Basic DL: AL

DL and FOL

Reasoning services

ヘロト 人間 ト 人 ヨト 人 ヨト

Summary O

1/33

Ontology Engineering Lecture 3: Description Logics

Maria Keet email: mkeet@cs.uct.ac.za home: http://www.meteck.org

Department of Computer Science University of Cape Town, South Africa

Semester 2, Block I, 2019

roduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 00 00000000	0

- Syntax
- Semantics

3 DL and FOL

- Standard services
- Techniques

Introduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
000	0 000 0000	00000	00 00 00000000	0

Outline

- - Syntax
 - Semantics
- Standard services
 - Techniques

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

Summary O

Why description logics

• Just saw FOL, so why the hassle of looking at another logic?

Introduction	
0000	

DL and FOL

Reasoning services

Summary O

Why description logics

- Just saw FOL, so why the hassle of looking at another logic?
- Full FOL is undecidable, which is bad news for scalable implementations

Introduction	
0000	

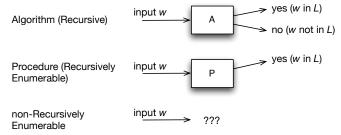
DL and FOL

Reasoning services

Summary O

Why description logics

- Just saw FOL, so why the hassle of looking at another logic?
- Full FOL is undecidable, which is bad news for scalable implementations



Introduction	
0000	

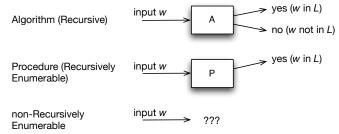
DL and FOL

Reasoning services

Summary O

Why description logics

- Just saw FOL, so why the hassle of looking at another logic?
- Full FOL is undecidable, which is bad news for scalable implementations



- Multiple applications (recall lecture 1) use OWL, which is actually DL-for-computational-use (except for OWL full)
- Need to grasp basics of the language so as to understand what's going on when developing an ontology (the reasoner output really is not magic)

Introduction	
0000	

DL and FOL

Reasoning services00
00
000000000

Summary O

What are DLs?

- A structured fragment of FOL
- Different notation, but very same ideas as we've seen in previous lecture
- (we'll get back to the 'fragment' aspect later)

Introduction	
0000	

DL and FOL

Reasoning services00
00
00
00000000

Summary O

What are DLs?

- A structured fragment of FOL
- Different notation, but very same ideas as we've seen in previous lecture
- (we'll get back to the 'fragment' aspect later)
- (Any (basic) Description Logic is a subset of \mathcal{L}_3 , i.e., the function-free FOL using only at most three variable names)
- Representation is at the predicate level: no variables are present in the notation (formalism)

Introduction
0000

DL and FOL

Reasoning services00
00
00
00000000

Summary O

What are DLs?

- A structured fragment of FOL
- Different notation, but very same ideas as we've seen in previous lecture
- (we'll get back to the 'fragment' aspect later)
- (Any (basic) Description Logic is a subset of \mathcal{L}_3 , i.e., the function-free FOL using only at most three variable names)
- Representation is at the predicate level: no variables are present in the notation (formalism)
- Provide theories and systems for declaratively expressing structured information and for accessing and reasoning with it.
- Used for, a.o.: terminologies and ontologies, formal conceptual data modelling, information integration,

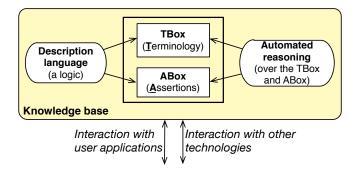
Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

・ロト ・ 同ト ・ ヨト ・ ヨト

Summary O

Description Logic knowledge base



Introduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
0000	• 000 0000	00000	00 00 00000000	0

- Syntax
- Semantics

3 DL and FOL

- Reasoning services
 - Standard services
 - Techniques

Introduction 0000	Basic DL: <i>ALC</i> ○ ●○○ ○○○○	DL and FOL	Reasoning services 00 00 000000000	Summary O

\mathcal{ALC} syntax

- Concepts denoting entity types/classes/unary predicates/universals, including top ⊤ and bottom ⊥; Example: (primitive, atomic): Book, Course
- Roles denoting relationships/associations/n-ary predicates/properties;
 Example¹: ENROLLED, READS
- Constructors: 'and' □, 'or' ⊔, and 'not' ¬; quantifiers 'for all' (each) ∀ and 'exists' (at least one/some) ∃
- Individuals (objects)
 Example: Student(Mandla), Mother(Sally),
 ¬Student(Sally), ENROLLED(Mandla, CS101/19/2)

¹Capitalisation for roles for notational clarity, but not required $\mathbf{E} \mapsto \mathbf{E} = \mathbf{O} \otimes \mathbf{O}$

Intro	du	cti	on	
000	0			

DL and FOL

Reasoning services00
00
00
00000000

Summary O

\mathcal{ALC} syntax

• Complex concepts using constructors

- Let C and D be concept names, R a role name, then
- $\neg C$, $C \sqcap D$, and $C \sqcup D$ are concepts, and
- $\forall R.C$ and $\exists R.C$ are concepts

Basic DL: ALC

DL and FOL

Reasoning services00
00
000000000

Summary O

\mathcal{ALC} syntax

• Complex concepts using constructors

- Let C and D be concept names, R a role name, then
- $\neg C$, $C \sqcap D$, and $C \sqcup D$ are concepts, and
- $\forall R.C$ and $\exists R.C$ are concepts
- Examples:
 - Student ⊑ ∃ENROLLED.(Course ⊔ DegreeProgramme) this is a *primitive concept*
 - Mother \sqsubseteq Woman $\sqcap \exists$ PARENTOF.Person
 - $Parent \equiv (Male \sqcup Female) \sqcap \exists PARENTOF.Mammal \sqcap \exists CARESFOR.Mammal$

this is a *defined concept*

Introduction	
0000	

DL and FOL

Reasoning services

Summary O

\mathcal{ALC} syntax

- Domain and range restrictions of roles
- Or: specifying what kind of object the first (domain) and the second (range) object participating in the role has to be.

Basic DL: ALC \circ $\circ \circ \bullet$ DL and FOL

Reasoning services00
00
00
00000000

Summary O

\mathcal{ALC} syntax

- Domain and range restrictions of roles
- Or: specifying what kind of object the first (domain) and the second (range) object participating in the role has to be.
- e.g., SONOF: the domain surely has to be male, and the range is a parent:
 - \exists SONOF. $\top \sqsubseteq$ Male: "any object that has an outgoing relation SONOF is a male"
 - ⊤ ⊑ ∀SONOF.Parent: "all objects that have an incoming relation SONOF are a parent"
 ∃SONOF⁻.⊤ ⊑ Parent: "the domain of the inverse of SONOF (i.e., range of SONOF) is a parent"

Basic DL: *ALC* ○ ○ ○ ○ ○ ○ DL and FOL

Reasoning services00
00
000000000

Summary O

Semantics of \mathcal{ALC}

- Model-theoretic semantics
- Domain Δ is a non-empty set of objects
- Interpretation: $\cdot^{\mathcal{I}}$ is the interpretation function, domain $\Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every role name R to a subset $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every individual name *a* to elements of $\Delta^{\mathcal{I}}$: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- Note: $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\perp^{\mathcal{I}} = \emptyset$

Introduction 0000	Basic DL: \mathcal{ALC} $\circ \circ $	DL and FOL	Reasoning services	Summary O
	0			

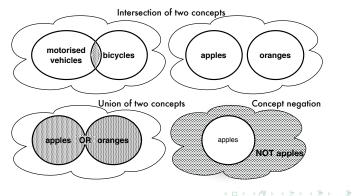
Semantics of ALC (2/3)

•
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

• $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$

•
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

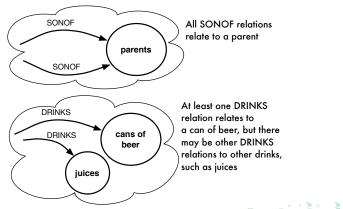
The cloud-shape is our domain of interpretation with objects



oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 00 000000000	0
	Sen	nantics of ${\cal A}$	LC	
• C	and D are concepts	s, R a role		
● (∀	$(R,C)^{\mathcal{I}} = \{x \mid \forall y, R\}$	$\mathcal{P}^{\mathcal{I}}(\mathbf{x}, \mathbf{v}) \to \mathcal{C}^{\mathcal{I}}(\mathbf{v})$	()}	

• $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.R^{\mathcal{I}}(x,y) \rightarrow C^{\mathcal{I}}(y)\}$ • $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y.R^{\mathcal{I}}(x,y) \land C^{\mathcal{I}}(y)\}$

The cloud-shape is our domain of interpretation with objects



13/33

Basic DL: *ALC* ○ ○ ○ ○ ○ ○ DL and FOL

Reasoning services00
00
00
00000000

Summary O

Semantics of \mathcal{ALC}

- $\bullet\,$ C and D are concepts, R a role, a and b are individuals
- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation $\mathcal I$ satisfies the statement $C\equiv D$ if $C^{\mathcal I}=D^{\mathcal I}$

Basic DL: *ALC* ○ ○ ○ ○ ○ ○ DL and FOL

Reasoning services00
00
000000000

Summary O

Semantics of ALC

- $\bullet\,$ C and D are concepts, R a role, a and b are individuals
- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation $\mathcal I$ satisfies the statement $C \equiv D$ if $C^{\mathcal I} = D^{\mathcal I}$
- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a,b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$

Basic DL: *ALC* ○ ○ ○ ○ ○ ○ DL and FOL

Reasoning services00
00
000000000

Summary O

Semantics of \mathcal{ALC}

- $\bullet\,$ C and D are concepts, R a role, a and b are individuals
- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation $\mathcal I$ satisfies the statement $C \equiv D$ if $C^{\mathcal I} = D^{\mathcal I}$
- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a, b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$
- An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ is a model of a knowledge base \mathcal{KB} if every axiom of \mathcal{KB} is satisfied by \mathcal{I}
- A knowledge base \mathcal{KB} is said to be satisfiable if it admits a model

ntroduction	Basic DL: <i>ALC</i> 0 000 0000	DL and FOL ●○○○○	Reasoning services	Summary O

Outline

Introduction

Int

- 2 Basic DL: ALC
 - Syntax
 - Semantics

3 DL and FOL

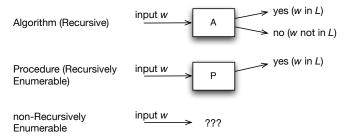
- 4 Reasoning services
 - Standard services
 - Techniques

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services00
00
00000000

Summary O

- Recall that full FOL is undecidable
- This is unpleasant for automated reasoning



Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services00
00
00000000

Summary O

- Approach: find a fragment—a *sublanguage*—of FOL that is decidable
- Take some features, prove the computational complexity of some problem
- But lest first demonstrate the two are related, so that we can do this

Introduc	tion
0000	

DL and FOL

Reasoning services00
00
000000000

Summary O

Example correspondences

• $C \sqsubseteq D$ • $\forall x(C(x) \rightarrow D(x))$

Introduc	tion
0000	

DL and FOL

Reasoning services

Summary O

Example correspondences

- $C \sqsubseteq D$ • $\forall x (C(x) \rightarrow D(x))$
- $C \sqsubseteq D \sqcap E$
 - $\forall x(C(x) \rightarrow D(x) \land E(x))$

Intro	du	cti	on	
000	0			

DL and FOL

Reasoning services00
00
000000000

Summary O

Example correspondences

- $C \sqsubseteq D$ • $\forall x(C(x) \rightarrow D(x))$ • $C \sqsubseteq D \sqcap E$ • $\forall x(C(x) \rightarrow D(x) \land E(x))$
- $C \sqsubseteq \exists R.D$
 - $\forall x(C(x) \rightarrow \exists y(R(x,y) \land D(y)))$

Intro	du	cti	on	
000	0			

DL and FOL

Reasoning services

Summary O

Example correspondences

• $C \sqsubseteq D$ • $\forall x(C(x) \rightarrow D(x))$ • $C \sqsubseteq D \sqcap E$ • $\forall x(C(x) \rightarrow D(x) \land E(x))$ • $C \sqsubseteq \exists R.D$ • $\forall x(C(x) \rightarrow \exists y(R(x,y) \land D(y))$ • $C \equiv \exists R.D \sqcup \exists S.D$ • $\forall x(C(x) \leftrightarrow \exists y((R(x,y) \lor S(x,y)) \land D(y)))$

Basic DL: AL 0 000 0000 DL and FOL

Reasoning services00
00
00
00000000

Summary O

- We end up with trade-offs of features in a DL
- Some features always will make the language undecidable (e.g., true role composition, R ∘ S ≡ T)
- Other features are only 'problematic' (computationally less desirable) when taken together with another

Basic DL: *AL* 0 000 0000 DL and FOL

Reasoning services00
00
00
00000000

Summary O

- We end up with trade-offs of features in a DL
- Some features always will make the language undecidable (e.g., true role composition, R ∘ S ≡ T)
- Other features are only 'problematic' (computationally less desirable) when taken together with another
- E.g., one could define a language where:
 - $\bullet\,$ it is prohibited to use \forall in an axiom, or
 - only $\exists R. \top$ (no range specified) but not $\exists R. D$, or
 - $\exists R$ only on the rhs of the inclusion but not on the lhs

Basic DL: *AL* 0 000 0000 DL and FOL

Reasoning services00
00
00
00000000

Summary O

- We end up with trade-offs of features in a DL
- Some features always will make the language undecidable (e.g., true role composition, R ∘ S ≡ T)
- Other features are only 'problematic' (computationally less desirable) when taken together with another
- E.g., one could define a language where:
 - $\bullet\,$ it is prohibited to use \forall in an axiom, or
 - only $\exists R. \top$ (no range specified) but not $\exists R. D$, or
 - $\exists R$ only on the rhs of the inclusion but not on the lhs
- There are *many* DLs, and most combinations have been investigated over the past 25 years
- Roughly: the fewer features and the more restrictions, the more 'computationally well-behaved' the language is

troduction	Basic DL: <i>ALC</i> 0 000 0000	DL and FOL	Reasoning services ●0 ○○ ○○○○○○○○○	Summary O

Outline

- 2 Basic DL: ALC
 - Syntax
 - Semantics

3 DL and FOL

- Standard services
- Techniques

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 20/33

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

Summary O

Essential to automated reasoning

- The choice of the class of problems the software program has to solve
- The formal language in which to represent the problems
- The way how the program has to compute the solution
- How to do this efficiently

Introduction	
0000	

DL and FOL

Reasoning services

Summary O

Logical implication

• $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ

Introduc	tion
0000	

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

Summary O

Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:

 $\mathsf{TBox:} \ \exists \mathtt{TEACHES}.\mathtt{Course} \sqsubseteq \neg \mathtt{Undergrad} \sqcup \mathtt{Professor}$

ABox: TEACHES(John, cs101), Course(cs101),

Undergrad(John)

Introduc	tion
0000	

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services ○○ ●○ ○○○○○○○○○

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Summary O

22/33

Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:

 $\mathsf{TBox:} \ \exists \mathtt{TEACHES}.\mathtt{Course} \sqsubseteq \neg \mathtt{Undergrad} \sqcup \mathtt{Professor}$

- ABox: TEACHES(John, cs101), Course(cs101),
- Undergrad(John)
- $\mathcal{KB} \models \texttt{Professor}(\texttt{John})$

Introduc	tion
0000	

Basic DL: AL

DL and FOL

Reasoning services

Summary O

Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:

 $\mathsf{TBox:} \ \exists \mathtt{TEACHES}.\mathtt{Course} \sqsubseteq \neg \mathtt{Undergrad} \sqcup \mathtt{Professor}$

ABox: TEACHES(John, cs101), Course(cs101),

Undergrad(John)

- $\mathcal{KB} \models \texttt{Professor}(\texttt{John})$
- What if:

TBox: ∃TEACHES.Course ⊑ Undergrad ⊔ Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

• $\mathcal{KB} \models \operatorname{Professor}(\operatorname{John})$? or perhaps $\mathcal{KB} \models \neg \operatorname{Professor}(\operatorname{John})$?

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services ○○ ○● ○○○○○○○○ Summary O

Reasoning services for DL-based OWL ontologies • Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)

<ロト<部ト<Eト<Eト E のQで 23/33

uction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
	0 000 0000	00000	00 00 00000000	0

Reasoning services for DL-based OWL ontologies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?

duction	Basic DL: <i>ALC</i> 0 000 0000 0000	DL and FOL	Reasoning services ○○ ○● ○○○○○○○○○	Summary O
D				

Reasoning services for DL-based OWL ontologies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base ($\mathcal{KB} \nvDash \top \sqsubseteq \bot$)

roduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 00 000000000	0
Rea	soning services	for DL-base	d OWL ontolog	gies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?

oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 00 00000000	0
Rea	soning services	for DL-base	ed OWL ontolog	ies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)

oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 00 00000000	0
Rea	soning services	for DL-base	d OWL ontolog	ies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?

oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 0 000000000	0
Rea	soning services	for DL-base	d OWL ontolog	ies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?

イロト 不得 トイヨト イヨト 二日

23/33

• Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$

oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 0 000000000	0
R	easoning services	for DL-base	d OWL ontolog	ies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base ($\mathcal{KB} \nvDash \top \sqsubseteq \bot$)
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB, i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?

oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 C• 00000000	0
Rea	asoning services	for DL-base	ed OWL ontolog	ies

- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base ($\mathcal{KB} \nvDash \top \sqsubseteq \bot$)
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB, i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$

oduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
00	0 000 0000	00000	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
R	easoning services	for DL-base	d OWL ontolog	ies

- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Consistency of the knowledge base ($\mathcal{KB} \nvDash \top \sqsubseteq \bot$)
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB, i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$
 - find all members of C in \mathcal{KB} , i.e., compute all individuals a s.t. C(a) is satisfied by every interpretation of \mathcal{KB}

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

Summary O

Automated reasoning techniques

• How do we compute, say, satisfiability?



Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

ヘロト 人間ト 人造ト 人造トー

Summary O

24/33

Automated reasoning techniques

- How do we compute, say, satisfiability?
- Truth tables are too cumbersome
- Several techniques are more efficient
- Current 'winner' is tableau reasoning

Basic DL: AL

DL and FOL

Reasoning services

イロト 不得 トイヨト イヨト 二日

Summary O

25/33

The idea-same as for FOL

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample
- Decompose the formula in top-down fashion

Basic DL: *ALC* 0 000 0000 DL and FOL

Basic rules (from previous lecture)

- Tableaux calculus works only if the formula has been translated into Negation Normal Form, *i.e.*, all the negations have been pushed inside
- If a model satisfies a conjunction, then it also satisfies each of the conjuncts
- If a model satisfies a disjunction, then it also satisfies one of the disjuncts. It is a non-deterministic rule, and it generates two alternative branches.
- Apply the completion rules until either (a) an explicit contradiction due to the presence of two opposite literals in a node (a clash) is generated in each branch, or (b) there is a completed branch where no more rule is applicable.

Basic DL: *ALC* 0 000 0000 DL and FOL

Summary O

Example (from previous lecture)

Number	Tableau	Explanation	
1	$\forall x.R(x,x)$	Reflexivity axiom in the original theory T	
2	$\forall x,y. \neg R(x,y) \lor \neg R(y,x)$	Asymmetry axiom in the original theory T	
3	$\forall x, y. R(x, y)$	The negated axiom added to theory T	
4		Substitute <i>x</i> for term <i>a</i> in 1,2,3	
5	 R(a,a)		
6	$\forall y. \neg R(a, y) \lor \neg R(y, a)$		
7	∀ <i>y</i> . <i>R</i> (a,y)		
8		Substitute y for term a in 2 and 3	
9	 R(a,a)		
10	<i>¬R(a,a)</i> ∨ <i>¬R(a,a)</i>		
11	R(a,a)		
12	\frown	Split the disjunction of 10	
13	¬R(a,a) ¬R(a,a)	Which each generate a clash with 9 and 11, hence, $\neg \forall x, y. R(x, y)$ is entailed by T.	

27/33

Basic DL: AL 0 000 0000 DL and FOL

Reasoning services

イロト 不得 トイヨト イヨト 二日

Summary O

28/33

Tableau reasoning for DLs

- Most common for DL reasoners
- Like for FOL:
 - Unfold the TBox
 - Convert the result into negation normal form
 - Apply the tableau rules to generate more Aboxes
 - Stop when none of the rules are applicable
- $\mathcal{T} \vdash \mathcal{C} \sqsubseteq D$ if all Aboxes contain clashes
- $\mathcal{T} \nvDash C \sqsubseteq D$ if some Abox does not contain a clash

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

ヘロト 人間 ト 人 ヨト 人 ヨト

Summary O

29/33

A note on soundness and completeness

- "--": derivable with a set of inference rules,
- " \models " as implies, i.e., every truth assignment that satisfies F also satisfies ϕ

Basic DL: ALC 0 000 0000 DL and FOL

Reasoning services

Summary O

A note on soundness and completeness

- "--": derivable with a set of inference rules,
- " \models " as implies, i.e., every truth assignment that satisfies F also satisfies ϕ
- Completeness: if $\Gamma \models \phi$ then $\Gamma \vdash \phi$
 - If the algorithm is *incomplete*, then there exist entailments that cannot be computed (hence, 'missing' some results)

Basic DL: ALC 0 000 0000 DL and FOL

Summary O

A note on soundness and completeness

- " \vdash ": derivable with a set of inference rules,
- " \models " as implies, i.e., every truth assignment that satisfies F also satisfies ϕ
- Completeness: if $\Gamma \models \phi$ then $\Gamma \vdash \phi$
 - If the algorithm is *incomplete*, then there exist entailments that cannot be computed (hence, 'missing' some results)
- Soundness: if $\Gamma \vdash \phi$ then $\Gamma \models \phi$
 - If the algorithm is *unsound* then false conclusions can be derived from true premises, which his even more undesirable

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

Summary O

Negation Normal Form

- $\bullet\,$ C and D are concepts, R a role
- $\bullet \ \neg$ only in front of concepts:

•
$$\neg \neg C$$
 gives C
• $\neg (C \sqcap D)$ gives $\neg C \sqcup \neg D$
• $\neg (C \sqcup D)$ gives $\neg C \sqcap \neg D$
• $\neg (\forall R.C)$ gives $\exists R.\neg C$
• $\neg (\exists R.C)$ gives $\forall R.\neg C$

troduction	Basic DL: ALC	DL and FOL	Reasoning services	Summary
000	0 000 0000	00000	00 00 00000000	0

Tableau rules for \mathcal{ALC}

□-rule If $(C_1 \sqcap C_2)(a) \in S$ but *S* does not contain both $C_1(a)$ and $C_2(a)$, then $S = S \cup \{C_1(a), C_2(a)\}$ □-rule If $(C_1 \sqcup C_2)(a) \in S$ but *S* contains neither $C_1(a)$ nor $C_2(a)$, then $S = S \cup \{C_1(a)\}$ $S = S \cup \{C_2(a)\}$ ∀-rule If $(\forall R.C)(a) \in S$ and *S* contains R(a, b) but not C(b), then $S = S \cup \{C(b)\}$

 \exists -rule If $(\exists R.C)(a) \in S$ and there is no b such that C(b) and R(a, b), then $S = S \cup \{C(b), R(a, b)\}$

ntroduction	Basic DL: ALC 0 000	DL and FOL	Reasoning services	Summary O
	0000	Example	0000000	

- Let's say our ontology contains only:
 - 1a Vegan \equiv Person $\sqcap \forall$ eats.Plant
 - 1b Vegetarian \equiv Person $\sqcap \forall$ eats.(Plant \sqcup Dairy)
- We want to know whether all vegans are vegetarians, i.e.: $\mathcal{T} \vdash Vegan \sqsubseteq Vegetarian$

Introduction	Basic DL: <i>ALC</i> 0 000 0000	DL and FOL	Reasoning services ○○ ○○ ○○○○○○○○○●	Summary O
		Example		
- Le	t's say our ontolog	y contains only:		

1a Vegan \equiv Person $\sqcap \forall$ eats.Plant

1b Vegetarian \equiv Person $\sqcap \forall$ eats.(Plant \sqcup Dairy)

- We want to know whether all vegans are vegetarians, i.e.: $\mathcal{T} \vdash Vegan \sqsubseteq Vegetarian$
- If that's true, then there is, or can be, an individual that is an instance of both, or:
- If that's true, then some object that instantiates the subclass but *not* the superclass *cannot* exist

2 $S = \{(Vegan \sqcap \neg Vegetarian)(a)\}$

Introduction	Basic DL: <i>ALC</i> 0 000 0000	DL and FOL	Reasoning services ○○ ○○○ ○○○○○○○○●	Summary O
		Example		
- Le	t's say our ontolog	y contains only:		

1a Vegan \equiv Person $\sqcap \forall$ eats.Plant

1b Vegetarian \equiv Person $\sqcap \forall$ eats.(Plant \sqcup Dairy)

- We want to know whether all vegans are vegetarians, i.e.: $\mathcal{T} \vdash Vegan \sqsubseteq Vegetarian$
- If that's true, then there is, or can be, an individual that is an instance of both, or:
- If that's true, then some object that instantiates the subclass but *not* the superclass *cannot* exist

2 $S = \{(Vegan \sqcap \neg Vegetarian)(a)\}$

- Before entering the tableau, we'll 'unfold' it (informally, here: complex concepts on the left-hand side are replaced with their properties declared on the right-hand side)

ntroduction	Basic DL: <i>ALC</i> 0 000 0000	DL and FOL	Reasoning services ○○ ○○○○○○○○○○●	Summary O
		Example		
- Le	et's sav our ontolog	v contains only:		

1a Vegan \equiv Person $\sqcap \forall$ eats.Plant

1b Vegetarian \equiv Person $\sqcap \forall eats.(Plant \sqcup Dairy)$

- We want to know whether all vegans are vegetarians, i.e.: $\mathcal{T} \vdash Vegan \sqsubseteq Vegetarian$
- If that's true, then there is, or can be, an individual that is an instance of both, or:
- If that's true, then some object that instantiates the subclass but *not* the superclass *cannot* exist

2 $S = \{(Vegan \sqcap \neg Vegetarian)(a)\}$

- Before entering the tableau, we'll 'unfold' it (informally, here: complex concepts on the left-hand side are replaced with their properties declared on the right-hand side)
- Check for NNF and rewrite if needed
- Then (finally) apply the tableau rules

Intro	du	cti	on
000	0		

Basic DL: *ALC* 0 000 0000 DL and FOL

Reasoning services

Summary

Summary

- Syntax
- Semantics

3 DL and FOL

- Standard services
- Techniques