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Why description logics
o Just saw FOL, so why the hassle of looking at another logic?
o Full FOL is undecidable, which is bad news for scalable
implementations

inout w | > yes (winL)
Algorithm (Recursive) p———> A
| no wnotinL)
es(winL
Procedure (Recursively  input w | —= Y ( )
—> P
Enumerable)
non-Recursively input w O
Enumerable st

o Multiple applications (recall lecture 1) use OWL, which is
actually DL-for-computational-use (except for owL full)

@ Need to grasp basics of the language so as to understand
what's going on when developing an ontology (the reasoner

output really is not magic)
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What are DLs?

A structured fragment of FOL

Different notation, but very same ideas as we've seen in
previous lecture

(we'll get back to the ‘fragment’ aspect later)

(Any (basic) Description Logic is a subset of L3, i.e., the
function-free FOL using only at most three variable names)

Representation is at the predicate level: no variables are
present in the notation (formalism)

Provide theories and systems for declaratively expressing

structured information and for accessing and reasoning with it.

Used for, a.o.: terminologies and ontologies, formal
conceptual data modelling, information integration, ....
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Description Logic knowledge base

TBox
(Terminology)

Automated
reasoning
(over the TBox

Description
language

(a logic) .| ABox |
(Assertions)
\Knowledge base
Interaction with Interaction with other

user applications technologies
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ALC syntax

o Concepts denoting entity types/classes/unary
predicates/universals, including top T and bottom L;
Example: (primitive, atomic): Book, Course

@ Roles denoting relationships/associations/n-ary
predicates/properties;
Examplelz ENROLLED, READS

o Constructors: ‘and’ 17, ‘or’ U, and ‘not’ —; quantifiers ‘for all’
(each) V and ‘exists’ (at least one/some) 3

o Individuals (objects)
Example: Student(Mandla), Mother(Sally),
~Student(Sally), ENROLLED(Mandla, CS101/19/2)

! Capitalisation for roles for notational clarity, but not required
8/33
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ALC syntax

o Complex concepts using constructors

o Let C and D be concept names, R a role name, then
e =C, CMD, and C U D are concepts, and
o VYR.C and JR.C are concepts
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ALC syntax

o Complex concepts using constructors
o Let C and D be concept names, R a role name, then
e =C, CMD, and C U D are concepts, and
o VYR.C and JR.C are concepts
o Examples:
o Student C JENROLLED.(Course L DegreeProgramme)
this is a primitive concept
o Mother C Woman I JPARENTOF.Person
o Parent = (Male Ll Female) M JPARENTOF.Mammalll
JCARESFOR.Mammal
this is a defined concept
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ALC syntax

@ Domain and range restrictions of roles

o Or: specifying what kind of object the first (domain) and the
second (range) object participating in the role has to be.
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ALC syntax

@ Domain and range restrictions of roles

o Or: specifying what kind of object the first (domain) and the
second (range) object participating in the role has to be.
@ e.g., SONOF: the domain surely has to be male, and the range
is a parent:
o JSONOF.T C Male: “any object that has an outgoing relation
SONOF is a male”
o T C VSONOF.Parent: “all objects that have an incoming
relation SONOF are a parent”
JSONOF~.T C Parent: “the domain of the inverse of SONOF
(i.e., range of SONOF) is a parent”
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Basic DL: ALC
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Semantics of ALC

Model-theoretic semantics

Domain A is a non-empty set of objects

Interpretation: -Z is the interpretation function, domain A%
o T maps every concept name A to a subset AL C A

o T maps every role name R to a subset RZ C AT x AT

o -T maps every individual name a to elements of AZ: a’ € AZ
Note: TZ = A% and 17 =)
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Semantics of ALC (2/3)
o (=C)T = AT\CT
o (CNDY=ctnD?
o (CuD)f=ctuD?

The cloud-shape is our domain of interpretation with objects

Intersection of two concepts

apples oranges

motorised
vehicles

Union of two concepts Concept negation

apples
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Semantics of ALC
o C and D are concepts, R a role
o (VR.C)T = {x|Vy.RE(x,y) = C*(y)}
o (3R.C)F = {x| Iy-R*(x,y) A C*(y)}

The cloud-shape is our domain of interpretation with objects

SONOF All SONOF relations

/\ relate to a parent
SONOF

At least one DRINKS
DRINKS .
relation relates to
/DFm cans of a can of beer, but there
beer may be other DRINKS

relations to other drinks,
such as juices
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Semantics of ALC

@ C and D are concepts, R a role, a and b are individuals
@ An interpretation Z satisfies the statement C C D if ctcp?
o An interpretation 7 satisfies the statement C = D if C = D?
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Semantics of ALC

C and D are concepts, R a role, a and b are individuals

An interpretation Z satisfies the statement C C D if ctcpt
An interpretation Z satisfies the statement C = D if CZ = D*
C(a) is satisfied by T if a € C*

R(a, b) is satisfied by Z if (a%, b%) € RT
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Semantics of ALC

C and D are concepts, R a role, a and b are individuals

An interpretation Z satisfies the statement C C D if ctcpt
An interpretation Z satisfies the statement C = D if CZ = D*
C(a) is satisfied by T if a € C*

R(a, b) is satisfied by Z if (a%, b%) € RT

e 6 6 o6 o

An interpretation Z = (AZ,-T) is a model of a knowledge base
KB if every axiom of ICB is satisfied by Z

o A knowledge base B is said to be satisfiable if it admits a
model

(]
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DLs are structured fragments of FOL

o Recall that full FOL is undecidable

o This is unpleasant for automated reasoning

Algorithm (Recursive)

Procedure (Recursively
Enumerable)

non-Recursively
Enumerable

input w

input w

input w

| > yes(winl)

A
| = no (wnotinL)
yes (winL)
o | _—>
27?7
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DLs are structured fragments of FOL

@ Approach: find a fragment—a sublanguage—of FOL that is
decidable

o Take some features, prove the computational complexity of
some problem

o But lest first demonstrate the two are related, so that we can
do this
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Example correspondences
o CLCD
o Vx(C(x) = D(x))
o CCLDNE
o Vx(C(x) = D(x) A E(x))
e CCIR.D

o ¥x(C(x) = Jy(R(x,y) A D(y))
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DL and FOL
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Example correspondences

cCD
o Vx(C(x) — D(x))
CCDNE
o Vx(C(x) = D(x) A E(x))
CC3R.D
o Vx(C(x) = Iy(R(x,y) A D(y))
C=3R.DU3S.D
o Vx(C(x) < Fy((R(x,y) V S(x,y)) A D(y))
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DLs are structured fragments of FOL

o We end up with trade-offs of features in a DL

o Some features always will make the language undecidable
(e.g., true role composition, RoS=T)

o Other features are only ‘problematic’ (computationally less
desirable) when taken together with another
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DL and FOL
0000e

DLs are structured fragments of FOL

We end up with trade-offs of features in a DL

Some features always will make the language undecidable
(e.g., true role composition, RoS=T)

Other features are only ‘problematic’ (computationally less
desirable) when taken together with another

E.g., one could define a language where:

o it is prohibited to use V in an axiom, or
e only 3R.T (no range specified) but not IR.D, or
o 3R only on the rhs of the inclusion but not on the lhs

There are many DLs, and most combinations have been
investigated over the past 25 years

Roughly: the fewer features and the more restrictions, the
more ‘computationally well-behaved’ the language is
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Reasoning services
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Essential to automated reasoning

@ The choice of the class of problems the software program has
to solve

@ The formal language in which to represent the problems
@ The way how the program has to compute the solution

@ How to do this efficiently
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Logical implication

o KBk ¢ if every model of KB is a model of ¢

o Example:
TBox: JTEACHES.Course C —Undergrad Ll Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

o KB = Professor(John)
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Reasoning services

Logical implication

KB = ¢ if every model of B is a model of ¢
Example:

TBox: JTEACHES.Course C —Undergrad Ll Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

KB = Professor(John)

What if:

TBox: JTEACHES.Course C Undergrad Ll Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

KB = Professor(John)? or perhaps
KB |= —Professor(John)?
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Reasoning services for DL-based OWL ontologies

o Concept (and role) satisfiability (KB¥ C C 1)

o is there a model of KB in which C (resp. R) has a nonempty
extension?

o Consistency of the knowledge base (KB T C 1)

o Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is
there at least a model for CB?
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Reasoning services for DL-based OWL ontologies

o Concept (and role) satisfiability (KB¥ C C 1)

o is there a model of KB in which C (resp. R) has a nonempty
extension?

o Consistency of the knowledge base (KB T C 1)

o Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is
there at least a model for CB?

o Concept (and role) subsumption (KB = C C D)

o i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of 77

23/33



Reasoning services

oe

Reasoning services for DL-based OWL ontologies

o Concept (and role) satisfiability (KB¥ C C 1)

o is there a model of KB in which C (resp. R) has a nonempty
extension?

o Consistency of the knowledge base (KB T C 1)

o Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is
there at least a model for CB?

o Concept (and role) subsumption (KB = C C D)

o i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of 77

@ Instance checking (KB |= C(a) or KB = R(a, b))
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Reasoning services for DL-based OWL ontologies

o Concept (and role) satisfiability (KB¥ C C 1)
o is there a model of KB in which C (resp. R) has a nonempty
extension?
o Consistency of the knowledge base (KB T C 1)
o Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is
there at least a model for CB?
o Concept (and role) subsumption (KB = C C D)
o i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of 77
o Instance checking (KB |= C(a) or KB = R(a, b))
o is a (resp. (a, b)) a member of concept C (resp. R) in KB,
i.e., is the fact C(a) (resp. R(a, b)) satisfied by every
interpretation of KB?
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Reasoning services for DL-based OWL ontologies

o Concept (and role) satisfiability (KB¥ C C 1)

o is there a model of KB in which C (resp. R) has a nonempty
extension?

Consistency of the knowledge base (KB T C 1)

o Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is
there at least a model for CB?

Concept (and role) subsumption (KB = C C D)

o i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of 77

Instance checking (KB = C(a) or KB = R(a, b))

o is a (resp. (a, b)) a member of concept C (resp. R) in KB,
i.e., is the fact C(a) (resp. R(a, b)) satisfied by every
interpretation of KB?

o Instance retrieval ({a | KB = C(a)})

(7]
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Reasoning services for DL-based OWL ontologies

o Concept (and role) satisfiability (KB¥ C C 1)

o is there a model of KB in which C (resp. R) has a nonempty
extension?

Consistency of the knowledge base (KB T C 1)

o Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is
there at least a model for KB?

Concept (and role) subsumption (KB = C C D)

o i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of 77

Instance checking (KB = C(a) or KB = R(a, b))

o is a (resp. (a, b)) a member of concept C (resp. R) in KB,
i.e., is the fact C(a) (resp. R(a, b)) satisfied by every
interpretation of KB?

o Instance retrieval ({a | KB = C(a)})

(7]
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o find all members of C in KB, i.e., compute all individuals a s.t.

C(a) is satisfied by every interpretation of B
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o How do we compute, say, satisfiability?
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Automated reasoning techniques

How do we compute, say, satisfiability?
Truth tables are too cumbersome
Several techniques are more efficient

Current ‘winner’ is tableau reasoning
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Reasoning services
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The idea—same as for FOL

o A sound and complete procedure deciding satisfiability is all
we need, and the tableaux method is a decision procedure
which checks the existence of a model

o It exhaustively looks at all the possibilities, so that it can
eventually prove that no model could be found for
unsatisfiable formulas.

o ¢ = iff p AN b is NOT satisfiable—if it is satisfiable, we
have found a counterexample

@ Decompose the formula in top-down fashion
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Basic rules (from previous lecture)

Tableaux calculus works only if the formula has been
translated into Negation Normal Form, i.e., all the negations
have been pushed inside

If a model satisfies a conjunction, then it also satisfies each of
the conjuncts

If a model satisfies a disjunction, then it also satisfies one of
the disjuncts. It is a non-deterministic rule, and it generates
two alternative branches.

Apply the completion rules until either (a) an explicit
contradiction due to the presence of two opposite literals in a
node (a clash) is generated in each branch, or (b) there is a
completed branch where no more rule is applicable.
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Example (from previous lecture)

Number Tableau Explanation
1 Yx.R(x,x) Reflexivity axiom in the original theory T
2 Yxy. =-R(xy) v =R(y,x) Asymmetry axiom in the original theory T
3 Yx,y.R(xy) The negated axiom added to theory T
4 Substitute x for term ain 1,2,3
5 R(a,a)
6 Vy. -R(ay) v ~R(y.a)
7 Yy.R(a.y)
8 Substitute y for term a in 2 and 3
9 R(a,a)
10 -R(a,a) v ~R(a,a)
11 R(a,a)
12 Split the disjunction of 10
13 -R(a,a) -R(a,a) Which each generate a clash with 9 and 11,

hence, -Vx,y.R(x,y) is entailed by T.
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Tableau reasoning for DLs

@ Most common for DL reasoners

o Like for FOL:

o Unfold the TBox

o Convert the result into negation normal form

o Apply the tableau rules to generate more Aboxes
o Stop when none of the rules are applicable

o 7+ CLC D if all Aboxes contain clashes
o 7T ¥ CLC D if some Abox does not contain a clash

28/33
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A note on soundness and completeness

o “I": derivable with a set of inference rules,

o “E" as implies, i.e., every truth assignment that satisfies I
also satisfies ¢
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A note on soundness and completeness

o “I": derivable with a set of inference rules,
o “E" as implies, i.e., every truth assignment that satisfies I

also satisfies ¢
o Completeness: if [ = ¢ then '+ ¢

o If the algorithm is incomplete, then there exist entailments
that cannot be computed (hence, ‘missing’ some results)
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A note on soundness and completeness

o “I": derivable with a set of inference rules,
o “E" as implies, i.e., every truth assignment that satisfies I

also satisfies ¢
o Completeness: if [ = ¢ then '+ ¢

o If the algorithm is incomplete, then there exist entailments
that cannot be computed (hence, ‘missing’ some results)

o Soundness: if '+ ¢ then T |= ¢

o If the algorithm is unsound then false conclusions can be
derived from true premises, which his even more undesirable
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Negation Normal Form

@ C and D are concepts, R a role
o — only in front of concepts:

—-—C gives C

—(C D) gives ~C LU—-D
-(CUuD) gives =CM—-D
-(VR.C) gives 3R.=C
—(3R.C) gives VR.-C

e 6 6 o o
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Tableau rules for ALC

Merule If (G M G)(a) € S but S does not contain both Ci(a) and
C>(a), then
S=SU{G(a), &(a)}

Li-rule If (G U G)(a) € S but S contains neither Cy(a) nor Cy(a),
then
S=SuU{Gl(a)}
S=5uU{G(a)}

V-rule If (VR.C)(a) € S and S contains R(a, b) but not C(b), then
S=SuU{C(b)}

“-rule If (3R.C)(a) € S and there is no b such that C(b) and

R(a, b), then

S=SU{C(b),R(a,b)}
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Example

- Let's say our ontology contains only:
la Vegan = Person M Veats.Plant
1b Vegetarian = Person M Veats.(Plant U Dairy)

- We want to know whether all vegans are vegetarians, i.e.:
T + Vegan C Vegetarian
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Example

Let's say our ontology contains only:
la Vegan = Person M Veats.Plant
1b Vegetarian = Person M Veats.(Plant U Dairy)
We want to know whether all vegans are vegetarians, i.e.:
T + Vegan C Vegetarian
If that's true, then there is, or can be, an individual that is an
instance of both, or:

If that's true, then some object that instantiates the subclass
but not the superclass cannot exist

2§ = {(Vegan —Vegetarian)(a) }
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Example

Let's say our ontology contains only:
la Vegan = Person M Veats.Plant
1b Vegetarian = Person M Veats.(Plant U Dairy)
We want to know whether all vegans are vegetarians, i.e.:
T + Vegan C Vegetarian
If that's true, then there is, or can be, an individual that is an
instance of both, or:

If that's true, then some object that instantiates the subclass
but not the superclass cannot exist

2§ = {(Vegan —Vegetarian)(a) }
Before entering the tableau, we'll ‘unfold’ it (informally, here:
complex concepts on the left-hand side are replaced with their
properties declared on the right-hand side)
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Example

Let's say our ontology contains only:

la Vegan = Person M Veats.Plant

1b Vegetarian = Person M Veats.(Plant U Dairy)
We want to know whether all vegans are vegetarians, i.e.:
T + Vegan C Vegetarian
If that's true, then there is, or can be, an individual that is an
instance of both, or:
If that's true, then some object that instantiates the subclass
but not the superclass cannot exist

2§ = {(Vegan —Vegetarian)(a) }
Before entering the tableau, we'll ‘unfold’ it (informally, here:
complex concepts on the left-hand side are replaced with their
properties declared on the right-hand side)
Check for NNF and rewrite if needed

Then (finally) apply the tableau rules
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