
Volume 25 (2006), number 4 pp. 709–716 COMPUTER GRAPHICS forum

Compression of Dense and Regular Point Clouds

Bruce Merry, Patrick Marais and James Gain

Collaborative Visual Computing Laboratory, University of Cape Town, South Africa
{bmerry|patrick|jgain}@cs.uct.ac.za

Abstract

We present a simple technique for single-rate compression of point clouds sampled from a surface, based on a
spanning tree of the points. Unlike previous methods, we predict future vertices using both a linear predictor, which
uses the previous edge as a predictor for the current edge, and lateral predictors that rotate the previous edge 90◦

left or right about an estimated normal.

By careful construction of the spanning tree and choice of prediction rules, our method improves upon existing
compression rates when applied to regularly sampled point sets, such as those produced by laser range scanning or
uniform tesselation of higher-order surfaces. For less regular sets of points, the compression rate is still generally
within 1.5 bits per point of other compression algorithms.

Keywords: compression, point clouds, range scanning, spanning tree

ACM CCS: I.3 [Computer Graphics]: Picture and image generation E.4 [Coding and information theory]: Data
compaction and compression

1. Introduction

Many model acquisition techniques, such as laser range scan-

ning, produce dense sets of 3D points. A mesh may later be

created from these points, but this can be a time-consuming

process [1]. On the other hand, systems such as QSplat [2] are

able to directly render points, and easily support such features

as multiresolution rendering. There are thus clear applications

for high-quality point-cloud compressors. While mesh com-

pression is a mature field [3], point cloud compression is still

relatively new. Furthermore, the bulk of the existing research

either focuses on progressive techniques, whereby a model

is streamed and displayed at progressive higher detail but at

the expense of compression performance, or resamples the

point cloud to make it more amenable to a particular form of

compression.

Our contribution is a single-rate point-cloud compressor

that is optimised for densely and regularly sampled models.

The grid-like structure shown in figure 1 is a characteristic of

such models, and can arise from range scanning [4], stereop-

sis [5], isosurface extraction [6] or resampling [7].

Section 2 reviews previous work on point cloud compres-

sion. Our technique, based on a spanning tree of the vertices,

is presented in Section 3. We present results in Section 4 and

conclude in Section 5.

2. Related Work

Here we will review only point-cloud compression; for a

discussion of mesh compression, refer to the survey by Alliez

and Gotsman [3].

The first class of point-cloud compressors are progressive

coders. These begin by encoding a coarse representation of

the point cloud, followed by a stream of refinements. Users

who download the stream over a network can begin viewing

the coarse representation almost immediately, and see refine-

ments as they arrive. Gandoin and Devillers [8] base their

approach on a kd-tree: the space is recursively split in half,

and the number of points in one half is encoded (the number

in the other half being implicit). Empty cells are not further

subdivided. They also show how this can be used to encode

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford 2DQ, UK and 350 Main Street,
Malden, MA 02148, USA.

709

Submitted September 2005
Revised April 2006

Accepted September 2006

710 Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds

Figure 1: The bunny model, showing the regular grid pat-
terns. The inset shows a close-up of part of the surface where
two scans have been joined.

a mesh, by encoding extra refinements for the connectivity.

Peng and Kuo [9] adapt this approach to an octree, and in-

dicate only whether each subcell is occupied. They obtain

better results by using connectivity information to guide the

encoding, but do not report the cost of encoding the con-

nectivity information. Botsch et al. [10] use a similar octree

encoding, but apply it to the intersection of the surface with a

voxel grid (i.e., the sampling resolution is equal to the voxel

resolution).

Waschbüsch et al. [11] use a bottom-up approach. To create

a lower-resolution model, the points are grouped into pairs

and each pair is replaced by a single point at the midpoint.

The offset from the midpoint to the original points is encoded

and used during decompression to reconstruct the original

points. The offset is encoded in a local coordinate system to

take advantage of the fact that the point cloud represents a

surface.

Fleishman et al. [12] base their approach on an implicit sur-

face defined by the points—the moving least-squares (MLS)

surface. They sample an initial (low-resolution) point set from

the MLS surface, then encode a sequence of refinements of

this point set. Ochotta and Saupe [13] resample the MLS

surface at full resolution, then use wavelet techniques to en-

code a set of height-fields describing the surface. Since both

schemes resample the surface, the compression is inherently

lossy.

Progressive geometry encoders suffer from a common

problem: at the coarser levels of the hierarchy, the distance

between points is larger and thus relationships between points

are more expensive to encode. Waschbüsch et al. [11] par-

tially address this problem by limiting the number of levels

in the hierarchy, but the hierarchy cannot become too shallow

as the coarsest level is essentially uncompressed.

An alternative to progressive encoding is single-rate encod-

ing, where the entire compressed file must be available before

the model can be properly viewed. Taubin and Rossignac [14]

compress the geometry of a mesh using an approach similar

to our own, in which a spanning tree is built over the edges

of a mesh. The spanning tree is constructed in a spiralling

pattern from a root vertex. The goal of this algorithm is to

construct a tree with long runs of valence-2 vertices, that can

be efficiently run-length encoded. Each vertex of the tree is

predicted using a linear combination of the ancestor vertices,

and a correction to the prediction is encoded. This technique

was originally developed for triangle meshes and cannot triv-

ially be adapted to point clouds (because the spiral construc-

tion is based on the triangles of the mesh), but the spanning

tree idea is nevertheless important.

Gumhold et al. [15] again use a similar approach based

on spanning trees. Points are added to the tree in a pre-

determined order, with each point being attached to the parent

that best predicts the new point. One of two simple predictors

is used: either the child point is predicted at the location of the

parent, or the difference between parent and child is predicted

to be the same as the difference between the grandparent and

the parent.

3. Spanning Tree Compression

Our method is based on similar ideas to the encoding of

Taubin and Rossignac [14] and Gumhold et al. [15]; however,

by using different heuristics and multiple predictors we obtain

better compression ratios.

Initially, all coordinates are quantised to some fixed num-

ber of bits, as is done for most compression schemes. Al-

though Lee et al. [16] have shown that better results can be

obtained by quantising in a local coordinate system that is

aligned to the surface, global quantisation has the advantage

that a point cloud may be decompressed, edited, and recom-

pressed without introducing additional loss. This makes our

scheme “lossless” in the same sense that image formats such

as PNG [21] are “lossless”, even though they quantise colour

values to 8 bits per channel.

A rooted spanning tree is then constructed over the points

of the model. Each point is predicted from its ancestors in

the spanning tree, and corrections to these predictions are en-

coded. We have several predictors, so the choice of predictor

is also encoded. Finally, the connectivity of the tree must be

encoded to allow decompression.

The construction of the spanning tree has two conflicting

goals. Since the structure of the tree must be encoded, the tree

should have an easily encoded structure. The simplest tree

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds 711

would be just a path with no branches. However, geometry

data constitutes the bulk of the code, so it is important to

use a tree that generates good geometry predictions. This is

most easily ensured by using short edges, which in turn may

require more branches in the tree.

In order to eliminate very long edges and also to reduce

running time, we initially identify all edges of some max-

imum length. The maximum we have chosen is the longest

edge of the minimum spanning tree, which we denote L. From

Kruskal’s minimum spanning tree algorithm [17, p. 458], it

is clear that this is the smallest global bound that will yield a

connected graph.

The compression stage proceeds as follows:

1. Build a minimum spanning tree, and identify the longest

edge. This spanning tree is used only to determine L, and

is immediately discarded.

2. Build a graph containing all edges that are no longer

than L.

3. Construct a spanning tree of this graph. This is the span-

ning tree used for compression.

4. Assign a predictor and correction to every point other

than the root.

5. Encode the choice of predictors and the structure of the

spanning tree.

6. Encode the corrections to the predicted positions.

Some of these steps are implemented in parallel, but logi-

cally they can be treated as separate passes. We now describe

the individual steps in more detail, in the order 4, 3, 5, 6 (step

3 is described after step 4 because it depends on some of the

concepts from step 4).

3.1 Geometry encoding

The naı̈ve approach to geometry coding would be to directly

encode the difference between the position of each point and

that of its parent in the spanning tree. However, while the

edges in the spanning tree may be short, they are still too

long and too variable to be efficiently encoded.

For a given point v, let v′ be the parent in the spanning

tree, with corresponding positions v and v′ in R3. We define

δv to be the position of v relative to v′ i.e., δv = v − v′. At

each point we also maintain an estimate of the unit normal

to the underlying surface, nv , and the implied “left” vector

lv := nv × δv . For a surface consisting of a rectilinear grid

of evenly spaced points, we can expect that δv will be either

δv′ , lv′ or −lv′ (forward, left or right—see figure 2). To encode

v, we indicate which predictor is used (i.e., which is closest),

and a correction to the predictor. In practice we also use 0

as a predictor, as it yields better predictions where there are

v

v v lvv + lv

v + v

Figure 2: The possible predictors. The bold arrow indicates
the known edge, and the estimated normal nv points out of the
page. The other arrows indicate the predicted left, forward
and right edges. The fourth predictor is at v′.

sharp changes in the surface; we refer to this as the base
predictor.

We have used two approaches to encode the corrections. In

the axial scheme, each coordinate of the correction is sepa-

rately encoded using progressive arithmetic coding [18]. Al-

though we expect the length of the correction to have some

non-uniform distribution (small corrections will hopefully be

the most common), the angle of the corrections is more uni-

form. If the normal prediction was perfect then the portion

of the error parallel to the normal could be expected to be

smaller than the in-plane error, but in practice we have not

been able to exploit this. In the radial scheme we encode

the length (rounded to the nearest integer) using progressive

arithmetic coding. All K possible corrections with the same

quantised length are enumerated and the index of the actual

correction is encoded using log2 K bits.

We also need to propagate the normal estimate over the

point set. Since the decompressor requires the normals to

interpret the left and right predictors, we must estimate the

normal at each point using already available information. We

heuristically determine the normal at v from δv, δv′ and nv′ :

if the angle between δv′ and δv is at least 30◦ then we treat δv′

and δv as a basis for the tangent plane, and set

nv = δv′ × δv. (1)

If, however, the angle between the vectors is small, this ap-

proach leads to instabilities. In this case, we project nv′ onto

the plane orthogonal to δv:

nv = nv′ − (nv′ · δv)δv

||δv||2 . (2)

After either computation we of course normalise nv .

We also considered determining the normal by fitting a

curve to a set of ancestor edges. Unfortunately, our policy of

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

712 Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds

favouring forward edges means that the immediate ancestors

are often collinear, and the curvature of any fitted curve is a

poor indicator of surface normal.

3.2 Spanning tree construction

We construct the spanning tree over the graph of short edges

in a priority-first search manner, similar to Prim’s algorithm

[17, p. 457] for minimum spanning trees. Initially, an arbitrary

vertex is designated as the root of the spanning tree. As each

vertex is added to the tree, its neighbours are considered as

potential children of this vertex and they are added to or

updated in a priority queue. In each step, the vertex with

lowest cost is added to the tree and removed from the priority

queue (a global optimisation may produce better results, but

would of course also be prohibitively expensive).

Prim’s algorithm uses the edge weight as the cost function

to produce a minimum spanning tree. We modify this cost

function in two ways:

1. We wish to favour edges that are similar to their parent

edges, because these edges will be well predicted. How-

ever, using only this metric leads to poor results overall,

since edge lengths are not constrained. We have found

that the metric

Ev = log(||δv − δv′ || + 1) · ||δv|| (3)

produces good results over a range of meshes: the first

factor favours edges that are similar to their parent edges,

while the second penalises long edges. Finding the best

metric is still an area of future work.

2. In order to favour long runs, edges emanating from the

most recently added vertex are given higher priority than

any other. In practice, this means that as soon as any edge

is added to the tree, a walk is started from this edge

and allowed to continue (always using the best outgo-

ing edge) until there are no unvisited vertices within a

distance of L. Here the bound L on edge length plays a

role: without a bound, a walk would make a large jump

(which cannot be succinctly encoded) to another part of

the mesh rather than terminate.

3.3 Spanning tree encoding

We encode the choice of predictors and the connectivity of the

spanning tree in a single stream. We first encode the valence

of the root with the predictors used for the children of the

root. The children are then recursively encoded (depth-first)

in the order they are listed in the parent.

We use five symbols for the encoding: B, L, R, F and T.

The first four indicate predictors used for child nodes (base,

left, right and forward). The T code terminates the list of child

predictors, and implicitly specifies the valence. For example,

the sequence LFT indicates a node with two children, one

predicted left and one forward.

During compression, we concatenate the symbol se-

quences for all the vertices in a depth-first walk. We expect

the model to be dominated by vertices with one forward-

predicted child, corresponding to the sequence FT. Hence no

one symbol dominates, but from each symbol it is possible

to obtain a good prediction of the next symbol. We thus use

context-dependent progressive arithmetic coding [18] to en-

code the sequence. We order the children in the canonical

order shown above (B, L, R and F) to improve the perfor-

mance of this coding scheme.

3.4 Upper bound

We can obtain an asymtotic upper bound for the compression

rate in terms of the length of the longest edge of the minimum

spanning tree, L (we assume that the point set is scaled such

that a quantisation cell has side-length 1). Since we restrict

ourselves to edges no longer than L, every δv has a correction

of length at most L (if necessary, using the base predictor). For

reasonably large L, there are about 4
3
π L3 possible corrections

that satisfy this property and hence each correction can be

encoded in 3 log2 L + 2.07 bits.

There are five codes used to represent the connectivity

of the spanning tree: four predictors and a terminator. The

sequence will contain one T code per point (indicating the

valences) and one predictor per point (as part of its parent’s

list of children). In the worst case, all four predictors are used

equally often and the entropy is 4 bits per point (this can be

achieved by using a 1-bit code for T and a 3-bit code for

each predictor). If instead we only use the base predictor, we

can reduce the upper bound to 2 bits per point, although in

practice this generally increases the number of bits required

for the geometry coding.

4. Results

Figure 3 shows the spanning trees generated by our algorithm

for several models. The colour of each edge indicates which

predictor was used (red for forward predictors, green and blue

for left and right predictors, and yellow for base predictors).

In some cases it appears that left and right are switched; this

occurs because we make no attempt to preserve the sign of

the normal.

The top models are regularly sampled, and as a result the

models are dominated by the forward predictor and by long

runs, which reduces the entropy of the spanning tree encod-

ing. The bottom models are less regularly sampled, and the

tree is correspondingly less structured.

Table 1 shows our compression ratios on a range of mod-

els. The numbers are bits per point (bpp) for the total encod-

ing (geometry, spanning tree connectivity and predictors).

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds 713

(a) bunny (b) fandisk

(c) face (d) triceratops

Figure 3: Spanning trees for some of the compressed models. The colours indicate which predictors are used. The upper models
are regularly sampled, and the trees consist mostly of runs of forward predictions which are succinctly encoded. The lower
models are less regularly sampled and the resulting trees are less structured.

We show results with both the axial and radial encoders

described in section 3.1. We also compare our results to

those of Gumhold et al. [15], Gandoin and Devillers [8] and

Waschbüsch et al. [11], where available (we have listed the

results reported by Gumhold et al. [15] for the method of

Waschbüsch et al. [11]). For reference, we list results for the

Touma and Gotsman [19] mesh compressor as well. Here

we have listed the combined compression rate (i.e., geome-

try plus connectivity), because the geometry portion of the

code cannot be used to reconstruct the point cloud without

the connectivity code. The right-most columns show the im-

provement (in bpp) that we make relative to the best shown

result for point-cloud compressors and the Touma–Gotsman

mesh compressor.

The upper half of the table shows models that have been

sampled along regular grids, for which our algorithm was de-

signed. For these models, our algorithm gives the best com-

pression ratios. Note that for several models (such as the

bunny), the other point-cloud compressors are unable to out-

perform the Touma-Gotsman mesh compressor, despite not

having to encode mesh connectivity. For these models, the

axial and radial coders give similar results.

The lower half of the table shows models for which the

sampling pattern is less regular. This may occur as the result

of model simplification, as in the case of horse-lres (which

is a simplified version of horse—note that what most com-

pression authors refer to as horse is in fact horse-lres). Here

the kd-tree compressor [8] produces better results, as it does

not depend on the sampling pattern. Nevertheless, our algo-

rithm produces results that are within 1.5 bits per point of the

kd-tree compressor and very similar to the Touma-Gotsman

mesh compressor. For these models the radial coder gives bet-

ter compression ratios than the axial coder in all but one case.

It should be noted that the Touma-Gotsman compressor is

no longer the state of the art for mesh compression; we have

used it because it is freely available online, making it pos-

sible to generate a complete set of results. For comparison,

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

714 Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds

Table 1: Compression rates of our compression, using the axial and radial encoders (best result highlighted). For comparison, we also show
results for other point cloud compressors (PPCC [15], KD [8], PCPM [11]; best result highlighted), as well as the Touma and Gotsman [19]
mesh compressor (TG). The upper half shows regularly sampled models, while the lower half shows irregularly sampled models. All models
were quantised to 12 bits per coordinate.

Model Points PPCC KD PCPM TG Axial Radial Gain (PC) Gain (TG)

male 148,138 7.29 13.59 7.76 6.45 6.98 0.8 1.31

igea 134,345 10.83 14.28 11.56 9.20 9.22 1.6 2.36

rabbit 67,039 12.46 9.86 9.76 2.70

horse 48,485 12.63 11.09 11.03 1.60

santa 75,781 12.23 18.28 11.93 11.57 11.50 0.7 0.43

bunny 34,834 14.31 14.8 18.22 13.62 11.68 11.53 2.8 2.09

armadillo 172,974 12.25 11.84 12.01 0.41

fandisk 6475 12.94 20.69 14.84 12.79 12.87 0.1 2.05

buddha 543,652 13.67 10.60 10.79 3.07

feline 49,864 17.63 17.02 16.89 0.74

venus 50,002 18.36 17.41 17.31 1.05

horse-lowres 19,851 17.41 16.4 21.22 17.50 17.86 17.65 −1.3 −0.15

dinosaur 14,070 19.80 18.75 18.38 1.42

face 12,530 19.73 19.11 18.85 0.88

triceratops 2832 19.2 22.18 21.80 20.50 −1.3 1.68

blob 8036 20.1 21.29 21.92 21.58 −1.5 −0.29

Table 2: Statistics of the compression of the models used. L is the longest edge in the spanning tree. Correction length is the L2 mean length of
the correction vectors. The geometry results are for the radial encoding method.

Predictors Bits per point
Correction

Model Points L Base % Left % Right % Forward % length Tree Geometry Total

male 148,138 17.5 2 2 4 92 2.4 0.65 6.33 6.98

igea 134,345 29.3 3 4 6 87 4.4 0.96 8.26 9.22

rabbit 67,039 28.5 5 2 2 91 4.4 0.70 9.06 9.76

horse 48,485 83.8 7 6 6 81 8.4 1.13 9.90 11.03

santa 75,781 27.0 4 5 10 80 5.4 1.35 10.15 11.50

bunny 34,834 58.7 2 3 4 91 8.4 0.74 10.80 11.53

armadillo 172,974 18.5 3 11 17 68 4.9 1.97 10.04 12.01

fandisk 6475 128.8 2 3 9 86 16.9 0.97 11.91 12.87

buddha 543,652 29.1 35 15 12 38 4.6 2.00 8.79 10.79

feline 49,864 61.6 12 19 19 51 13.9 2.12 14.78 16.89

venus 50,002 54.2 8 19 19 54 14.5 2.25 15.07 17.31

horse-lowres 19,851 74.6 6 16 16 62 17.1 1.92 15.73 17.65

dinosaur 14,070 79.9 17 23 19 41 18.7 2.26 16.12 18.38

face 12,530 112.4 16 20 18 46 23.6 2.20 16.65 18.85

triceratops 2832 171.6 18 10 16 56 33.4 1.91 18.59 20.50

blob 8036 90.3 12 15 17 56 35.3 2.44 19.13 21.58

FreeLence [20] obtains bitrates of 11.16 bpv and 11.31 bpv

for feline and horse-lowres respectively, but bitrates for the

other models above are not reported (also note that these

results are for mean square error equivalent to 12-bit quanti-

zation, but that no error bound is provided).

Table 2 shows a number of statistics regarding the com-

pression of the models. For the regularly sampled models

(top half), the forward predictor dominates and the correc-

tion lengths are much less than L, which causes compression

ratios to be well below the upper bound.

On a 2 GHz PC, compression and decompression speeds

are around 10 and 75k points per second respectively. How-

ever, for sparse point-sets (which have a larger value for

L), the radial coder is less efficient as it requires the con-

struction of an O(L3) lookup table. Where compression and

decompression of sparse models may be required, the axial

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds 715

coder eliminates this overhead, generally at the expense of

less than 0.5 bpp. Gumhold et al. [15] report compression and

decompression speeds of 5 and 500k points per second re-

spectively for their scheme, which is also based on spanning

trees but is less sophisticated.

The compression time is dominated by the construction of

the initial graph (computation of the minimum spanning tree,

and determination of all edges of length at most L). Although

we use a kd-tree to accelerate the process, our minimum span-

ning tree implementation is quite crude and could potentially

be optimised.

Decompression time is dominated by the progressive arith-

metic coder. If decompression speed is a concern, improve-

ments can be made by using a non-progressive coder and

storing frequency tables in the header. This would require a

two-pass compression, but eliminate the need to dynamically

update frequency tables during decompression.

5. Conclusions

Our compression algorithm yields impressive compression

rates for models that have been regularly sampled. For less

regular samplings, and in particular for decimated models,

the compression rates are not as competitive but are never-

theless reasonable. Furthermore, no triangulation is required,

which makes our algorithm suitable for real-time compres-

sion of point clouds whereas a triangulation pass followed by

a (possibly more efficient) mesh compression would be too

computationally expensive.

As presented, our method will perform very poorly on

models with disjoint components (due to the long minimum

spanning tree edge required to connect them), but it could

easily be modified use a spanning forest rather than a spanning

tree.

While developing our compressor, we experimented with

a number of cost functions for constructing the spanning

tree, improving compression rates by up to 2 bpp. While our

heuristic produces good results, this is clearly still a fertile

area for future work. For real-world applications, improve-

ments to the spanning tree construction are particularly attrac-

tive because the file-format and decompression algorithm are

unaffected.

We have considered only the compression of geometry, but

points may have other associated attributes such as colours

or normals. We expect that our normal estimation method

could be used for effective compression of normals. Where

the normal prediction fails, the cost of encoding a large cor-

rection would be amortised by the improvements to the lateral

predictions due to having a correct normal.

References

1. G. Turk and M. Levoy. Zippered polygon meshes from

range images. In SIGGRAPH ’94: Proceedings of the

21st annual conference on Computer graphics and in-
teractive techniques, New York, NY, USA, ACM Press,

pp. 311–318, 1994.

2. S. Rusinkiewicz and M. Levoy. QSplat, a multiresolution

point rendering system for large meshes. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, New York,

NY, USA, ACM Press/Addison-Wesley Publishing Co.,

pp. 343–352, 2000.

3. P. Alliez and C. Gotsman. Recent advances in compres-

sion of 3D meshes. In Advances in Multiresolution for
Geometric Modelling, Springer, 2004.

4. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D.

Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis,

J. Ginsberg, J. Shade and D. Fulk. The digital Michelan-

gelo project: 3D scanning of large statues. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, New York,

NY, USA, ACM Press/Addison-Wesley Publishing Co.,

pp. 131–144, 2000.

5. O. Faugeras. Three-Dimensional Computer Vision: A
Geometric Viewpoint, MIT Press, Cambridge, MA,

1993.

6. W. E. Lorensen and H. E. Cline. Marching cubes: A high

resolution 3D surface construction algorithm. In SIG-
GRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, New

York, NY, USA, ACM Press, pp. 163–169, 1987.

7. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.

Lounsbery and W. Stuetzle. Multiresolution analysis of

arbitrary meshes. In SIGGRAPH ’95: Proceedings of the
22nd annual conference on Computer graphics and in-
teractive techniques, New York, NY, USA, ACM Press,

pp. 173–182, 1995.

8. P.-M. Gandoin and O. Devillers. Progressive lossless

compression of arbitrary simplicial complexes. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, New

York, NY, USA, ACM Press, pp. 372–379, 2002.

9. J. Peng and C. C. J. Kuo. Octree-based progressive geom-

etry encoder. In Internet Multimedia Management Sys-
tems IV . Edited by Smith, John R.; Panchanathan, Sethu-

raman; Zhang, Tong. Proceedings of the SPIE, Vol. 5242,

pp. 301–311, 2003.

10. M. Botsch, A. Wiratanaya and L. Kobbelt. Efficient high

quality rendering of point sampled geometry. In EGRW
’02: Proceedings of the 13th Eurographics workshop
on Rendering, Aire-la-Ville, Switzerland, Eurographics

Association, pp. 53–64, 2002.

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

716 Bruce Merry, Patrick Marais and James Gain/Compression of Dense and Regular Point Clouds

11. M. Waschbüsch, M. Gross, F. Eberhard, E. Lambo-

ray and S. Würmlin. Progressive compression of point-

sampled models. In Eurographics Symposium on Point-
Based Graphics, pp. 95–102, 2004.

12. S. Fleishman, D. Cohen-Or, M. Alexa and C. T. Silva.

Progressive point set surfaces. ACM Trans. Graph. 22(4):

997–1011, 2003.

13. T. Ochotta and D. Saupe. Compression of point-based

3d models by shape-adaptive wavelet coding of multi-

height fields. In Proceedings Symposium on Point-Based
Graphics, Zürich, Switzerland, June 2004.

14. G. Taubin and J. Rossignac. Geometric compression

through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

15. S. Gumhold, Z. Karni, M. Isenburg and H.-P. Seidel. Pre-

dictive point-cloud compression. In ACM SIGGRAPH
Conference Abstracts and Applications, 2004.

16. H. Lee, P. Alliez and M. Desbrun. Angle-analyzer: A

triangle-quad mesh codec. In Eurographics Conference
Proceedings, pp. 383–392, 2002.

17. R. Sedgewick. Algorithms in C, 2nd ed. Addison-

Wesley, 1990.

18. I. H. Witten, R. M. Neal and J. G. Cleary. Arithmetic cod-

ing for data compression. Commun. ACM, 30(6):520–

540, 1987.

19. C. Touma and C. Gotsman. Triangle mesh compression.

In Proc Graphics Interface, pp. 26–34, 1998.

20. M. Wardetzky, F. Kaelberer, K. Polthier and U. Reite-

buch. Freelence—coding with free valences. Eurograph-
ics, 2005.

21. G. Randers-Pehrson. Portable Network Graphics
(PNG) Specification, 2nd ed. W3C, October 2003.

http://www.w3.org/TR/PNG/.

c© 2006 The Authors
Journal compilation c© 2006 The Eurographics Association and Blackwell Publishing Ltd.

