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Why description logics

Just saw FOL, so why the hassle of looking at another logic?

Full FOL is undecidable, which is bad news for scalable
implementations

Multiple applications (recall lecture 1) use OWL, which is
actually DL-for-computational-use (except for OWL full)

Need to grasp basics of the language so as to understand
what’s going on when developing an ontology (the reasoner
output really is not magic)
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What are DLs?

A structured fragment of FOL

Different notation, but very same ideas as we’ve seen in
previous lecture

(we’ll get back to the ‘fragment’ aspect later)

(Any (basic) Description Logic is a subset of L3, i.e., the
function-free FOL using only at most three variable names)

Representation is at the predicate level: no variables are
present in the notation (formalism)

Provide theories and systems for declaratively expressing
structured information and for accessing and reasoning with it.

Used for, a.o.: terminologies and ontologies, formal
conceptual data modelling, information integration, ....
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Description Logic knowledge base

Knowledge base

TBox
(Terminology)

ABox
(Assertions)

Description 
language
(a logic)

Automated 
reasoning

(over the TBox 
and ABox)

Interaction with
user applications

Interaction with other 
technologies 
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ALC syntax

Concepts denoting entity types/classes/unary
predicates/universals, including top > and bottom ⊥;
Example: (primitive, atomic): Book, Course

Roles denoting relationships/associations/n-ary
predicates/properties;
Example1: ENROLLED, READS

Constructors: ‘and’ u, ‘or’ t, and ‘not’ ¬; quantifiers ‘for all’
(each) ∀ and ‘exists’ (at least one/some) ∃
Individuals (objects)
Example: Student(Mandla), Mother(Sally),
¬Student(Sally), ENROLLED(Mandla, CS101/19/2)

1Capitalisation for roles for notational clarity, but not required
8/33
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ALC syntax

Complex concepts using constructors

Let C and D be concept names, R a role name, then
¬C , C u D, and C t D are concepts, and
∀R.C and ∃R.C are concepts

Examples:

Student v ∃ENROLLED.(Course t DegreeProgramme)
this is a primitive concept
Mother v Woman u ∃PARENTOF.Person
Parent ≡ (Male t Female) u ∃PARENTOF.Mammalu
∃CARESFOR.Mammal

this is a defined concept
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ALC syntax

Domain and range restrictions of roles

Or: specifying what kind of object the first (domain) and the
second (range) object participating in the role has to be.

e.g., SONOF: the domain surely has to be male, and the range
is a parent:

∃SONOF.> v Male: “any object that has an outgoing relation
SONOF is a male”
> v ∀SONOF.Parent: “all objects that have an incoming
relation SONOF are a parent”
∃SONOF−.> v Parent: “the domain of the inverse of SONOF
(i.e., range of SONOF) is a parent”
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Semantics of ALC

Model-theoretic semantics

Domain ∆ is a non-empty set of objects

Interpretation: ·I is the interpretation function, domain ∆I

·I maps every concept name A to a subset AI ⊆ ∆I

·I maps every role name R to a subset RI ⊆ ∆I ×∆I

·I maps every individual name a to elements of ∆I : aI ∈ ∆I

Note: >I = ∆I and ⊥I = ∅
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Semantics of ALC (2/3)

(¬C )I = ∆I\CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

motorised 
vehicles bicycles

apples orangesOR apples

NOT apples

OR

The cloud-shape is our domain of interpretation with objects

Union of two concepts Concept negation

apples oranges

Intersection of two concepts
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Semantics of ALC
C and D are concepts, R a role

(∀R.C )I = {x | ∀y .RI(x , y)→ CI(y)}
(∃R.C )I = {x | ∃y .RI(x , y) ∧ CI(y)}

The cloud-shape is our domain of interpretation with objects

parents

SONOF All SONOF relations 
relate to a parent

cans of 
beer

DRINKS
At least one DRINKS 
relation relates to 
a can of beer, but there 
may be other DRINKS 
relations to other drinks,
such as juicesjuices

DRINKS

SONOF
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Semantics of ALC

C and D are concepts, R a role, a and b are individuals

An interpretation I satisfies the statement C v D if CI ⊆ DI

An interpretation I satisfies the statement C ≡ D if CI = DI

C (a) is satisfied by I if aI ∈ CI

R(a, b) is satisfied by I if (aI , bI) ∈ RI

An interpretation I = (∆I , ·I) is a model of a knowledge base
KB if every axiom of KB is satisfied by I
A knowledge base KB is said to be satisfiable if it admits a
model

14/33
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DLs are structured fragments of FOL

Recall that full FOL is undecidable

This is unpleasant for automated reasoning

Algorithm (Recursive)

Procedure (Recursively 
Enumerable)

non-Recursively 
Enumerable 

A

P
input w

input w

input w
???

yes (w in L)

no (w not in L)

yes (w in L)
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DLs are structured fragments of FOL

Approach: find a fragment—a sublanguage—of FOL that is
decidable

Take some features, prove the computational complexity of
some problem

But lest first demonstrate the two are related, so that we can
do this
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Example correspondences

C v D

∀x(C (x)→ D(x))

C v D u E

∀x(C (x)→ D(x) ∧ E (x))

C v ∃R.D

∀x(C (x)→ ∃y(R(x , y) ∧ D(y))

C ≡ ∃R.D t ∃S .D

∀x(C (x)↔ ∃y((R(x , y) ∨ S(x , y)) ∧ D(y))

18/33
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DLs are structured fragments of FOL

We end up with trade-offs of features in a DL

Some features always will make the language undecidable
(e.g., true role composition, R ◦ S ≡ T )

Other features are only ‘problematic’ (computationally less
desirable) when taken together with another

E.g., one could define a language where:

it is prohibited to use ∀ in an axiom, or
only ∃R.> (no range specified) but not ∃R.D, or
∃R only on the rhs of the inclusion but not on the lhs

There are many DLs, and most combinations have been
investigated over the past 25 years

Roughly: the fewer features and the more restrictions, the
more ‘computationally well-behaved’ the language is

19/33
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Essential to automated reasoning

The choice of the class of problems the software program has
to solve

The formal language in which to represent the problems

The way how the program has to compute the solution

How to do this efficiently

21/33
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Logical implication

KB |= φ if every model of KB is a model of φ

Example:
TBox: ∃TEACHES.Course v ¬Undergrad t Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

KB |= Professor(John)

What if:
TBox: ∃TEACHES.Course v Undergrad t Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

KB |= Professor(John)? or perhaps
KB |= ¬Professor(John)?
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Reasoning services for DL-based OWL ontologies
Concept (and role) satisfiability (KB 2 C v ⊥)

is there a model of KB in which C (resp. R) has a nonempty
extension?

Consistency of the knowledge base (KB 2 > v ⊥)

Is the KB = (T ,A) consistent (non-selfcontradictory), i.e., is
there at least a model for KB?

Concept (and role) subsumption (KB |= C v D)

i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of T ?

Instance checking (KB |= C (a) or KB |= R(a, b))

is a (resp. (a, b)) a member of concept C (resp. R) in KB,
i.e., is the fact C (a) (resp. R(a, b)) satisfied by every
interpretation of KB?

Instance retrieval ({a | KB |= C (a)})

find all members of C in KB, i.e., compute all individuals a s.t.
C (a) is satisfied by every interpretation of KB

23/33
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Instance checking (KB |= C (a) or KB |= R(a, b))
is a (resp. (a, b)) a member of concept C (resp. R) in KB,
i.e., is the fact C (a) (resp. R(a, b)) satisfied by every
interpretation of KB?

Instance retrieval ({a | KB |= C (a)})

find all members of C in KB, i.e., compute all individuals a s.t.
C (a) is satisfied by every interpretation of KB
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Automated reasoning techniques

How do we compute, say, satisfiability?

Truth tables are too cumbersome

Several techniques are more efficient

Current ‘winner’ is tableau reasoning
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The idea–same as for FOL

A sound and complete procedure deciding satisfiability is all
we need, and the tableaux method is a decision procedure
which checks the existence of a model

It exhaustively looks at all the possibilities, so that it can
eventually prove that no model could be found for
unsatisfiable formulas.

φ |= ψ iff φ ∧ ¬ψ is NOT satisfiable—if it is satisfiable, we
have found a counterexample

Decompose the formula in top-down fashion
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Basic rules (from previous lecture)

Tableaux calculus works only if the formula has been
translated into Negation Normal Form, i.e., all the negations
have been pushed inside

If a model satisfies a conjunction, then it also satisfies each of
the conjuncts

If a model satisfies a disjunction, then it also satisfies one of
the disjuncts. It is a non-deterministic rule, and it generates
two alternative branches.

Apply the completion rules until either (a) an explicit
contradiction due to the presence of two opposite literals in a
node (a clash) is generated in each branch, or (b) there is a
completed branch where no more rule is applicable.
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Example (from previous lecture)
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Tableau reasoning for DLs

Most common for DL reasoners

Like for FOL:

Unfold the TBox
Convert the result into negation normal form
Apply the tableau rules to generate more Aboxes
Stop when none of the rules are applicable

T ` C v D if all Aboxes contain clashes

T 0 C v D if some Abox does not contain a clash
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A note on soundness and completeness

“`”: derivable with a set of inference rules,

“|=” as implies, i.e., every truth assignment that satisfies Γ
also satisfies φ

Completeness: if Γ |= φ then Γ ` φ

If the algorithm is incomplete, then there exist entailments
that cannot be computed (hence, ‘missing’ some results)

Soundness: if Γ ` φ then Γ |= φ

If the algorithm is unsound then false conclusions can be
derived from true premises, which his even more undesirable
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Negation Normal Form

C and D are concepts, R a role

¬ only in front of concepts:

¬¬C gives C
¬(C u D) gives ¬C t ¬D
¬(C t D) gives ¬C u ¬D
¬(∀R.C ) gives ∃R.¬C
¬(∃R.C ) gives ∀R.¬C

30/33



Introduction Basic DL: ALC DL and FOL Reasoning services Summary

Tableau rules for ALC

u-rule If (C1 u C2)(a) ∈ S but S does not contain both C1(a) and
C2(a), then
S = S ∪ {C1(a),C2(a)}

t-rule If (C1 t C2)(a) ∈ S but S contains neither C1(a) nor C2(a),
then
S = S ∪ {C1(a)}
S = S ∪ {C2(a)}

∀-rule If (∀R.C )(a) ∈ S and S contains R(a, b) but not C (b), then
S = S ∪ {C (b)}

∃-rule If (∃R.C )(a) ∈ S and there is no b such that C (b) and
R(a, b), then
S = S ∪ {C (b),R(a, b)}
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Example
- Let’s say our ontology contains only:

1a Vegan ≡ Person u ∀eats.Plant
1b Vegetarian ≡ Person u ∀eats.(Plant t Dairy)

- We want to know whether all vegans are vegetarians, i.e.:
T ` Vegan v Vegetarian

- If that’s true, then there is, or can be, an individual that is an
instance of both, or:

- If that’s true, then some object that instantiates the subclass
but not the superclass cannot exist

2 S = {(Vegan u ¬Vegetarian)(a)}
- Before entering the tableau, we’ll ‘unfold’ it (informally, here:

complex concepts on the left-hand side are replaced with their
properties declared on the right-hand side)

- Check for NNF and rewrite if needed

- Then (finally) apply the tableau rules
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