
Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Ontology Engineering
Lecture 5: Methods and Methodologies

Maria Keet
email: mkeet@cs.uct.ac.za

home: http://www.meteck.org

Department of Computer Science
University of Cape Town, South Africa

Semester 2, Block I, 2019

1/71

mkeet@cs.uct.ac.za
http://www.meteck.org

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

2/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Ontology development

You have some experience with an ontology language and
representing some knowledge, which was given to you

How to come up with the whole ontology in the first place?

What can, or should, you do when you have to develop your
own ontology?

⇒ Just like in software engineering, there are methods and
methodologies to guide you through it

Recall (L1): an ontology is a logical theory “plus some more”

In this Block II, we also look into that “some more”

3/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Ontology development

You have some experience with an ontology language and
representing some knowledge, which was given to you

How to come up with the whole ontology in the first place?

What can, or should, you do when you have to develop your
own ontology?

⇒ Just like in software engineering, there are methods and
methodologies to guide you through it

Recall (L1): an ontology is a logical theory “plus some more”

In this Block II, we also look into that “some more”

3/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Ontology development

You have some experience with an ontology language and
representing some knowledge, which was given to you

How to come up with the whole ontology in the first place?

What can, or should, you do when you have to develop your
own ontology?

⇒ Just like in software engineering, there are methods and
methodologies to guide you through it

Recall (L1): an ontology is a logical theory “plus some more”

In this Block II, we also look into that “some more”

3/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Topics for this lecture

Methodologies
Most are coarse-grained, i.e., a macro-level, processual
information systems perspective; they do not (yet) contain all
the permutations at each step
The actual modelling, or ontology authoring, using micro-level
guidelines and tools

Methods, e.g.,:

Reverse engineering and text mining to start
OntoClean and OntoParts to improve an ontology’s quality

Parameters that affect ontology development (e.g.,purpose,
starting/legacy material, language)

Tools to model, to reason, to debug, to integrate, to link to
data

4/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Topics for this lecture

Methodologies
Most are coarse-grained, i.e., a macro-level, processual
information systems perspective; they do not (yet) contain all
the permutations at each step
The actual modelling, or ontology authoring, using micro-level
guidelines and tools

Methods, e.g.,:

Reverse engineering and text mining to start
OntoClean and OntoParts to improve an ontology’s quality

Parameters that affect ontology development (e.g.,purpose,
starting/legacy material, language)

Tools to model, to reason, to debug, to integrate, to link to
data

4/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

5/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

6/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Typical stages of macro-level methodologies

(scheduling, controlling, quality assurance)Ontology management

Ontology development and support

Ontology use

Feasibility study (problems, opportunities, potential
solutions, economic feasibility)

Conceptualisation (of the model, integration and
extension of existing solutions)

Implementation (ontology authoring in a logic-based
representation language)

Domain Analysis (motivating scenarios, competency
questions, existing solutions)

Maintenance (adapting the ontology to new
requirements)

Use (ontology-based search, integration, negotiation)

O
ntology reuse

Docum
entation

Evaluation

Knowledge
acquisition

7/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Methodologies for ontology development

Waterfall

Lifecycle

Agile

Variants among them, such as eXtreme Design and TDD
approaches, and different waterfalls

They have not yet been compared in a controlled experiment

Nor is it clear which is popular (read: actually used) among
the developers of domain ontologies, if any

8/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Methodologies for ontology development

Waterfall

Lifecycle

Agile

Variants among them, such as eXtreme Design and TDD
approaches, and different waterfalls

They have not yet been compared in a controlled experiment

Nor is it clear which is popular (read: actually used) among
the developers of domain ontologies, if any

8/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Methodologies for ontology development

Waterfall

Lifecycle

Agile

Variants among them, such as eXtreme Design and TDD
approaches, and different waterfalls

They have not yet been compared in a controlled experiment

Nor is it clear which is popular (read: actually used) among
the developers of domain ontologies, if any

8/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

A waterfall methodology: Methontology

Basic methodological steps:

Specification: why, what are its intended uses, who are the
prospective users
Conceptualization: with intermediate representations
Formalization: transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model
Implementation: represent it in an ontology language
Maintenance: corrections, updates, etc.

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others

9/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

A waterfall methodology: Methontology

Basic methodological steps:

Specification: why, what are its intended uses, who are the
prospective users
Conceptualization: with intermediate representations
Formalization: transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model
Implementation: represent it in an ontology language
Maintenance: corrections, updates, etc.

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others

9/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

A waterfall methodology: Methontology

Basic methodological steps:

Specification: why, what are its intended uses, who are the
prospective users
Conceptualization: with intermediate representations
Formalization: transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model
Implementation: represent it in an ontology language
Maintenance: corrections, updates, etc.

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others

9/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Extending the methodologies

Methontology and others (e.g., On-To-Knowledge,
KACTUS approach) are methods for developing one single
ontology

Changing landscape in ontology development towards building
“ontology networks”

Characteristics: dynamics, context, collaborative, distributed

E.g., the NeOn methodology

10/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Extending the methodologies

Methontology and others (e.g., On-To-Knowledge,
KACTUS approach) are methods for developing one single
ontology

Changing landscape in ontology development towards building
“ontology networks”

Characteristics: dynamics, context, collaborative, distributed

E.g., the NeOn methodology

10/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Extending the methodologies: NeOn

NeOn’s “Glossary of Activities” identifies and defines 55
activities when ontology networks are collaboratively built

Among others: ontology localization, -alignment,
-formalization, -diagnosis, -enrichment etc.

Divided into a matrix with “required” and “if applicable”

Recognises there are several scenarios for ontology
development, refining the typical monolithic ‘waterfall’
approach

(more info in neon 2008 d5.4.1.pdf)

11/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Several scenarios for Building Ontology Networks

12/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Tools for methodologies – not exactly

Current tools support one or more aspects of a methodology

e.g., WebProtégé, MOdelling wiKI MoKi for collaborative
work, add a documentation plugin, a merging plugin etc.

e.g., MoKi’s collaboration:

based on a SemanticWiki, used for collaborative and
cooperative ontology development

‘multi-modal access at different levels of formality: informal,
semi-formal and formal (enables actors with different expertise
contribute)

13/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Tools for methodologies – not exactly

Current tools support one or more aspects of a methodology

e.g., WebProtégé, MOdelling wiKI MoKi for collaborative
work, add a documentation plugin, a merging plugin etc.

e.g., MoKi’s collaboration:

based on a SemanticWiki, used for collaborative and
cooperative ontology development
‘multi-modal access at different levels of formality: informal,
semi-formal and formal (enables actors with different expertise
contribute)

13/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

14/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Micro-level methodologies

Guidelines detailing how to go from informal to logic-based
representations with instructions how to include the axioms
and figure out which ones are better than others

To represent the formal and ontological details

(very) Expressive ontology language, so as to include guidance
also for the axioms and ontological quality criteria

Notably: OntoSpec, “Ontology development 101”
(outdated!!!), DiDOn, TDD

Methods & tools for sets of axioms; e.g.: FORZA, advocatus
diaboli, SubProS & ProChainS, ...

15/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Micro-level methodologies

Guidelines detailing how to go from informal to logic-based
representations with instructions how to include the axioms
and figure out which ones are better than others

To represent the formal and ontological details

(very) Expressive ontology language, so as to include guidance
also for the axioms and ontological quality criteria

Notably: OntoSpec, “Ontology development 101”
(outdated!!!), DiDOn, TDD

Methods & tools for sets of axioms; e.g.: FORZA, advocatus
diaboli, SubProS & ProChainS, ...

15/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

More detailed steps (generalised from DiDOn) (1/2)

1. Requirements analysis, regarding expressiveness (temporal,
fuzzy, n-aries etc.), types of queries, reasoning services needed;

2. Design an ontology architecture, such as modular, and if so,
in which way, distributed or not, etc.

3. Choose principal representation language and consider
encoding peculiarities;

16/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

A few basic hints for choosing a language

Is reasoning
required?

Only data
annotation?

Text
annotation?

Expressivity
is important?

Use OWL (2) DL

Use OWL 2 EL

Use OBO
or OWL 2 EL

Use SKOS, OBO, or
OWL 2 EL

No

Yes

Decidability is
important?

Use any FOL, extension thereof, or higher order
logic, e.g. Common Logic, DLRus

large ABox?

Use OWL 2 QL

17/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

More detailed steps (generalised from DiDOn) (2/2)

4. Formalisation, including:

examine and add the classes, object properties, constraints,
rules taking into account the imported ontologies;
use an automated reasoner for debugging/anomalous
deductions;
use ontological reasoning services for quality checks
(OntoClean, RBox Compatibility);
add annotations;

5. Generate versions in other ontology languages, ‘lite’ versions,
etc, if applicable;

18/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Test-driven Development

Ontology lifecycle

TDD
cycle

CQ added, template filled,
or axiom written

TDD
cycle

TDD
cycle

etc…TDD
cycle

etc…

TDD cycle

1. select
scenario

2. domain axiom
for TDD test

3. TDD test
expected to fail

4. update
ontology

5. classify ontology;
no contradictions

6. TDD test
expected to pass

7. refactor

8. regression
testing

TDD
cycle

TDD
cycle

TDD
cycle

TDD
cycle

TDD
cycle

Prior feasibility study, architecture,
language decisions, ontology reuse
decisions, etc etc, CQ specification

Deployment,
documentation, etc.

19/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The landscape

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis,
“knowledge acquisition bottleneck”
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Difference between method and methodology

There are plenty methods and guidelines for ontology
development—use them

20/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The landscape

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis,
“knowledge acquisition bottleneck”

no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Difference between method and methodology

There are plenty methods and guidelines for ontology
development—use them

20/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The landscape

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis,
“knowledge acquisition bottleneck”
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Difference between method and methodology

There are plenty methods and guidelines for ontology
development—use them

20/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The landscape

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis,
“knowledge acquisition bottleneck”
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Difference between method and methodology

There are plenty methods and guidelines for ontology
development—use them

20/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The landscape

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis,
“knowledge acquisition bottleneck”
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Difference between method and methodology

There are plenty methods and guidelines for ontology
development—use them

20/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The landscape

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis,
“knowledge acquisition bottleneck”
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Difference between method and methodology

There are plenty methods and guidelines for ontology
development—use them

20/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

21/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners and other
approaches can help fix that

22/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners and other
approaches can help fix that

22/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners and other
approaches can help fix that

22/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners and other
approaches can help fix that

22/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners and other
approaches can help fix that

22/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

The methods can be divided roughly into:

logic-based only

purely based on philosophy

a combination of the former two

practical rules or guidelines

Each of these categories has several methods with more or less tool
support

23/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Example of heuristics: OOPS!

Pitfall: a (common) mistake, incorrect assumptions that may,
or may not, concern the logic

Among others: undesirable deductions, inconsistent naming
scheme, declaring a property transitive but has incompatible
domain and range

Heuristic, because they are not always clear-cut cases and can
have false positives; e.g.:

‘missing inverse’: but some relations don’t take one, not
needed, or language has inverse() feature
‘(in)consistency in naming’: your ontology may be systematic,
but an imported one may not be, or had a different naming
convention
P7 merging different concepts: StyleAndPeriod should not
be combined, but a RumAndRaisin flavour of ice cream does
belong together

24/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

25/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Overview

Using automated reasoners for ‘debugging’ ontologies,
requires one to know about reasoning services

Using standard reasoning services

Reasoning services tailored to pinpointing the errors and
explaining the entailments

26/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable

27/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable

27/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable

27/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Common errors

Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

Atomic: An individual belongs to a class and its complement
Cardinality: An individual has a max cardinality restriction but
is related to more distinct individuals
Datatype: A literal value violates the (global or local) range
restrictions on a datatype property

Basic set of clashes for KBs (ontology + instances) are:

Inconsistency of assertions about individuals, e.g., an individual
is asserted to belong to disjoint classes or has a cardinality
restriction but related to more individuals
Individuals related to unsatisfiable classes
Defects in class axioms involving nominals (owl:oneOf, if
present in the language)

28/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Common errors

Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

Atomic: An individual belongs to a class and its complement
Cardinality: An individual has a max cardinality restriction but
is related to more distinct individuals
Datatype: A literal value violates the (global or local) range
restrictions on a datatype property

Basic set of clashes for KBs (ontology + instances) are:

Inconsistency of assertions about individuals, e.g., an individual
is asserted to belong to disjoint classes or has a cardinality
restriction but related to more individuals
Individuals related to unsatisfiable classes
Defects in class axioms involving nominals (owl:oneOf, if
present in the language)

28/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Test-last vs test-first

The previous list is useful for starting where to look when an
error (unsat class, ontology) occurs

Based on the approach ‘try and see’ what the reasoner says

Idea of ‘unit tests’ also introduced in ontology engineering ⇒
like test-last in programming

TDD is a test-first approach; can we use that for ontology
development?

yes. Theory, draft methodology, and tool for it
TDDonto2 description and link to Protégé plugin:
https://keet.wordpress.com/2016/12/15/

improved-tddonto-v2-more-types-of-axioms-supported-and-better-feedback/

29/71

https://keet.wordpress.com/2016/12/15/improved-tddonto-v2-more-types-of-axioms-supported-and-better-feedback/
https://keet.wordpress.com/2016/12/15/improved-tddonto-v2-more-types-of-axioms-supported-and-better-feedback/

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Test-last vs test-first

The previous list is useful for starting where to look when an
error (unsat class, ontology) occurs

Based on the approach ‘try and see’ what the reasoner says

Idea of ‘unit tests’ also introduced in ontology engineering ⇒
like test-last in programming

TDD is a test-first approach; can we use that for ontology
development?

yes. Theory, draft methodology, and tool for it
TDDonto2 description and link to Protégé plugin:
https://keet.wordpress.com/2016/12/15/

improved-tddonto-v2-more-types-of-axioms-supported-and-better-feedback/

29/71

https://keet.wordpress.com/2016/12/15/improved-tddonto-v2-more-types-of-axioms-supported-and-better-feedback/
https://keet.wordpress.com/2016/12/15/improved-tddonto-v2-more-types-of-axioms-supported-and-better-feedback/

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

30/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

RBoxes: Questions and Problems

What are the features of a ‘good’ RBox w.r.t. object property
expressions?

Modelling flaws in the RBox show up as unexpected or
undesirable deductions regarding classes in the TBox, but
current explanation algorithms mostly do not point to the
actual flaw in the RBox

How to guide the modeller how to revise the ontology once a
flaw is found?

31/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Preliminaries (1/2)—OWL 2/SROIQ
“basic form” for sub-properties, i.e., S v R,

“complex form” with property chains

R v C1 × C2 as shortcut for domain and range axioms
∃R v C1 and ∃R− v C2 where C1 and C2 are generic classes;
ObjectPropertyDomain(OPE CE) and
ObjectPropertyRange(OPE CE) in OWL.

R v >×> when no domain and range axiom has been
declared

Definition (User-defined Domain and Range Classes)

Let R be an OWL object property and R v C1 × C2 its associated

domain and range axiom. Then, with the symbol DR we indicate the

User-defined Domain of R—i.e., DR = C1—and with the symbol RR we

indicate the User-defined Range of R—i.e., RR = C2.

32/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Preliminaries (2/2)—OWL 2/SROIQ
Definition ((Regular) Role Inclusion Axioms (Horrocks et al,
2006))

Let ≺ be a regular order on roles. A role inclusion axiom (RIA for
short) is an expression of the form w v R, where w is a finite string of
roles not including the universal role U, and R 6= U is a role name. A
role hierarchy Rh is a finite set of RIAs. An interpretation I satisfies a
role inclusion axiom w v R, written I |= w v R, if wI ⊆ RI . An
interpretation is a model of a role hierarchy Rh if it satisfies all RIAs in
Rh, written I |= Rh. A RIA w v R is ≺-regular if R is a role name, and

w = R ◦ R, or

w = R−, or

w = S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or

w = R ◦ S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or

w = S1 ◦ . . . ◦ Sn ◦ R and Si ≺ R, for all 1 ≥ i ≥ n.

Finally, a role hierarchy Rh is regular if there exists a regular order ≺
such that each RIA in Rh is ≺-regular.

33/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Object sub-properties

Given S v R, then all individuals in the property assertions
involving property S must also be related to each other
through property R.

Subsumption for OWL object properties (DL roles) holds if
the subsumed property is more constrained such that in every
model, the set of individual property assertions is a subset of
those of its parent property

Two ways to constrain a property, and either one suffices:

By specifying its domain or range
By declaring the property’s characteristics

34/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Object sub-properties

Given S v R, then all individuals in the property assertions
involving property S must also be related to each other
through property R.

Subsumption for OWL object properties (DL roles) holds if
the subsumed property is more constrained such that in every
model, the set of individual property assertions is a subset of
those of its parent property

Two ways to constrain a property, and either one suffices:

By specifying its domain or range
By declaring the property’s characteristics

34/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Constraining a property

Relationship
characteristic

Antisymmetry IrreflexivityTransitivity

{disjoint, complete}

Reflexivity

Symmetry

Asymmetry

Acyclicity
Intransitivity

Purely-
reflexive

Strongly
intransitive

B.

Figure: A: Example, alike the so-called ‘subsetting’ idea in UML; B:
hierarchy of property characteristics (Based on Halpin 2001)

35/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

*
Constraining a property

Relationship
characteristic

IrreflexivityTransitivity

{disjoint}

Reflexivity

Symmetry

Asymmetry

B.

Figure: A: Example, alike the so-called ‘subsetting’ idea in UML; B:
hierarchy of property characteristics relevant for OWL 2. 36/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline Sub-Property compatibility Service

First part extends the basic notions from the RBox
compatibility (defined for ALCQI)

Informally, it first checks the ‘compatibility’ of domain and
range axioms w.r.t the object property hierarchy and the class
hierarchy.

After that, SubProS checks whether the object property
characteristic(s) conform to specification, provided there is
such an expression in the ontology.

It exhaustively checks each permutation of domain and range
and then of the characteristic of the parent and child property
in the object property hierarchy

37/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline Sub-Property compatibility Service

First part extends the basic notions from the RBox
compatibility (defined for ALCQI)

Informally, it first checks the ‘compatibility’ of domain and
range axioms w.r.t the object property hierarchy and the class
hierarchy.

After that, SubProS checks whether the object property
characteristic(s) conform to specification, provided there is
such an expression in the ontology.

It exhaustively checks each permutation of domain and range
and then of the characteristic of the parent and child property
in the object property hierarchy

37/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Definition (Sub-Property compatibility Service (SubProS))

For each pair of object properties, R,S ∈ O such that O |= S v R, and
O an OWL ontology adhering to the syntax and semantics as specified in
OWL 2 Standard, check whether:

Test 1. O |= DS v DR and O |= RS v RR ;

Test 2. O 6|= DR v DS ;

Test 3. O 6|= RR v RS ;

Test 4. If O |= Asym(R) then O |= Asym(S);

Test 5. If O |= Sym(R) then O |= Sym(S) or O |= Asym(S);

Test 6. If O |= Trans(R) then O |= Trans(S);

Test 7. If O |= Ref(R) then O |= Ref(S) or O |= Irr(S);

Test 8. If O |= Irr(R) then O |= Irr(S) or O |= Asym(S);

Test 9. If O |= Asym(R) then O 6|= Sym(S);

Test 10. If O |= Irr(R) then O 6|= Ref(S); continues....
38/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Definition (Sub-Property compatibility Service (SubProS))

... continued from previous page

Test 11. If O |= Trans(R) then O 6|= Irr(R), O 6|= Asym(R),
O 6|= Irr(S), and O 6|= Asym(S);

An OWL object property hierarchy is said to be compatible iff

Test 1 and (2 or 3) hold for all pairs of property-subproperty in O,
and

Tests 4-11 hold for all pairs of property-subproperty in O.

39/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

What to do if not compatible

Guidelines for fixing a flaw, with one or more options for
revision

“raising a warning” denotes that it is not a logical error but an
ontological one
“forcing” a revision indicates there is a logical error that must
be fixed in order to have a consistent ontology with satisfiable
classes
“propose” indicates suggestions how the flaw can be best
revised

40/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Revisions (selection)

A. If Test 1 fails, raise a warning “domain and range restrictions
of either R or S are in conflict with the property hierarchy”,
and propose to

Change the object property hierarchy, i.e., either remove
S v R and add R v S or add S ≡ R to O, or
Change domain and range restrictions of R and/or S , or
If the test on the domains fails, then propose a new axiom
R v D ′R × RR , where D ′R ≡ DR uDS (and similarly when Test

1 fails on the range).

B. ...

C. Run SubProS again if any changes have been made in steps A
or B, and record changes in the hierarchy (to be used in
step I).

41/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Revisions (selection)
...

F. If Irr(R) and Test 8 fails to detect either Irr(S) or Asym(S),
raise a warning “R is irreflexive, hence S should be either
Irr(S) or Asym(S), and propose:

Add Asym(S) or Irr(S) to obtain expected inferences;
Remove Irr(R);
Change the positions of R and/or S in the object property
hierarchy;

...

I. Run SubProS again if any changes have been made in
steps D-H, and check any changes in the property hierarchy
made against those recorded in step C. If a change from
steps E or F reverts a recorded change, then report
“unresolvable conflict on subproperty axiom. You must
change at least one axiom to exit an otherwise infinite loop of
swapping two expressions”.

42/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

BioTop’s inconsistent ‘has process role’

‘has process role’ in BioTop (v. June 17, 2010) is inconsistent.
Relevant axioms are:
‘has process role’v‘temporally related to’ (E.1)
‘has process role’v‘processual entity’×role (E.2)
‘temporally related to’ v
‘processual entity’ t quality ×
‘processual entity’ t quality (E.3)
role v ¬quality (E.4)
role v ¬‘processual entity’ (E.5)
Sym(‘temporally related to’) (E.6)

43/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

BioTop’s inconsistent ‘has process role’

Use SubProS to isolate the flaw:

Test 1: fail, because Rhasprocessrole v Rtemporallyrelatedto is
false, as the ranges (see E.2 cf. E.3) are disjoint (see E.4, E.5)
and therewith ‘has process role’ is inconsistent;

Test 2 and 3: pass.

Test 4: not applicable.

Test 5: fail, because O does not contain Sym(‘has process
role’).

Test 6-11: not applicable.

44/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Similar for chains (ProChainS); ex.: DMOP chain in v5.2

Of type Case S. Test S-c (for corrections) failed because
O 6|= RDM-TasktOptimizationProblem v RDM-Task. Considering the
suggestions for revision, step B’s first option to revise the ontology
was chosen, i.e., removing OptimizationProblem from the range
axiom of addresses.

45/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

46/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

OntoClean overview (extra, for those interested)

Problem: messy taxonomies on what subsumes what

How to put them in the right order?

OntoClean provides guidelines for this (see to Guarino & Welty, 2004 for an

extended example)

Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for more information on the basics)

47/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

OntoClean overview (extra, for those interested)

Problem: messy taxonomies on what subsumes what

How to put them in the right order?

OntoClean provides guidelines for this (see to Guarino & Welty, 2004 for an

extended example)

Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for more information on the basics)

47/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

A property of an entity is essential to that entity if it must be
true of it in every possible world, i.e. if it necessarily holds for
that entity.

Special form of essentiality is rigidity

Definition (+R)

A rigid property φ is a property that is essential to all its instances,
i.e., ∀xφ(x)→ �φ(x).

Definition (-R)

A non-rigid property φ is a property that is not essential to some
of its instances, i.e., ∃xφ(x) ∧ ¬�φ(x).

48/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

Definition (∼R)

An anti-rigid property φ is a property that is not essential to all its
instances, i.e., ∀xφ(x)→ ¬�φ(x).

Definition (¬R)

A semi-rigid property φ is a property that is non-rigid but not
anti-rigid.

Anti-rigid properties cannot subsume rigid properties

49/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

50/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

50/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

50/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

50/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basics

Definition

A non-rigid property carries an IC Γ iff it is subsumed by a rigid
property carrying Γ.

Definition

A property φ supplies an IC Γ iff i) it is rigid; ii) it carries Γ; and
iii) Γ is not carried by all the properties subsuming φ. This means
that, if φ inherits different (but compatible) ICs from multiple
properties, it still counts as supplying an IC.

Any property carrying an IC: +I (-I otherwise).

Any property supplying an IC: +O (-O otherwise); “O” is a
mnemonic for “own identity”

+O implies +I and +R

51/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Formal ontological property classifications

+D+O +I +R -D Type

+D-O +I +R -D Quasi-Type

-O +I ~R +D Material role
-O +I ~R -D Phased sortal

+D-O +I ¬R -D Mixin

Sortal

+D-O -I +R -D Category

-O -I ~R +D Formal role
~R -D

+D-O -I
¬R -D

Attribution

Non-Sortal

52/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Formal ontological property classifications

Sortal
Non-rigid

Mixin

Phased sortal
Caterpillar, Chrysalis, Butterfly (for Papilionoidae)

Rigid

Type
Cat, Chair

Quasi-type
Herbivore

Property

Role

Anti-rigid
Material role
Student, Food

Non-sortal

Formal role
Recipient

Attribution
Blue, Spherical

Category
Endurant, Abstract entity

53/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Basic rules

Given two properties, p and q, when q subsumes p the
following constraints hold:

1. If q is anti-rigid, then p must be anti-rigid
2. If q carries an IC, then p must carry the same IC
3. If q carries a UC, then p must carry the same UC
4. If q has anti-unity, then p must also have anti-unity

5. Incompatible IC’s are disjoint, and Incompatible UC’s are
disjoint

And, in shorthand:

6. +R 6⊂∼ R
7. −I 6⊂ +I
8. −U 6⊂ +U
9. +U 6⊂∼ U

10. −D 6⊂ +D

54/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Example: before

55/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Example: after

56/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Outline

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

57/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

The changing landscape

Solving the early-adopter issues has moved the goal-posts,
and uncovered new issues; e.g.:

Which ontologies are reusable for one’s own ontology, in whole
or in part?
What are the consequences of choosing one ontology over the
other?
OWL 2 has 5 languages: which one should be used for what
and when?
Internationalisation/localisation of ontologies?

Note: Next slides are a partial recap of topics that have been
mentioned before, but now presented in a different way

58/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Parameters

Which parameters affect ontology development?
Where?
How?

We consider:

Purposes
Reusing ontologies
Bottom-up development
Languages
Reasoning services

59/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Parameters

Which parameters affect ontology development?
Where?
How?

We consider:

Purposes
Reusing ontologies
Bottom-up development
Languages
Reasoning services

59/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Purposes—examples

Querying data by means of an ontology (OBDA) through
linking databases to an ontology

Database integration

Structured controlled vocabulary to link data(base) records
and navigate across databases on the Internet (‘linked data’)

Using it as part of scientific discourse and advancing research
at a faster pace, (including experimental ontologies)

Coordination among and integration of Web Services

TBC on next page...

60/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Purposes (cont’d)

Ontology in an ontology-driven information system destined
for run-time usage, e.g., in scientific workflows, MASs,
ontology-mediated data clustering, and user interaction in
e-learning

Ontologies for NLP, e.g. annotating and querying Digital
Libraries and scientific literature, QA systems, and materials
for e-learning

As full-fledged discipline “Ontology (Science)”, where an
ontology is a formal, logic-based, representation of a scientific
theory

Tutorial ontologies, e.g., the wine and pizza ontologies

61/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Reusing ontologies

Foundational ontologies

Reference ontologies

Domain ontologies that have an overlap with the new
ontology;

For each of them, resource usage considerations, such as

Availability of the resource (open, copyright)
If the source is being maintained or abandoned one-off effort;
Community effort, research group, and if it has already some
adoption or usage;
Subject to standardisation policies or stable releases;
If the ontology is available in the desired or required ontology
language.

62/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Reusing ontologies

Foundational ontologies

Reference ontologies

Domain ontologies that have an overlap with the new
ontology;

For each of them, resource usage considerations, such as

Availability of the resource (open, copyright)
If the source is being maintained or abandoned one-off effort;
Community effort, research group, and if it has already some
adoption or usage;
Subject to standardisation policies or stable releases;
If the ontology is available in the desired or required ontology
language.

62/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Example

image from http://www.imbi.uni-freiburg.de/ontology/biotop/

63/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Bottom-up development
Reuse of other knowledge-based representations:

conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

64/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Languages – preliminary considerations

Depending on the purpose(s) (and available resources), one
ends up with either

(a) a large but simple ontology, i.e., mostly just a taxonomy
without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a large and elaborate ontology, which includes rich usage of
properties, defined concepts, and, roughly, requiring OWL-DL;
or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language

65/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Languages – preliminary considerations

Depending on the purpose(s) (and available resources), one
ends up with either

(a) a large but simple ontology, i.e., mostly just a taxonomy
without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a large and elaborate ontology, which includes rich usage of
properties, defined concepts, and, roughly, requiring OWL-DL;
or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language

65/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Languages

Older KR languages (frames, obo, conceptual graphs, etc.)

Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL, based on the DL language SROIQ
OWL 2 EL
OWL 2 QL
OWL 2 RL

Extensions (probabilistic, fuzzy, temporal, etc.)

Alternatives (e.g., Common Logic)

Differences between expressiveness of the ontology languages
and their trade-offs

66/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Languages

Older KR languages (frames, obo, conceptual graphs, etc.)

Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL, based on the DL language SROIQ
OWL 2 EL
OWL 2 QL
OWL 2 RL

Extensions (probabilistic, fuzzy, temporal, etc.)

Alternatives (e.g., Common Logic)

Differences between expressiveness of the ontology languages
and their trade-offs

66/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Languages

Older KR languages (frames, obo, conceptual graphs, etc.)

Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL, based on the DL language SROIQ
OWL 2 EL
OWL 2 QL
OWL 2 RL

Extensions (probabilistic, fuzzy, temporal, etc.)

Alternatives (e.g., Common Logic)

Differences between expressiveness of the ontology languages
and their trade-offs

66/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Reasoning services

Description logics-based reasoning services

The standard reasoning services for ontology usage:
satisfiability and consistency checking, taxonomic
classification, instance classification;
‘Non-standard’ reasoning services to facilitate ontology
development: explanation/justification, glass-box reasoning,
pin-pointing errors, least-common subsumer;
Querying functionalities, such as epistemic and (unions of)
conjunctive queries;

Ontological reasoning services (OntoClean, RBox reasoning
service)

Other technologies (e.g., Bayesian networks)

67/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

68/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Tools

Thus far, no tool gives you everything

Software-supported methodologies

Ontology Development Environment (ODE)

Software-supported methods and other features

Portals

Exporting ontologies for a different rendering (visualisation,
documentation, ...)

69/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Tools

Thus far, no tool gives you everything

Software-supported methodologies

Ontology Development Environment (ODE)

Software-supported methods and other features

Portals

Exporting ontologies for a different rendering (visualisation,
documentation, ...)

69/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Tools: Develop your own tool

How to do that?

There are tools and APIs etc that help you manipulate OWL
files and manage reasoners

Java: OWL API, OWLink, or Apache Jena
Python: Owlready

70/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Tools: Develop your own tool

How to do that?

There are tools and APIs etc that help you manipulate OWL
files and manage reasoners

Java: OWL API, OWLink, or Apache Jena
Python: Owlready

70/71

Methodologies and tools Methods Methods - philosophy Parameters and dependencies Summary

Summary

1 Methodologies and tools
Macro-level methodologies
Micro-level methodologies

2 Methods
Logic-based debugging
Logic & philosophy

3 Methods - philosophy

4 Parameters and dependencies

71/71

	lecture 5
	Methodologies and tools
	Macro-level methodologies
	Micro-level methodologies

	Methods
	Logic-based debugging
	Logic & philosophy

	Methods - philosophy
	Parameters and dependencies
	Tools

	Summary

