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Note on ‘Block I’ of OE (logics)

There are only a few core concepts to get the general idea

There are very many details

Here we focus on the core concepts and some details and how
that works out in computing

More logic and details in the ‘Logics for AI’ course
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Example data, model, and NL–how to formalise it?

Student DegreeProgramme

attends

Student is an entity type. 
DegreeProgramme is an entity type. 
Student attends DegreeProgramme. 

Each Student attends exactly one DegreeProgramme. 
It is possible that more than one Student attends the same DegreeProgramme. 
OR, in the negative: 
For each Student, it is impossible that that Student attends more than one 
DegreeProgramme. 
It is impossible that any Student attends no DegreeProgramme. 
 

 
 
 
 

 
               Attends 
Student DegreeProgramme 
John Computer Science 
Mary Design 
Fabio Design 
Claudio Computer Science 
Markus Biology 
Inge Computer Science 
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Beginnings

Truth values 1 or 0 (or something else with many-valued
logics)

True or false?

A = “Aristotle is alive”
B = “Cape Town is located in South Africa”
C = “Praise Allah”

Realise that logic is not the study of truth, but of the
relationship between the truth of one statement and that of
another
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Some definitions

A formula is valid if it holds under every assignment. |= F to
denote this. A valid formula is called a tautology.

A formula is satisfiable if it holds under some assignment.

A formula is unsatisfiable if it holds under no assignment. An
unsatisafiable formula is called a contradiction.
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Tibbles

Is the following argument valid?

If Tibbles roves the Upper Campus, then he lives in
Rondebosch.
Tibbles lives in Rondebosch.
Therefore Tibbles roves the Upper Campus.

Represent the argument formally and use truth tables to prove
it.
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Is the following argument valid?
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Tibbles

Is the following argument valid?

If A, then B.
B.
Therefore A.

Represent the argument formally and use truth tables to prove
it.
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Implication and talking about it in English

A B A → B can read it as
¬A ∨ B If A then B B follows from A

0 0 1 A implies B A is sufficient for B
0 1 1 A only if B B is necessary for A
1 0 0 B if A B is a necessary condition for A
1 1 1 Whenever A, B B whenever A

Not A unless B A is a sufficient condition for B
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How to formalise it?

Syntax

Alphabet
Languages constructs
Sentences to assert knowledge

Semantics

Formal meaning
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First order logic

The lexicon of a first order language contains:

Connectives & Parentheses: ¬, →, ↔, ∧, ∨, ( and );

Quantifiers: ∀ (universal) and ∃ (existential);

Variables: x , y , z , ... ranging over particulars;

Constants: a, b, c , ... representing a specific element;

Functions: f , g , h, ..., with arguments listed as f (x1, ...xn);

Relations: R, S , ... with an associated arity.
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Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism

∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme

∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist

∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy

∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

Example: Natural Language and First Order Logic

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x) → Organism(x))

Each student attends at least one degree programme
∀x , y(attends(x , y) → Student(x) ∧ DegreeProg(y))
∀x(Student(x) → ∃y attends(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))

20/46



Introduction Syntax Semantics Reasoning Summary

First order logic
(in logics) “A theory is a consistent set of sentences”

what does that mean?

(countably infinite) Supply of symbols (signature): Variables,
Functions , Constants, and Relations
Terms: A term is inductively defined by two rules, being:

1 Every variable and constant is a term.
2 if f is a m-ary function and t1, . . . tm are terms, then

f (t1, . . . , tm) is also a term.

Definition (atomic formula)

An atomic formula is a formula that has the form t1 = t2 or
R(t1, ..., tn) where R is an n-ary relation and t1, ..., tn are terms.

R1. If φ is a formula then so is ¬φ.

R2. If φ and ψ are formulas then so is φ ∧ ψ.

R3. If φ is a formula then so is ∃xφ for any variable x .
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FOL Cont. (informally)

formula: constructed from atomic formulas by repeated
applications of rules R1, R2, and R3

free variable that variable in a formula that is not quantified
(‘bound’ with an ∃ or a ∀)

sentence a formula that has no free variables
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FOL Cont.: toward semantics

Whether a sentence is true or not depends on the underlying
set and the interpretation of the function, constant, and
relation symbols.

A structure consists of an underlying set together with an
interpretation of functions, constants, and relations.

Given a sentence φ and a structure M, M models φ means
that the sentence φ is true with respect to M. More precisely,

Definition (vocabulary)

A vocabulary V is a set of function, relation, and constant symbols.
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FOL Cont.

Definition (V-structure)

A V-structure consists of a non-empty underlying set ∆ along with
an interpretation of V. An interpretation of V assigns an element
of ∆ to each constant in V, a function from ∆n to ∆ to each n-ary
function in V, and a subset of ∆n to each n-ary relation in V. We
say M is a structure if it is a V-structure of some vocabulary V.

Definition (V-formula)

Let V be a vocabulary. A V-formula is a formula in which every
function, relation, and constant is in V. A V-sentence is a
V-formula that is a sentence.
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FOL Cont.
When we say that M models φ, denoted with M |= φ, this is
with respect to M being a V-structure and V-sentence φ is
true in M.

Model theory: the interplay between M and a set of first-order
sentences T (M), which is called the theory of M, and its
‘inverse’ from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any V-structure M, the theory of M, denoted with T (M), is
the set of all V-sentences φ such that M |= φ.

Definition (model)

For any set of V-sentences, a model of Γ is a V-structure that
models each sentence in Γ. The class of all models of Γ is denoted
by M(Γ).
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Theory in the context of logic

Definition (complete V-theory)

Let Γ be a set of V-sentences. Then Γ is a complete V-theory if,
for any V-sentence φ either φ or ¬φ is in Γ and it is not the case
that both φ and ¬φ are in Γ.

It can then be shown that for any V-structure M, T (M) is a
complete V-theory (for proof, see e.g. [Hedman04, p90])

Definition

A set of sentences Γ is said to be consistent if no contradiction can
be derived from Γ.

Definition (theory)

A theory is a consistent set of sentences.
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Some definitions

A formula is valid if it holds under every assignment. |= φ to
denote this. A valid formula is called a tautology.

A formula is satisfiable if it holds under some assignment.

A formula is unsatisfiable if it holds under no assignment. An
unsatisafiable formula is called a contradiction.
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Example

Is this a theory?
∀x(Woman(x) → Female(x))
∀x(Mother(x) → Woman(x))
∀x(Man(x) ↔ ¬Woman(x))
∀x(Mother(x) → ∃y(partnerOf (x , y) ∧ Spouse(y))
∀x(Spouse(x) → Man(x) ∨Woman(x))
∀x , y(Mother(x) ∧ partnerOf (x , y) → Father(y))

Is it still a theory if we add:
∀x(Hermaphrodite(x) → Man(x) ∧Woman(x))
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Examples of first-order structures (exercise)

Graphs are mathematical structures.

A graph is a set of points, called vertices, and lines, called
edges between them. For instance:

A B C

Figures A and B are different depictions, but have the same
descriptions w.r.t. the vertices and edges. Check this.

Graph C has a property that A and B do not have. Represent
this in a first-order sentence.

Find a suitable first-order language for A (/B), and formulate
at least two properties of the graph using quantifiers.
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Examples of first-order structures (exercise)

That example in the introduction of the slides (students
attending a degree programme)

Formalise the type-level information of that ORM diagram

Then try to formalise the following UML diagram

Animal

Carnivore HerbivoreOmnivore

Limb4

{disjoint, complete}

part

31/46
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Reasoning

Representing the knowledge in a suitable logic is one thing,
reasoning over it another. e.g.:

How do we find out whether a formula is valid or not?
How do we find out whether our knowledge base is satisfiable?

We need some way to do this automatically

33/46
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Essential to realising automated reasoning

The choice of the class of problems the software program has
to solve: what is it supposed to solve?

e.g., checking satisfiability of the theory

The language in which to represent the problems;

e.g.: first order predicate logic

How the program has to compute the solution;

e.g., deduction

How to do this efficiently

e.g., constrain the language
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Deduction, abduction, induction

Deduction: ascertain if T |= α, where α is not explicitly
asserted in T , i.e., whether α can be derived from the
premises through repeated application of deduction rules.

Abduction: try to infer a as an explanation of b. set of
observations + a theory of the domain of the observations +
a set of (possible, hypothesised) explanations that one would
hope to find.

Induction: generalise to a conclusion based on a set of
individuals. The conclusion is not a logical consequence of the
premise, but premises provide a degree of support so as to
infer a as an explanation of b

35/46
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Reasoning over ontologies

Most popular for ontologies: deductive

Some work on other approaches, e.g., e.g., belief revision,
probabilistic abductive reasoning, and Bayesian networks for
abductive reasoning, ML for inductive reasoning
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Reasoning over ontologies - techniques

NOT truth tables (doesn’t scale, at all)

Many options, e.g.:

Case-based reasoning
Automata-based techniques
Tableaux (current ‘winner’)

Many variants with many optimisations, for many logics
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Tableaux

A sound and complete procedure deciding satisfiability is all
we need, and the tableaux method is a decision procedure
which checks the existence of a model

It exhaustively looks at all the possibilities, so that it can
eventually prove that no model could be found for
unsatisfiable formulas.

φ |= ψ iff φ ∧ ¬ψ is NOT satisfiable—if it is satisfiable, we
have found a counterexample

Decompose the formula in top-down fashion
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Tableaux

Tableaux calculus works only if the formula has been
translated into Negation Normal Form, i.e., all the
negations have been pushed inside

Recall the list of equivalences, apply those to arrive at NNF, if
necessary. (pp32-33 of the book)

If a model satisfies a conjunction, then it also satisfies each
of the conjuncts:
φ ∧ ψ
φ
ψ

If a model satisfies a disjunction, then it also satisfies one of
the disjuncts. non-deterministic
φ ∨ ψ
φ | ψ
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Tableaux

If a model satisfies a universally quantified formula (∀),
then it also satisfies the formula where the quantified variable
has been substituted with a ground term (constant or
function)
∀x .φ
φ{x/t}
∀x .φ

For an existentially quantified formula, if a model satisfies
it, then it also satisfies the formula where the quantified
variable has been substituted with a new Skolem constant,
∃x .φ
φ{x/a}

Note: this is a ‘brand new’ constant in the theory
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Tableaux

Apply the completion rules until either

(a) an explicit contradiction due to the presence of two opposite
literals in a node (a clash) is generated in each branch, or

(b) there is a completed branch where no more rule is applicable
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Example

- Input to the tableau:

1 ∀x¬P(x , a)
2 P(a, b)
3 ∀x , y(¬P(x , y) ∨ P(y , x))

- Apply one of the rules. which one?

- The first axiom is the only ‘reasonable’ option:

4 ¬P(b, a) (substitute x with b)

- Now let’s ‘get rid of’ the other ∀’s from line 3:

5 ∀y(¬P(a, y) ∨ P(y , a)) (substitute x with a)
6 (¬P(a, b) ∨ P(b, a)) (then y with b)

- Process the disjunction, generating two branches:

7a ¬P(a, b) clash! (with line 2)
7b P(b, a) clash! (with line 4)
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Example

Theory T consists of:

R is reflexive: ∀x(R(x , x))
R is asymmetric: ∀x , y(R(x , y) → ¬R(y , x))

Now what if we add ¬∀x , y(R(x , y)) to T?

Any equivalences and NNF?

∀x , y(R(x , y) → ¬R(y , x)) rewritten as
∀x , y(¬R(x , y) ∨ ¬R(y , x))

add the negation of ¬∀x , y(R(x , y)) to T, i.e., ∀x , y(R(x , y))
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Tableau for the example
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Relevance?

DLs are fragments of FOL (next lecture)

Most reasoning algorithms for DL use this sort of tableau
reasoning as well (optimised)

OWL ontology languages based on DLs: this is roughy what
happens when you press the start/synchronise reasoner in
Protégé that uses HerMiT for reasoner

We’ll see more examples and exercises later
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