Ontology Engineering Lecture 2: First Order Logic

Maria Keet email: mkeet@cs.uct.ac.za home: http://www.meteck.org

Department of Computer Science University of Cape Town, South Africa

Semester 2, Block I, 2019

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 00000000	0
		-		

2 Syntax

3 Semantics

- Some definitions
- First Order Structures

4 Reasoning

- General idea
- Tableaux

Note on 'Block I' of OE (logics)

- There are only a few core concepts to get the general idea
- There are very many details
- Here we focus on the core concepts and some details and how that works out in computing
- More logic and details in the 'Logics for Al' course

Introduction	Syntax	Semantics	Reasoning	Summary
•000000000000	00000	0 000000 00	0 00000 00000000	0

Outline

2 Syntax

3 Semantics

- Some definitions
- First Order Structures

4 Reasoning

- General idea
- Tableaux

troduction	Syntax	Semantics	Reasoning	Summary
00000000000	00000	0 000000 00	0 00000 00000000	0

Example data, model, and NL-how to formalise it?

Student **is an entity type**. DegreeProgramme **is an entity type**. Student attends DegreeProgramme.

In Of

> Each Student attends exactly one DegreeProgramme. It is possible that more than one Student attends the same DegreeProgramme. *OR*, *in the negative:* For each Student, it is impossible that that Student attends more than one DegreeProgramme.

It is impossible that any Student attends no DegreeProgramme.

Beginnings

- Truth values 1 or 0 (or something else with many-valued logics)
- True or false?
 - A = "Aristotle is alive"
 - B = "Cape Town is located in South Africa"
 - C = "Praise Allah"

Beginnings

- Truth values 1 or 0 (or something else with many-valued logics)
- True or false?
 - A = "Aristotle is alive"
 - B = "Cape Town is located in South Africa"
 - C = "Praise Allah"
- Realise that logic is not the study of truth, but of the relationship between the truth of one statement and that of another

Some definitions

- A formula is valid if it holds under *every* assignment. ⊨ F to denote this. A valid formula is called a tautology.
- A formula is satisfiable if it holds under some assignment.
- A formula is unsatisfiable if it holds under *no* assignment. An unsatisafiable formula is called a contradiction.

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	000000000000000000000000000000000000000	0

- Is the following argument valid?
 - If Tibbles roves the Upper Campus, then he lives in Rondebosch.
 - Tibbles lives in Rondebosch.
 - Therefore Tibbles roves the Upper Campus.
- Represent the argument formally and use truth tables to prove it.

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 00000000	0

- Is the following argument valid?
 - If Tibbles roves the Upper Campus, then he lives in Rondebosch.
 - Tibbles lives in Rondebosch.
 - Therefore Tibbles roves the Upper Campus.
- Represent the argument formally and use truth tables to prove it.

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 00000000	0

- Is the following argument valid?
 - If Tibbles roves the Upper Campus, then he lives in Rondebosch.
 - Tibbles lives in Rondebosch.
 - Therefore Tibbles roves the Upper Campus.
- Represent the argument formally and use truth tables to prove it.

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 00000000	0

- Is the following argument valid?
 - If Tibbles roves the Upper Campus, then he [Tibbles] lives in Rondebosch.
 - Tibbles lives in Rondebosch.
 - Therefore Tibbles roves the Upper Campus.
- Represent the argument formally and use truth tables to prove it.

Introduction	Syntax	Semantics	Reasoning	Summary
00000000000000	00000	0 000000 00	0 00000 00000000	0

- Is the following argument valid?
 - If A, then B.
 - B.
 - Therefore A.
- Represent the argument formally and use truth tables to prove it.

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000000	00000	0 000000 00	0 00000 00000000	0

- Is the following argument valid?
 - $\bullet \ \mathsf{A} \to \mathsf{B}$
 - B.
 - Therefore A.
- Represent the argument formally and use truth tables to prove it.

Introduction	Syntax	Semantics	Reasoning	Summary
000000000000000000000000000000000000000	00000	0 000000 00	0 00000 00000000	0

- Is the following argument valid?
 - $A \rightarrow B$
 - $\land B$
 - Therefore A.
- Represent the argument formally and use truth tables to prove it.

- Is the following argument valid?
 - $A \rightarrow B$ • $\land B$
 - $\bullet \ \to \mathsf{A}$
- Represent the argument formally and use truth tables to prove it.

- Is the following argument valid?
 - $A \rightarrow B$ • $\land B$
 - $\bullet \ \to \mathsf{A}$
- Represent the argument formally and use truth tables to prove it.

◆□ > ◆□ > ◆□ > ◆□ > ● □

15/46

• So, $((A
ightarrow B) \wedge B)
ightarrow A$

Introduction

Syntax 00000 Semantics 0 000000 00 **Reasoning** 0 00000 00000000 Summary O

Implication and talking about it in English

Α	В	$\bm{A} \rightarrow \bm{B}$	can read it as	
		$\neg \mathbf{A} \lor \mathbf{B}$	If A then B	B follows from A
0	0	1	A implies B	A is sufficient for B
0	1	1	A only if B	B is necessary for A
1	0	0	B if A	B is a necessary condition for A
1	1	1	Whenever A, B	B whenever A
			Not A unless B	A is a sufficient condition for B

Introduction

Syntax 00000 Semantics 0 0000000 00 Reasoning 0 00000 000000000

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

17/46

How to formalise it?

- Syntax
 - Alphabet
 - Languages constructs
 - Sentences to assert knowledge
- Semantics
 - Formal meaning

Introduction 000000000000000	Syntax ●○○○○	Semantics 0 000000 00	Reasoning 0 00000 00000000	Summary O

2 Syntax

3 Semantics

- Some definitions
- First Order Structures

4 Reasoning

- General idea
- Tableaux

<ロト < 部ト < 言ト < 言ト 言 のへで 18/46

First order logic

The lexicon of a first order language contains:

- Connectives & Parentheses: \neg , \rightarrow , \leftrightarrow , \land , \lor , (and);
- Quantifiers: \forall (universal) and \exists (existential);
- Variables: x, y, z, ... ranging over particulars;
- Constants: *a*, *b*, *c*, ... representing a specific element;
- Functions: f, g, h, ..., with arguments listed as $f(x_1, ..., x_n)$;

イロト 不得 トイヨト イヨト 二日

19/46

• Relations: R, S, ... with an associated arity.

Example: Natural Language and First Order Logic

Each animal is an organism
 All animals are organisms
 If it is an animal then it is an organism

Example: Natural Language and First Order Logic

ヘロト 人間ト 人造ト 人造トー

20/46

Each animal is an organism
 All animals are organisms
 If it is an animal then it is an organism
 ∀x(Animal(x) → Organism(x))

Example: Natural Language and First Order Logic

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student attends at least one degree programme

Example: Natural Language and First Order Logic

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student attends at least one degree programme $\forall x, y(attends(x, y) \rightarrow Student(x) \land DegreeProg(y))$ $\forall x(Student(x) \rightarrow \exists y \ attends(x, y))$

Example: Natural Language and First Order Logic

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student attends at least one degree programme $\forall x, y(attends(x, y) \rightarrow Student(x) \land DegreeProg(y))$ $\forall x(Student(x) \rightarrow \exists y \ attends(x, y))$

◆ロト ◆聞 と ◆注 と ◆注 と 二 注

20/46

Aliens exist

 Syntax
 Semantics
 Reasoning
 Summary

 00000000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Example: Natural Language and First Order Logic

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student attends at least one degree programme $\forall x, y(attends(x, y) \rightarrow Student(x) \land DegreeProg(y))$ $\forall x(Student(x) \rightarrow \exists y \ attends(x, y))$

イロト 不得下 イヨト イヨト 二日

20/46

- Aliens exist
 - $\exists x \ Alien(x)$

Example: Natural Language and First Order Logic

- Each animal is an organism
 All animals are organisms
 If it is an animal then it is an organism
 ∀x(Animal(x) → Organism(x))
- Each student attends at least one degree programme $\forall x, y(attends(x, y) \rightarrow Student(x) \land DegreeProg(y))$ $\forall x(Student(x) \rightarrow \exists y \ attends(x, y))$
- Aliens exist
 - $\exists x \ Alien(x)$
- There are books that are heavy

 Syntax
 Semantics
 Reasoning
 Summary

 0000000000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Example: Natural Language and First Order Logic

- Each animal is an organism
 All animals are organisms
 If it is an animal then it is an organism
 ∀x(Animal(x) → Organism(x))
- Each student attends at least one degree programme $\forall x, y(attends(x, y) \rightarrow Student(x) \land DegreeProg(y))$ $\forall x(Student(x) \rightarrow \exists y \ attends(x, y))$

イロト 不得下 イヨト イヨト 二日

20/46

- Aliens exist $\exists x \ Alien(x)$
- There are books that are heavy $\exists x(Book(x) \land heavy(x))$

Introduction	Syntax	Semantics	Reasoning	Summar
0000000000000	00000	0 000000 00	0 00000 00000000	0

First order logic

- (in logics) "A theory is a consistent set of sentences"
 - what does that mean?

First order logic

- (in logics) "A theory is a consistent set of sentences"
 what does that mean?
- (countably infinite) Supply of **symbols** (signature): Variables, Functions , Constants, and Relations
- Terms: A term is inductively defined by two rules, being:
 - $1\;$ Every variable and constant is a term.
 - 2 if f is a m-ary function and t_1, \ldots, t_m are terms, then $f(t_1, \ldots, t_m)$ is also a term.

troduction	Syntax	Semantics	Reasoning	Summary
000000000000	00000	0 000000 00	0 00000 00000000	0

First order logic

- (in logics) "A theory is a consistent set of sentences"
 - what does that mean?
- (countably infinite) Supply of **symbols** (signature): Variables, Functions , Constants, and Relations
- Terms: A term is inductively defined by two rules, being:
 - $1\;$ Every variable and constant is a term.
 - 2 if f is a m-ary function and t_1, \ldots, t_m are terms, then $f(t_1, \ldots, t_m)$ is also a term.

Definition (atomic formula)

An *atomic formula* is a formula that has the form $t_1 = t_2$ or $R(t_1, ..., t_n)$ where R is an *n*-ary relation and $t_1, ..., t_n$ are terms.

- R1. If ϕ is a formula then so is $\neg \phi$.
- R2. If ϕ and ψ are formulas then so is $\phi \wedge \psi$.
- R3. If ϕ is a formula then so is $\exists x \phi$ for any variable x.

Introduction

Syntax 0000

Semantics 0 0000000 00 Reasoning 0 00000 000000000

イロト 不得 トイヨト イヨト 二日

22/46

FOL Cont. (informally)

formula: constructed from atomic formulas by repeated applications of rules R1, R2, and R3
free variable that variable in a formula that is not quantified ('bound' with an ∃ or a ∀)
sentence a formula that has no free variables

Syntax

3 Semantics

- Some definitions
- First Order Structures

4 Reasoning

- General idea
- Tableaux

<ロト < 部ト < 目ト < 目ト 目 の Q () 23/46

FOL Cont.: toward semantics

- Whether a sentence is true or not depends on the underlying set and the interpretation of the function, constant, and relation symbols.
- A *structure* consists of an *underlying set* together with an *interpretation* of functions, constants, and relations.
- Given a sentence ϕ and a structure *M*, *M* models ϕ means that the sentence ϕ is true with respect to *M*. More precisely,

FOL Cont.: toward semantics

- Whether a sentence is true or not depends on the underlying set and the interpretation of the function, constant, and relation symbols.
- A *structure* consists of an *underlying set* together with an *interpretation* of functions, constants, and relations.
- Given a sentence ϕ and a structure *M*, *M* models ϕ means that the sentence ϕ is true with respect to *M*. More precisely,

Definition (vocabulary)

A vocabulary \mathcal{V} is a set of function, relation, and constant symbols.

Definition (\mathcal{V} -structure)

A \mathcal{V} -structure consists of a non-empty underlying set Δ along with an interpretation of \mathcal{V} . An interpretation of \mathcal{V} assigns an element of Δ to each constant in \mathcal{V} , a function from Δ^n to Δ to each *n*-ary function in \mathcal{V} , and a subset of Δ^n to each *n*-ary relation in \mathcal{V} . We say M is a structure if it is a \mathcal{V} -structure of some vocabulary \mathcal{V} .

Definition (\mathcal{V} -structure)

A \mathcal{V} -structure consists of a non-empty underlying set Δ along with an interpretation of \mathcal{V} . An interpretation of \mathcal{V} assigns an element of Δ to each constant in \mathcal{V} , a function from Δ^n to Δ to each *n*-ary function in \mathcal{V} , and a subset of Δ^n to each *n*-ary relation in \mathcal{V} . We say M is a structure if it is a \mathcal{V} -structure of some vocabulary \mathcal{V} .

Definition (\mathcal{V} -formula)

Let \mathcal{V} be a vocabulary. A \mathcal{V} -formula is a formula in which every function, relation, and constant is in \mathcal{V} . A \mathcal{V} -sentence is a \mathcal{V} -formula that is a sentence.

- When we say that *M* models φ, denoted with *M* ⊨ φ, this is with respect to *M* being a *V*-structure and *V*-sentence φ is true in *M*.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

イロト 不得 トイヨト イヨト 二日

26/46

- When we say that M models φ, denoted with M ⊨ φ, this is with respect to M being a V-structure and V-sentence φ is true in M.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any \mathcal{V} -structure M, the *theory of* M, denoted with $\mathcal{T}(M)$, is the set of all \mathcal{V} -sentences ϕ such that $M \models \phi$.

- When we say that M models φ, denoted with M ⊨ φ, this is with respect to M being a V-structure and V-sentence φ is true in M.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any \mathcal{V} -structure M, the *theory of* M, denoted with $\mathcal{T}(M)$, is the set of all \mathcal{V} -sentences ϕ such that $M \models \phi$.

Definition (model)

For any set of \mathcal{V} -sentences, a *model* of Γ is a \mathcal{V} -structure that models each sentence in Γ . The class of all models of Γ is denoted by $\mathcal{M}(\Gamma)$.

Theory in the context of logic Definition (complete V-theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

It can then be shown that for any V-structure M, T(M) is a complete V-theory (for proof, see e.g. [Hedman04, p90])

Theory in the context of logic Definition (complete V-theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

It can then be shown that for any V-structure M, T(M) is a complete V-theory (for proof, see e.g. [Hedman04, p90])

Definition

A set of sentences Γ is said to be *consistent* if no contradiction can be derived from $\Gamma.$

Theory in the context of logic Definition (complete V-theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

It can then be shown that for any V-structure M, T(M) is a complete V-theory (for proof, see e.g. [Hedman04, p90])

Definition

A set of sentences Γ is said to be *consistent* if no contradiction can be derived from $\Gamma.$

Definition (theory)

A theory is a consistent set of sentences.

Some definitions

- A formula is valid if it holds under *every* assignment. ⊨ φ to denote this. A valid formula is called a tautology.
- A formula is satisfiable if it holds under some assignment.
- A formula is unsatisfiable if it holds under *no* assignment. An unsatisafiable formula is called a contradiction.

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 00000● 00	0 00000 00000000	0

・ロト ・ 一下・ ・ ヨト・

29/46

• Is this a theory? $\forall x (Woman(x) \rightarrow Female(x)))$ $\forall x (Mother(x) \rightarrow Woman(x)))$ $\forall x (Man(x) \leftrightarrow \neg Woman(x)))$ $\forall x (Mother(x) \rightarrow \exists y (partnerOf(x, y) \land Spouse(y)))$ $\forall x (Spouse(x) \rightarrow Man(x) \lor Woman(x)))$ $\forall x, y (Mother(x) \land partnerOf(x, y) \rightarrow Father(y))$

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 00000● 00	0 00000 0000000	0

- Is this a theory? $\forall x (Woman(x) \rightarrow Female(x)))$ $\forall x (Mother(x) \rightarrow Woman(x)))$ $\forall x (Man(x) \leftrightarrow \neg Woman(x)))$ $\forall x (Mother(x) \rightarrow \exists y (partnerOf(x, y) \land Spouse(y)))$ $\forall x (Spouse(x) \rightarrow Man(x) \lor Woman(x)))$ $\forall x, y (Mother(x) \land partnerOf(x, y) \rightarrow Father(y))$
- Is it still a theory if we add:
 ∀x(Hermaphrodite(x) → Man(x) ∧ Woman(x))

イロト 不得下 イヨト イヨト 二日

29/46

- Graphs are mathematical structures.
- A graph is a set of points, called **vertices**, and lines, called **edges** between them. For instance:

- Graphs are mathematical structures.
- A graph is a set of points, called **vertices**, and lines, called **edges** between them. For instance:

- Figures A and B are different depictions, but have the same descriptions w.r.t. the vertices and edges. Check this.
- Graph C has a property that A and B do not have. Represent this in a first-order sentence.

- Graphs are mathematical structures.
- A graph is a set of points, called **vertices**, and lines, called **edges** between them. For instance:

- Figures A and B are different depictions, but have the same descriptions w.r.t. the vertices and edges. Check this.
- Graph C has a property that A and B do not have. Represent this in a first-order sentence.
- Find a suitable first-order language for A (/B), and formulate at least two properties of the graph using quantifiers.

- That example in the introduction of the slides (students attending a degree programme)
- Formalise the type-level information of that ORM diagram

- That example in the introduction of the slides (students attending a degree programme)
- Formalise the type-level information of that ORM diagram
- Then try to formalise the following UML diagram

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	• 00000 0000000	0
		Outline		

1 Introduction

2 Syntax

3 Semantics

- Some definitions
- First Order Structures

4 Reasoning

- General idea
- Tableaux

- Representing the knowledge in a suitable logic is one thing, reasoning over it another. e.g.:
 - How do we find out whether a formula is valid or not?
 - How do we find out whether our knowledge base is satisfiable?

- Representing the knowledge in a suitable logic is one thing, reasoning over it another. e.g.:
 - How do we find out whether a formula is valid or not?
 - How do we find out whether our knowledge base is satisfiable?
- We need some way to do this automatically

Introduction

Syntax 00000 Semantics 0 000000 00 ・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Summary O

34/46

Essential to realising automated reasoning

- The choice of the class of problems the software program has to solve: *what is it supposed to solve?*
 - e.g., checking satisfiability of the theory
- The language in which to represent the problems;
 - e.g.: first order predicate logic
- How the program has to compute the solution;
 - e.g., deduction
- How to do this efficiently
 - e.g., constrain the language

Deduction, abduction, induction

 Deduction: ascertain if T ⊨ α, where α is not explicitly asserted in T, i.e., whether α can be *derived* from the premises through repeated application of *deduction rules*. Syntax 00000 Semantics 0 000000 00 **Reasoning** ○ ○○●○○ ○○○○○○○○○ Summary O

Deduction, abduction, induction

- Deduction: ascertain if T ⊨ α, where α is not explicitly asserted in T, i.e., whether α can be *derived* from the premises through repeated application of *deduction rules*.
- Abduction: try to infer a as an explanation of b. set of observations + a theory of the domain of the observations + a set of (possible, hypothesised) explanations that one would hope to find.

Syntax 00000 Semantics 0 000000 00 Reasoning ○ ○○●○○ ○○○○○○○○○ Summary O

Deduction, abduction, induction

- Deduction: ascertain if T ⊨ α, where α is not explicitly asserted in T, i.e., whether α can be *derived* from the premises through repeated application of *deduction rules*.
- Abduction: try to infer a as an explanation of b. set of observations + a theory of the domain of the observations + a set of (possible, hypothesised) explanations that one would hope to find.
- Induction: generalise to a conclusion based on a set of individuals. The conclusion is *not* a logical consequence of the premise, but premises provide a *degree of support* so as to infer *a* as an explanation of *b*

l**uction** 0000000000 ax 00 Semantics 0 0000000 00
 Reasoning

 ○

 ○○○○●○

 ○○○○○○○○○

Summary O

Reasoning over ontologies

- Most popular for ontologies: deductive
- Some work on other approaches, e.g., e.g., belief revision, probabilistic abductive reasoning, and Bayesian networks for abductive reasoning, ML for inductive reasoning

Reasoning over ontologies - techniques

- NOT truth tables (doesn't scale, at all)
- Many options, e.g.:
 - Case-based reasoning
 - Automata-based techniques
 - Tableaux (current 'winner')
- Many variants with many optimisations, for many logics

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample

イロト 不得 トイヨト イヨト 二日

38/46

• Decompose the formula in top-down fashion

- Tableaux calculus works only if the formula has been translated into **Negation Normal Form**, *i.e.*, all the negations have been pushed inside
- Recall the list of equivalences, apply those to arrive at NNF, if necessary. (pp32-33 of the book)
- If a model satisfies a **conjunction**, then it also satisfies each of the conjuncts:

$$\frac{\phi \wedge \psi}{\phi}_{\psi}$$

• If a model satisfies a **disjunction**, then it also satisfies one of the disjuncts. non-deterministic

$$\frac{\phi \lor \psi}{\phi \mid \psi}$$

 If a model satisfies a universally quantified formula (∀), then it also satisfies the formula where the quantified variable has been substituted with a ground term (constant or function)

$$\begin{array}{c} \frac{\forall x.\phi}{\phi\{x/t\}} \\ \forall x.\phi \end{array}$$

 For an existentially quantified formula, if a model satisfies it, then it also satisfies the formula where the quantified variable has been substituted with a new Skolem constant, ∃x φ

$$\frac{d}{\phi\{x/a\}}$$

Note: this is a 'brand new' constant in the theory

- Apply the completion rules until either
 - (a) an explicit contradiction due to the presence of two opposite literals in a node (a clash) is generated in each branch, or
 - (b) there is a completed branch where no more rule is applicable

- Input to the tableau:
 - $1 \quad \forall x \neg P(x, a)$ $2 \quad P(a, b)$
 - 3 $\forall x, y(\neg P(x, y) \lor P(y, x))$
- Apply one of the rules. which one?

- Input to the tableau:
 - 1 $\forall x \neg P(x, a)$
 - 2 P(a, b)
 - 3 $\forall x, y(\neg P(x, y) \lor P(y, x))$
- Apply one of the rules. which one?
- The first axiom is the only 'reasonable' option:
 - $4 \neg P(b, a)$ (substitute x with b)

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 0000000	0

- Input to the tableau:
 - 1 $\forall x \neg P(x, a)$
 - 2 P(a, b)
 - 3 $\forall x, y(\neg P(x, y) \lor P(y, x))$
- Apply one of the rules. which one?
- The first axiom is the only 'reasonable' option:
 - $4 \neg P(b, a)$ (substitute x with b)
- Now let's 'get rid of' the other \forall 's from line 3:
 - $5 \quad \forall y(\neg P(a, y) \lor P(y, a))$ (substitute x with a) $6 \quad (\neg P(a, b) \lor P(b, a))$ (then y with b)

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 0000000	0

- Input to the tableau:
 - 1 $\forall x \neg P(x, a)$
 - 2 P(a, b)
 - 3 $\forall x, y(\neg P(x, y) \lor P(y, x))$
- Apply one of the rules. which one?
- The first axiom is the only 'reasonable' option:

 $4 \neg P(b, a)$ (substitute x with b)

- Now let's 'get rid of' the other \forall 's from line 3:
 - $5 \quad \forall y(\neg P(a, y) \lor P(y, a))$ (substitute x with a) $6 \quad (\neg P(a, b) \lor P(b, a))$ (then y with b)
- Process the disjunction, generating two branches:
 - $7a \neg P(a, b)$ clash!(with line 2)7b P(b, a) clash!(with line 4)

Introduction	Syntax	Semantics	Reasoning	Summary
0000000000000	00000	0 000000 00	0 00000 00000000	0

- Theory T consists of:
 - *R* is reflexive: $\forall x(R(x,x))$
 - *R* is asymmetric: $\forall x, y(R(x, y) \rightarrow \neg R(y, x))$
- Now what if we add $\neg \forall x, y(R(x, y))$ to T?
- Any equivalences and NNF?
 - $\forall x, y(R(x, y) \rightarrow \neg R(y, x))$ rewritten as $\forall x, y(\neg R(x, y) \lor \neg R(y, x))$
- add the negation of $\neg \forall x, y(R(x, y))$ to T, i.e., $\forall x, y(R(x, y))$
Introduction

Syntax 00000 Semantics 0 0000000 00 Reasoning ○ ○○○○○ ○○○○○●○ Summary O

Tableau for the example

Number	Tableau	Explanation
1	$\forall x.R(x,x)$	Reflexivity axiom in the original theory T
2	$\forall x,y. \neg R(x,y) \lor \neg R(y,x)$	Asymmetry axiom in the original theory T
3	$\forall x, y. R(x, y)$	The negated axiom added to theory T
4		Substitute <i>x</i> for term <i>a</i> in 1,2,3
5	 R(a,a)	
6	$\forall y. \neg R(a, y) \lor \neg R(y, a)$	
7	∀y.R(a,y)	
8		Substitute y for term a in 2 and 3
9	 R(a,a)	
10	<i>¬R(a,a)</i> ∨ <i>¬R(a,a)</i>	
11	R (a,a)	
12	\frown	Split the disjunction of 10
13	¬R(a,a) ¬R(a,a)	Which each generate a clash with 9 and 11, hence, $\neg \forall x, y. R(x, y)$ is entailed by T.

44/46

Relevance?

- DLs are fragments of FOL (next lecture)
- Most reasoning algorithms for DL use this sort of tableau reasoning as well (optimised)
- OWL ontology languages based on DLs: this is roughy what happens when you press the start/synchronise reasoner in Protégé that uses HerMiT for reasoner
- We'll see more examples and exercises later

Summary

2 Syntax

3 Semantics

- Some definitions
- First Order Structures

4 Reasoning

- General idea
- Tableaux

<ロト < 団ト < 臣ト < 臣ト ミ のへで 46/46