen that the greatest strengths of the pencil-and-pad lie in the simplicity of the

user interface. The low abstraction gradient and high closeness of mapping and consistency makes

this system easy to learn for beginners (indeed, any child can quickly learn its use), while the low

diffuseness, high role-expressiveness and support for secondary notation make it popular with power

users.
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Additionally, the low viscosity, high provisionality and juxtaposability, as well as its support for

progressive evaluation make the pencil-and-pad an ideal prototyping system.

2.9 Chapter Summary

Although spreadsheets have been in existence for quite some time, their basic structure has not

changed much, in spite of the fact that some novel concepts have been tried (e.g.,.Spreadsheet

2000[8]). The mutability associated with spreadsheets make them quite suited for data visualisa-

tion, where such mutability is a requirement. Although the traditional paradigm for data visualisa-

tion systems has been dataflow, this paradigm has some problems, which spreadsheets can success-

fully address. There has been some work in this direction, for example Levoy’s “Spreadsheets for

Images” [30].

Spreadsheets have many advantages over dataflow systems, especially in the area of scalability.

As dataflow diagrams get larger, their connections become more cluttered, resulting in programs

that are difficult to maintain and extend.

In order to be able to objectively compare spreadsheets and dataflow systems, as well as to

systematically improve on existing visualisation systems, a tool must be used to analyse the cog-

nitive properties of programming environments. TheCognitive Dimensions Frameworkdevised by

Green [18, 17] provides such a tool; it makes it possible to quantify the differences between existing

programming environments, so they can be objectively compared and conclusions drawn about the

suitability of these environments for any given task.
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Chapter 3

Spreadsheets and the Declarative

Paradigm

3.1 Introduction

Although some work has been carried out on functional spreadsheets [11, 12, 16, 30], and on “al-

ternative” uses for spreadsheets (that is, using spreadsheets for functions other than numerical com-

putation) [30, 9], exactly what constitutes a spreadsheet, at its most basic level, has been less inves-

tigated. Isakowitz and Schocken [23] argue that the present state of the art in spreadsheet design

is quite primitive; there is in general no way to enforce data dependencies between cells, and no

way to separate the physical structure of a spreadsheet from its logical structure. Although this may

be acceptable for small ad-hoc calculations, the lack of an underlying structure to the spreadsheet

makes validation of the model impossible. Work by Panko [48], Isakowitz and Schocken [23], Ro-

nenet al [52] and others indicates that this lack of underlying structure is a source of errors. In this

chapter we investigate a spreadsheet at its most basic level, and arrive at the conclusion that any

spreadsheet is, at its heart, a data visualization system for functional programs.

3.2 Overview of Functional Spreadsheets

The functional programming paradigm stipulates that functions may only read their arguments and

generate only the result, without making any changes to their surroundings. Spreadsheet formulas

on most commercial spreadsheets [32, 35, 4] normally adhere to this paradigm, if one considers

the formula to be the function, the cells referred to by the formula as the function’s arguments and

33
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the value displayed in the cell occupied by the formula as the function’s result. De Hoon [12] has

shown that a spreadsheet can indeed be built from a purely functional perspective, and describes his

implementation of a general spreadsheet using the functional programming languageClean[11].

3.3 An Abstract View of a Spreadsheet

The main aim of this dissertation is to extend the traditional spreadsheet paradigm to accommodate

the demands of data visualisation systems. However, we must first understand spreadsheets at an

abstract level. We have to discover the common underlying paradigm that is shared by all programs

that merit the name “spreadsheet.” Only when this underlying paradigm is understood, can we begin

to enhance it.

3.3.1 The Common View of Spreadsheets

As mentioned in Section 2.3 of Chapter 2, the common view of a spreadsheet consists of a rect-

angular grid of cells, arranged in rows and columns (see Figure 7 for an example). Each of these

cells contains either a constant or a function (which is commonly called aformula). This grid is

usually represented as a group of stored values, implemented as a matrix of values that is kept as

part of a “global state” object. The user interfaces of both commercial [32, 35, 4] and experimen-

tal [49, 11, 20, 30, 23, 46, 24] spreadsheets mirror this view. Cells are represented as being in a

rectangular grid, displaying their value, which is either their contents (in the case of a “data” cell) or

the result of their computation (in the case of a “formula” cell). “Formula” cells can also be viewed

and edited as formulas by using facilities provided by the spreadsheet application.

3.3.2 A More Structured View

The way of looking at spreadsheets as presented above, although quite adequate for relatively sim-

ple spreadsheets (e.g., keeping track of monthly sales), becomes increasingly unwieldy as the com-

plexity of the spreadsheet increases. This is because intercell dependencies are not always readily

visible, and so keeping track of which cells will be affected when a particular formula is modi-

fied increases in difficulty with the number of formulas in any given spreadsheet. Isakowitz and

Schocken [23] approached this problem by using ideas from the field of databases, and came up

with the concept of adual view of a spreadsheet. On one side, there is thephysicallayout. This is

what has been discussed above. On the other side there is alogical view of the spreadsheet. This
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Figure 7: This illustrates a “typical” spreadsheet: It consists of a regular grid of cells, each of which contains
a numeric constant, a small caption or a formula. Cells are addressed by their Cartesian coordinates; tradi-
tionally, thex coordinate is expressed using letters (base 26) while they coordinate is expressed using decimal
numbers. The text entry control at the bottom displays the contents of the current cell (with its coordinates
next to it for reference) so they may be edited.

handles abstract aspects of the spreadsheet, such as data dependencies between cells. The logical

view could be likened to a database’s schema, and in fact performs many of the same duties. Using

an algorithm described in [23], one can break a spreadsheet up into several aspects (called “prop-

erties” by Isakowitz), namedschema, data, editorial andbinding. These four aspects, taken as a

whole, make up the entire spreadsheet, i.e.spreadsheet = schema + data + editorial + binding.

� Theschemastores a formal definition of the spreadsheet’s underlying logic, i.e., the formulas

and their relationship to each other.

� Thedata is the structured set of constants on which theschemaproperty operates.

� The editorial is what remains in the spreadsheet after theschemaanddata have been ex-

tracted, and consists of text strings meant to be comments, etc.

� The binding is what defines the logical to physical mapping of the other three properties,

using row and column addresses.

The logical structure of a spreadsheet is defined by theschemaanddata, while its physical

structure is described by theeditorial andbinding.
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3.3.3 A Functional Look at the Logical Aspects

Isakowitz and Schocken [23] separate the concepts ofschemaanddata, suggesting that functions

and the data they operate on are different. This separation is quite common in current commercial

database managers and in procedural languages. Most functional languages, however, treat func-

tions and data as equivalent entities. A re-examination of the logical structure of a spreadsheet, this

time from a functional point of view, reveals some interesting properties of spreadsheets.

In spreadsheets, cells can contain either constant values or formulas. A formula can be eas-

ily seen to be simply a different representation of a function, since it takes several inputs and

only produces one result, without any side-effects. For example consider Figure 7; the formula

=sum(B1:B2) , which is used to add up the contents of a range of cells, can be formally written as

sum(B1,B2), if the functionsumis appropriately defined (cell ranges can thus be seen to be simply a

shorthand way of specifying a group of adjacent cells). Any constant can also be trivially expressed

in term of functions, simply by defining a function that always returns the same constant. Therefore

it is possible to describe the contents of a spreadsheet cell entirely in terms of functions. From this,

it follows that a spreadsheet can be seen as a grid of functions. For the sake of simplicity, each could

in turn be called A1, A2, A3, . . . , B1, B2, B3, . . . , etc. For the example in Figure 7, these functions

could be written, using theschemelanguage syntax [26], as shown in Figure 8.

(define (B1) 1)
(define (B2) 2)
(define (B3) (+ (B1) (B2)))

Figure 8: In this code segment, threeSchemefunctions [26] are defined, named B1, B2 and B3. None of the
functions takes any arguments, and functions B1 and B2 return a constant value each (respectively, 1 and 2).
Function B3 returns the number obtained by adding the results of calling functions B1 and B2, i.e.B3() =
B1() + B2(). Note that in Scheme, expressions are stated in the prefix format, i.e.,a � b � ( � a b).

The implications of this observation are not immediately obvious, yet they are quite fundamen-

tal. Since a spreadsheet can be completely defined in terms of named functions, it can be adequately

described in terms of functions only.

Of course, some information is lost in the process, namely the spatial relationships between

the cells. These relationships are used in two ways, namely to make relative references to cells

(e.g., “add the contents of the cell just above this one to the contents of the cell just to the left

of it”), and to manipulate groups of cells as ranges. Note that both of these are used only when
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editing the spreadsheet and do not affectcomputationsin any way. However, this functionality

can be implemented in other ways, for instance, consider the following implementations of relative

references and cell ranges.

Relative References

Relative references can be implemented by applying simple transformations to the formulas as they

are moved or copied to other cells. For example, a formula such as=sum(A1:A3) would become

=sum(B1:B3) if copied one cell to the right of its current location. A mechanism would be required

to “anchor” some cell references so they are not transformed (for example, the cell reference$B$4

in Microsoft Exceldoes not change when the cell referring to cell B4 is moved).This functionality

is not a part of the functional part of the spreadsheet, but of the cell editor.

Cell Ranges

Cell ranges can be implemented as compound types. For example, the cell range namedB2:B4 could

be expressed as the Scheme list(B2 B3 B4) . Again, since this relies on cell adjacency, it is provided

by the cell editor.

3.4 Abstract Definition of Spreadsheets

In the previous section it was observed that a spreadsheet can be described as a rectangular grid of

functions, each of which returns either a constant value or a value derived by calling other functions.

This means that spreadsheets can be seen as a way to store and manipulate interrelated sets of

functions, instead of a mixture of functions and data.

Isakowitz and Schocken’s logical view of a spreadsheet [23] is made up of two parts, namely

schemaanddata. These account for, respectively, spreadsheet formulas and constants. Since we

have shown that spreadsheets can be viewed as consisting only of functions, the logical view of a

spreadsheet referred to by Isakowitz and Schocken need not be broken down intoschemaanddata,

but can in fact be described as a coherent whole. This unifying of functions and data can be used

to provide spreadsheets with the ability to use higher-order functions, which manipulate program

code as if it were data (or conversely, can evaluate data as if it were code). A trivial example of this

is illustrated in Figure 9. The user types in two numbers into cells A1 and C1, and an operator into

cell B1. The formula in cell A2 combines these values into a string that looks like a formula (in this
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=eval(A2)2

A B C
1 5

="="&A1&B1&C1

3+

Figure 9: This demonstrates a hypothetical spreadsheet capable of high-order evaluation: the user types in
two numbers (in cells A1 and C1) and an operator (in cell B1), and the result of applying that operator to the
two numbers is displayed in cell C2. This works by creating a string that looks like the desired formula in
cell A2 (in this case, “=5+3”) and evaluating that string (in cell C2) as if it were in fact a formula.

case, the string would be"=5+3" ). This string is then evaluated by the high-order formula in cell

A3. The end result is exactly the same as if cell A3 had contained the formula=5+3 .

In Section 3.3.3 it was shown that if spreadsheet cell B3 contains the formula=SUM(B1:B2) ,

then it could be written, using theSchemeprogramming language, as(define (B3)(+(B1)(B2))) .

This would create a function (called B3) which when evaluated would call two functions, B1 and

B2, and add their results. This means that the inter-cell dependencies that exist between cells B1,

B2 and B3 can be completely described using the terminology of function calls. It is not difficult to

see that this can be generalised to all intercell dependencies one may find in a spreadsheet.

Since all inter-cell references are calls to named functions, spreadsheets have no semantic need

for a grid structure, and the need for a grid organization in spreadsheet cells thus comes into ques-

tion. It seems that a spreadsheet could be described simply as a set of functions that are ordered

on a rectangular grid. However, it should be remembered that the names that are given to functions

are completely arbitrary (as long as they are consistent). If one also considers the alternative imple-

mentations for relative cell references and cell ranges described in Section 3.3.3, neither of which

specifically needs a grid to function, it can be seen that a spreadsheet need not consist of a grid of

functions, but merely of an interrelated set of functions.

Isakowitz and Schocken have approached the process of dissecting spreadsheets from a procedu-

ral point of view. By tackling this from a functional point of view, as suggested by De Hoon’s func-

tional spreadsheet [11] and Eriksson’sScheme in a Grid[16], we can fuse Isakowitz and Schocken’s

SchemaandData properties into a single entity. Whereas Isakowitz and Schocken separate schema

and data, this is not necessary from a functional point of view, and in fact the logical view of a

spreadsheet can be described as simply a set of functions which call each other.

This means that the grid layout of spreadsheets is in fact auser interface consideration, since

it is not necessary for the spreadsheet’s proper functioning. Note that this remark is not meant to

demean the importance of the grid, but instead to highlight the separation that exists between the

user interface of the spreadsheet and the underlying functional mechanism. The physical layout of a
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spreadsheet can therefore be seen to be a data visualisation of the set of functions which comprise its

logical structure (based on the unique properties of this editing layer, as discussed in Section 3.3.3,

we propose to call this theAdjacency-based Editing Layerof the spreadsheet).

In Section 2.2, we stated that a dataflow diagram can be seen as a shorthand notation for mathe-

matical functions. If we combine this with our observation that a spreadsheet consists of a usability

layer on top of a functional program, then it is apparent that spreadsheets and dataflow programs can

be considered as similar in nature (in fact, they are equivalent — see Section 3.5). Given this sim-

ilarity, we propose to call the underlying computational part of spreadsheets theirDataflow Logic

Layer. To summarise, we propose that spreadsheets can be seen to consist of two components,

which are semantically independent of each other:

� Firstly, there is theAdjacency-based Editing Layer, which corresponds to Isakowitz and

Schocken’seditorial and binding properties. In addition to handling all the usual editing

tasks such as undo, cut-and-paste, etc., this cell editor is what keeps track of cell adjacency.

In this way the cell editor can translate cell ranges into sets of cells, and convert relative ref-

erences to absolute references. This layer also keeps track of cells whose contents have only

an informative purpose, i.e., cells used for comments and labels.

� Then, there is theDataflow Logic Layer. This part of the spreadsheet corresponds to the

combination of theschemaanddataproperties (recall that, as we discussed above, these two

can be considered to be one and the same), and is what performs the actual calculations. As

was shown in Section 3.3.3, the underlying logic is functional in nature. This part of the

spreadsheet is completely independent of the spatial relationships between cells.

Therefore, since the physical layout is separate from the underlying logical structure, yet aids in

its comprehension and manipulation, it can be classed as a form of data visualisation. An abstract

definition of a spreadsheet could therefore be given as:

A spreadsheet is a finite set of functions (the Dataflow Logic Layer) and a grid-based

visualisation of them (the Adjacency-based Editing Layer), which taken as a whole solve

a given problem.

This of course means that the traditional two-dimensional grid is not the only way to manipulate

the sort of data normally operated on by spreadsheets. In fact, because of the underlying functional

nature of spreadsheets, any mechanism that can be used to visualize and manipulate the flow of data

can be used to visualize and manipulate spreadsheets, andvice versa.
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3.5 Proof of Equivalence of Spreadsheets and Dataflow

In this section, we show that spreadsheets and dataflow systems are, in essence, equivalent to one

another. We claim that an arbitrary, correct spreadsheet (i.e., one devoid of circular references) can

be transformed into an equivalent pure dataflow diagram (i.e., one devoid of control-flow constructs)

andvice versa. As proof, we present algorithms to do these transforms.

Spreadsheet to Dataflow Consider a correct spreadsheet S, which consists of a grid containing

populated (“full”) and unpopulated (“empty”) cells, the former being calledci . The algorithm in

Figure 10 describes how the set of cellsci � S can be converted into an equivalent pure dataflow

diagram D, which consists of a set of nodesni joined by a set of directed arcsa j . We define allni as

containing functions of the formf � a1 � a2 ��	
	
	
� an � , wherea j is the jth arc pumping data intoni .

input: a correct spreadsheet S consisting of a set of cellsci

output: a pure dataflow diagram D consisting of a set of nodesni joined by arcsa j

begin
foreach populated spreadsheet cellci :

create a dataflow nodeni , labelling it withci ’s spreadsheet grid location, e.g., D4.

foreach populated spreadsheet cellci :
begin

find the nodeni that corresponds toci (ni will be labelled withci ’s grid location).
if ci does not contain a formula:

write the contents ofci into ni .
else begin

foreach cell cr that is referenced by the formula inci :
begin

find the nodenr that corresponds to cellcr .
draw a directed arca j from cr to ci , and label itin j .

end
write the formula fromci into ni , replacing each cell referencecr by inr .

end
end

end

Figure 10: This algorithm can be used to transform an arbitrary correct spreadsheet into a pure dataflow
diagram.
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Dataflow to Spreadsheet Consider a pure dataflow diagram D, consisting of a set of nodesni

joined by directed arcsa j . The algorithm in Figure 11 describes how D can be converted into an

equivalent, correct spreadsheet S consisting of a set of cellsci . Again, we define allni as containing

functions of the formf � a1 � a2 ��	
	
	
� an � , wherea j is the jth arc pumping data intoni .

input: a pure dataflow diagram D consisting of a set of nodesni joined by arcsa j

output: a correct spreadsheet S consisting of a set of cellsci

begin
let S be an unpopulated spreadsheet.

foreach dataflow nodeni :
give ni a unique label consisting of a letter and a number, e.g., D4.

foreach dataflow nodeni :
begin

let ci be the spreadsheet cell in S with grid reference equal toni ’s unique label.
foreach arca j pumping data intoni :
begin

let n j be the dataflow nodea j pumps data from.
let cellre f j ben j ’s unique label.

end
write the function fromni into ci , replacing each reference toa j with cellre f j .

end
end

Figure 11: This algorithm can be used to transform an arbitrary pure dataflow diagram into a spreadsheet.

Since these algorithms can be used to convert any correct spreadsheet into an equivalent pure

dataflow diagram and vice-versa, they demonstrate that these two notations are in fact equivalent.

3.6 Chapter Summary

Although spreadsheets have, since their invention in the late 1970’s, always been represented as two-

dimensional grids containing values and formulas, we have shown that this view is not necessarily

the most fundamental one. Specifically, we have found that the grid representation of data, although

fundamental to the user experience of using a spreadsheet, is a separate entity from the underlying
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computational engine.

We base our observations on the work of Isakowitz and Schocken [23], who have stated the need

for an underlying structure to spreadsheets, in order to be able to verify their correctness. Borrowing

ideas from database theory, they have suggested a way to break down a spreadsheet into four distinct

components, namelyschema, data, editorial andbinding.

However, Isakowitz and Schocken have approached the problem from a procedural point of

view. By tackling the problem from a functional point of view, as suggested by De Hoon’s functio-

nal spreadsheet [11], we have found that spreadsheets may be broken down quite naturally into just

two components, one logical (theDataflow Logical Layer) and one physical (theAdjacency-based

Editing Layer). Although both of these layers are necessary for the functioning of the spreadsheet,

they are semantically independent of each other. We then arrived at the conclusion that dataflow

diagrams (which can be seen as a graphical notation for mathematical functions) can be considered

as being similar in nature to spreadsheets (which can be seen as a user interface over functional pro-

grams). We further extended this observation by proving that spreadsheets and dataflow diagrams

are equivalent to one another.



Chapter 4

An Extended Spreadsheet Paradigm

4.1 Introduction

In Chapter 2 we described instances where spreadsheets have been used for data visualisation,

notably work by Levoy [30] and Chiet al [9, 10]. Although these programs look and feel very

much like traditional, declarative spreadsheets, both programs require spreadsheet formulas to be

expressed using the imperative languageTcl [45]. Additionally, the use of imperative program-

ming techniques is encouraged, such as having cells directly modify the contents of other cells. In

addition to being the source of quite obscure bugs (what happens when two cells store different

values into the same cell?), this use of an imperative language creates a paradigm mismatch with

the declarative nature of spreadsheets, which we described in Chapter 3.

During the analysis of the spreadsheet paradigm we made in Chapter 3, we showed that a spread-

sheet is a visualisation environment for functional programs; therefore it is possible for us to make

use of functional language features to extend spreadsheets to meet the demands of data visualisation

without needing to use mismatched paradigms.

In this chapter we show the inadequacies of the traditional spreadsheet paradigm when it is

applied to data visualisation. We then illustrate how, by the addition of three basic techniques,

the spreadsheet paradigm can meet the requirements needed to perform data visualisation tasks on

non-trivial datasets.

43
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4.2 Spreadsheets and Data Visualisation

Spreadsheets can be considered to be effective tools for data visualisation because they allow data to

be easily input, dynamically updated and readily viewed [34]. They provide a flexible and easy-to-

learn environment for user programming [10]. Additionally, spreadsheet developers need not worry

about many traditional programming details such as memory management or input/output. The fact

that spreadsheets automatically keep track of data dependencies between cells and update relevant

cells when necessary frees the spreadsheet modeler from this task, preventing many errors familiar

to programmers of imperative languages.

Spreadsheets also elegantly address some of the problems that are met when visualising mul-

tidimensional data, such as the mutable nature of visualisations and the need to have different yet

simultaneous views of the same data [9].

However, spreadsheets have certain design features which conflict with the needs of data visual-

isation. These arise mainly from the fact that each spreadsheet cell can contain only a single object.

Although the use ofcell rangessolves the problem where only a few dozen values are dealt with,

this breaks down when thousands of values must be manipulated. In that case (common for many

data visualisation tasks), the spreadsheet would have to be several thousand cells wide or deep,

making navigation a difficult exercise.

4.3 The Extended Spreadsheet Paradigm

To overcome the problems discussed above, we need to extend the spreadsheet paradigm to address

the needs of data visualisation systems, while maintaining the simplicity and declarative nature of

traditional spreadsheets. This extension can be divided into three logical parts, namely the handling

of large datasets; the use of lazy evaluation and the replacement of the traditional formula language

by a fully-featured functional programming language.

4.3.1 Handling Large Datasets

Most programming systems deal with the concept of processing multiple data items by using ideas

such as recursion or iteration, i.e., taking the elements of a set and processing them one after the

other. While these methods have many advantages, they are ill-suited to the spreadsheet paradigm,

where looping constructs cannot be adequately expressed. Instead, numbers in traditional spread-

sheets are manipulated individually, and where some form of grouping is desired, cell ranges can
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easily be formed by the user, and operations such as finding the average of a given set of numbers

can be accomplished by idioms such as=average(B12:B72) . Although this works quite well for

financial statements, data visualisations normally deal with data sets containing tens of thousands

of items. At this level, the range paradigm of dealing with datasets breaks down, usually due to the

unwieldiness of rows or columns containing thousands of items.

Our way to solve this problem was to extend the traditional spreadsheet paradigm to allow sets

of items (e.g., in the form of lists) to be stored in each cell, as opposed to single items. In this

way, an entire dataset could be contained in a single spreadsheet cell; in the vast majority of cases,

data visualisation is not concerned with the transforming of individual values, but rather of entire

datasets. By storing a dataset per cell, large amounts of data can be processed without needing to

clutter a spreadsheet with thousands of numbers that have little individual meaning.

Therefore, the concept of ranges is done away with, since it is no longer needed. In effect, each

cell could be thought of as containing a range within itself.

4.3.2 Lazy Evaluation

As mentioned above, the problem of storing and manipulating large datasets can be eliminated

by giving each spreadsheet cell the ability to store an entire dataset. However, there is still the

problem of efficiency. If a spreadsheet that has several hundred thousand values stored in it must be

recalculated, that recalculation can take a substantial amount of time. Traditional spreadsheets do

not have this problem, since even a large financial statement typically will not have more that a few

thousand values stored in it. If we extend the spreadsheet paradigm to allow the storage of hundreds

of thousands of values, we must find a way to deal with the associated increase in computational

time.

An important part of data visualisation is to eliminate information from a dataset, in order to

obtain the underlying patterns in the data. This can take one of two forms, either elimination of

detail in order to be able to see patterns in the overall structure of the data or “zooming in” to be

able to examine localised properties of the dataset. Both of these techniques sacrifice the amount

of data displayed to allow multi-resolution analysis of the physical or mathematical process being

visualised. Since these techniques allow researchers to selectively examine any given aspect of the

data, eliminating all other aspects which may be considered as distracting, they are quite frequently

used when visualising datasets.

This means that, in many cases, data does not make it all the way from the database to the

screen. In those cases it would be useful to know what values are not going to be needed by
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later calculations, in order to save time by simply not calculating them. Although it is possible

to determine which values are not going to be needed and build this into the equations used to

transform the data so that it may be visualised, these constraints usually complicate the equations.

These complications make the visualisation pipeline harder to debug and can impose a performance

penalty if not properly expressed. Users of data visualisation systems are usually more concerned

with understanding their data than with learning optimisation tricks; therefore it is important that

data visualisation systems have the ability to exploit data access patterns to reduce computation

times.

The functional programming technique known aslazy evaluationis a simple, yet powerful way

of exploiting data access patterns, since it is not necessary to build any constraints into the equations

to account for the fact that only a fraction of the dataset is going to be transformed. All equations can

be written assuming that the entire dataset will be processed; should any function in the evaluation

chain need only a subset of the data being passed to it, only the required data will be passed to

it. Because of the lazy evaluation mechanism, the functions supplying the data do not need to be

modified to provide only certain data points — the flow of data through the inner levels of the

expression is dictated by its outer levels.

The concept of lazy evaluation is probably best explained with an example. Consider the com-

mon case of generating an image from a dataset, scaling it down to 25% of its size and displaying

it. This could be functionally expressed asdisplay(scale(render(read()))). One way to efficiently

implement this would be to have functionsread()andrender()take as arguments which points need

to be rendered;scale()would then request the appropriate pixels fromrender(), which would in turn

request the appropriate data points fromread(). It would not be unreasonable to presume that in

such an implementation a noticeable percentage of the code would be dedicated to this necessary

bookkeeping. On the other hand, a naive implementation could simply read in the entire dataset,

pass it torender(), which would generate a complete image, which would in turn be given toscale(),

which would pick the pixels it needs. This implementation would be much simpler — each function

would perform its task without regard to how the data it generates is used by the calling function.

Unfortunately, this implementation would also be very inefficient: 75% of all data points read in

would be discarded, along with 75% of all the calculated pixels.

However, consider what would happen if the naive implementation were evaluated lazily. Su-

perficially, thescale()function would callrender(), which would in turn callread(). Recall that all

of these functions are written in such a way that they take as arguments and return entire datasets,

i.e., there is no explicit way to state which data points are required. The difference between lazy and
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eager evaluation lies inwhat is returned by these function calls. Under eager evaluation, as we have

seen above, these function calls causework to be done and returnpassivedata, i.e., the requested

data structures. However, under lazy evaluation, these function calls return immediately — the real

work is performedwhen the returned data structures are evaluated. In other words, under lazy

evaluation, data structures returned by functions arenot passive. Whenscale()queries a pixel from

the bitmap returned byrender(), the functionrender()is calledimplicitly. The very act of querying

the bitmap is what causes work to be done, in this case calling the functionrender(), since that is

the function that returned the bitmap.

Note that all of this is donetransparently— as far as the programmer is concerned,render()

generates and returns anentire bitmap, and it does sowhen it is explicitly called. The reality of

the situation, i.e., that the requested function call never took place, and that evaluating the return

value is in fact what triggers the function call, is kept hidden. In the process of calculating the

pixels it is asked for,render()evaluates individual data points from the dataset returned byread().

This evaluation causesread() to also be called implicitly, and query the database to obtain only

the needed values. To summarise, function callsdo not do workunder lazy evaluation — instead,

they returnactivedata structures which,when evaluated, do the actual work. This means that a

more straight-forward, “naive” implementation has the potential to be as efficient as an optimised

implementation. The advantage to the user is a program which is easier to read (and hence easier to

debug) than a highly-optimised implementation, but which achieves high performance.

Since lazy evaluation defers calculations until the results are used, it is possible to have a func-

tion which operates on arbitrarily large lists, including those with an infinite number of items (such

as � ). An example of the usability of this would be the ability to ray-trace an infinite grid of spheres

at any resolution. Since the subset of spheres that is rendered (and hence evaluated) is dependent on

the resolution of the display, the only parameters that would need to be changed to obtain a more

accurate representation would be the horizontal and vertical resolution of the generated bitmap. The

(infinite) scene description would remain unchanged.

4.3.3 Using a Functional Formula Language

In Chapter 3, we showed that a spreadsheet can be viewed as an environment for the development

of functional programs. Indirectly, this means that the formula languages normally used inside

spreadsheets are functional in nature (since spreadsheet formulas do not have any side effects, they

can be considered as special-purpose functional languages).

Therefore the basic spreadsheet paradigm would not be significantly altered if, instead of the
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formula languages normally associated with spreadsheets (using idioms such assum, average , etc.),

a fully-featured functional language were used. Additionally, the use of a fully-featured functional

language would give the user the benefits of generality and the extensibility of the language, as

opposed to being constrained by the primitives provided by the spreadsheet software. The user could

also benefit from functional language constructs (e.g., high-order functions), which can provide

much more expressibility than is possible with other programming paradigms [21]. An example of

the use of high-order functions could be using the data being visualised as the building blocks for a

function, which would be built up and evaluated “on the fly” (See Figure 9 in Chapter 3). This sort

of functionality is not directly available in traditional spreadsheet systems, and hence any attempts

to perform this type of calculation are doomed to either failure or categorization as “hacks.”

4.4 Chapter Summary

In this chapter, we have shown that, although spreadsheets are a desirable medium for the develop-

ment of data visualisations, the traditional spreadsheet paradigm is unsuitable for data visualisation.

Building on the theoretical framework developed in Chapter 3, we have extended the spreadsheet

paradigm to address the deficiencies of the traditional spreadsheet with regard to data visualisation.

Here, we summarise the differences between the traditional spreadsheet paradigm and the extended

spreadsheet paradigm that has evolved from this discussion. The extended spreadsheet paradigm

differs from the traditional in three ways:

� Firstly, each cell does not contain a single value, but a list of values. This allows the storage

of tens of thousands of values in a spreadsheet, while keeping its size manageable.

� Secondly, the lists of values are manipulated using lazy evaluation, which allows for the

efficient manipulation of potentially infinite datasets.

� Finally, the extended spreadsheet uses a fully-featured functional programming language as

the formula language. Using a fully-featured functional language (instead of the formula

languages used in most commercial spreadsheets) makes sense since we have shown that

spreadsheets are already functional in nature, and use of a fully-featured functional language

provides the user with several advantages over formulas.

Together, these three additions extend traditional spreadsheets so they can efficiently handle

the large datasets that are routinely manipulated during data visualisations. This is done without

sacrificing the simplicity and declarative nature of the traditional spreadsheet paradigm.



Chapter 5

ViSSh, a Data Visualisation Spreadsheet

5.1 Introduction

In Chapter 4, we described how the traditional spreadsheet paradigm can be extended to accom-

modate the demands imposed by data visualisation. We have built a prototype to test this extended

paradigm, and verify its usability. The design of this prototype, called ViSSh (short forVisualisation

SpreadSheet) is described in this chapter, both from the user’s perspective and functionally from our

perspective as its designers.

5.2 The User’s Perspective

From the user’s point of view, ViSSh seems at first quite different from most commercial spread-

sheets. However, the differences are mostly superficial, arising mainly from the need to deal with

large datasets. A cursory examination of the ViSSh spreadsheet in Figure 12 reveals the following:

1. The spreadsheet is made up of cells that are arranged in a rectangular grid and referenced in

the same way as those in “traditional” spreadsheets.

2. The cells look nothing like traditional spreadsheet cells, containing miniature control panels

instead of text or numbers.

The first of these two observations underlines the basic similarities between ViSSh and tradi-

tional spreadsheets. Users of other spreadsheets will, once they have adapted to the slightly different

feel of the system, be able to apply their experience to ViSSh.

49
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The second observation highlights the main differences between traditional spreadsheets and

ViSSh, which reflect the extended spreadsheet paradigm, and will be discussed below.

Apply
Changes

Editing
Window

Cell
Attributes

Large
View

Cell
Type

Node Palette
Window

Broad
Overview
Window

Current
Cell

3D Render
Window

Figure 12: This is ViSSh, our Data Visualisation Spreadsheet, being used to visualise seismic disturbance
data. TheCurrent cell is the one being edited at any given time. Each cell has aCell Typethat governs its
behaviour, which is modified by the user-specifiedCell Attributes. Each cell also has aLarge View, accessible
by clicking on the “. . . ” button, that provides on-line help and a larger editing/display area. Spreadsheets are
edited by using theEditing Window; new cells are added by dragging them from theNode Palette Window
and dropping them into a cell slot in the Editing Window. Since spreadsheet cells are physically quite large,
users can use theBroad Overview Window, with its smaller icons, to view a larger portion of the spreadsheet.

5.2.1 Dealing with Large Datasets

The ability to deal with large datasets is crucial in a viable data visualisation system. ViSSh imple-

ments the extended spreadsheet paradigm described in Chapter 4, and as such is capable of handling
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potentially infinite datasets. ViSSh places more emphasis on operators than operands. This is both

because of the large volumes of data (making the traditional “cells display their own contents” tech-

nique impossible in the general case), and because there is no single right way of representing an

arbitrary data set stored in a cell. Instead, there are specialised cells that are used to view data in

different ways. For example, in Figure 12 the contents of cell D4 are being displayed by cell E1.

Although this functionality is partially implemented in some commercial spreadsheets (e.g.,Mi-

crosoft Excel’sgraphing tools), the amount of interaction that is possible when 3D interaction cells

(described below) are added to a scene is far beyond any current commercial implementation.

5.2.2 Functional Programming Model

Whereas most spreadsheets use a fairly rudimentary language to express their formulas in, ViSSh

uses the programming language Scheme [26]. This gives users a lot more expressive power, al-

lowing constructs such as high-order functions, which are simply not expressible using traditional

spreadsheet formulas. Note, however, that users are not constrained to the use of Scheme — ex-

pressions may also be specified in infix form (i.e., a user may equally validly define an expression

as “m * x + c ” or “ (+ (* m x) c) ”).

An example of the expressive power of high-order functions is illustrated in Figure 13. This

example demonstrates how several functions can be stored in a spreadsheet cell (inside a list), and

one of these functions can be selected and applied to other data. In Figure 13, Cell C1 is a “function

evaluator” — it selects an item from a list given to it, based on an index passed by a third cell, and

evaluates it as a function (if the list item is a list, then it is evaluated as a Scheme expression; if it is

a string, then it is evaluated as a “normal” mathematical expression). Cell A1 provides a list of 10

consecutive integers, while cell A2 provides a list of 3 functions. Which function is used to operate

on the list of numbers is indicated by cell B1, which in this case is selecting the third function (list

items are numbered starting from zero).

ViSSh makes use of lazy evaluation, as described in Section 4.3.2. This gives ViSSh the ad-

vantages described in that section, particularly the ability to efficiently deal with very large datasets

without the need to explicitly code optimisations into the equations. Evaluation is performed im-

mediately when the spreadsheet is edited; there is no “background processing” and recalculations

proceed to completion before the user is allowed to do further editing.

One of the advantages of a functional programming system is its enhanced modularity [21],

which from a user’s point of view translates into a system that easily allows code reuse. In many

cases data visualisation benefits greatly by code reuse, and most data visualisation systems allow
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Figure 13: This spreadsheet demonstrates a use of high-order functions — in this case, selecting an item from
a list and applying it (as if it were a function) to another list. This spreadsheet generates a list containing the
first 10 natural numbers and applies a function, selected from another list by list position, to these numbers.
The list of numbers is generated by cell A1, and cell B1 is used to indicate which function must be applied
from those given in cell A2 (the functions in inverted commas are infix arithmetic expressions, while those
in parentheses are Scheme expressions). The function application is done by cell C1, and the results are
displayed by cell C2.

this practice by the use of some form of function libraries. In order to provide this facility without

breaking the spreadsheet paradigm, ViSSh allows several spreadsheets to be linked together in a

functional manner. This is achieved by the use of three specialised spreadsheet cells which, as a

group, implement the idea of function calls in the context of spreadsheets (see Figure 14).

The user’s view of functional linkage between two spreadsheets is quite simple: the “helper”

spreadsheet has an “Argument” cell, which collects the arguments that the function implemented by

the spreadsheet takes (recall that each cell generates a list). It also has a single “Result” cell, which

exposes the final result calculated by the spreadsheet. The master spreadsheet has a “Subsheet” cell

which behaves much like a function evaluation cell, but which “calls” the helper spreadsheet by

evaluating its Result cell. This causes the normal evaluation process to propagate through the helper

spreadsheet, until the Argument cell gets evaluated. This cell pulls in the arguments passed from

the master spreadsheet, and the results then propagate forward until they reach the Result cell. The

results then are given to the SubSheet cell, which returns them as its own results. With this simple

mechanism, several spreadsheets can be linked together in a functional manner, providing the user



5.2. THE USER’S PERSPECTIVE 53
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Figure 14: This illustrates the mechanism whereby several spreadsheets may “call” each other. The “Master”
spreadsheet contains a Subsheet cell, which forwards all data sent to it to the “Helper” spreadsheet. This data
arrives into the Helper via an Argument cell. When the computation is complete, the result is sent back via a
Result cell.

with a simple way of partitioning the problem being solved, and allowing code reuse. The inter-

sheet communication is two-way: when a cell in the subsheet is modified, this information is sent

to the master spreadsheet, which then behaves as if the SubSheet cell linking the two spreadsheets

had been modified. The client-server model also allows for future implementations of the system

to be built using a distributed model, possibly even allowing for multi-user interaction. Section 8.4

further discusses these possibilities.

Users may also extend the system by writing new functions in Scheme, which are dynamically

loaded into the spreadsheet at runtime and can be used by spreadsheet cells.

5.2.3 3D Interaction

Users may also interact with the 3D environment that is displayed in 3D Render windows. This is

accomplished via the use of specialised cells which are data sources, and also have a 3D representa-

tion. This form of direct interaction can be more useful that textual editing of parameters, especially

when qualitative measurements are desired, and the exact setting is not as important as a feel of how

“large” or “small” a given value is. An example of this type of cell is the “1D Dragger,” which is

represented by a double-headed arrow and which returns a single scalar whose value depends on

how far along the longitudinal axis the arrow has been dragged by the user (see Figure 15). Another

example is the3D pick node, which allows the user to select any given 3D object in a 3D render

window. These implement level-4 liveness [6] using the model described by Burnett asLazyLM[6],

with the expiration time of any event-driven data point being set to the time the next event arrives.
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Figure 15: This spreadsheet illustrates the1D Dragger3D interaction cell. Here, a 3D sphere is displayed,
together with a 1D dragger. Dragging the double-headed arrow in the 3D display forwards and backwards
changes the radius of the 3D sphere in real-time. The spreadsheet is quite simple: the sphere is generated by
cell A1, which takes its radius from cell A2 (the 1D dragger). Cell A2, in turn, takes its initial value from
cell A3; this means that the sphere always starts with a radius of 1 unit. The dragger is translated to (0,3,0)
by cell C2 before being displayed, together with the sphere generated by cell A1, by cell C1.

5.2.4 Debugging Aids

A common problem with spreadsheets is that users can become “lost” when navigating through large

spreadsheets which contain many similar subsections. Also, Nardi [41] has found experimentally

that users prefer to be able to view as much of a spreadsheet as possible without scrolling. This

problem is especially acute in the case of ViSSh, since each cell is rather large and hence the number

of them that can be displayed at any one time is fairly small (typically 7# 5 cells in a 1024# 768

display). This problem is tackled using two different tools, one for each aspect of the problem: grid

navigation and dataflow.

Grid Navigation

In order to find out which part of the spreadsheet grid is being viewed though the editing window, as

well as locating the current cell cluster in relation to the rest of the spreadsheet, the user can call up

a window which contains a miniature version of the spreadsheet (Figure 16 illustrates this “Broad

Overview” window, which in this case corresponds to the spreadsheet in Figure 12). Each cell of this

contains a small (32# 32 pixel) icon describing the function of the cell in the larger spreadsheet,
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wherein the area of the larger spreadsheet that is visible at any time is shaded in the small-scale

spreadsheet. Since this can display a much larger portion of the spreadsheet (about 30# 20 cells

in a 1024# 768 display), the spreadsheet navigation problem is greatly aided by the use of this

window. The “Broad Overview” window can be scrolled independently of the main spreadsheet

window, and the cells which are currently visible in the main window are shown in a highlighted

manner. Clicking on one of these cells scrolls the main spreadsheet so that the cell becomes visible.

In this way, the “Broad Overview” window acts as a road-map, with the icons representing the

function of each cell being used as landmarks. Although we could have used a lenticular interface

such as the one employed byTableLens[50], we decided to instead use a separate “map” window to

aid navigation because in this way users can maintain the current view in the main editing window

while they search for other cells in the independently-scrolling Broad Overview window. The main

editing window could in fact be considered to be a lens over the “Broad Overview” window.

Figure 16: This illustrates the window that is obtained by using the “Broad Overview” feature of ViSSh when
the spreadsheet in Figure 19 is being edited. The white-on-black cells represent the portion of the spreadsheet
that is visible through the editing window.

Dataflow

The other aspect of spreadsheets that can cause much frustration is keeping track of which cells de-

pend on what other cells. As was discussed in Section 3.5 of Chapter 3, spreadsheets and dataflow

systems are equivalent in nature. ViSSh makes direct use of this fact by providing the user with a

window which contains a data flow diagram in which the nodes are iconic representations of the

spreadsheet cells (Figure 17 illustrates the “Show Dependencies” window which corresponds to the

spreadsheet in Figure 19). This idea, in itself, is not new (for example,Microsoft Excel[35] has an
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option to trace references to individual cells). However, we believe that this particular implementa-

tion is more useful than previous attempts (e.g.,Microsoft ExcelandNattospread[55]), since it is

not limited to the subset of cells visible through the editing window; all the cells in the spreadsheet

are included in the diagram. This prevents dependencies from being “hidden” by the fact that not all

dependent cells fit in the editing window. The model we have followed can be described as a com-

bination of Igarashi’sStatic GlobalandAnimated Globalviews [22]. The main difference between

out work and Igarashi’s is that the view is displayed in a different window, so as to minimize clutter

in the main editing window. This allows us to convey all the information in both of Igarashi’s views

in a single display, without needing to resort to animation.

Figure 17: This illustrates the intercell dependencies of the spreadsheet in Figure 19.

We have used the same glyphs to describe spreadsheet cells as the ones used in the “Broad

Overview” window, in order to reduce the cognitive load on the user. The dependency graph is

editable, and is kept constantly synchronised to the main spreadsheet window so that the current

state of the spreadsheet is always visible. Editing is accomplished by selecting a cell on the dataflow

diagram, this selects it in the spreadsheet view so it may be edited. This dataflow diagram provides

users with the advantages of the dataflow metaphor, while the spreadsheet editing environment

shields them from the cluttering associated with medium to large dataflow editing environments.
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Direct Render Via Time Cell,t $ 0

Via Time Cell,t $ 1 Via Time Cell,t $ 2

Figure 18: This shows the effect of adding a Time Cell to a simple visualisation. The image on the top left
represents the scene rendered “as is,” while the remaining three images show how the 3D objects are “let
through” as time passes.

5.2.5 Animation

As was mentioned in Section 5.2.1, ViSSh has no concept of looping or iterating through a dataset.

ViSSh instead has the ability to store entire datasets in a single cell, and to perform operations on

these datasets. Since the system is functional in nature, the order of evaluation of single items in

a dataset is essentially arbitrary (with hardware support, data items could even be operated on in

parallel).

The concept of animation is brought into this mechanism by simply imposing an order on the

evaluation of items in a dataset, and inserting a known delay between the evaluation of successive
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items. Since, as described above, ordering is unimportant, the imposition of order on the evaluation

mechanism has no bearing on the correctness of the result. Similarly, the introduction of a time

delay has no effect on the result of the calculation. Therefore, this mechanism implements animation

by overlaying order of evaluation and time delays on the purely functional spreadsheet paradigm,

without affecting the functional nature of the paradigm itself.

The implementation is deliberately primitive, in keeping with the “basic building block” philos-

ophy of ViSSh. A specialised cell (called the “time cell”) takes a set of items, and outputs each item

in succession, each one being output after a given time delay has elapsed. Figure 18 illustrates the

effect of adding a time cell to a simple visualisation (in this case, a sphere whose radius depends on

its position along thex axis).

5.3 Spreadsheet Cell Taxonomy

Before we begin our in-depth discussion of ViSSh, we should take a closer look at the different types

of spreadsheet cells that are available (see Section A.4 of Appendix A for a complete cell reference).

Generally speaking, there are three major types of spreadsheet cell: data sources; data sinks and

operators. Additionally, there are two minor types associated with each major type: computational

and scene. Computational cells operate on data values that can be manipulated algorithmically (such

as numbers or strings), while scene cells operate on visual data (such as cones and cubes).

Data sourcesare the cells that bring data into the spreadsheet. These include such cells as

the ball generator and the data file reader. The ball generator creates a set of spheres that fit the

constraints given by the spreadsheet programmer, while the data file reader imports data obtained

from an external source. Data sources do not usually depend on any data already in the spreadsheet.

Data sinksare the complement of data sources: data that has flowed through the spreadsheet

is displayed by these cells. Data sinks generate no data. An example data sink is the 3D Renderer

cell. Because of the lazy evaluation used by ViSSh, Data sinks are responsible for initiating all

recalculations.

Operator cellsare the largest category of spreadsheet cell. They are responsible for all compu-

tations and geometrical transforms. An example of a computational operator cell is the List Length

cell — this cell counts the elements in the list given to it by the cell it depends on and returns to its

dependent cells that number. A scene operator cell would be a Translator cell; this cell retrieves a

scene containing 3D objects from the cell it depends on and returns to its dependent cells a scene

like the one it retrieved, except that all the objects in the scene have been translated (moved) by the
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given amount.

All cells in the spreadsheet belong to one of these three categories, which naturally reflect the

flow of data through the spreadsheet. Data arrives into the spreadsheet through one or more data

sources, flows through and is transformed any number of times by operator cells, and eventually is

displayed by a data sink; the flow of data stops there.

New cells are added to a spreadsheet by using theNode Palette(see Figure 19), which allows

users to drag cells (indexed by functionality and sorted alphabetically) from itself into spreadsheet

cells, overwriting any cell already present in the cell being dropped into. New cell types can be

added by modifying the ViSSh executable, as described in Appendix B.

5.4 A Brief Demonstration

Figure 19: This is a spreadsheet used to visualise the parametric cone equation. The large, rectangular window
contains the actual spreadsheet, while the square window in the foreground is a rendering of the cone itself,
and the small window on the bottom left is the “node palette” used to add new cells to the spreadsheet.

In order to demonstrate the “feel” of ViSSh, we present a simple example. The aim is to make

a cone out of spheres (using the parametric cone equation) and display it in three dimensions (see
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Chapter 6 for more complex visualisations). Figure 19 demonstrates what the completed spread-

sheet looks like. The key to editing with ViSSh is the “Node Palette,” illustrated in Figures 12 and

19. From here the different nodes are selected from their groupings, dragged and dropped into the

spreadsheet cell where the user wishes them to be. The spreadsheet was constructed as follows:

1. An “Arithmetic Progression” node was dragged from the node palette into cell A1, and the

relevant parameters were entered into it. In this case, we want a set of numbers running

between -10 and 10, in steps of 2.

2. A “Cartesian Product” node was dragged from the node palette into cell B1. Cell A1 was

added twice as a source, so the output of this node will be the list% (-10 -10) (-10 -8) ... (10 8)

(10 10)& .
3. A new “Function” node was dragged into cell C1. The source of the arguments was specified

as cell B1, so the list described above constitutes the argument set for this new node. The

arguments are named x and y, so when the pairs in the argument list are substituted into the

equation, the first item in the pair will be substituted for all thex’s and the second for all the

y’s. The actual function is then entered (since the actual cell is rather small, an expanded

view was used for this. The expanded view was activated by clicking on the “...” icon in the

top right of the node). In this case the function was entered using the standard mathematical

notation, but it could also have been entered in the programming language Scheme [26] (it

would then have been expressed as(sqrt (+ (* x x) (* y y))) ). This ability to enter

functions in both languages makes the program easy to learn for the novice, yet powerful for

the seasoned user.

4. An “Argument” node is then dragged into cell D1, and its sources are set to be cells B1 and

C1. This node collates lists of arguments to generate a new argument list. As an example, if

two lists % (1 2) (3 4)& and % (11 12) (13 14)& were passed to an Argument node, the resulting

list would be % (1 2 11 12) (3 4 13 14)& . This is needed in order to generate the required

arguments for the node in the next step.

5. Another “Arithmetic Progression” node is dragged into the spreadsheet, this time into cell

A2. This time, the “step” field is set to 0 (indicating that the same number will always be

generated) and the “count” field is set to 100 (indicating that a list containing one hundred

“1”s will be generated).
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6. A “Ball” node is now dragged into cell B2. Its source is then set to cell A2. This node takes

each of the arguments generated by its source cell and uses them as the radius of a new sphere

that it creates and adds to its output list. Therefore, the number of spheres generated by this

node equals the size of the list that contains the ball radii.

7. A “Translation” node is dragged into cell E1. This node will be used to move the balls

from position ' 0 ( 0 ( 0) , where they appear by default, to their proper positions. The balls are

taken from the Ball node we just placed in cell B2, while their positions are taken from the

Argument node in cell D1.

8. Finally, a “Render” node is dragged into cell E2, and its source is set to the Translate node in

cell E1. When the expanded view for this node is opened by clicking on the “...” icon in its

top right corner, the cone of spheres can be viewed and manipulated by the user.

5.5 Internal Structure

Internally, ViSSh makes extensive use of the Scheme programming language [26]. Although ViSSh

itself was written in C++ [58], the MzScheme embedded interpreter [51] is used as the actual com-

putational engine. C++ was used as the “main” development language since it was deemed easier

to combine interpreted Scheme with the OpenInventor [64] data visualisation library than to write

OpenInventor bindings for Scheme. MzScheme provides access to Scheme objects via opaque types

and helper functions, providing an efficient interface between the computational and display layers

of the system.

5.5.1 Layered Design

ViSSh consists of several layers of software, communicating via a standardised interface. The layers

are the following:* Dataflow Manager

* Data Source Layer

* Computation Layer

* Mapping Layer

* Output Layer
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The relationship is more completely illustrated in Figure 20. The dataflow manager controls

all aspects of the system, propagating dependency change messages backwards and data forwards.

Data is inserted into the system by the Data Sources layer, which can either generate data on the

fly (e.g., where a portion of an arithmetic series is calculated) or import it (e.g., where a data file

is read from disk). The dataflow manager then routes the data either to the Computation or Scene

layers, where the data is then prepared for display. Data will typically travel several times from the

computation layer to the dataflow manager layer and back, as data flows from one spreadsheet cell

to the next. The Mapping layer will at some stage be handed data by the Dataflow Manager to create

something the output layer can render. This can be plain text, polygon meshes, etc.

Visual DataRaw Data

Data Sources Output

Dataflow Manager

Computation Mapping

Figure 20: This illustrates the layered design employed by ViSSh. Raw data enters the system via the Data
Source layer, and is passed along by the Dataflow Manager to cells in the Computation and Mapping layers.
Eventually, it is displayed to the user by the Output layer.

5.5.2 The Dataflow Layer

This is the most complex layer, as it keeps track of all intercell dependencies and manages the

flow of data between cells. Data is represented internally in two forms, namely Scheme objects

and OpenInventor scene graphs [64]. All data items are stored as Scheme objects, except for the

graphical objects manipulated by OpenInventor. Scheme objects are used for general data storage

and manipulation since a single opaque type can be used to manipulate any object in the Scheme

environment. This means that when data is passed between cells, the dataflow layer need not know

whether numbers, strings, lists or any other objects are being passed. This type transparency consid-

erably simplifies the layer. OpenInventor scene graphs are used to transfer geometrical information
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generated by the mapping layer to the output layer.

The Mechanics of Data Flow

Although some form of pointer-to-integer fudging could have been performed to pass scene graph

pointers as Scheme objects, this was avoided because direct passing of pointers is faster than con-

version to and from the internal Scheme representation, and there is no need to anyway since com-

putations cannot be performed on the scene graph pointers.

Instead, two separate channels are used by the dataflow layer to transfer data, one for data

on which computations can be performed, and another for scene data. The first channel transfers

Scheme objects and the second pointers to OpenInventor scene graphs.

Since the system must deal with potentially enormous lists of items, extensive use is made of

lazy evaluation, meaning that calculations are not performed unless it is absolutely necessary (in

the hope that they will not be required at all). Unfortunately the Scheme programming language

has no provision for lazy evaluation, so this functionality must instead be handled by the dataflow

layer. Although all lists that the system deals with look identical to the user, there are actually two

distinct types of lists: real lists and lazy lists. A real list is an actual Scheme list, which is stored

in its entirety and manipulated as a single Scheme object. Real lists are used when it is known that

the lists will be short, typically less than 50 items in length. In contrast, lazy lists are used when the

potential length of the list could run into the tens of thousands of items. A lazy list is obtained by

repeatedly calling a function, with the list index of the required object as an argument. This works

because ViSSh operates on only one list item at a time, and so the entire list is not needed at any

one time. This not only greatly reduces storage requirements, but also speeds up recalculations by

several orders of magnitude (see Section 4.3.2 of Chapter 4). All data that is moved by the dataflow

layer between cells is transferred in the form of lazy lists.

As was mentioned above, scene data is transported separately from Scheme objects, since there

is no overlap between the two. However, since potentially thousands of graphical objects can be

called into existence, they are all manipulated as lazy lists of OpenInventor scene graphs.

Keeping Track of Dependencies

Intercell dependencies are kept track of by two sets of pointers to spreadsheet cells. The first set

keeps track of “depends on” relationships, and the second keeps track of “is depended on by” re-

lationships. When a cell changes value, either because of user interaction, or because a cell that it
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depends on changed its value, it signals all the cells that depend on it. Eventually, a cell from the

output layer will be notified of a change, and it will then request, one by one, all the elements of the

lazy lists that are output by the cells that it depends on. This will trigger a chain reaction of back

propagations where the actual values are recalculated and sent back to the output layer cell. Cells

that are not providing data to the display cell are not queried at all, and only those values that are

required for successful completion of the recalculation are actually recalculated. Note that only the

output layer cell has the power to request data, so as long as there are no display cells in the spread-

sheet, no calculations are performed. This allows for very responsive editing of the spreadsheet

without having to worry about whether recalculation is enabled or not. Most spreadsheet systems

have a mechanism for enabling and disabling recalculations, in order to speed up the editing process

(when recalculations are disabled, there is no need to wait for them to complete after each cell is

edited). However, it would be easy for users to forget that they have disabled recalculations, edit

the spreadsheet and read incorrect (i.e., outdated) results from the spreadsheet; for example, to find

out whether automatic recalculation is enabled inMicrosoft Excel, users have to select the “Calcu-

lation” tab of a dialog box that opens when the “Options” item of the “Tools” menu is selected —

not exactly in plain sight. In ViSSh, however, if there are no display cells, then there is no recalcu-

lation; otherwise, there will be recalculation. It is easy to find out if there are any display cells in

the spreadsheet — they are all listed in the “View” menu for easy access.

Dependency data is updated whenever cells are deleted or edited. If a given cell is deleted, then

this fact is broadcast to all cells in the deleted cell’s “is depended on by” list. This causes all these

other cells to remove the deleted cells from their respective “depends on” lists. Whenever a cell

is edited, the “depends on” list of that cell and “is depended on” lists of the cells that are either

newly depended on (or no longer depended on) are updated accordingly. It is during this stage that

circular dependencies are checked for, using a simple algorithm that tags cells with a unique value

and follows “depends on” pointers until either a cell with no dependencies is found (a data source)

or a cell that has already been tagged is discovered (a circular dependence).

The Sheet Call Mechanism

The dataflow layer is also responsible for the inter-sheet function call mechanism (see Section 5.2.2).

This is implemented in a client-server fashion, anticipating a network implementation in a future

version of ViSSh. When a SubSheet cell is added to a spreadsheet, it scans the subspreadsheet whose

name is given to the SubSheet cell, looking for Argument and Result cells and storing pointers to

them. When a SubSheet cell is recalculated, it first indicates to the argument cell in the subsheet that
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it is the sheet the argument cell must communicate with. The reason behind this is that a subsheet

may be simultaneously in use by several SubSheet cells in several spreadsheets. Once this happens,

the SubSheet cell then tells the Result cell it must recalculate itself. This will cause a chain reaction

of “recalculate” messages to propagate all the way to the Argument cells, followed by a flow of data

in the opposite direction. When the Argument cells need data, they request it from their current

“server,” i.e. the SubSheet cell the Argument last received a “connect” message from. This in

turn causes the SubSheet cell to request the same data item from the cell it depends on and pass

it on to the Argument cell. When the calculated data has eventually propagated to the Result cell,

it is passed on to the SubSheet cell, which then forwards it to the cell that requested it from the

SubSheet cell itself. In a sense, the combination of the three cells, SubSheet (on the master sheet),

Argument (in the subsheet) and Result (also in the subsheet) form two “data bridges” between the

two communicating spreadsheets, one from the master sheet to the subsheet and another in the return

direction.

5.5.3 The Data Source Layer

The data source layer is responsible for insertion of data into a spreadsheet. Cells from this layer

either generate data, as in the case of the Arithmetic Progression cell, or pull it in from external

sources, such as the 1D Dragger cell, which collects interaction data from the user. Cells from the

data source layer do not “push” data into the system, rather they signal when their data has changed

and wait for it to be “pulled” from them. This “pulling” originates from cells in the output layer,

and eventually propagates back to the Data Source layer cells.

5.5.4 The Computation Layer

The computation layer is responsible for all arithmetic and logical transforms to data. All compu-

tation is performed via the Scheme programming language [26], using the MZScheme embedded

Scheme interpreter [51].

Although the use of an interpreter is not as fast as compiled object code (e.g., loaded in as a

shared library), it does have many advantages; the main one is flexibility — it is possible to dyna-

mically extend the program while it is running, without need to call external compilers and linkers.

The use of an interpreter also allows for the inclusion of a Scheme interpreter window, which gives

users immediate feedback and so can be used to prototype new functions. These functions, which

have been defined in the interpreter window, can then be called by function evaluation cells in the
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spreadsheet. This ability to createad-hocfunctions is an example of the level of flexibility inherent

in interpreted systems which would be difficult to duplicate using compiled code. Since the empha-

sis of a data visualisation system is on exploration and experimentation, we felt that flexibility was

more important than runtime performance. Note that this does not mean that the system is sluggish:

in our testing we have found that reading 34,000 numbers from an ASCII comma-delimited file,

transforming them, making a 3D surface out of them and displaying this surface took 20 seconds on

an SGI O2 (R10000 processor running at 195MHz).

All function operands are retrieved from source cells via the Dataflow layer, which also sends

the function results to the cells that depend on the computation layer cell.

5.5.5 The Mapping Layer

Cells in this layer work together to map abstract numbers into concrete representations. Currently,

this means converting the numbers into geometric data ready for display by cells in the Output layer.

This geometric data are represented by OpenInventor [64]SoNodes, which are manipulated similarly

to data in the Computation layer. Mapping layer cells are grouped into two major categories: scene

generators and scene transformers. Scene generators are used to make new objects that can be

viewed using a 3D Viewer cell. In this way they are quite similar to cells from the Data Source

layer, since data source cells also “generate” new data. Scene transformers, on the other hand, are

quite similar to Computation layer cells. They are used to modify a scene, in the same way that

Computation layer cells modify data. Examples include the Translate, Rotate and Scale cells. The

way these are implemented makes use of the lazy evaluation Scheme discussed in the Dataflow

Layer section above.

Consider, for example, translating a sphere (generated by a Ball cell, and implemented as an

InventorSoSphere node) by (-10,0,0), as illustrated in Figure 21.

SoSphere SoSphere

SoSeparator

SoTransform SoSphere SoSphere

Figure 21: This figure illustrates what happens when a transform is applied to a Mapping Layer cell. Basi-
cally, a scene graph is created which contains anSoTransform Inventor [64] node, followed by the data that
was output by the Scene Layer cell.
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The Translation cell, when asked to recalculate itself, first creates a newSoSeparator node,

then adds to it anSoTransform node. This node takes its parameters from the Translation cell.

Then it retrieves all theSoSphere s generated by its source and adds them to theSoSeparator in

order. Note that although a (lazy) list of severalSoSphere s was used as input to the Translate cell,

a lazy list containing a single scene graph was generated by the cell. Although in this example

SoSphere s were added, ViSSh allows for arbitrary scene graphs to be transformed in this way. The

key to this is the Group cell, which is very similar in nature to the Translate cell just described, but

which simply adds its inputs to a newSoSeparator node. The groups generated this way can then

be translated, rotated, etc. as a single unit.

5.5.6 The Output Layer

Cells that belong to the output layer are responsible for displaying information to the user, as well as

being the data sinks that cause data to be generated from the data source cells (see Section 5.5.1). In

many cases these cells also form an environment for user interaction, although the interaction itself

is performed by Data Source layer cells. An example of this relationship would be the 1D Dragger

cell and the 3D Viewer cell. The latter belongs to the output layer, while the former is a Data

Source cell. The 3D Viewer cell displays OpenInventor scene graphs [64], which may include the

3D representation of 1D Dragger cells. When a user interacts with the 3D form of the 1D Dragger,

this happens in the 3D Viewer window, yet the actual changes triggered by the user manipulating

the 1D Dragger are communicated by the 1D Dragger cell, not the 3D Viewer cell.

SoCamera subgraph subgraph subgraph

SoSeparator

Figure 22: This is the scene graph that is built by Render cells. It is simply an InventorSoCamera [64] node
followed by the scene graphs generated by all the inputs to the Render cell.

Output layer cells receive their data in the scene channel of the Dataflow layer (see above).

This data, in the form of OpenInventor scene graphs [64], is combined with anSoSeparator node

and anSoCamera node to form a large scene graph, which can then be rendered by a subclass of
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SoXtViewer . Figure 22 illustrates what the scene graph looks like.

5.6 Chapter Summary

In this chapter we have described an implementation of the extended spreadsheet paradigm descri-

bed in Chapter 4. This implementation, called ViSSh (short forVisualisationSpreadSheet), was

built for the purposes of testing the usability of the extended spreadsheet paradigm, as well as cre-

ating a tool that could be used by others.

We started by looking at ViSSh from a user’s perspective, beginning with a description of how

ViSSh implements the extended spreadsheet model described in Chapter 4. We also also described

other features of ViSSh that are useful for data visualisation but are not covered by the extended

spreadsheet metaphor, such as interaction with the 3D environment and support for animation. At

this point we introduced a direct use of the correspondence that exists between spreadsheets and the

dataflow paradigm, as described in Chapter 3: theCell Dependencieswindow, which generates and

renders a dataflow diagram corresponding to the current spreadsheet. This is a useful debugging

aid, since it makes explicit all the inter-cell dependencies that exist in the spreadsheet.

We then described the three different types of spreadsheet that exist:Data Sources, which import

data into the spreadsheet (such as the ball generator cell),Operator Cells, which perform operations

on this data (such as the function evaluator cell), andData Sinks, which output the data in human-

readable form (such as the 3D Render cell). This was followed by a simple example use of ViSSh

(making a cone out of balls), which illustrated the procedure usually used to build a spreadsheet.

We then discussed the internal structure of ViSSh, beginning with an overview of its layered

structure (namely, theDataflow, Data Source, Computation, MappingandOutputlayers). This was

followed by a discussion of how each layer is structured and how it interacts with the layers adjacent

to it.

In the next chapter, we shall describe two example visualisations developed with ViSSh.



Chapter 6

Practical Applications

6.1 Introduction

In this chapter, real-world examples will be used to demonstrate and analyse the practical use of

ViSSh (and hence, the extended spreadsheet paradigm).

The process followed is simple: first some actual visualisation problems were obtained that

involved non-trivial amounts of data. These problems were obtained from other researchers and

come from different areas, namely geology and ATM networks. The data was then visualised by the

author, and the visualisation process recorded. That process will be described here, together with

the reasons why certain decisions were made during the visualisation process.

The results described in this chapter will be used in Chapter 7 to analyse both the ViSSh

prototype and the extended spreadsheet paradigm, using Green’s Cognitive Dimensions Frame-

work [18, 17].

Note that to enhance readability, all spreadsheet cell names in this chapter are typeset in asans-

serif font.

6.2 Example 1: Seismic Disturbance Analysis

The data used for this visualisation was collected by Dr. David James of the Carnegie Institute of

Washington, in the United States. It comes from the KaapVaal Seismic Experiment [13], in which

teleseismic events were recorded from Southern Africa in a SW-NE diagonal roughly 3300Km in

length (see Figure 23). The data represent disturbances in the earth’s crust generated by seismic

waves that propagated through the mantle after being generated by earthquakes in other parts of

69
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the world, such as China or South America. This data is useful because it can be used in a way

analogous to medical ultrasound to obtain imaging of the earth. The actual measurements are of

velocity perturbations, measured in Km/s.

Figure 23: Sampling Stations for the KaapVaal Experiment. These stations lie on a diagonal roughly 3300Km
in length, and are used to measure teleseismic events, or “echoes” of earthquakes that occur on other parts of
the world.

This particular test aims to demonstrate several basic properties of ViSSh:

* The ability to import and handle large datasets.

* The ability to perform arbitrary transforms on a dataset to prepare it for visualisation.

* The ability to generate meaningful pictorial representations of the dataset.

* The usefulness of theCell Dependencieswindow.

* The compactness of the spreadsheet visualisation programs.

6.2.1 The Dataset

For this visualisation, the entire dataset (76141 data points) was used. This is organised as a set of

rectangular “slices,” which measure 25 by 24 degrees (i.e., 1500# 1440 nautical miles), and were

taken at 50Km depth intervals through the earth’s crust. Each slice consists of 47# 45 data points,

or 2115 points. Each data point consists of a tuple% x ( y( z( p & , wherex andy are the longitude and
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latitude of the point, measured in degrees,z is the depth below sea-level measured in Km, andp

is the actual measured value. This value is measured as the difference from average velocity of

the traveling seismic waves, in Km/s. All points which share the samez value belong to the same

“slice.”

Data Format

The data used for this visualisation was stored in text format, using the popular “comma-delimited”

format. The dataset consists of a number of newline-terminated lines, each of which being made up

of four decimal numbers separated by commas. A small section of the data is shown in Figure 24;

this represents part of a slice that lies 250Km below the surface. Where no data was available,

this fact was represented by ap value of 999, as illustrated by the final column of the first row of

Figure 24. Although this format is not very space-efficient, it does have the definite advantages that

it is very portable, easy to parse and output by most commercial spreadsheet and database programs.

-24.000000, 21.500000, 250.000000, 999.000000
-24.000000, 22.000000, 250.000000, 0.021240
-24.000000, 22.500000, 250.000000, 0.025710
-24.000000, 23.000000, 250.000000, 0.023950
-24.000000, 23.500000, 250.000000, 0.008470
-24.000000, 24.000000, 250.000000, -0.007190
-24.000000, 24.500000, 250.000000, -0.012570
-24.000000, 25.000000, 250.000000, -0.015080

Figure 24: This illustrates the data format used to store the seismic disturbance data to be visualised. Each
line is a field, and the records are separated by commas. Where no data was recorded for a given point, the
last field contains a 999 (e.g., the first line of this sample).

6.2.2 Objective of the Visualisation

Before any programming task can take place, it is important to have a clear idea of what must be

done. In this instance, the task is to build a simple browser, which may be used to visualise any

given “slice” of the data as a height field, with thex andy coordinates being taken as-is from the

dataset and thezcoordinate being a scaled-up version of thep value from the dataset. Additionally,

the displayed 3D surface will be coloured according to thep value at each point. This will allow for

more accurate analysis of slices, since overhead views (along thezaxis) can be used to find patterns
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in the seismic disturbances. Using this browser, the user will be able to see where the disturbances

are and how these disturbances change with increasing depth (by changing the slice parameter and

watching how the rendered slice changes).

6.2.3 Logical Structure

Figure 25 illustrates the intercell dependencies for the seismic disturbance spreadsheet, as generated

by theShow Dependenciesfunction of ViSSh (this can be seen as a dataflow diagram representation

of the spreadsheet). The actual spreadsheet can be seen in Figure 26.

3D Render

3D Surface

Argument
List

Function

Arithmetic
Progression

File Read

Figure 25: These are the dependencies of all the cells of the Seismic Disturbance spreadsheet. This diagram
was generated by the “Show Dependencies” feature of ViSSh.

The Show Dependenciesview lets the user quickly discover any flaws in the spreadsheet, as

well as gaining an understanding of the (sometimes rather complex) dependencies that can develop

in spreadsheets. Consider, for example, the path taken by the data retrieved from the database.

This originates in cellE2, and it is plainly visible that it then goes throughB3, C3 andA3 before
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being recombined into tuples by cellD3. These tuples are then fed into cellD4 and form part of

the surface-generation process. This flow of data is not clearly visible by simple examination of

the spreadsheet (i.e., some effort must be expended into searching the spreadsheet for which cells

depend on which) and therefore the dataflow representation can be clearly seen to make up for that

particular deficiency in the spreadsheet paradigm.

Figure 26: This is the actual spreadsheet used to visualise the seismic disturbance data.

Before beginning the analysis of the seismic disturbance spreadsheet, a few things mentioned in

Chapter 5 are worth repeating:

* The spreadsheet is made up of cells that are arranged in a rectangular grid and referenced in
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the same way as those in “traditional” spreadsheets, i.e., the first cell in the top-left is called

A1, the cell to its right is called B1, the one below it A2, and so on.

* The cells look nothing like traditional spreadsheet cells, containing miniature control panels

instead of text or numbers.

* Each cell contains a list of values, not a single number or string.

The discussion of the spreadsheet will be divided into sections, each of which corresponds to a

logical part of the spreadsheet. These sections correspond to these groups of cells in Figure 25:

1. Reading in Slice Data (cellsA2, B2, C2, D2, E2)

2. Transforming the Input (cellsA3, B3, C3, D3)

3. Building the 3D Surface (cellsA4, B4, C4, A1, D4)

4. Rendering (cellB1)

Reading in Slice Data

The job of actually reading in the data points from the database file is handled by cellsA2, B2, C2,

D2 andE2. Although this may seem like quite a complex operation, in essence what is being done

is quite simple: a list of record numbers is built up, and then used to retrieve data from a file.

Field11 Field12 Field13

Field21 Field22 Field23

Field31 Field32 Field33

Record 1

Record 2

Record 3

Database

Actual database file.

((field21 field22 field23)
(field31 field32 field33)
(field21 field22 field23)
(field31 field32 field33))

File cell output (record list was(2 3 2 3) ).

Figure 27: This illustrates how a File cell interprets a database file. The database’s contents are shown on the
left, while the list generated by the File cell is shown on the right. Note that the generated list depends on the
given list of record numbers.

Figure 27 illustrates how a database file is interpreted by a File cell; records are selected from

the database based on a list of record numbers, and returned as a list of records. The record numbers

used to retrieve data items from the database are calculated using the fact that the data are structured

as “slices” of 45# 47 data points each. These cells operate as follows:



6.2. EXAMPLE 1: SEISMIC DISTURBANCE ANALYSIS 75

* Cell A2 indicates the slice number that we wish to examine (settable by the user); in the

spreadsheet in Figure 26 the slice being examined is the eleventh one (slices are numbered

starting with 0). The reason behind the fact that the “count” field of cellA2 contains “2115”

instead of “1” is related to the way ViSSh handles list operations. When an operation is

performed on several lists, the resulting list is always defined to be as long as the shortest of

all the input lists; should the “count” field of cellA2 have been “1”, then only one data point

would have been read in, instead of 2115.

* Cell B2 generates record offsets used to retrieve data from the disk file. It is an arithmetic

progression cell, configured to generate a list containing all integers between 1 and 2115 (as

mentioned above, each slice consists of 47# 45, or 2115 data points).

* Cell C2 is used to prepare function arguments for the function evaluator cellD2. It interleaves

the lists generated by cellsA2 (the slice number) andB2 (the point number within the slice),

generating a list of lists which reads((10 1)(10 2)...(10 2115)) .

* Cell D2 calculates the record number to read off the database file. It uses the list containing

the slice and record numbers passed by cellC2 to calculate the record number of each data

point in the data file. The formula is quite simple,f(slice,offset) =% slice # 2115 + offset& .
* Cell E2 is what actually reads data off the database. It treats the input file (in this case,

“data.dat”) as a database made up of comma-delimited records, which are in turn separated

by newline characters. This format is quite popular for exporting data, and as such most

database engines can be configured to output their data in this way. At this moment in time,

this is the only data format that can be imported by ViSSh. Each newline-terminated line

of the data file is a record, and the numbers of the records that must be fetched from the

data file are given to Datafile cellE2, in this case by cellD2. The Datafile cell outputs each

record as a list, the items of which being the fields. As an example, if the last two lines of

the data in Figure 24 were read in by a Datafile cell, its output would be the following list:

((-24 24.5 250 -0.01257)(-24 25 250 -0.01508)) .

A look at Figure 25 will clarify the role of these four cells: two number sequences, generated by

cellsA2 andB2, flow into cellC2, which combines them into a single list. This list is then forwarded

to cell D2, which applies a function to them and gives the result of that function (a record number)

to cell E2, which queries the database.
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Transforming the Input

Now that cellE2 can read in the data points from the database file, we need to display them. Before

this can happen, the data need to be transformed slightly to aid comprehension by the user. In

this case, we choose to display the seismic disturbances as a three-dimensional plot, with thex

coordinate being longitude, they coordinate being latitude, and thez coordinate being the actual

disturbance value. Although we can use thex andy values directly from the data file, thez value

presents some problems. Firstly, there are many “missing” data points, represented by a disturbance

value of 999 (see Figure 24). Also, the seismic disturbances are about four orders of magnitude

smaller than the longitude and latitude.

The cells in rangeA3:D3 take the% x ( y( z( p & tuple generated by cellE2 and convert it into an% x ( y( z& tuple suitable for rendering in three dimensions. CellsA3 andB3 simply extract thex and

y components of the% x ( y( z( p & tuple by means of a simple function, inA3’s casef ' x ( y( z( p)+$,% x & ,
B3 performs a similar task for they coordinate.

The actual solving of the problems mentioned in the first paragraph of this section (namely,

missing values and the discrepancy in order of magnitude) is handled by cellC3. This cell makes

use of the fact, as mentioned in Chapter 5, that the underlying computational engine used by ViSSh

is the Scheme programming language [26]. Although, as we saw in the case of cellD2, functions

may be entered in the “standard” mathematical infix format, they may also be entered in the native

Scheme, in order to make fuller use of the language’s expressive power. Since the scheme function

entered in the cell is not clearly visible in Figure 26, that function is reproduced in Figure 28,

together with a translation of it into C [27], for easier comprehension.

(if (< p 999)
(* 100 p)
0

)

Original Scheme Expression

if (p < 999)
return (100 * p);

else
return 0;

Expression translated to C

Figure 28: This function is used to scale the seismic disturbance reading in order to make it noticeable, as
well as to account for the fact that “missing” values are represented as 999. The function, as it appears in the
spreadsheet, is in Scheme, but it is illustrated here next to its C [27] translation to ease comprehension.

This example serves well to illustrate the advantage of using a functional programming language

like Scheme instead of the more primitive formula languages used in traditional spreadsheet pack-

ages. Its function is quite simple: it takes each 4-item list generated by cellE2, i.e., the % x ( y( z( p&
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tuple read from the database, and calculates thez value to be plotted. This is simply thep database

field multiplied by 100, unless the stored value was 999, in which case it is forced to 0 (another cell

will be tasked with making these “missing” values invisible).

Referring to Figure 25 will clarify the above paragraph. The data read off the database by cell

E2 is sent to cellsA3 andB3, which extract, respectively, thex andy values from the record read in.

It is also sent to CellC3, which extracts thep value (see Section 6.2.1) and applies a function to it.

These three values are combined into one tuple by cell D3, which outputs a 3D point.

Building the 3D Surface

Cells A4, B4, C4 andD4 build the 3D surface to be rendered. CellsA4, B4 andC4 calculate the

colour to be used at each point (these colours will be interpolated by the rendering engine), and cell

D4 is responsible for the actual generation of the 3D mesh.

Cell A4 calculates the red component of the colour of the mesh at any given point. It works

similarly to cellC3, as illustrated in Figure 29, which is again translated into C for the convenience

of the reader. It basically spreads thep argument passed to it in the range%.- 10( 10& , unless it is

999, in which case an illegal value of -1 is returned. This illegal value is what forces the “missing”

data points to be invisible. CellB4 does something similar to calculate the green component of the

colour, which is simply one minus the red component (unless the red component is -1, in which case

the green component will also be -1).

(if (< p 999)
(+ 20 (* p 10))
-1

)

Original Scheme Expression

if (p < 999)
return 20 + p * 10;

else
return -1;

Expression translated to C

Figure 29: This function calculates the Green component of the colour of the 3D surface at the given point,
by mapping the value into the range [-10,10]. The function, as it appears in the spreadsheet, is in Scheme,
but it is illustrated here next to its C [27] translation to ease comprehension.

Cell C4 combines the red and green components, which are then passed to cellD4 (the missing

blue component will be filled in by cellD4, the 3D surface generator).

Cell A1 expresses the dimensions of a single slice. It is a function entry cell, which is configured

to always return the same value: a two-element list containing the dimensions of a slice:(45 47) .

This value is also passed to cellD4, which uses it to convert the 1D list generated by cellE3 (which
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we described above as the cell that generates the list of points used to build the surface) into a 2D

surface.

Referring to Figure 25 further illustrates the operation of building the 3D surface. CellA4

retrieves the database record in the same way as cellsA3, B3 andC3, extracts thep attribute (see

Section 6.2.1) and uses it to generate the red component of the vertex colour for that data point.

This is then passed to cellB4, which generates the green component. These are then combined to

form a colour triplet by cellC4 (the missing blue component defaults to 0). These colours are then

passed, together with the 3D data generated by cellD3 and the slice dimensions in cellA1, to cell

D4, which generates the actual 3D surface.

Rendering

Rendering of the generated surface is handled by cellE1. This cell reads the 3D mesh generated by

cell D4, as illustrated in Figure 25, and renders it to a separate window. This window is independent

of the spreadsheet editing window and can be resized and moved to other parts of the screen. The

actual geometry can be manipulated by the user, so it can be rotated, zoomed, etc. Figure 30

illustrates this window for slice 10. If the user wishes to view any other slices, they need only change

the number in cellA2, and the view in the 3D window will be automatically updated. Clicking on the

“Disk” icon on the top left corner of the 3D render window will output the current scene (together

with the current view parameters) to an Inventor format 3D file [64]. This format is understood by

many 3D packages, and can be easily converted to the popular VRML format.

6.2.4 Conclusion

This first test was designed to demonstrate the following properties of ViSSh:

A. The ability to import and handle large datasets.

B. The ability to perform arbitrary transforms on a dataset to prepare it for visualisation.

C. The ability to generate meaningful pictorial representations of the dataset.

D. The usefulness of theCell Dependencieswindow.

E. The compactness of the spreadsheet visualisation programs.

We believe we have demonstrated all of the above; our justification for this statement follows.
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Figure 30: This is a rendering of slice 10 of the seismic disturbance data, visualised by plotting the disturbance
value both as a vertical displacement and a vertex colour. Clicking on the “Disk” icon on the top left of the
3D render window will save the 3D scene, including the current view parameters, to a file.

A. ViSSh’s database model, in which a database is conceptualised as a set of numbered records

implemented as lists, allows databases of arbitrary size to be accessed, since only one record is

accessed at a time. Although the data format is currently limited to comma-delimited ASCII,

adding specialised import modules should pose no significant challenge.

B. As shown in Section 6.2.3, ViSSh’s function entry cells, optionally coupled with the use of

the Scheme programming language (common arithmetic expressions can be stated in infix

form), gives ViSSh spreadsheets a great deal of expressive power.

C. ViSSh was used to generate a 3D surface from the given data, where thex andy coordinates

of the 3D surface mapped 1 to 1 to those of the dataset, and thezcoordinate of the 3D surface

was a non-degenerate linear function of thep attribute of the dataset (see Section 6.2.1).

This means that, since each distinct dataset will have a distinct pictorial representation that is

linearly dependent on the dataset and nothing else, users should be able to extract meaning
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from the data by only looking at the generated image.

D. TheCell Dependencieswindow gives users the ability to easily follow the flow of data be-

tween cells. This alleviates the problem, inherent in the spreadsheet paradigm, of links be-

tween cells being implicit. This ability has been demonstrated throughout the discussion of

the workings of the spreadsheet above.

E. The seismic visualisation example outlined in this section is a fairly typical non-trivial data

visualisation involving reading data from a text file, transforming it, generating a 3D rep-

resentation of it and rendering this onto an interactive 3D window. Yet it only fills fifteen

spreadsheet cells; this demonstrates the conciseness of the representation.

6.3 Example 2: Network Routing Visualisation

ATM (Asynchronous Transfer Mode) networks are a type of computer data network that has several

advantages over older types (such as high speed, guaranteed quality of service and simplicity of

implementation). ATM networks can also be dynamically routed, which means that the exact route

that a given data packet takes to get from point A to point B can be determined “on the fly.” This

allows ATM networks to quickly adapt to changes such as surges in network traffic or damage to

routers. This dynamic routing is a complex operation, and there exist many algorithms to manage

it. To identify which algorithms are most appropriate for a given network, or what parameters need

to be fine-tuned, the network must be visualised in such a way that the effects of these changes can

be quickly and easily appraised.

The motivation behind this visualisation exercise was to demonstrate ViSSh’s ability to interact

with the user at the 3D representation level (which provides users with the ability to steer compu-

tations at a more concrete level than spreadsheet formulas), as well as the usability of theBroad

Overviewwindow (see Section 5.2.4 for more details).

6.3.1 Task Outline

As was mentioned above, the fine-tuning of an ATM network can be a complex operation involving

a number of parameters. This visualisation aids the professional involved in fine-tuning by plotting

the relationship betweenphysical links(the actual network nodes),logical routes(the path taken by

data packets when moving between physical links) andcapacity(the amount of data that can travel

down a particular logical route).
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The visualisation was performed by doing a 3D rendering of several stacked 2D plots (each

containing alogical-route vs. capacityplot). These plots are aligned so that network nodes can be

compared by having a fixedphysical-linkand variablelogical-route, or vice versa.

6.3.2 Description of the Visualisation

Each of thelogical-route vs. capacityplots is located at the required point along thephysical-link

axis. Each data point was represented by a small cube in the 3D subspace spanned by the three axes

physical-link, logical-routeandcapacity(See Figure 31). To enhance visibility, a line was plotted

between each cube and the horizontal (physical-link/logical-route) plane. This way thephysical-

link vs. logical-routerelationship between different data points could be determined without having

to rotate the view to an overhead position.

Capacity

Physical
Link

Logical
Route

Figure 31: These are the axes used to represent the three different dimensions of the network routing data.
“Physical Link” refers to the actual network node (e.g., 5), while “Logical Route” is the route that a data
packet will travel to get from origin to destination (e.g., 5-6-7-8). “Capacity” is the maximum number of
packets that can travel through a given physical link that is part of a given logical route.

Clicking on any of the cubes representing a data point displays, in a spreadsheet cell, the% physical-link logical-route capacity& tuple corresponding to that particular point. In this way a

broad overview of the data can be obtained by simple inspection, while more detailed analysis can

be obtained by clicking on the relevant points.

6.3.3 The Spreadsheet

Figure 32 illustrates the broad overview of the spreadsheet (see Section 5.2.4 for an explanation of

this feature of the ViSSh program).
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3D Render

Coord Entry
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Figure 32: Overview of the Network Routing Visualisation Spreadsheet, as generated by ViSSh’sBroad
Overviewfunction (see Section 5.2.4.)

The spreadsheet cells are grouped into several logical clusters, each performing one of the fol-

lowing tasks:

* Generating the 3D geometry of thexy (physical-link/logical-route) plane (cellsA1:H2).

* Reading the data to be visualised off the disk file (cellsA4:C4 andA5:B5).

* Generating the 3D geometry of the data cubes (cellsD5:F5, B6:C6 andD6:E6).

* Generating the 3D geometry of the lines projecting below the data cubes (cellsA7:D7).

* Outputting all the 3D geometry to an interactive 3D Render window (cellJ1)

Generating the x-y Plane

This is taken care of by the cells in the rangeA1:H2 (see Figure 33). These cells are grouped into

four groups, namely:

1. Generating coordinates for the horizontal lines (cellsA1:D1).

2. Generating geometry for the horizontal lines (cellsE1,F1,G1 andH2).

3. Generating coordinates for the vertical lines (cellsA2:D2).

4. Generating geometry for the vertical lines (cellsE1,F2,G2 andH2).
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Figure 33: Closeup of cell range A1:H2 — these cells generate the grid which lies under the data points.

There is a degree of symmetry between these four groups, reflecting the similarity in their func-

tions. The cells which calculate coordinates (Groups 1 and 3 above) do so in similar fashions: first,

the untranslated end coordinates of the lines are generated by arithmetic progression cells. These

are made into' x ( y) pairs by Cartesian product cells, which are then properly translated and made

into 3D coordinates by function entry cells. For the horizontal lines of the grid, this is done by cell

D1, while cellD2 takes care of the vertical lines.

The coordinates generated by cellsD1 andD2 (described above) are now used to generate the

actual 3D lines making up the representation of thex - y plane; this is done by the cells lying in the

rangeE1:H2, which form groups 2 and 4 mentioned above. The actual 3D lines are created by cells

F1, G1 (horizontal) andF2, G2 (vertical). These cells generate arbitrary line sets, and must be given

more information before they can interpret the list of coordinates given to them, namely the number

of coordinates each line segment is made up of. This information is generated by cellE1, which

generates a list containing eighty-four 2’s, indicating that the line sets being generated consist of

eighty-four segments spanning two points each.

In order to make thex - y plane less obtrusive, it was decided to make it blue. This is done

by cellsG1 andG2, which apply the RGB triplet% 0 ( 0 ( 1 & (i.e., blue) to the horizontal and vertical

lines, respectively. The RGB triplet was generated by cellH2.

Reading the Data Off the Disk File

This operation is performed by two groups of cells (See Figure 34 for a close-up of the actual

cells): cellsA4:C4 are responsible for generating the first and last record indices to read off the data

file, andA5:B5, which respectively generate all the consecutive record numbers corresponding to
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the records that must be read in, and read in the actual data records (see Section 6.2.3 for a more

complex example of database access). The data itself is stored in a comma-delimited text file. This

format was chosen since most database/spreadsheet programs can export data in this format. Note

that the “First” and “Last” indices of cellA5 are cell names enclosed in square brackets: this means

that the actual values are extracted off those cells, instead of being supplied by the user when the

spreadsheet is edited.

Figure 34: Closeup of cell range A4:C5 — these cells calculate which records must be read from the data
file, and read these records in.

Cell A4 is special since it specifies the first of the twenty physical links to be plotted, and hence

forms part of the “user interface” of the spreadsheet.

Generating the 3D geometry of the data cubes

An important part of the generated scene is the set of cubes that represent the data points. Each of

these cubes has a vertical line projecting underneath it, which extends until it meets thexy plane.

This line is used to compare the position of cubes when the scene is viewed at an angle. Additionally,

these cubes can be clicked on to obtain specific information about the corresponding data point.

These factors complicate the generation of the scene displayed in the 3D view.
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Figure 35: Closeup of cell range C4:J6 — these cells generate and transform the 3D geometry used to
visualise the network, as well as managing interactive 3D queries.

Generating the actual cubes is the responsibility of 3 groups of cells, namely the ones spanned

by rangesD5:F5, B6:C6 andD6:E6 (see Figure 35).

* Firstly, cellsD5:F5 generate a list of 14800 cubes of size 1# 1 # 1.

* These cubes are then translated to their proper positions by cellsB6:C6.

* The data in the source file is sparse, that is, not every possible data point contains data. These

“data holes” are represented in the dataset by data points having a “capacity” value of -999.

CellsD6:E6 take care of this, by blanking out any cube that has a negative capacity.

As mentioned above, the generated 3D scene is interactive, that is, the user may select cubes

with the mouse in order to get detailed information on the network nodes represented by the cubes.

This functionality is implemented byPick cells. 3D objects that are eligible for picking are passed

through a Pick cell, which updates itself automatically when one of these objects is selected (the 3D

render window where the interaction must happen is also specified — this allows the spreadsheet

developer to display the same 3D scene in two different windows, one with interaction and one

without). The value generated by the cell is a list index, corresponding to the position of the selected

3D object in the list that passed through the Pick cell. Since ViSSh’s computational model is such

that a list ofn 3D objects can only be created by a list ofn data values, retrieving information about



86 CHAPTER 6. PRACTICAL APPLICATIONS

the ith 3D object in a list is as simple as retrieving theith item of the list used to generate that 3D

object. As an example, consider cellsF6 andH4:J4 in Figure 35. CellF6 reads in the 3D geometry

generated by cellE6 (and passes it on to cellH6), and when the user clicks on one of the cubes, the

list offset of the cube is sent to cellH4, which uses it to retrieve the data used to generate the cube

from cell B5. Cell I4 then formats the data into a message, which is displayed by cellJ4.

Generating the 3D geometry of the lines projecting below the data cubes

As mentioned above, it can be difficult to see exactly where over thexy plane a particular cube is,

especially when the scene is not viewed from the top (i.e., along thezaxis). To remedy this problem,

a series of vertical lines are drawn projecting below each cube, stopping at thexyplane. These lines

allow the user to more easily compare several network nodes that share either the same physical

link (x coordinate) or logical route (y coordinate). CellsA7, B7, C7 andD7 implement these lines

(see Figure 36). The coordinates used for the base of each line (where it meets thex - y plane) are

generated by cellA7. These coordinates are then paired with the location of the corresponding 3D

cube (taken from cellB6) by cellB7. The result of this is a set of coordinate pairs, with the first one

being the top of the line (where it meets the corresponding cube) and the second being the bottom

of the line. The actual line segments are generated by cellD7, in a similar way to the line segments

used to make up thex - y plane.

Figure 36: Closeup of cell range A7:D7 — these cells generate and transform the 3D geometry used by the
vertical lines under each data cube.
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Outputting all the 3D geometry to an interactive 3D Render window

Once all the 3D geometry has been generated, it is displayed by cellJ1. Figure 37 illustrates what a

typical generated scene looks like, together with the enlarged view of the text display cellJ4. This

displays the information relevant to the selected data point.

Figure 37: This is an example image generated by the Network Routing Visualisation Spreadsheet. Note that
one of the data points has been clicked on, and is highlighted in red (the “Selected” caption is not part of the
screenshot). The text display window (opened by clicking on the “. . . ” button of cell J4, see Figure 12 in
Chapter 5) shows the data associated with the selected data point.

6.3.4 Conclusion

This second test was designed to illustrate the usefulness of theBroad Overviewwindow, as well as

ViSSh’s 3D interaction capabilities.



88 CHAPTER 6. PRACTICAL APPLICATIONS

Spreadsheets are normally built as sets of functional cell clusters, as we have demonstrated

in our discussions of both the seismic and the ATM network spreadsheets. TheBroad Overview

window lets the user find these clusters in an easier way than is the case with the main editing

window, since more cells are visible in the former. Since cells are displayed in theBroad Overview

window in iconic form, users can quickly spot the cell cluster they are looking for; clicking on one

of the cells in that cluster will scroll the main editing window so that the cluster can be edited. The

fact that the “Broad Overview” window scrolls independently of the main editing window lets users

compare the area being edited with the one being scanned.

We have shown the general operational model behind 3D interaction, as well as a specific exam-

ple. Generally, 3D interaction works by causing a cell to update its “changed” status when the user

interacts with the 3D display. This makes 3D interaction semantically identical to editing values

stored in spreadsheet cells. The method used for extracting information about an object by selecting

it in the 3D display is quite simple. In order to implement this form of interactivity, Pick cells are

used. Lists of 3D objects to be rendered are passed through Pick cells before being rendered. When

a user clicks on a 3D object in the render window, the pick cell outputs the list index of the object

that was clicked. This index can then be used by other cells to obtain the data that was used to

generate that particular 3D object.

6.4 User Experiences

The examples described in this chapter are part of the set of visualisations that formed the basis for

the user testing we performed while developing the ViSSh prototype. The actual testing was done

by the author and others, mainly with the objective of iteratively improving the design of the system

as it was being built. User feedback was also used to improve the user manual (see Appendix A).

We have compared ViSSh to Khoral Research’sCantata[28], and found that ViSSh was gener-

ally easier to use. We believe this is mainly because the spreadsheet layout made the visual program

less cluttered than was the case with Cantata’s dataflow model, thus easing the editing process.

Additionally, the Scheme programming language made the formulas, especially those involving

conditionals, compact and concise. Using the “Broad overview” and Dependencies windows (see

Section 5.2.4 for details) also eased the visualisation task. The latter in particular gives users the ad-

vantages normally associated with dataflow diagrams without the clutter problems mentioned above

(since the dataflow diagram is generated algorithmically).

We have also analysed ViSSh using Green’s Cognitive Dimensions Framework [18, 17] (see
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Chapter 7) and found that it compares favourably with dataflow systems.

6.5 Chapter Summary

In this chapter we have shown the real-world applicability of ViSSh, the data visualisation spread-

sheet that was described in Chapter 5, as well as demonstrating the usefulness of its major features.

Two very different data sets were obtained (seismic disturbances and ATM network topology) and

visualised. The spreadsheets used to visualise both sets of data were described in detail, in order to

provide insight into how ViSSh programs are built. The following features were demonstrated:

* ViSSh’s ability to import and handle large datasets.

* ViSSh’s ability to apply arbitrary transforms to this data.

* ViSSh’s ability to generate meaningful pictorial representations of this data.

* The compactness of ViSSh visual programs.

* The usefulness of theCell DependenciesandBroad Overviewwindows.

* ViSSh’s 3D interaction capabilities.

ViSSh relies on these features to provide users with an efficient data visualisation system.

To conclude, we briefly discussed the user testing we performed during the building of ViSSh.

We have demonstrated the efficiency of the system in this chapter, the only remaining question

is its usability. This will be addressed in the next chapter.
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Chapter 7

Cognitive Dimensions Analysis

7.1 Introduction

In this chapter, the usability of the extended spreadsheet paradigm will be analysed. This will be

achieved by measuring the usability of the ViSSh prototype, using Green’s Cognitive Dimensions

Framework [18, 17] as the analytical tool.

The process to be followed is simple: first some real-world visualisation problems were ob-

tained, which involved non-trivial amounts of data. These exercises were obtained from the re-

search interests of fellow MSc students, and come from different areas of research (geology and

ATM networks). Then the data was visualised, and observations were made about the process used

to visualise the data; this process is discussed in detail in Chapter 6. Finally, Green’s Cognitive

Dimensions Framework was used to quantify these observations.

The results obtained from the analysis were then compared to those obtained by Green from two

dataflow systems [18], and this comparison was used as the basis for a comparison of the underlying

paradigms, namely our enhanced spreadsheet paradigm versus dataflow.

7.2 The Cognitive Dimensions Framework

As we saw in Chapter 2, Green and Petre [18] propose using a “broad brush” analysis method, as

opposed to the fine-grained analysis of simple tasks traditionally used by HCI researchers. Their

analysis tool, called a “cognitive dimensions framework,” is task-specific, concentrating on process

rather than content. It provides us with a set of mutually-orthogonal cognitive dimensions, which

in essence allow the broad description of any visual programming environment by conceptually

91
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plotting points in a 13-dimensional set of axes. Although the dimensions are meant to be orthogonal,

Green admits that there is a certain amount of interaction between them, such that changing one

aspect of a visual programming environment to improve its position along a given axis is likely

to affect the environment’s position along several other axes. Using the Cognitive Dimensions

Framework it is possible to quantify the differences between existing programming environments, so

they can be objectively compared and conclusions drawn about the suitability of these environments

for any given task. These cognitive dimensions are summarised, together with a simple example of

their application, in Section 2.8.1.

7.3 A Cognitive Dimensions Analysis of ViSSh

In this section, we shall use the Cognitive Dimensions Framework to analyse the usability of the

ViSSh data visualisation spreadsheet that was described in Chapter 5. Since this program closely

implements the extended spreadsheet paradigm we developed in Chapter 4, in this way we are

demonstrating the usability of the extended paradigm itself.

Below, we list each of the cognitive dimensions, followed by a brief discussion of how ViSSh

can be rated according to the criteria associated with that particular dimension.

7.3.1 Abstraction Gradient

Although traditional spreadsheets areabstraction-hating[17], the extended spreadsheet paradigm

described in Chapter 4 prescribes the use of functional programming languages instead of the com-

monly used formula languages. Since functional programs consist mostly of function definitions

(i.e., abstractions), functional programming languages can be described asabstraction-hungry.

Hence in ViSSh we have a curious combination of two systems on opposite sides of abstraction

argument (since user-defined functions can either be loaded from a file or created as needed, ViSSh

supports both persistent and transient abstractions).

Since the ViSSh user does nothave tocreate new functions in order to use the system, but can

if he or she wants to, ViSSh can be said to be abstraction-tolerant. This makes ViSSh a useful

tool both for the novice programmer (who usually has trouble with abstractions [40]) as well as

the experienced programmer (who can take advantage of the conciseness conferred by the use of

abstractions). Additionally, since no abstractions are needed to use ViSSh, it has a practically non-

existentabstraction barrier[17].
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Use of the functional language is not the only way to introduce abstractions into a ViSSh spread-

sheet — thesubsheetmechanism (see Section 5.2.2 for an explanation of this) allows for abstrac-

tions to be created by embedding entire spreadsheets into single cells.

7.3.2 Closeness of Mapping

Closeness of mapping deals with how much the syntax of the language separates the problem being

solved from the program being used to solve it. ViSSh, being based on spreadsheets, has no need

for “finicky syntax rules” [18] like the placing of semicolons; this gives it a better closeness of

mapping than most textual programming languages. Its underlying basis in spreadsheets means that

in order to use the system, the user must master only two concepts: cells as variables, and formu-

las as relations between variables [40]. Also, spreadsheets are devoid of control constructs (since

the emphasis is on the flow of data, as opposed to the flow of control associated with imperative

programming languages), which further separate the program from the problem being solved.

On the negative side, the need to build the visual representation of a dataset from graphics prim-

itives which are transformed in a stepwise manner, semantically separates that part of the system

from the actual visualisation. However, the stepwise building of the scene makes this operation

simple and easy to debug, so the tradeoff was deemed worthwhile; further, since the actual data

modeling and/or transformations are performed separately to the setting up of the scene, this does

not negatively affect the overall closeness of mapping of the system.

The Scheme programming language, with its associated problems with regard to the overabun-

dance of brackets, also subtracts from the closeness of mapping of the system. However, since

ViSSh constrains the use of Scheme to single arithmetic expressions inside spreadsheet cells, the

negative effects of Scheme are localised. Additionally, the use of Scheme is not mandatory: for

example, in Figure 26 of Chapter 6, cell D2 has its formula expressed as an infix mathematical

expression. The use of Scheme is mostly constrained to “power” users wishing to use advanced lan-

guage features of Scheme. These users are less likely to be affected by the quirks of the language.

Hence, because ViSSh programs lack control structures and have small amounts “syntactic clut-

ter,” which is both optional and localised, they can be said to have a high closeness of mapping to

the data being visualised.

7.3.3 Consistency

This is also known as the “principle of least astonishment,” which states that once a part of the

system has been learned, the user should be able to infer the remaining parts of it.
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Like most spreadsheets, ViSSh has a high degree of consistency, since all spreadsheet cells are

added, deleted and edited in the same way (see Section 7.3.12), and all inter-cell dependencies are

represented in the same way, i.e., in the traditional spreadsheet cell name form (e.g. B5).

7.3.4 Diffuseness

This cognitive dimension deals with how “verbose” a given language is, i.e., whether many primi-

tives are required on the average to express any given basic concept.

ViSSh, being based on spreadsheets, is quite concise: for example, the spreadsheet shown in

Figure 26 of Chapter 6, which consists of only thirteen cells, generates user-selected 3D representa-

tions of a dataset stored in a file and displays them on an interactive window which allows zooming,

panning and rotation of the scene.

Additionally, the use of functional programming languages in the extended spreadsheet para-

digm ViSSh is based on (see Chapter 4) gives the system the potential of being much more concise:

potentially, an entire program could fit into a single spreadsheet cell. This is, however, a degenerate

case: so much functionality would be lost in the process that the resulting program could no longer

be called a spreadsheet. It is, however, interesting that itis possible to go so far.

The inherent conciseness of spreadsheets, optionally combined with the use of a general-purpose

functional language, keeps ViSSh programs small. This places less strain on the user trying to debug

a spreadsheet.

7.3.5 Error-proneness

This cognitive dimension asks, “How easy is it to make mistakes with this system?”

ViSSh has no control constructs and no need for variable to contain intermediate results — both

of which are non-task-related and tiresome to users [40]. According to the Yerkes-Dodson Law [68,

pp. 431–432], users with a moderate level of motivation asked to perform boring, tiresome tasks are

more likely to make mistakes than users faced with more interesting tasks. The use of a functional

programming also reduces certain types of programming errors [21, 63], mainly due to the “cleaner”

programming style imposed by these languages. This said, Scheme’s syntax does leave a lot to be

desired as far as brackets are concerned. ViSSh alleviates this by the use of bracket-matching text

input controls, which cause the cursor to briefly jump to the corresponding opening bracket when a

closing bracket is typed in.

Additionally, ViSSh’s high levels of consistency and conciseness (see above) also help reduce
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the propensity of errors.

7.3.6 Hard Mental Operations

If the user needs to result to external aids such as pencil and paper to aid his mental processes while

using a program, that program is said to have hard mental operations.

According to Green and Petre [18], visual programming languages have a number of hard mental

operations, all related to control constructs. Since ViSSh does not have any control constructs,

being instead based on a pure dataflow model, it is exempt from these particular difficulties. This is

because ViSSh spreadsheet cells only deal with complete datasets. For example, if some transform

needs to be applied to all data items smaller than zero, then an entire dataset will be analysed by

the relevant spreadsheet cells, and the resulting dataset will consist of the union of all values greater

than or equal to zero (which will remain untouched) and those values which were smaller than zero

(and will have been appropriately transformed).

There are, however, two sources of hard mental operations in ViSSh: keeping track of “is de-

pended on by” relationships (the opposite of “depends on” relationships) and the idiosyncrasies of

the Scheme programming language.

Keeping track of “is depended on by” relationships. This is a hard mental operation since it is

not immediately obvious which cells are depended on by any given cell (in contrast, it is easy to see

which cells any given cells depends on, since those cells are explicitly stated in the cell that depends

on the others). However, theShow Dependencieswindow (see Section 5.2.4 for an explanation of

this feature) greatly simplifies this process.

Scheme. This has two main areas as far as hard mental operations are concerned: keeping track

of brackets and the fact that expressions are specified in the prefix form. Keeping track of brackets

is a hard mental operation because every operation must be surrounded by brackets, e.g., the inline

expressiona / b 0 c / d is expressed as(+ (* a b) (* c d)) . This example also illustrates the

problems posed by the prefix notation. While this notation is semantically cleaner (everything is

treated as a function application), deciphering a complex expression can be a taxing experience.

However, the use of Scheme is optional. The typical user that chooses to use Scheme expressions

will be a “power” user, who will have the necessary mental tools to deal with this complexity.

Ordinary users need not be exposed to this, since a software layer exists that converts expressions

from the infix format commonly used by mathematicians into the internal Scheme representation.
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Hence ViSSh can be said to have few hard mental operations, with a few caveats. Firstly, it

is possible to create such an obfuscated spreadsheet that it is difficult to keep track of the flow of

data. Secondly, the use of the Scheme programming language introduces hard mental operations,

but this should only be attempted by seasoned programmers who wish to highly tune their programs;

ordinary users need not resort to such measures.

7.3.7 Hidden Dependencies

A hidden dependency is a relationship between two parts of a program such that the one depends

on the other, but this dependency is not fully visible.

Although the spreadsheet model that ViSSh is based on suffers from hidden dependencies (one

can see what cells any given cell depends on, but not what cells depend on any given cell), theshow

dependencieswindow implemented in ViSSh circumvents this problem (see Section 5.2.4 for a

discussion of this feature). This window contains a dataflow diagram representation of the program

implemented by the spreadsheet, which can be examined to find out the data dependencies between

individual spreadsheet cells. This diagram can be used to find out both which cells depend directly

on which other cells, as well as finding out all cells that ultimately depend on any given cell (since

circular references are not allowed, all cells that are somehow affected by any given cell will be all

the nodes of the tree rooted at that cell).

Since the dataflow diagram is built algorithmically, it is always at least as readable as a hand-

edited data flow diagram, and does not need constant maintenance.

Therefore, ViSSh can be said to have the best of both worlds: the simplicity afforded by the one-

way links provided by the spreadsheet paradigm [17], without the inherent hidden dependencies;

this is because all data dependencies can always be examined by the use of theShow Dependencies

window.

7.3.8 Premature Commitment

This occurs when the user is forced to make a decision before all necessary information is available.

ViSSh can be considered to have a certain amount of premature commitment for the simple rea-

son that spreadsheets have boundaries — the user must decide, before starting, in which directions a

spreadsheet will grow. Guessing wrong will mean that the user will find him or herself in a position

where a cell must be inserted to the left of a cell that is in column A, for example. However, ViSSh

has a low viscosity (see Section 7.3.12 below) and hence correcting problems of this nature is not a
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big undertaking.

Premature commitment due to ordering constraints is not present in ViSSh, since a spreadsheet

can be built by placing cells in any order the user wishes.

7.3.9 Progressive Evaluation

If a system supports progressive evaluation, then any partially-completed program can be tested at

any time. This contrasts with most text-based languages, where a program must be syntactically

complete before it can be compiled and tested.

ViSSh, being based on spreadsheets, has a high degree of support for progressive evaluation.

This is a necessary feature for a system used for exploratory programming (such as data visualisa-

tion). This means that the user can develop his visualisation in stages (since the system automati-

cally keeps track of data dependencies and recalculates the spreadsheet when necessary) which can

be individually tested.

7.3.10 Role-expressiveness

This cognitive dimension is used to find out how difficult it is to answer the question “what does

this part of the program do?”

ViSSh has no explicit support for role-expressiveness, since it was felt that adding something

like a separate comment layer would add to the viscosity of the system (see below) and hence

would detract from its usefulness as an exploratory-programming system. Users can, however, use

text-entry cells to comment on the functions performed by nearby cells.

Therefore ViSSh can be considered to have a low score for role-expressiveness.

7.3.11 Secondary Notation

This is extra information carried by other means than the official syntax. An example from text-

based programming languages could be the indenting of loop bodies relative to loop-delimiting

statements.

ViSSh has some direct support for secondary notation by giving the user the ability to write a

block of text that is associated with any given spreadsheet. The users may use this facility in any way

they see fit; the text is stored in the same file as the spreadsheet and pops up when the spreadsheet

is opened. This commenting is not on a cell-by-cell basis; it was felt that this would interfere with

the rapid development cycle typical of a data visualisation tool. Instead, the comments apply to the
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spreadsheet as a whole, and allow users to comment their programs in a way that does not interfere

with the frequent editing associated with data visualization.

Additionally, users may use the standard secondary notations associated with spreadsheets, such

as clustering cells into functional units.

7.3.12 Viscosity

Viscosity is defined asthe cost of making small changes to an existing program. In ViSSh, this

is quite small; to back up this claim we submit that all editing (in the context of spreadsheets in

general, and ViSSh in particular) can be seen to belong to one of two categories: cell modification

and insertion.

* Modification consists of changing the attributes of a cell (such as the cell it gets its data

from), replacing the cell with one of a different type or deleting a cell completely. The first

case, editing a cell’s attributes has no effect whatsoever on neighbouring cells (recall that no

cell may directly set the state of another cell). Replacing and deleting have no effect either

because each cell fits exactly into a grid position, so all editing changes are by definition

completely localised.

* Insertion of cells into a spreadsheet does not affect neighbouring cells either, simply because

a cell can be inserted anywhere in the spreadsheet regardless of where the cells that logically

“belong” with that cell are. In other words, if the user wishes to add a cell that gets its

data from cell C5, the new cell does not need to reside anywhere near cell C5. Since all

cell connectivity is handled by textual cell references, the “spaghetti” problem commonly

associated with dataflow systems simply does not appear.

Since low viscosity is a desirable property of exploratory systems such as data visualisation

systems, we believe that this low viscosity is one of the most important properties of ViSSh.

7.3.13 Visibility and Juxtaposability

Visibility is defined asthe ability to view components easily, while juxtaposability is defined asthe

ability to place components side by side. These two are related in that, combined, they imply the

ease, or difficulty, of seeing how any two parts of a program relate to each other.

Spreadsheets traditionally have asymmetric visibility and juxtaposability — this is because for-

mula cells contain two separate sets of information: the formula and the formula’s result. As a
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result, when the spreadsheet is in “results mode,” it is difficult to compare formulas (since only one

formula at a time can be viewed in this mode), while when it is in “formula mode,” it is difficult to

compare results (since only one result can be viewed at a time in this mode). ViSSh circumvents

this problem by having dedicated output cells; in this way, all formulasandall results can be viewed

and compared simultaneously.

The large cells used by ViSSh cause a problem with visibility, since not many of them can

be displayed simultaneously. This problem is alleviated by the use of theBroad Overviewand

show dependencieswindows (see Section 5.2.4 for a discussion of these features). These windows

display miniature versions of the cells in the spreadsheet, greatly increasing the number of cells that

can be viewed simultaneously and hence visibility. The fact that theBroad Overviewwindow can be

scrolled independently of the main editing window also enhances visibility. TheShow Dependencies

window, additionally, exposes the relationships between spreadsheet cells, further enhancing the

visibility of the system.

ViSSh has a high amount of juxtaposability in that there is no limit to how many windows can

be open at any given time, or on what these windows are displaying. For example, it is possible to

have three 3D render windows looking at the same object, one each for top, left and front view. Any

changes made to the object will be visible in the three views simultaneously.

Therefore ViSSh can be said to have both high visibility and high juxtaposability; both qualities

are important in a data visualisation system.

7.4 Summary of Results

In Section 7.3 we described the results of our Cognitive Dimensions analysis of ViSSh. This ana-

lysis reveals that ViSSh has a low level of diffuseness (i.e., programs tend to be concise), allows

progressive evaluation (i.e., a partially-finished program can be run) and has low viscosity (i.e.,

making any small change to a program is easy). These properties show ViSSh to be very suitable

for exploratory programming, in a similar way to the spreadsheets that it is based on; this means

that the extensions that we have made to the spreadsheet paradigm to increase its suitability for data

visualisation have not adversely affected this central feature of the spreadsheet paradigm.

In Table 1 we list the results of the cognitive dimensions analysis, together with those given by

Green for two other visual programming languages, ProGraph and LabVIEW [18]. This comparison

is interesting because both LabVIEW and ProGraph use the dataflow paradigm, which is currently

the most common with data visualisation systems. Although the two systems are fairly different in
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Cognitive Dimensions Axis ViSSh LabVIEW ProGraph
Abstraction tolerant tolerant hungry
Closeness of Mapping high high high
Consistency high high high
Diffuseness low med high
Error-proneness low low low
Hard Mental Operations few some some
Hidden Dependencies low low low
Premature Commitment med high high
Progressive Evaluation good none good
Role-expressiveness low low low
Secondary Notation med low low
Viscosity low high low
Visibility high high medium

Table 1: Cognitive Dimensions comparison of ViSSh, LabVIEW and ProGraph (values for LabVIEW and
ProGraph obtained from Green and Petre [18])

appearance (LabVIEW is a pure dataflow system while ProGraph uses electronic circuit diagrams

as its user interface metaphor), their cognitive dimensions analysis probes deeper and reveals that

they are, in reality, quite similar in nature.

By comparing the three systems in Table 1, it is possible to list the advantages the extended

spreadsheet paradigm (as implemented in ViSSh) has over the dataflow diagrams normally used in

data visualisation (as implemented in LabVIEW and ProGraph):

* ViSSh has less diffuseness than LabVIEW or ProGraph. This is because the extended spread-

sheet paradigm ViSSh is based on (see Chapter 4) combines spreadsheets with functional

programming. Spreadsheets are inherently concise, and when combined with text-based func-

tional languages, the resulting system has the ability of being more concise than the purely

graphical dataflow diagrams.

* ViSSh has fewer hard mental operations than the other two systems. This is as a result of the

fact that users of dataflow systems have to perform backtracking when analysing the flow of

data as it goes through conditional nodes. Since ViSSh nodes (i.e., spreadsheet cells) deal only

with complete datasets (the effects of conditionals are entirely hidden by the cells performing

the conditional operations), users are spared the pencil-and-paper tricks commonly used by

dataflow system users. Although the use of the Scheme programming language imposes some
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cognitive load on users, this will be limited to “power users” who can deal with it; most users

will make use of the ability to enter expressions in the infix form.

* ViSSh users are less vulnerable to premature commitment than users of dataflow systems,

since the connections between ViSSh cells are implicit (although they can be made explicit).

Therefore ViSSh is immune to the “spaghetti syndrome” commonly associated with heavily-

edited dataflow diagrams.

* ViSSh has slightly more support for secondary notation than ProGraph and LabVIEW, mainly

due to the fact that users have the ability to comment a spreadsheet, in addition to using

physical grouping of cells according to functionality. LabVIEW and ProGraph are quite

limited in this area [18].

Although in this analysis we seem to downplay the role of functional languages (one of the three

extensions to the spreadsheet paradigm described in Chapter 4) and suggest that they be used only

by “power users,” this is not the case. Any software system has two types of user: casual/learner

users and power users. ViSSh addresses the needs of both of these users by making the most

complex of the spreadsheet paradigm extensions, i.e., using a functional language, an optional user

interface feature. Inexperienced users are still making use of a functional programming system,

but in a way that is familiar to them (i.e., infix mathematical expressions). As they become more

experienced, users will want to abandon the “training wheels” provided by the infix expression

parser in favour of the full power provided by the functional programming language Scheme. By

comparison, users of traditional spreadsheets only have one choice of formula language. While

this is a comfort to beginners, expert users looking for more expressive power when building their

spreadsheets are often forced to work outside the spreadsheet paradigm, by using embedded BASIC

routines, ActiveX controls, etc.

7.5 Chapter Summary

In this chapter we have used the experience gained while building the real-world visualisations

described in Chapter 6 to perform a Cognitive Dimensions Analysis of ViSSh (and so, indirectly,

of the extended spreadsheet paradigm that ViSSh is based on). Once we had obtained the results

afforded by this analysis, we proceeded to compare ViSSh to two dataflow systems, based on the

analysis of these systems performed by Green [18]. This comparison was relevant because the
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two systems compared against, LabVIEW and ProGraph, are representative of the class of dataflow

systems that ViSSh is meant to improve upon.

In our comparison of ViSSh, LabVIEW and ProGraph we found that the extended spreadsheet

paradigm underlying ViSSh does indeed improve upon the dataflow paradigm underlying LabVIEW

and ProGraph, while not introducing any traps for the unwary user. The implication of this obser-

vation is that data visualisation systems based on the extended spreadsheet paradigm should be at

least as usable as the current dataflow systems, with the possibility of being better tools.



Chapter 8

Conclusion

8.1 Introduction

In this dissertation we have examined the usefulness of spreadsheets for data visualisation applica-

tions. We have also outlined the shortcomings inherent in spreadsheets with regard to data visual-

isation, and described an extension to the basic spreadsheet paradigm that remedies these. Finally,

we have described a software prototype that implements this extended paradigm and our evaluation

of this prototype. This chapter gives our findings at both the theoretical and implementation level,

and concludes with possible future work in this direction.

Our main contribution lies in the discovery of an extended spreadsheet paradigm that allows

spreadsheets to be efficiently used as data visualisation systems. This was based on our novel

functional analysis of the spreadsheets paradigm and the discovery, presented together with an al-

gorithmic proof, of the fact that spreadsheets and dataflow are equivalent in nature. We have also

created a novel data visualisation system based on spreadsheets that allows arbitrary multidimen-

sional datasets to be manipulated and visualised.

8.2 Analytical Results

We have analysed spreadsheets at their most basic level, and discovered several interesting prop-

erties. Firstly, we have found that spreadsheets can be described asApplicative State Transition

systems, as described in Section 2.5. This means that spreadsheets are functional in nature. Based

on this demonstration, we have also found that spreadsheets can be described as consisting of an

editing system layered on top of a functional computational engine (see Section 3.3.3). Both of
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these discoveries led to the finding that spreadsheets are equivalent to dataflow systems. Section 3.5

has an algorithmic proof for this finding.

With regard to data visualisation, we have found that spreadsheets are indeed useful tools for

this task, as reported by Levoy [30] and others. We have also found them to be superior to dataflow

visualisation systems due to the lack of clutter normally associated with heavily-edited dataflow

diagrams. However, we have found that spreadsheets in their current form have problems with

regard to data visualisation, due mostly to the difference in the volumes of data that spreadsheets

were originally designed to handle (hundreds of data values), versus those normally handled by data

visualisation tools (tens of thousands to millions of data values).

We have further found that this deficiency can be further classified into three categories, namely

volume of data, flexibility of computationandcomputation time. We have found that the following

techniques address each of these:

* The problem with thevolume of datathat needs to be processed is that spreadsheets would

need to be tens of thousands of cells wide or tall to contain these datasets (since datasets can

normally only be processed as cell ranges that are horizontally or vertically arranged). We

have found that allowing entire datasets to be stored and manipulated in each spreadsheet cell,

as described in Section 4.3.1, drastically reduces the size of spreadsheets, since the majority

of spreadsheet cells then contain formulas instead of raw data.

* Computation timeis a problem related tovolume of data: the more data that is processed, the

longer it will take to process. However, we have found that in the context of data visualisa-

tion a solution exists. In most data visualisation exercises part of the data is not displayed,

either as a result of decimation (in broad overviews) or clipping (in zoomed-in views). We

have found that in these cases the technique of lazy evaluation, described in Section 4.3.2,

can reduce computation times; this is because lazy evaluation avoids performing calculations

whose results will not be made use of.

* Spreadsheets use domain-specific formula languages; this results in a reducedflexibility of

computation, since these formula languages are typically both highly specialised and not ex-

tensible. Based on our finding that spreadsheets are functional in nature, as discussed above,

it is possible to alleviate this problem by using a standard functional programming language

(see Section 4.3.3). This gives casual users the benefit of pre-built function libraries which

take over the role of the specialised formula languages, while simultaneously permitting ex-

perienced users to extend the formula language to fit their needs.
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8.3 Experimental Results

In order to test and demonstrate the extended spreadsheet paradigm described in Section 4.3, we

have built a software prototype,ViSSh; this prototype is described in detail in Chapter 5.

8.3.1 User Interface Issues

During the building and testing of this program we found some general usability problems with

spreadsheets in general and implemented solutions for them. We have not made these part of our

extended spreadsheet paradigm since none of them is directly related to data visualisation.

Firstly, we found that the lack of explicit links between spreadsheet cells is a source of prob-

lems when debugging spreadsheets; this is in spite of the fact that this lack of links is largely the

reason that spreadsheets are neater than dataflow diagrams, even after heavy editing. The reason is

that although it is easy to see which cells any given spreadsheet cell depends on (simply read the

formula), the reverse relationship (i.e., which cells are affected by any given cell) is not as obvi-

ous; in a moderately complex spreadsheet, the relationship is effectively hidden. The solution we

implemented for this problem is to have a window containing an equivalent dataflow representation

of the spreadsheet (derived using the algorithms in Section 3.5). This dataflow representation is

algorithmically generated and so is less cluttered than a hand-edited dataflow diagram, even after

the spreadsheet has been subjected to heavy editing.

Secondly, we found that editing spreadsheets was frustrating because of the small number of

cells visible at any given time. This agrees with Nardi’s study [41], which reports that “users have

a strong preference for being able to view and access as much data as possible without scrolling.”

Our solution to this problem was to allow users to summon a view of the spreadsheet that substi-

tutes a small icon for each spreadsheet cell. Each of these icons is much smaller than a “normal”

spreadsheet cell, and so many more spreadsheet cells can be viewed at any time. Since this “broad

overview” window may be scrolled independently of the main editing window, it can be used to

navigate the spreadsheet without losing track of the current position.

8.3.2 SubSheets

An interesting offshoot of the discovery that spreadsheets are functional in nature is that, if spread-

sheet cells are allowed to evaluate cells in other spreadsheets, a functional link between the two

spreadsheets is formed. This link is implemented in the SubSheet facility of ViSSh, which allows

developers to create encapsulated, reusable spreadsheets that can be used by other spreadsheets
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in the same way that function libraries are used by programming languages (the current model of

spreadsheet reuse is more akin to macro expansion). This encapsulation arises from the fact that the

master spreadsheet and the subsheet can only communicate via well-defined points, with all other

information being inaccessible (see Section 5.2.2 for more information). SubSheets provide ViSSh

with a hierarchical abstraction mechanism that promotes code sharing and reuse, both of which are

highly desirable properties of a data visualisation system. This mechanism can be used to build

large, user-contributed libraries of useful spreadsheets, similar to the script libraries in existence

for most established data visualisation systems. The functional nature and data hiding inherent in

the SubSheet mechanism also assist with the maintenance of function libraries, since the coupling

between master and subsheets is quite loose, reminiscent of shared libraries. We believe that Sub-

Sheets have a lot of research potential, and outline some possible areas of research in Section 8.4.

8.3.3 Cognitive Analysis

We have used Green’s Cognitive Dimensions Framework [18] to analyse our software prototype, and

compared it to two typical dataflow systems analysed by Green (ProGraph and LabVIEW) [18, 17].

We have found that ViSSh is generally as usable as these two systems, with several areas being

improved on — these include the ability to create more concise visual programs (i.e., “smaller”

programs both in terms of number of primitives and needed screen area) and lower cognitive load

on the user when editing visualisations; Chapter 7 contains the usability analysis as well as our

conclusions. The cognitive dimensions framework has also shown that the ViSSh prototype, and

hence the extended spreadsheet paradigm, is well-suited to exploratory programming. This shows

that our extensions to the spreadsheet paradigm have not negatively affected this useful trait of the

spreadsheet paradigm. The overall implication of the results of the cognitive dimensions analysis

is that, from a cognitive point of view, systems based on the extended spreadsheet paradigm can be

used to replace the dataflow-based visualisation systems currently in use.

8.4 Future Work

Although the extended spreadsheet paradigm solves the problems inherent in spreadsheets with re-

gard to data visualisation, we believe that more work needs to be done to address the needs of the

novice user. The very flexibility provided by the use of a functional language can be confusing to a

newcomer to the system, and the choice of the Scheme programming language is not ideal as far as
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non-programmers are concerned. We have partially remedied this by allowing mathematical expres-

sions (i.e., the vast majority of spreadsheet formulas) to be expressed as infix, but list manipulations

must still be expressed in Scheme. We believe that there are enough computer languages already

in existence, and hence will search for a more “beginner-friendly” functional language. Addition-

ally, the set of available graphics primitives could be enlarged: extending the graphical vocabulary

of ViSSh beyond what was needed for testing was considered to be “non-interesting” and hence

postponed.

8.4.1 The SubSheet Mechanism

Several avenues of research arise from the SubSheet mechanism discussed in Section 5.2.2. This

mechanism allows spreadsheets to evaluate cells from other spreadsheets in a functional manner,

thereby providing spreadsheets with the ability to make use of encapsulated spreadsheet “function

libraries.” However, if the mechanism were modified so that the flow of data between spread-

sheets used unix sockets, it would be possible to distribute spreadsheet computations. A “super-

spreadsheet” could be built that links several computers together to solve a computationally-intensive

problem. Since ViSSh makes use of lists for its inter-cell communication, data could be “streamed”

between spreadsheets one item at a time. If this were combined with a multi-threaded spreadsheet

recalculation mechanism (where cells that do not depend on each other are evaluated simultane-

ously), a highly efficient yet simple distributed computation mechanism could result. Since the

SubSheet mechanism is functional in nature and has no side-effects, parallelism is easy to achieve.

8.4.2 Multiuser Spreadsheets

Another interesting avenue of research opened up by internetworked spreadsheets would be that of

collaborative work. If several users work on separate spreadsheets that are linked to each other in

this way, many of the problems that present themselves with remote shared workspaces would sim-

ply not exist. This would be because each user would work on their own local spreadsheet, and only

the results of recalculations would be sent over the network. This would eliminate the need to keep

several copies of the same spreadsheet synchronised over the network; instead of there being only

one virtual spreadsheet shared by many users, there would be many spreadsheets communicating

with each other via the SubSheet mechanism. When any user modifies their spreadsheet, due to

the purely functional nature of the SubSheet mechanism, only the end result of that modification

need be transmitted — the modification itself remains local, thereby reducing network traffic (this
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is because some modifications, for example adding of comment cells, will not affect the end result)

and eliminating the need for complex procedures aimed at keeping all copies of the spreadsheet

synchronised.

8.4.3 Alternative Data Storage Models

Finally, our extended spreadsheet paradigm stipulates storing multiple values in each spreadsheet

cell. We have opted to use lists to implement this, but believe that other storage mechanisms merit

research. Consider, for example, the possibilities opened by storing a relational database table

in each spreadsheet cell; database query languages such as SQL are most probably declarative in

nature and so would be compatible with the functional spreadsheet paradigm. Formulas could be ex-

pressed as database queries on other cells, such as=select name from B7 where age>21 . This

would however comprise a different extension of the spreadsheet paradigm that that outlined in this

dissertation, since a database query language would be used instead of a functional programming

language. We believe that functional programming languages maximise flexibility in this case, and

hence made use of them; further research may reinforce or disprove this view.

8.5 Conclusion

In this dissertation we have shown that the spreadsheet paradigm, suitably extended, can be used

for data visualisation purposes. We have presented one such extension, devised by us, together

with a supporting theoretical framework. This theoretical framework consists of two facts, which

we have demonstrated in this document to be true: firstly, spreadsheets consist of a functional

computational engine underlying a cell editor; secondly, spreadsheets and dataflow systems are

equivalent in nature.

The extension we have made to the spreadsheet paradigm is three-fold: firstly, we store lists

of items, instead of single items, in each spreadsheet cell; secondly, we use a functional language

instead of a traditional formula language; finally, we make use of lazy evaluation in recalculations.

These extensions to the spreadsheet paradigm allow a spreadsheet user interface to be efficiently

used for data visualisation systems, without losing the “feel” of a spreadsheet.

We have built a novel data visualisation system based on this extended paradigm, and used

Green’sCognitive Dimensions Framework[18] analytical tool to demonstrate that it is at least as

usable as current visualisation systems. By demonstrating the usability of the prototype, we have
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in effect demonstrated the usability of the extended paradigm. We have thus created a user interac-

tion paradigm for data visualisation systems that is based on spreadsheets, backed by a theoretical

framework that states that it is as expressive as current dataflow systems (and at least as usable

as these) but which is better suited for data visualisation due to the better support for exploratory

programming that is inherent in spreadsheets.
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Appendix A

ViSSh 1.x User’s Manual

A.1 Introduction

A.1.1 Conventions

Throughout this manual, the following conventions will be used to aid in understanding of the text:

* Shell commands will be typeset in acourier bold font.

* Menus and menu items will be typeset inTimes Bold.

* Keystrokes will be typeset inHelvetica bold.

* The default number base is decimal. Hexadecimal numbers will be prefixed with0x , e.g.,

0xffd0 .

* Scheme lists and code will be typeset incourier .

* Names of controls in spreadsheet cells will be typeset inHelvetica.

A.1.2 ViSSh Is a Work in Progress

Although ViSSh has been deemed stable and feature-complete enough to merit “Release 1.0” status,

data visualisation packages are never “finished.” Because data visualisation is such a fluid discipline,

the tools that we use should be equally fluid. ViSSh has been designed with this in mind, and can be

extended in three ways, ordered according to decreasing ease and increasing run-time performance:

1. Encapsulating spreadsheets to use them as “subroutines”
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2. Scheme functions can be loaded at run-time and used in spreadsheets.

3. If run-time performance is of the essence, new “builtin” cell types can be (reasonably easily)

written in C++ and linked into the binary.

Therefore, if there is something that you feel ViSSh is lacking, write it yourself — I’m busy

right now.

A.1.3 ViSSh and the Spreadsheet Paradigm

ViSSh is a data visualisation package that is based on the spreadsheet paradigm. This contrasts

with most other data visualisation systems, which are instead based on the dataflow paradigm. The

reasons behind the use of a different paradigm are beyond the scope of this manual, but can be

summarised into the following points:

* Most computer-literate users are familiar with the spreadsheet paradigm. This includes the use

of declarative spreadsheet formulas and theA1 (column-row) method of referring to locations

of the spreadsheet. The same cannot usually be said of the dataflow paradigm.

* Dataflow visual programs tend to become cluttered when more than a few nodes are present

in the dataflow graph, especially when these are moved around often as is the case with

exploratory programs.

This manual assumes a basic working knowledge of spreadsheets. If you understand what the

phrase“Put a formula in B76 that will add up the range B5:B75”means, you can start using ViSSh.
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A.2 The Basics

A.2.1 Introduction

This section will introduce the basic concepts underlying ViSSh. Here the basic concepts underlying

ViSSh will be explained, and a short, not quite useful example (Hello ViSSh, if you will) will be

explained to give the reader a feel of how to work with ViSSh. Some experimentation at this early

stage is highly recommended. Once you have experimented with this, you should read Section A.3

to be able to make full use of ViSSh.

A.2.2 Basic Concepts

The Declarative Paradigm

ViSSh is a declarative programming environment. This means that instead of describinghowdata

must be transformed by programs, the user must describewhat transforms must be applied to the

data. Although the difference seems merely semantic, it is fundamental. It can be explained by

comparing the code fragments shown in Figure 38. The code fragment on the left is written using

the imperativeprogramming paradigm, where each stage of the calculation must be described in

full. The code fragment on the right, on the other hand, uses thedeclarativeprogramming paradigm,

where only the desired result is specified. Although the imperative programming paradigm is quite

commonly used, the declarative paradigm is more concise, letting the programmer concentrate on

solving the problem in a more abstract fashion.

double result = 0;

for (i = 1;i <= 72;i++)
result += B[i];

return result;

=SUM(B1:B72)

Figure 38: The code fragment on the left was written in the C programming language (imperative), while the
one on the right was written using a typical spreadsheet formula language (declarative).
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Spreadsheet Cells as Functions

A ViSSh spreadsheet is made up of a set of cells. Each of these cells performs a specialised task,

such as applying a function to a list of values or generating a 3D ball.

Each cell can be though of as a function which takes some arguments and returns a result, for

example a “Ball” cell can be though of as a function that takes radii (numbers) as arguments and

returns balls (having the given radius) as a result. Cells read their arguments as lists, and return their

results in lists as well. Consider a hypothetical cell that multiplied its input by two. If the input to

this cell were the list(1 2 3 4) , then its output would be the list(2 4 6 8) .

Not all cells behave like this though — this is just the most general case. There are two other

types of cell, known asdata sourcesanddata sinks. Data sources either generate or retrieve infor-

mation, while data sinks dispose of it. Data sources implement functions that take no arguments,

and are used to do things like generating lists of numbers or collecting data about user interaction.

Data sinks, on the other hand, implement functions that return no values. These are used mainly to

display information to the user.

A.2.3 Starting and Exiting ViSSh

Starting ViSSh is done via the command line. Typevissh at the command prompt, and a few

seconds later you will be presented with an empty spreadsheet window and the ViSShNode Palette,

which is used to add or replace spreadsheet cells. Figure 39 illustrates the startup appearance of

ViSSh.

Exiting ViSSh can be done in one of two ways — either selectingExit from theFile menu, or

pressingCtrl-C in the shell ViSSh was started from. The former method is the recommended one,

since you will be asked to save the current spreadsheet and the shutdown will be more orderly. The

latter method should only be used in case of emergency.

A.2.4 Editing the Spreadsheet

The larger of the two windows in Figure 39 is the main spreadsheet editing window. Figure 40

illustrates this. You may have noticed that the cell in the top left (cell A1) is different — it is black

instead of white, and in the screenshot in Figure 40 it shows up in a different colour. That is because

that cell is thecurrent cell. The current cell is the one that can be operated on, and which has

the keyboard focus. To change which cell is the current cell, either click on the cell (if the cell is

occupied, you must click on the coloured bar on the upper part of the cell) or use thearrow keys.
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Figure 39: This is the initial appearance of ViSSh. The larger window is the spreadsheet editing window,
while the smaller one is the node palette used to add new cells into the spreadsheet.

Adding a new cell to the spreadsheet is quite simple: first click on the listview in the node palette

to expose the desired cell type (they are grouped according to functional category), and then drag

and drop the cell into the desired grid position (the cursor will change shape to indicate that a cell

is being dragged). Overwriting an existing cell with another is done in exactly the same way.

To delete a cell, first make it the current cell as described above, and pressCtrl-Delete (the

Delete Current option in theEdit menu will perform the same action). The cell will be deleted

and the grid position will become vacant. To undo accidental deletions (or any other changes to the

spreadsheet grid), pressCtrl-Z and the spreadsheet will be restored to its previous state. There is

no limit to the number of undo actions one can perform — the undo buffer extends back in time

until the time the spreadsheet was created or loaded in (whichever was more recent). ViSSh also

supports the clipboard — one can cut, copy and paste cells by using the standard keystrokesCtrl-X

(cut),Ctrl-C (copy) andCtrl-V (paste). These operations are all also available in theEdit menu.

Spreadsheets are loaded in and saved using the relevant options in theFile menu.

Area Selections

In order to be able to perform operations on groups of cells, ViSSh allows for the creation of rect-

angular selections of cells. There are three ways of creating a selection: selecting with the mouse;

selecting with the keyboard and selecting entire rows or columns.
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Figure 40: This is the main editing window, demonstrating what a typical ViSSh session looks like. The
spreadsheet depicted here visualises seismic data read from a file.

Selecting with the Mouse This is the easiest way to select an area. First left-click the mouse on

the cell that will be on the top left corner of the rectangular selection (if the cell is populated, click

on the coloured bar at the top of the cell). This will also have the effect of making that cell be the

current cell. Then drag to mouse to the cell that will be at the bottom right corner of the selection.

When you let go of the mouse button, the area will be selected.

Selecting with the Keyboard When selecting with the keyboard, the current spreadsheet cell is

the one that will be at the top left corner of the selection. To start creating the selection, hold down

theShift key and use thearrow keys to grow the selected area. When you release theShift key, the

area will be selected.
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Selecting Entire Rows or Columns To select an entire row or column, just left-click the mouse

on the row or column header. The entire row or column will then be selected.

Once an area has been selected, cut (Ctrl-X), copy (Ctrl-C) and delete operations will use the

selected area instead of the current cell. Note that, to avoid accidents, there is no hot-key for the

deletion of selected areas. Instead, theDelete Selectionoption in theEdit menu must be used.

When pasting (Ctrl-V) an area from the clipboard, the current cell indicates where the top left

cell of the pasted rectangular area will reside. The pasted cells will overwrite whatever was in the

cells they occupy.

To clear the current selection (so that nothing is selected), left-click the mouse on the button on

the top left of the grid, between the row and column headers.

A.2.5 A Simple Example

The aim of this example is to make a cone out of spheres (using the well-known parametric cone

equation) and display it in three dimensions. Figure 42 demonstrates the “finished product.” The

key to editing with ViSSh is the “Node Palette,” illustrated in Figure 41.

Figure 41: This is the ViSSh Node Palette. All editing is done with it, by dragging cell names from the palette
(which is organised as a “tree view” of cell categories) and dropping them into the actual spreadsheet.

From the node palette the different nodes are selected from their groupings, and dragged into

the spreadsheet cell where the user wishes them to be. The spreadsheet is constructed as follows:

1. An “Arithmetic Progression” cell is dragged from the node palette into cell A1, and the rele-

vant parameters are entered into it. In this case, we want a set of numbers running between
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-10 and 10, in steps of 2.

2. A “Cartesian Product” cell is dragged from the node palette into cell B1. Cell A1 is then

added twice as a source, so the output of this node will be1 (-10 -10) (-10 -8) ... (10 8)

(10 10)2 .
3. A new “Function” cell is now dragged into cell C1. The source of the arguments was specified

as cell B1, so the list described above constitutes the argument set for this new node. The

arguments are named x and y, so when the pairs in the argument list are substituted into the

equation, the first item in the pair will be substituted for all thex’s and the second for all the

y’s. The actual function is then entered (since the actual cell is rather small, an expanded view

is used for this. The expanded view is activated by clicking on the “...” icon in the top right

of the node).

4. An “Argument List” cell is then dragged into cell D1, and its sources are set to be cells B1 and

C1. This node collates lists of arguments to generate a new argument list. As an example, if

two lists 1 (1 2) (3 4)2 and 1 (11 12) (13 14)2 were passed to an Argument node, the resulting

list would be 1 (1 2 11 12) (3 4 13 14)2 . This is needed in order to generate the required

arguments for the node in the next step (cell D2 in Figure 42, not a part of this exercise,

shows part of the list output by this node).

5. Another “Arithmetic Progression” cell is dragged into the spreadsheet, this time into cell

A2. This time, the “step” field is set to 0 (indicating that the same number will always be

generated) and the “count” field is set to 100 (indicating that a list containing one hundred

“1”s will be generated).

6. A “3D Ball” cell is now dragged into cell B2. Its source is then set to cell A2. This node

takes each of the arguments generated by its source cell and uses them as the radius of a new

sphere that it creates and adds to its output list. Therefore, the number of spheres generated

by this node equals the size of the list that contains the ball radii.

7. A “3D Translation” cell is dragged into cell E1. This node will be used to move the balls

from position 3 0 4 0 4 05 , where they appear by default, to their proper positions. The balls are

taken from the Ball node we just placed in cell B2, while their positions are taken from the

Argument node in cell D1.
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8. Finally, a “3D Renderer” node is dragged into cell E2, and its source is set to the 3D Transla-

tion cell in cell E1. When the expanded view for this node is opened by clicking on the “...”

icon in its top right corner, the cone of spheres can be viewed and manipulated by the user.

Figure 42: This is the end result after following the steps described in Section A.2.5
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A.3 Advanced Techniques

A.3.1 Subsheets

Scheme allows for code reuse by means of subsheets. This system allows entire spreadsheets to

behave as though they are contained in a single spreadsheet cell. The main advantage of subsheets

is that one can have a library of ready-to-use, debugged spreadsheets, reducing the time it takes to

create a new data visualisation.

Helper spreadsheet 6�7�8�9�:�;�<�= >
;�?�9�@ =

Master spreadsheetA 9�B!?�C�;�;�=

Argument List Result List

Figure 43: This illustrates the mechanism whereby several spreadsheets may “call” each other. The “Master”
spreadsheet contains a Subsheet cell, which forwards all data sent to it to the “Helper” spreadsheet. This data
arrives into the Helper via an Argument cell. When the computation is complete, the result is sent back via a
Result cell.

The subsheet mechanism relies on three cells, namely theSubSheet cell, theArgument celland

theResult cell. If one considers the spreadsheet that contains the subsheet cell to be the “master”

spreadsheet, and the other spreadsheet as the “helper” spreadsheet, then the use of these cells can

be summarised as follows (see also Figure 43):

D The “helper” spreadsheet has an “Argument” cell, which collects the arguments that the func-

tion implemented by the spreadsheet takes.

D The “helper” spreadsheet also has a single “Result” cell, which exposes the final result calcu-

lated by the spreadsheet.

D The “master” spreadsheet has a “Subsheet” cell which behaves much like a function evalua-

tion cell, but which “calls” the helper spreadsheet.
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The concept is quite simple, and best demonstrated with an example. In Figure 44, spreadsheet

“mul.v” implements a multiplication function. Data (in the form of(a b) pairs) enters the spread-

sheet via cellA1, the pairs get multiplied by cellB1 and the resulting numbers leave via cellC1. As

far as spreadsheet “mul.v” is concerned, the pairs generated by cellB1 are entering cellC1, being

processed, and the results are displayed by cellD1.

Figure 44: This is a very simple example of how to use subsheets. Cell C1 of spreadsheet “subtest.v” calls
spreadsheet “mul.v”; Data flows into “mul.v” via cell A1, and leaves via cell C1.

A.3.2 Scheme Libraries

Sometimes (as in the example in Figure 44), subsheets are overkill. This happens when all users

want to do is to add new functions to those already available for use in functional cells. This can

be easily achieved by the use of the scheme programming language. Functions can be added in two

ways: adding a transient function or a function library.

Adding a Transient Function

Transient functions are functions which are usable from anywhere in a spreadsheet, but which vanish

when the spreadsheet is closed. These functions are typically createdad hoc. Adding transient

functions is done via theSchemeE Consolemenu. When this menu option is selected, an interactive
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scheme interpreter window pops up, and new functions may be defined there. See Figure 45 for an

example, where a new function (veclen ) has been defined in the scheme console and used in a

functional cell. Note that the scope of the scheme console is the current spreadsheet, i.e. if there are

two spreadsheet windows open when a function is defined, then that function will only be available

to the spreadsheet it was defined in.

Figure 45: This is an example of how to add a transient function to a spreadsheet. The function is defined in
the interactive Scheme interpreter window, and can afterwards be used anywhere in the spreadsheet.

Adding a Scheme Function Library

If the user wishes to have a function that is always available, then that function should be put in a

function library, which will be loaded by ViSSh. There are two ways a function library written in

Scheme can be added: automatically and explicitly.

To add a function library automatically, simply write it in a file calledautoexec.scm . This file,

which resides in the same directory as the ViSSh executable, is loaded automatically when a new

spreadsheet is created or loaded. This means that any functions inautoexec.scm are automatically

available.

Adding a function explicitly is done via theSchemeE Libraries menu. The window which

opens when this menu is selected lists all libraries loaded by the current spreadsheet (explicitly

loaded functions, like transient functions, are visible only to the current spreadsheet). This list of

functions will be saved with the spreadsheet, therefore the user does not have to remember which
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libraries a particular spreadsheet needs. To add a new library to the list, simply type its name in the

text entry control at the bottom of the window.
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A.4 Cell Reference

A.4.1 Dataflow

SubSheet

This node calls another spreadsheet.

It behaves much like a Function node. TheSrc field must contain the address of a cell that

generates argument lists, while theSheet field must contain the filename of the spreadsheet that will

calculate the result. The arguments will be sent to the Argument nodes of the called spreadsheet,

and the Result node of that spreadsheet will collect the result, which will be echoed by this node.

SubSheet Arguments

This node is used to pass arguments to a subsheet.

SubSheet Result

This node is used to return values to a caller spreadsheet.

In the small editbox you must enter the name of the spreadsheet cell that is providing the values

being returned.

A.4.2 Data Sources

Text Entry

This node is used to enter text.

Unfortunately at this time only US-ASCII characters can be entered, in a future version unicode

will be supported.

Arithmetic Progression

This node generates arithmetic progressions.

The numbers are generated as a list, with the values in the fields having the following meanings:

D Thefirst field sets the first number in the progression.

D The last field sets the last number of the progression.
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D Thestep field sets the distance between any two adjacent numbers in the series. If this number

is zero, then only the number in thefirst field will be output

D Thecount field indicates how many numbers must be generated, in other words, the length of

the generated list.

The First andLast fields may be indirectly specified by writing them as cell names in [square

brackets]. In that case, the actual values will be first elements of the lists generated by the named

nodes.

Geometric Progression

This node generates geometric progressions.

The numbers are generated as a list, with the values in the fields having the following meanings:

D Thefirst field sets the first number in the progression.

D The last field sets the last number of the progression.

D Thestep field sets the distance between any two adjacent numbers in the series. If this number

is zero, then only the number in thefirst field will be output.

D Thecount field indicates how many numbers must be generated, in other words, the length of

the generated list.

Coordinate Entry

This node is used to enter 3D coordinates.

The coords are stored in a list of 3 elements, namely X, Y and Z.

Rotation Entry

This node is used to enter rotations.

The rots are stored as quaternions, in a list of 4 elements.
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Data File

This node reads data off a file.

The file must be made of ASCII characters, consisting of a number of fields and records. The

field separator is a comma, and the record separator a newline character. In other words, the file

consists of lines containing comma-delimited items. Note that all records must contain the same

number of fields. Fields are allowed to be empty.

To retrieve data from the file, set theFilename field to the name of the data file and theRecnum

Src field to the address of a node that generates record numbers. Note that records are numbered

starting from 1. The output of this node will be a list of lists, each sublist containing the actual

record.

Data File Info

This node reads a data file’s layout.

The file must be made of ASCII characters, consisting of a number of fields and records. The

field separator is a comma, and the record separator a newline character. In other words, the file

consists of lines containing comma-delimited items. Note that all records must contain the same

number of fields. Fields are allowed to be empty.

To retrieve data from the file, set theFilename field to the name of the data file. The output of

this node will be a single(numrecords numfields) pair.

A.4.3 Functional Nodes

Cartesian Product

This node generates Cartesian products of lists.

It takes an element at a time from each of the specified lists and combines the elements into a

list of lists, with each of the sublists containing one of all the possible permutations obtainable from

the elements of the source lists.

As an example, consider two lists,(1 2 3) and(a b) . The Cartesian product of these lists will

be ((1 a) (1 b) (2 a) (2 b) (3 a) (3 b)) .

To add a source, select the source node in the spreadsheet grid and click on theAdd button. To

remove a source, select it from the list of sources and click on theRemove button.
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Running Total

This node adds up list elements.

Thenth element of the list returned by this node is the sum of nodes 1 ton of the source node.

For example, if the source list contains(1 2 3 4) , then this node’s output will be(1 3 6 10) .

This is useful since it may be used to implement integration.

Note that if the source contains non-numeric data, the results are undefined.

Argument List

This node creates argument lists.

It takes an element at a time from each of the specified lists and combines the elements into a

list of lists, with each of the sublists containing one element from each of the source lists. These

generated lists can be used to pass arguments to function nodes.

As an example, consider two lists,(1 2 3) and(a b c) . The result of collating these two lists

will be ((1 a) (2 b) (3 c)) .

If the source lists are not of the same length, then the generated list will be as long as the shortest

of all the source lists.

To add a source, select the source node in the spreadsheet grid and click on theAdd button. To

remove a source, select it from the list of sources and click on theRemove button.

Function

This node evaluates functions passed to it.

TheSrc node must pass a list of lists, with each sublist containing the arguments to the function,

in order. TheArgs field must contain the names of the arguments to the function, separated by

spaces. Finally, the larger field must be filled in with the body of the function itself, either a simple

mathematical expression (e.g.,m*x + c ) or a Scheme function.

Note that theSrc field may be left blank, in which case the result will be a list containing only

one item, the evaluated constant expression.

Data Replicator

This node is used to replicate data.
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It returns a list containingcount copies of thepositionth element of the source node (0 based).

e.g., if the source node outputs the list(1 2 3 4) , then if count is 5 andposition is 2, then the

output will be(3 3 3 3 3) .

List Length

This node returns the length of the list passed to it.

List Sum

This node returns the total obtained after adding all elements of a list.

List Average

This node returns the average obtained after adding all elements of a list and dividing by the number

of items.

List Selection

This node is used to retrieve single items from a list.

The List Src field contains the name of the cell that generates the source list. TheIndex Src

field contains the name of a cell which generates a single number, which is used as an index into the

source list. This cell returns the indexed value from the source list. This node is useful in association

with the 3D Pick node.

String Concatenation

This node is used to concatenate strings.

TheLeft String andRight String fields must contains the names of cells generating lists of values.

These values will be converted into strings and concatenated, with the output list being as long as

the shortest of the input lists, e.g., if the inputs are("a" 10 20) and("b" "c") , then the output

will be ("ab" "10c") . If the Add Space checkbox is on, then a space will be added between the

left and right strings.

Function Evaluator

This cell evaluates expressions.
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This works in a similar way to the Function cell, but the actual function used is passed from

another cell. TheFunc Src field must contain the address of a cell that provides a list of functions.

These may be scheme expressions, e.g.,(+ x y) or infix expressions, in which case they must be

strings, e.g.,"x + y" . TheFunc Index field must contain the address of a cell which generates a

single number, which will be the index of the function used for the calculation. This index is zero-

based. TheData Src field specifies the address of the cell supplying the arguments, while theArgs

field supplies the names of the arguments, separated by spaces.

A.4.4 Geometry Generators

3D Ball

This node constructs balls for display by a Render Node.

The cell specified in theRadius Src field provides a list of numbers, each of which is used as

the radius for its corresponding ball. Note that the number of generated balls will be the same as the

length of the radius list.

3D Line Set

This node is used to generate line sets.

TheCoord Src field must contain the address of a cell that outputs lists of 3D coordinates, and

theLength Src field must contain the address of a cell that generates a list of numbers, each of which

is the number of points from the first list that the corresponding line is made of. The number of lines

that will be generated equals the length of the second list. Each of the generated lines will get its

coordinates from the first list, starting at the corresponding offset.

3D Box

This node constructs boxes for display by a Render Node.

It should be passed a list of lists, each of the sublists containing a(width height depth)

triplet containing the dimensions of each successive box.

3D Surface

This node is used to generate 3D surfaces.
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TheCoord Src field must contain the address of a cell that outputs lists of 3D coordinates, and

the Info Src field must contain the address of a cell that generates a single pair of the form (rows

cols), where rows and cols are the number of rows and columns that the generated surface will

consist of. The generated surface will get its coordinates from the first list. ThePCol Src field is

optional, and if filled in it must contain the name of a cell that provides (R G B) triplets for each

point in the generated grid. These will override whatever colour was set using Material cells.

3D Text

This node constructs 3D text for display by a Render Node.

The cell specified in theString Src field provides a list of strings, each of which is used as the

text to be used to build the corresponding 3D text object.

A.4.5 Transformers

3D Translation

This node is used to translate 3D objects.

TheGeom Src field must contain the address of a cell that outputs 3D Geometry, such as a Ball

node, and theTrans Src field must contain the address of a cell that generates a list of (dx dy dz)

triples. Note that the output list will be as long as the shorter of the two source lists.

3D Rotation

This node is used to rotate 3D objects.

TheGeom Src field must contain the address of a cell that outputs 3D Geometry, such as a Ball

node, and theRot Src field must contain the address of a cell that generates a list of(i j k a)

tuples (a quaternion). Note that the output list will be as long as the shorter of the two source lists.

3D Scaling

This node is used to scale 3D objects.

TheGeom Src field must contain the address of a cell that outputs 3D Geometry, such as a Ball

node, and theScale Src field must contain the address of a cell that generates a list of(sx sy sz)

triples. Note that the output list will be as long as the shorter of the two source lists.



A.4. CELL REFERENCE 131

Group

This node groups several 3D objects together, so they can be manipulated as a whole.

Material

This node is used to set the material of 3D objects.

The Geom Src field must contain the address of a cell that outputs 3D Geometry, such as a

Ball node, and theCol Src field must contain the name of a cell that generates a list of (red green

blue) triples 3 0 FHG c FHG 15 . The Trans Src field must contain the name of a cell that generates

transparency values, ranging between 0 and 1. Either of theCol Src or Trans Src fields may be left

blank. Note that the output list will be as long as the shorter of the three source lists.

A.4.6 Output

Text Display

This node displays values passed to it as text.

In the small edit box you must enter a cell reference, e.g. A3 and the contents of that cell will

be displayed in a textual form. Note that some cell nodes do not have any textual representation,

and in that case#<undefined> will be displayed. If there is a circular reference somewhere in the

spreadsheet, then#<circref> will be displayed.

3D Renderer

This node displays 3D objects passed to it in an interactive window.

In the small edit box you must enter a cell reference, e.g. A3 and the contents of that cell will

be displayed in an interactive 3D window. Note that some cell nodes do not have any polygonal

representation, and in that case nothing will be displayed. This is also the case If there is a circular

reference somewhere in the spreadsheet.

A.4.7 3D Interaction

1D Dragger

This node constructs 1D dragger interactors for display by a Render Node.

It should be passed a list of lists, each of the sublists containing the initial translation of each

dragger.
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3D Pick

This node is used to pick 3D objects from a 3D renderer.

Enter the name of the render node you wish to interact with in theViewer field and the geometry

node you’re interacting with in theSelect field. When the user clicks on an item, the index number

of the selected item will be returned.

A.4.8 Animation

Timer

This node is used to animate parts of a spreadsheet. Enter the name of a spreadsheet cell into theSrc

field, and a delay in milliseconds in thePeriod field. The timer cell will read in the list generated by

the “Src” spreadsheet cell, and output each item after the given number of milliseconds has elapsed.

TheOne-shot checkbox determines whether this action repeats itself indefinitely or stops when the

end of the list is reached. TheActive checkbox can be used to turn the timer cell on or off.



Appendix B

Extending ViSSh

B.1 Introduction

Although one of the main advantages of ViSSh is it’s flexibility, this flexibility comes at a cost,

namely speed of execution. Internally, ViSSh uses a Scheme [26] interpreter for all its calculations.

Although this is fairly fast (it precompiles expressions upon editing, generating compact p-code

which is interpreted at evaluation time), it is not as fast as native code. A compromise between

speed and flexibility is possible, however: extending the actual spreadsheet language by adding

more primitives. This has the advantage of speed of evaluation (for the function being implemented

by the new primitive), while not sacrificing flexibility. The downside is that the new nodes must be

compiled into the ViSSh binary.

B.2 The Anatomy of ViSSh

ViSSh has been written in C++ [58], following the ANSI standard as much as possible, given current

(1998-1999) compiler technology. In particular, namespace support is not yet trustworthy so no use

is made of it. TrollTech’sQt user interface toolkit [60] (version 1.44) was used to build the GUI.

Extensive use was made of the C++ Standard Template Library (STL), although for the sake of

compatibility the standardstring class (from the standard header file<string> ) was not used.

Instead,Qt’s QString class (from theQt header file<qstring.h> ) was used for most places where

dynamic string manipulation was desired (where maximum performance was needed, plain arrays

of char were used). The Scheme interpreter used as the main computation engine is the MZScheme

library [51], while the 3D geometry manipulation and rendering engine is Open Inventor [64].

133
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B.2.1 The Lazy List Mechanism

In order to implement lazy evaluation (which is not a part of Scheme), the lists that are returned

by Nodes are not MZScheme lists, (i.e., these lists are notScheme Object s). Instead, retrieval of

a list generated by a Node is done in two steps. Firstly, thelistlen() member function of the

node is called. This returns the size of the list that is “stored” in that node. Then, for each item

that must be retrieved, theresult() member function is called (the details of how to write the

result() function for a new node are explained in Section B.4). This member function takes as

argument the index number of the list element, and returns aScheme Object * which points to the

actual scheme object that is the desired list item. List indices are zero-based. If no valid item can

be returned (either because the node has no data at the time, or the list index is out of range), then

the special scheme objectscheme undefined will be returned.

B.3 Adding a new Node

Adding a new type of node is a fairly simple operation. One does it in 4 steps:

1. adding an entry tonodeid.h

2. writing the code for the node

3. telling class Node about the new node

4. updating the makefile and compiling

These steps are more fully explained below:

B.3.1 Adding an entry tonodeid.h

The file"nodeid.h" is the central database for numeric node identifiers. Each node type must have

a unique id. In order to simplify this process, and in order to promote backwards compatibility,

nodes are classified into node groups, each of which can hold up to 65535 node types. Node groups

define the rough characteristics of a node. For example, there are data source nodes, such as numeric

entry, functional nodes, such as function nodes, etc.

Node id’s are 32 bit signed integers. At the time of writing (1999), in most C++ compilers this

is generally along int . All valid node id’s are positive and greater than zero. The most significant

16 bits define the node’s group, while the least significant define the node’s position within its



B.3. ADDING A NEW NODE 135

group. For example, take the list length node. Its node ID is0x00030006 , which means that it is a

functional node (node group 3) and furthermore it is the sixth type of functional node.

Adding a new id to the database is simple: just come up with a relevant node id, as described

above (remember that itmust be a unique id), then add it to the file with the others in its group.

B.3.2 Writing the code for the node

All nodes must be subclasses ofclass Node , and the macroQ OBJECTmust be defined as the first

thing in the class (look atclass NumberNode in the header file"numbernode.h" ). Section B.4

describes in more detail the member functions ofclass Node , and explains the virtual functions

which need to be reimplemented.

If your node somehow generates or modifies a 3D object (e.g., the Ball node or the Rotate node),

then the node’s origin must be encoded into the InventorSoNode returned by thevisual() member

function. This is done by simply calling thetagSoNode() method ofclass Node , passing it the

SoNode to be returned and the list position as arguments (e.g.,tagSoNode(newnode,pos); ).

When you are building the user interface to the spreadsheet cell, remember that there is a pain

constant associated with user interface design: if the programmer does not feel any pain while

working on it, the users are going to when they are using it. The corollary is that pain and anguish

on the part of the user interface designer usually translates into an ulcer-free user.

B.3.3 Registering the new node withclass Node

This is quite simple, and is done entirely inside the file"node.cc" :

D First add a new entry for the node in the array calledallnodes . This array is defined near the

top of the file. The first item is the text that will appear in theNode Paletteto describe that

node, and the second the node’s id as defined in the file"nodeid.h" . The third item is the

name of thexpmfile that will be used as the icon for the new node in theBroad Overviewand

Cell Dependencieswindows. These images should be drawn as black on a white background

andmust be 32 by 32 pixels in size. All icon files are stored in theicons/ subdirectory. An

example entry would be1 "My test node",TESTNODE ID,"testnode.xpm" 2 . Remember

that the last entry in this arraymust alwaysread 1 NULL,-1,NULL 2 .
D Then add an entry in the big switch statement inNode::create() . This should be a no-

brainer.
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Don’t forget to#include your node’s main header file at the top of"node.cc" !

B.3.4 Updating the makefile and compiling

This is quite simple. There are 3 steps:

1. First add the name of the source file(s) to the list calledSOURCES.

2. Then add to the listSRCMOCthe name of the header file that includes the main node definition,

modified to end in".moc.cc" , e.g., if your header file is called"mynode.h" then you’d add

"mynode.moc.cc" . This file is needed by theQt Meta Object Compiler. If you forget to do

this you will get linker errors, usually about a symbol calledvtbl .

3. Typemake at the shell prompt.

B.4 class Node

This is the base class for all nodes. It has several virtual functions, most of which which must be

reimplemented. The functions do the following:

D rebuildDeps() is called when the spreadsheet is likely to have changed enough that the

cell’s dependencies need to be rebuilt. This usually means when cells have been added or

deleted, or a cell is made to examine other cells, e.g., a FuncNode. This member function is

optional, but if you reimplement it youmust call Node::rebuildDeps() .

D recalculate() is called when a node that this node depends on has changed. Unless this

node is a data sink (usually this means a render node of some type) or you’re caching a value

that comes in from a node this one depends on, this function need not be reimplemented,

sinceclass Node ’s implementation will properly propagate the call. However, for a render

node this should be reimplemented to refresh the display.

NB: If you’re reimplementing this, one of the things your new function must do is to call

Node::recalculate() so the propagation can take place. Typically this will be the last line

of the reimplemented function.

D isSink() should returnTRUE if the node is a data sink (usually this means that the node

displays data) andFALSE otherwise. Since the default implementation returnsFALSE, this

need only be reimplemented if the new node is a data sink.
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D hasVisual() should returnTRUEif the node has a visual aspect (i.e., if it can be displayed in

a 3D view) andFALSE otherwise. Since the default implementation returnsFALSE, this need

only be reimplemented if the new node has a visual aspect. IfNode::hasVisual() returns

TRUE, thenNode::visual() should be reimplemented.

D result() is called when a node that this one depends on is recalculated, and takes as an

argument which list element must be recalculated. If this argument is larger than the number

of elements in the entire result set, thenscheme undefined should be returned. This, together

with Node::recalculate() , forms the heart of the lazy evaluator. Look at Section B.2.1 to

see what the behaviour of this member function should be.

D visual() is similar toNode::result() , only it returns the visual component of a list ele-

ment. In this current implementation, all visual components are little Inventor trees, the root

of which is anSoSeparator . This member function returns thatSoSeparator . Note that, as

an optimization,Node::visual() can returnNULL if the object would not be visible (e.g., a

BallNode with a radius of 0). Look at BallNode for a simple example.

D listlen() is called when a node that this one depends on wants to find out the size of the

result list.

D serialize() is called when a node is to be saved or copied to the clipboard, and returns a

textual description of the node, in a QString. Section B.5 describes the format this function

should encode the node as.

D deserialize() is called when a node is loaded or pasted from the clipboard. It takes a

QString describing the node (created byNode::serialize() ) and sets the internal state of

the node to be that described by the string. Section B.5 describes the format this function

should expect the data to be in.

D bigView() is a virtual public slot function that is called when a user clicks on the small

button on the top right of a cell node. It should show the big view of the node if it’s hidden,

and hide it if it’s visible. The big view should contain at least online help for the node, and

possibly a roomier user interface. For example look at the function node - there’s not much

room in the actual node, so the big view provides a much larger QMultiLineEdit for users to

enter their functions. Note that the large and small views always remain synchronised. This

is important.
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B.5 The Node Serialization Data Format

When a node is serialized, it is converted from an object suitable for efficient manipulation inside

ViSSh to an object suitable for storing, either in the clipboard or in a disk file. Deserializing an

object’s representation reverses this process, yielding a node usable by ViSSh.

In order to ensure portability between different ports of ViSSh to different architectures, seri-

alized objects will consist entirely of printable characters. In the case of numbers, these should be

stored as their human-readable form (i.e., ASCII numerals), with as much precision as possible.

If binary data needs to be stored, some mechanism must be devised to convert this into printable

characters and back. Possibilities includeuuencodeand base-64. It does not matter which format is

used, as long as it is used consistently.

Each node is stored as a record, which is delimited by braces (" 1 " and" 2 " ). Inside each record

there will be a set of strings of characters, separated by blanks. Should any string need to contain

blanks, this string must be delimited by pipes ("|" ), e.g., "|this has blanks|" . If any pipes

appear in the text, these must appear in pairs, e.g.,"a|b" must encode as"a||b" . Since neither

scheme nor any human language use pipes, these should appear very seldom indeed. Functions to

do conversion to and from this format are in the file"misc util.cc" .

The very first string in the record will be a hexadecimal, 32 bit integer describing the type of

node. All 8 hex digits must be present, including any leading 0’s. After this will come a set of

strings, as described above, which will depend on the type of node.

As an example, consider a text entry node containing the text “hello world.” This would be

serialized as" 1 00010001 |hello world| 2 " .
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