
Autonomous self-learning agents in 3D virtual worlds
Development and Performance Comparison of a BDI Agent Utilizing Reinforcement Learning

Yusri Dollie
University of Cape Town

yusri@zhc.co.za

ABSTRACT
This paper discusses the development and performance comparison
of an extended Belief-Desire-Intention (BDI) agent which includes
notions of reinforcement learning. Referred to as the R-BDI, the
agent is designed to better adapt and act in a dynamic and noisy
environment. The performance of the R-BDI agent developed is
compared to a traditional BDI agent implementation, a Partially
Observable Markov Decision Process (POMDP) and a Markov De-
cision Process (MDP). The performance of the four agent architec-
tures was evaluated using the Q-Cog experimental platform testbed
and are compared and benchmarked in terms of survival time, a
simulation performance score and overall task completion. Under
this criteria we have found that while the R-BDI agent provided a
statistically signi�cant improvement over the POMDP and MDP
architectures there was no observable improvement in the inclusion
of reinforcement learning when comparing the R-BDI to the BDI
agent.

CCS CONCEPTS
• Computing methodologies → Reasoning about belief and
knowledge; Planning under uncertainty; • Theory of computa-
tion → Reinforcement learning;

KEYWORDS
BDI, Reinforcement Learning, Dynamic Environments, Java, JADEX,
3D Virtual Environments, BDI-POMDP, Cognitive Agents, Hybrid
Cognitive Agents

1 INTRODUCTION
In the �eld of arti�cial intelligence (AI) and agent learning, one
of the truly cutting edge and interesting problems lies in creating
agents which are able to learn, plan and make decisions in unpre-
dictable and noisy environments. To this end a cognitive agent
which embodies the tenets of the Belief-Desire-Intention (BDI)
agent architecture was developed and subsequently extended to
include reinforcement learning mechanisms. The goal being the
creation of a rational agent which not only models the concept
of rational human decision making, but also includes generic as-
pects of human behavior such as learning from past experience. To
showcase the e�cacy and evaluate the performance of such agents
an extended version of the Q-Cog platform testbed was used. The
platform which is owned and managed by the Centre for Arti�cial
Intelligence Research (CAIR) [9] and extended by William Grant
[13] to include additional metrics and testing scenarios provides
the foundation of the agent implementation. This testbed combined
with an extended collection of metrics provide the basis for compar-
ing the di�erent agent architectures and their relative performance

when acting in a dynamic 3D environment.

Ultimately the aim of this project was to design and implement a
cognitive agent capable of self-learning and adaptation within a sim-
ulated 3D virtual world as part of a joint research e�ort to further
the development of the Q-Cog experimental platform, with the ex-
tended BDI agent architecture developed by the author and POMDP
agent architecture developed by Jonah Hooper [15] providing ex-
tensions to agent module and the extended testing environments
and metrics developed by William Grant providing the evaluation
mechanism for agent performance[13].

The BDI model was conceived by Bratman as a theory of human
practical reasoning [5]. BDI agents excel at goal management and
planning and manage to act quickly as they utilize already (or par-
tially) generated plans once a particular goal is focused on. Another
bene�t of BDI’s is their ability to handle multiple objectives [27].
However, while the BDI agent metaphor is a well suited analogy for
human reasoning, there are many generic aspects of human behav-
ior which it fails to e�ectively capture. One major aspect which is
not incorporated is the concept of learning from prior experiences,
and thus many implementations of the BDI architecture completely
omit such behaviors and notions [14, 20].

When considering the implementation of such an agent in an un-
known and previously unobserved environment where an agent
runs the risk of there being no pre-generated plans/policies to ex-
ecute, it is extremely di�cult to ensure that there is a plan for
every possible state or occurrence. Successful agents in such en-
vironments generally rely on plan generation. However the plans
generally do not include stochastic actions or probabilistic obser-
vations, and thus in such environments research and development
has shifted towards utilizing POMDP planners to generate plans
and policies [26].

2 RELATEDWORK IN BDI AGENTS
Current developments within the �eld of BDI agents, and extensions
thereof utilizing reinforcement learning provide both inspiration
and a guideline for the development of our agent. A brief overview
of current and related work is provided, highlighting agent imple-
mentations in dynamic and noisy environments.

2.1 Current BDI Agent Research &
Development

There has been much research around BDI theory and architectures,
with recent developments focusing on creating hybrid architectures,
building upon the strengths of the BDI architecture and shoring



up its weaknesses through the addition of learning mechanisms or
incorporation of other agent architectures.

There have been many di�ering implementation strategies and
frameworks for the BDI architecture, namely:

PRS: The Procedural Reasoning System (PRS) formally introduced
by George and Lansky in 1987 was presented as a system for control-
ling mobile robots, speci�cally for reaction control in malfunction
handling [12]. Developments into extensions to PRS have led to sup-
port for real-time planning systems in dynamic non-deterministic
environments utilizing the POMDP framework. A novel continual
planning system known as POMDPRS has been proposed and de-
veloped which gives PRS a stronger ability to adapt to a dynamic
non-deterministic environment. This is achieved through the substi-
tution of the probabilistic distribution belief model and maximum
utility principles of a POMDP for the �rst-order logic belief repre-
sentation and plan selection mechanism of PRS. Interleaving plan
generation and execution to improve decision making e�ciency
in dynamic environments. This system has been implemented in a
multi-agent system for Robocup. [17].

AgentSpeak: Introduced by Rao in 1996 AgentSpeak(L) was de-
signed as an agent programming logic, based in BDI theory and
logic programming with a formal connection to BDI logics [24].
AgentSpeak is of particular interest as there exist extensive exten-
sions such as AgentSpeak(L++) [1] and AgentSpeak+ [2] which
feature probabilistic extensions.

Major implementations of AgentSpeak have been realized through
the use of Jason, a Java based development platform for an extended
version of AgentSpeak(L). Jason is in essence an interpreter for an
extension of the logic-based agent-oriented programming language
AgentSpeak(L) [3, 4]

AgentSpeak+ features probabilistic planning using the POMDP
framework. Beliefs are represented as epistemic states allowing
agents to reason about uncertain observations and using a POMDP;
optimal actions are selected in pursuit of a goal given an uncertain
environment. This in itself provides a platform for developing BDI’s
in stochastic environments, where a policy library may not exist or
represent incomplete domain knowledge [2] however there are no
currently available implementations of AgentSpeak+.

LightJason [1] is a Java based multi-agent BDI framework inspired
by Jason. It provides a Java interpreter for the AgentSpeak(L++)
grammar, and features a fuzzy-based logical calculus for plan exe-
cution and reasoning [1]. While currently still under development
LightJason is an ongoing open-source project available to the public.

JADEX: A Java based software framework designed for the cre-
ation of goal oriented agents following the BDI architectural model.
JADEX itself is a reasoning engine developed to simplify the devel-
opment of adaptive agents for traditional software engineers. Built
upon the foundations of software engineering it provides a natural
abstraction layer for developing agent oriented systems [6, 22].

Representing a di�ering school of thought, JADEX has moved
towards extending the BDI architecture to one which allows for
a �exible agenda based on "meta-actions", through which new in-
creasingly complex concrete aspects can be added into the model.
These range from simple mechanisms for updating beliefs to more
complex goal deliberation strategies which only require minor mod-
i�cations at well de�ned extension points. The traditional notion of
actions executed as steps of �xed interpreter cycles is abandoned
in favor of a interpreter based on the introduction of a new data
structure called an "Agenda". The agenda stores a collection of all
actions to be processed and the new interpreter continuously selects
the next entry from the agenda and executes it thus changing the
internal agent state or inclination. This execution may result in the
creation of new actions which are inserted into the agenda or may
render plans already scheduled obsolete which are subsequently
removed. Through this extension of the agent state representation
and introduction of a new interpreter this BDI architecture is able
to not only provide simple mechanisms for updating beliefs but
also proposes a strategy for goal deliberation, a well known area
of weakness for classical BDI architectures which assume consis-
tent goals. The shifting of goal arbitration from application level to
architecture level allows for the systematic detection of interrela-
tionships between goals and plans at runtime and can be used to
preserve a consistent "mental state" for the agent This goal deliber-
ation strategy is known as the "Easy Deliberation" strategy and is
implemented within JADEX BDI reasoner [21].

Unlike other BDI frameworks JADEX does not enforce a strict
logic based representation of beliefs. It instead allows for ordinary
Java objects of any kind to be used and stored as named facts or
fact sets (called beliefs), which form the belief base. This belief
base can be directly manipulated, with facts being added, removed
and updated throughout the agents execution cycle and the rea-
soning engine monitors these belief states, in turn adjusting the
goals and plans in accordance with the current belief states. Goals
are seen as concrete momentary desires of an agent. Agents will
directly engage in suitable actions until goals are considered as
being reached, unreachable or no longer desired, and unlike most
other systems adopted goals are not assumed to be consistent to
each other. The goal lifecycle 1 distinguishes between goals that are
adopted (desired) and those which are actively pursued. In pursuit
of goals JADEX utilizes a plan-library approach, with the plans
being de�ned with the goals and or events that the plan is triggered
by as well as the set of steps to be executed [22].

Figure 1: Diagram Showcasing JADEX Goal Lifecycle [7]

1see �gure 1

2



2.2 BDI Agents Utilizing Reinforcement
Learning

As detailed in section 1 the BDI framework, while providing a fairly
comprehensive analogue for human reasoning, fails at capturing
aspects such as learning, and as a result many implementations of
such agents either plainly ignore such aspects or have to explicitly
program them into the agent [20]. One such example can be seen in
the video game Black&White in which a BDI agent creature can be
taught by the user through the use of reinforcement learning, the
user provides rewards or punishments in response to the agents
behavior, and thus agents future behavior is in�uenced by the re-
wards and punishments as certain behaviors are either encouraged
or discouraged [19]. This provides a mechanism for shaping agent
behavior during execution allowing for it to adapt its behavior to
its environment in response to the outcomes of its actions.

Without a mechanism for learning a traditional BDI model would
appear to be ill-suited for the development of complex systems
where the environment is dynamic, partially observable or wholly
unknown wherein learning is key to an agents success. Systems
able to successfully operate in such environments are becoming
increasingly important not only in the �eld of robotics but also
in business applications, improving productivity and adaptively
planning in response to then dynamically changing environment.
Lokuge and Alahakoon’s paper: "Reinforcement learning in neuro
BDI agents for achieving agent’s intentions in vessel berthing ap-
plications" details such an implementation, wherein they discuss
how the inclusion of intelligent learning capabilities improves a
BDI agents decisionmaking process in a dynamic environment. [18]

Research into these di�erent architectures provided a framework
for developing a cognitive agent capable of belief updates and deci-
sion making within a dynamic environment

3 GENERAL PROJECT BACKGROUND
As this research project delves into the �eld of cognitive agents
in simulated worlds, looking speci�cally at the development and
performance comparison of a cognitive agent which uses a combi-
nation of architecture designs.

It is important to provide the reader with context and clarity.
The following sections detail the QCog framework which forms the
basis for agent evaluation and comparison, and discusses and de-
�nes the BDI architecture, reinforcement learning and the POMDP
framework in the context of this paper and current research.

3.1 Q-Cog Experimental Platform
Q-Cog is an experimental platform designed to aid researchers in
the development and evaluation of adaptive self-learning agents
in 3D simulated environments that are both complex and unpre-
dictable. Developed and owned by the Centre for Arti�cial Intel-
ligence Research (CAIR)[9], it is built using the Unity3D Game
Engine [30] and distributed as both a unity project allowing for
the creation of testing environments and as an executable build
known as "Q-Cog lite" which allows for cross platform evaluation
using built in testing environments. Entities placed in the simulated
world are designed to be generic and extensible for ease of use

within the platform. Q-Cog features adjustable simulation settings
which can be used to: set the number of iterations you wish to
perform, environmental variables and initial agent conditions. The
results of each simulation are recorded via data recorder outputting
a set of performance metrics. It also features a playback engine that
allows simulations to be recorded and played back for further study
whenever the user desires[13, 31]

3.2 De�ning a BDI Architecture
In systems which require high-level management of many di�er-
ent objectives, speci�cally control tasks in complex dynamic envi-
ronments where the application of conventional techniques have
proven to be di�cult and expensive to build, verify and maintain.
The BDI architecture represents just one possible solution to this
problem in an agent-oriented system. It views the system as a ratio-
nal agent which has certain mental inclinations of Belief, Desire and
Intention (hence the acronym BDI), these inclinations represent
respectively: the information, motivational and deliberative states
of the agent and determine the agent’s behavior [25].

As detailed by Wooldridge [32] the basic components of a BDI
are :

• a set or knowledge-base B of beliefs
• an option generation function which generates the objec-

tives the agent would ideally like to pursue (its desires)
• a set D of desires (goals to be achieved)
• a focus function which selects intentions from a set of

desires
• a structure of intentions I of the most desirable options/

desires returned by the focus function
• a library of plans and sub-plans
• a reconsideration which decides whether to call the focus

function
• an execution procedure, which a�ects the world according

to the plan associated with the intention
• a sensing or perception procedure, which gathers informa-

tion about the state of the environment
• a belief update function, which updates the agent’s beliefs

according to its latest observations and actions
The exact implementation of these components is dependent on

the BDI architecture. BDI agents are systems which work in dy-
namic environments and continually receive information (through
some form of sensory perception), then based on their inclinations
(internal state) carry out particular actions which may also a�ect
the environment [27].

In these environments it is a BDI’s �exibility to reason over di�er-
ent goals that allows it to adapt to changing situations by focusing
on the most appropriate objective at any particular time [26]

An agent’s "Beliefs" are based on everything the agent knows about
its environment and internal state, and is stored in its "belief base".
Goals describe what an agent seeks to achieve but do not entail any
information about the exact set of actions the agent is required to
carry out in order to meet said goal. Finally, Plans are composed
of a set of instructions which detail the actions an agent will carry

3



out in an e�ort to achieve the previously speci�ed goals. The rela-
tion between goals and plans is through a reasoning engine, which
determines which plans to execute in an e�ort to satisfy a speci�c
goal [8].

The concept of agency is discussed in detail by Wooldridge and
Jennings [33] wherein they identify major areas of concern sur-
rounding agent architecture and agent theory. Speci�cally they
make mention of the connection between the concept of "Beliefs"
and its modeling as a set of logical formalisms which can be reduced
to a set of mathematical axioms which are then used for reasoning
in implementation.

It is here where one can see the link between the BDI architecture
and knowledge representation. The agent will have some knowl-
edge base of its beliefs, and decisions are made via a rule engine
or logical reasoning engine (sometimes referred to as an inference
engine). A reasoning engine provides the BDI with the set of all
possible actions based on current beliefs and sensory input, and
from the set of possible actions the BDI has to consider, the goals,
the agent’s inclinations, in order to choose the most appropriate
course of action for the agent to carry out. In contrast a rule en-
gine simply has a set of de�ned rules and productions which when
applied produce a possible action for the agent to execute.

3.3 De�ning Reinforcement Learning
In the context of cognitive agents, reinforcement learning repre-
sents an approach to the problem of agents which interact with an
environment, can sense the state of themselves and the environ-
ment in which they exist and thus choose actions based on these
perceived states and interactions. For an agent to be classi�ed as
self-learning or adaptive it must exhibit some form of change in
performance and behavior in the execution of future tasks based
on prior experience. Reinforcement learning achieves this through
the use of rewards and/or punishments in response to an agents
performed actions. Value Iteration, Policy Iteration and Q-Learning
represent common implementations of the reinforcement learning
paradigm [28, 29].

The reinforcement learning paradigm typically separates a problem
into four distinct parts: [29]

(1) A Policy : A mapping from states to actions representing
the agents behavior.

(2) A Reward Function: Some function which maps each
state-action pair to a real valued number or reward.

(3) A Value Function: A function which returns an agent’s
expected reward given a state and following a policy.

(4) A Model: The agent’s internal representation of its envi-
ronment

3.4 De�ning MDP’s & POMDP’s
BasicMarkovDecision Processes (MDP) can be described as discrete
time stochastic control processes, which form models for decision
making when outcomes are uncertain. At each discrete epoch the
process observes some state S and may take an any available action
A, the resulting transition from S ! S

0 provides a corresponding

reward Ra (S, S 0) [23].

In the MDP model the next state and reward depend only on
the previous state and action and no other prior state-action pairs,
this is what is de�ned as the Markov property. Agents utilizing the
MDP framework attempt to act optimally by calculating an optimal
policy, that is a policy which provides the maximum future dis-
counted rewards at the end of a given execution loop. In a partially
observable environment however the agent is no longer able to
determine its current state with complete reliability [10].

Succinctly a POMDP is simply a MDP where the agent is unable
to observe the current state and must instead make an observation
based on an action and resulting state according to some probabil-
ity distribution, while the goal of maximizing future discounted
rewards remains the same [10, 16].

4 SYSTEM DESIGN
The system was designed in two parts, with the founding vision be-
ing the integration of a new more robust agent architecture within
the Q-Cog experimental platform. The initial agent design built
upon using an existing Java BDI framework; both for the speed of
development it o�ered, as well as the simplicity of integrating such
an agent into an existing Java code base. While the second part of
the design focused on utilizing the strengths and functionalities im-
plemented in the initial design and further extending its capabilities
through the introduction of Reinforcement Learning mechanisms,
leveraging the existing architectural features and utilizing them in
unconventional ways.

4.1 BDI Agent Design
The BDI agent was developed using Java and the JADEX BDI rea-
soning framework, speci�cally the JADEX BDI V3 kernel [22] .
The agent implementation is entirely independent of the Q-Cog
simulation testbed, with the two interfacing via a TCP connection.
Following the BDI architectural design the agent has a set of beliefs
referred to as the belief base. Any Java object can be speci�ed as a
belief in JADEX, and these beliefs represent all knowledge the agent
has of its environment. Beliefs are dynamically updated through
the use of accessor and mutator methods in following with stan-
dard Object-Oriented Programming methodologies. As detailed in
section 2.1 JADEX does not enforce a strict logical formalism in its
representation of knowledge i.e. a description logic such as ALC or
a �rst-order predicate logic. Instead beliefs are expressed as explicit
objects, with the belief base having an elevated role within the
JADEX agent architecture. The belief base forms an active part of
the agent execution cycle, no longer serving only as a passive data
store but actively monitoring for any changes in current beliefs and
directly triggering the adoption of new goals, the dropping of old
goals or leading to direct actions in response. Reasoning as such is
no longer limited to just the beliefs stored and entailed by the belief
base but extended to allow for reaction deliberation in response to
events and changes within the belief base.

The agent within the Q-Cog environment was capable of a total of
four actions namely:

4



• Explore - The agent moves to a random location within a
radius of its current location in an e�ort to perceive more
of the surrounding environment

• Attack - The agent moves to attack a visible hostile entity
• Eat - The agent moves to eat a visible food source
• Flee - The agent moves to a speci�ed �ee location in the

environment
These action commands are sent via TCP messages from the

Java-side agent to the Unity-side simulation platform, which re-
sponds with the environment state information updates. 2

An agent is only aware of its own internal health level and the
entities it perceives via its visual sensors, no other environmental
information is made available to the agent. A more detailed descrip-
tion of the experimental environment can be found in section 5 and
[13].

The plans within the agent’s policy library are composed of these
commands forming the agents actions. Plan execution is thus in
essence the transmission of one or more of these actions to the
Q-Cog-platform and the resultant world state is transmitted then
back to the agent as shown in �gure 2.

Figure 2: Diagram Showcasing an Abstract JADEX agent Ar-
chitecture [6]

In order for the agent to have a purpose it must have a goal or
set of goals it seeks to achieve, these goals when adopted, or rather
when in an active state within the agent can be formally described
as the desires of the agent, while the goal currently being pursued
by the agent can be described as it’s current intention. Goals like
beliefs are represented as explicit objects stored within a goal base,
these objects are made accessible to the reasoning component but
are de�ned entirely separately from the plans within the policy
library [22]. The agent in question was created with four goals:

(1) Explore: The agent must seek out to explore it’s environ-
ment moving around an unknown and initially completely
unperceived environment.

2see �gure 2

(2) Perceive: The agent must observe it’s surroundings and
update its internal belief states based on perceptions which
come from its visual sensors.

(3) Attack: The agent must seek to engage in combat with
hostile entities in an e�ort to kill all hostile entities in the
environment. Attack is triggered on hostile enemies being
visible and inhibits the Explore goal

(4) Survive: The agent priorities survival over all other goals,
it monitors its internal beliefs of health and danger and
based on those seeks to �ee from danger or seek out food
and consume it in an e�ort to heal. The goal is triggered
on health dropping below a certain value and is viewed as
achieved once health is above a certain value. It inhibits
both the Attack and Explore goals.

JADEX reasons about the goals determining which goal becomes
the current intention and this is decided using a combination of
logical reasoning based on current beliefs and a native deliberation
strategy known as "Easy Deliberation". As explained in section 2.1
goals within JADEX need not be consistent with each other, and
handles goal inconsistency though the use of goal inhibition. For
two (or more) goals to be inconsistent it simply means that in
the pursuit of progress for one, progress is lost for the other, thus
goal inhibition within the context of the easy deliberation strategy
allows the agent developer to specify relationships between goals,
ensuring that con�icting goals are never pursued at the same time
[21]. In this way the pursuit of one goal may inhibit the pursuit of
another until the current intention is satis�ed. For example in the
goals speci�ed above, the Survive goal and Attack goal may at times
be inconsistent with one another, the pursuit of combat when the
agent has low health is not conducive to its survival. By enforcing
the inhibition of Attacking during the execution of the survival
intention inconsistent behaviors are prevented and an agent which
more closely models human procedural reasoning is created.

Figure 3: Goal Hierarchy Diagram showcasing Goal inhibi-
tions used for goal deliberation and Plans related to each
Goal

Each of these goals is achieved through the enaction of plans
which are triggered in response to both a goal being adopted or
made active (i.e becoming the current intention) and the current
context of the agent’s internal belief state. A prime example of this

5



is the Survive goal, the agent may have the desire to survive but
the goal only becomes su�ciently desirable and thus considered to
be come the current intention in the event that the agent’s health
is low and/or danger levels are perceived as su�ciently high. Each
of the corresponding survival plans themselves will only come into
e�ect in the event that their context conditions are satis�ed. The
context of the perceived level of danger and health and currently
visible food sources determine whether the agent seeks to immedi-
ately �ee, attempt to eat, or explore until it �nds a food source. In
addition to this when the Survive goal is triggered it inhibits both
the Explore and Attack goals, thus when deliberating about the
next desire to become an intention it will not consider exploration
or attacking as an option until the survival criteria are met.

The agent was evaluated through the use of the Q-Cog platform
testbed, in which it was placed in a dynamic 3D environment and
tasked with completing a speci�c goal or set of goals. In the case
of this paper the goal was to kill all hostile entities while ensuring
that the agent itself does not die.

Figure 4: Screenshot of Agent running in Q-Cog environ-
ment

4.2 BDI Reinforcement Learning Extension
The previous section detailed the implementation of the ordinary
JADEX BDI agent which was evaluated under the Q-Cog platform
testbed. The full contribution of this research project however is
seen in the extension of the BDI agent architecture to include re-
inforcement learning mechanisms. Referred to as the R-BDI, it
represents an extension of the BDI agent architecture with the in-
tention of creating an agent capable of self adaptation and learning
when acting in a dynamic environment.

When considering a traditional BDI agent implementation as de-
scribed in section 2.2; while the agent is able to act in a reactionary
manner in pursuit of its goals based on its internal beliefs it remains
unable to learn from prior experiences. Such an agent will execute
plans contained within its internal policy library in the context of
its current belief state until a goal is satis�ed or no longer pursued
with no consideration of which plan may be the best to implement
or if an adjustment to its internal plans or reasoning conditions
under which certain actions are considered may produce a more
favorable result. This mechanism of learning from prior experience
is realized in our agent thorough the use of reinforcement learning.

The agent described maintains a set of threshold values which
are represented as internal belief states. This representation allows
one to utilize the underlying features already present withing the
framework and exploit the reasoning capabilities of the JADEX rea-
soner. These threshold values encode the level of health and danger
at which the agent determines which goals to prioritize and which
plans it is able to execute. Reinforcements are sent to the agent
in the form of rewards and punishments in response to speci�c
environmental events and conditions. The agent is rewarded for
successfully killing a number of hostile entities, completing a itera-
tion successfully and punished for dying, and under this scheme the
agent is able to "learn" an optimal strategy for completing the goal
of killing all hostile entities while balancing its levels of aggression
and defensiveness. Thorough the leveraging of the dynamic belief
state functionality of JADEX, one is able to create and manage the
threshold values and utilize its native Easy Deliberation strategy to
inhibit certain actions in relation to these thresholds.

Figure 5: Architecture of Agent Implementation

The introduction of reinforcement learning did not require any
extensions to the underlying source code of the framework but
its implementation required a di�erent approach to the design
of a BDI agent, the reinforcement thresholds were used as the
central context conditions for plan execution as opposed to simply
the agents current beliefs of the surrounding environment. The
threshold values themselves would restrict which goals and plans
could become the current intention and thus be pursued. Unlike in
the initial BDI agent design described in section 4.1 where goal and
plan conditions were dependent only on static values and boolean
conditions, the R-BDI is capable of reasoning with ever changing
goal and plan conditions, adapting its context conditions in response
to the environment in which is is acting.

6



Algorithm 1 BDI-Reinforcement Learning Agent Algorithm
Require: Initialized set of beliefs B, a set of goals to achieve D
Input: Updated Belief Base B’ derived from Perception Engine
1: Initialization Initial Belief Base= B, Initial Desires =D , Initial

set of Reinforcement Thresholds = R {B is the set of initialized
belief values at simulation start, D is the set of adopted Goals,
R is the set of threshold values, initialized to arbitrary values
and updated via the reinforcement learning mechanism}

2: while Simulation == acti�e do
3: intention := deliberate(D,R); {Selecting the current inten-

tion based on current context and the set of current desires and
current threshold values}

4: plan := �etPlan(intention,R);{A plan is selected based on
the current intention and the threshold values which have been
learned so far governing �ght vs. �ight}

5: execute(plan);
6: B = updateBelie f s(B’);
7: R = updateReinf orcements(B’);
8: end while

The above algorithm outlines at a very high level the execution
cycle of the agent. The agent manages two threshold values; the
health threshold and danger threshold. These values are set to some
initial value at simulation start and an optimal value is learned over
the ensuing simulation iterations via the reinforcement mechanism.
The learned values carry over from iteration to iteration allowing
the agent to learn the appropriate strategic approach for the current
environment.

Table 1: A Table Depicting Environment Events and Corre-
sponding Reward Value

Environment Event Reward Value

Agent Dies -1
Agent kills 2 Predators +1
Agent kills All Predators +1

On each of the environment events noted in table 1 above the
thresholds for health and danger are adjusted accordingly, the more
kills and successful the agent is the more aggressive it becomes as
the tolerance for higher danger levels and lower health is increased.
It thus attacks more frequently prioritizing attacking over actions
such as �eeing and eating. Conversely should the agent die often
the lower the tolerance becomes and the resultant behavior exhib-
ited is more cautious and defensive. In this case the agent tends to
avoid enemies, �eeing and eating more while approaching combat
with greater caution.

For each time the agent dies it is punished and receives a rein-
forcement of -1 , for every 2 predators it kills it is rewarded and
receives a reinforcement of +1 and for each iteration it successfully
completes i.e kills all the predators present it is rewarded with a
reinforcement of +1.

Adjusting the size of the reward values or the rate at which rewards

are given changes the learning rate of the agent, these reward values
were developed over many iterations of trial and error to establish
an appropriate learning rate, too fast and the agent behavior would
wildly swing from one extreme of overly defensive strategies to
overly aggressive strategies, while too slow and the agent would
not have derived an optimal strategy by the end of the simulation.

5 DEVELOPMENT & EVALUATION
PROCEDURES

Development of this project was undertaken in two distinct phases.
The initial development phase resulted in the creation of both the
BDI and R-BDI agents. The second phase culminated in the evalua-
tion and comparison of the agent architectures developed in phase
one to a POMDP and MDP agent architecture.

Development in phase one was undertaken following an itera-
tive methodology, wherein the architecture was re�ned over time
and extensions were added incrementally. While the evaluation in
phase two culminated in the statistical analysis of the performance
metrics outputted from the extended Q-Cog platform testbed as
implemented by William Grant [13] and the discussion of observed
agent performance and behaviors exhibited during the execution
of the testing simulations .

5.1 Agent Performance & Evaluation
The Q-Cog experimental platform provided an evaluation testbed
for measuring agent performance. Each of the four agent architec-
tures were run through three simulations of 20 iterations each. In
each simulation they were tasked with surviving in a 3D virtual
world which was populated with six hostile predator entities. It-
erations ended when the agent either killed all six hostile entities
or died. If the agent survived and managed to kill all six of the
predators the iteration was deemed successful, if the agent died it
was deemed to have failed.

During a simulation an agents performance is recorded along 10
di�erent metrics, this paper examines the agent performance along
three of these metrics, which will be discussed in further the next
section:

5.1.1 Experimental Environment. A complex and dynamic
testing scenario which was designed and integrated into the Q-Cog
platform by William Grant [13] was selected for the experimental
evaluation. The scenario is intended to evaluate the performance
of cognitive agents tasked with adapting, learning and decision
making in a complex dynamic 3D environment.

It features a large 3D world with a complex terrain populated by
six hostile predator entities of di�ering levels of health and damage.
In addition there are four food source locations housing two units
of food each and two �ee locations.

The agent takes the form of a humanoid avatar within the vir-
tual world and is tasked with surviving and killing all predators
in the scenario. The agent starts with ten health and can visually
perceive its environment within a limited range. A full description
of the simulation speci�cations can be found in [13].

7



Agent performance is evaluated on the following aspects
• G = Goal success/failure (1 or 0)
• T = Survival Time Previous / Survival Time Current
• A = Attack Success / Attack Total
• P = Predators Killed / Predators Total
• F = Flee Success / Flee Total

From which the iteration score is calculated using the following
equation:

IterationScore = G + (T · A�era�e(A + P + F ))

In addition to the above iteration score which calculates an av-
eraged performance value per iteration the following metrics are
also used individually.

• Total Predators Killed per iteration
• Total Survival Time per iteration

The three metrics above allow for the discussion surrounding
the relative performance of an agent within the simulation.

5.1.2 Statistical Analysis. For the analysis of the numerical
data in this project the following are taken into consideration: the
number of predators killed, the survival time and agent score per
iteration for each simulation, all of which are outputted by the
evaluation platform. These results are then tabulated and using a
Shapiro-Wilk test it is determined whether or not the data is nor-
mally distributed, with a threshold value � = 0.05. A non-normal
distribution in addition to the non-parametric nature of the data
allows one to then utilize a Wilcoxon rank sum test to compare the
agent performance data and determine whether or not there is any
signi�cant statistical di�erence between agents. However in the
case of a normal distribution one can use a parametric Welch Two
Sample t-test to determine statistical signi�cance [11].

Looking speci�cally to determine whether or not there is any sig-
ni�cant di�erence in the performance metrics between the R-BDI
agent and the other agent architectures .All statistical analysis and
testing was carried out using RStudio

6 RESULTS GATHERED
The results below represent a summary of the the total data sets
used and analyzed, With the focus on showing a subset of the
performance data produced by the R-BDI agent. The full datasets
can be found at:https://people.cs.uct.ac.za/~DLLYUS002/

Table 2: A Table Showing Average Agent Performance

Predators Killed Survival time Success Score
R-BDI 5.4 236.1 90 1.638813
BDI 5.2 323.9 86.67 1.52148
POMDP 5 300.35 83.3 1.190819
MDP 2.3 178 38.3 0.7691907

Table 2 details the average predators killed, survival time, success
rate and score for each respective agent architecture averaged across

three simulations of 20 iterations each. The success rate is simply
the percentage of total predators killed.

Table 3: A Table Showing the R-BDI Predator Kills For Each
Simulation

Iteration Sim #1 Sim #2 Sim #3
1 6 6 6
2 6 6 6
3 3 2 4
4 6 6 1
5 6 6 6
6 6 6 6
7 6 6 6
8 6 6 6
9 6 6 6
10 6 1 6

Results of Shapiro-Wilk normality Test:

W = 0.53907, p-value = 1.921�12 thus non-normally distributed
as p < 0.05

Table 4: A Table Showing the R-BDI Survival Time For Each
Simulation

Iteration Sim #1 Sim #2 Sim #3
1 289 288 288
2 253 367 367
3 41 32 32
4 369 300 300
5 210 150 150
6 335 362 362
7 498 464 464
8 171 404 404
9 262 220 220
10 250 23 23

Results of Shapiro-Wilk normality Test:

W = 0.96441, p-value = 0.6351 thus normally distributed as p >
0.05

Table 5: A Table Showing the R-BDI Performance Score For
Each Simulation

Iteration Sim #1 Sim #2 Sim #3
1 1.904762 1.893939 1.904762
2 1.495792 1.403053 1.427689
3 0.6972556 0.6885816 0.640123
4 1.493318 1.406028 0.5409189
5 1.732384 1.795734 1.660272
6 1.711534 1.695297 1.647813
7 1.687845 1.710039 1.804958
8 1.823365 1.76021 1.793801
9 1.817751 1.838713 1.805922
10 1.831093 0.6607918 1.868972

8



Results of Shapiro-Wilk normality Test:

W = 0.71129, p-value = 1.473�09 thus non-normally distributed
as p < 0.05

6.1 Testing for Signi�cance
For both predator kills and score metrics it has been shown the
results to be non-normally distributed and non-parametric, one
can thus utilize a Wilcoxon rank sum test to compare the agent
performance data and determine whether or not there is any sig-
ni�cant statistical di�erence between agents, while survival time
was shown to be normally distributed and thus a parametric Welch
Two Sample t-test can be used. Both tests are carried out using a
threshold of � = 0.05 to test for statistical signi�cance [11].

The performance of the R-BDI is now compared to the other agent
architectures along each of the three performance metrics. A sum-
marized result is presented for each agent comparison along each
metric measured.

Table 6: Results of Signi�cance Testing R-BDI vs BDI

Results
Predator Kills W = 193.5, p-value = 0.8453

Survival time
t = 1.6965, df = 32.105, p-value = 0.09946
95 percent con�dence interval:
-12.62059 , 138.52059

Score W = 223.5, p-value = 0.5338

Through the application of the Wilcoxon rank sum test to both
the predator kill and score results it can determined that neither
report a statistically signi�cant result in the comparison between
The R-BDI and BDI agents. Both applications of the test return
a p-value>0.05 and thus the null hypothesis cannot be rejected.
Likewise when applying the Welch Two Sample t-test to the R-BDI
and BDI survival time results, again a p-value >0.05 is obtained and
thus no statistical signi�cance can be conclusively determined.

Table 7: Results of Signi�cance Testing R-BDI vs POMDP

Results
Predator Kills W = 252, p-value = 0.0855

Survival time
t = -0.54142, df = 34.867, p-value = 0.5917
95 percent con�dence interval:
-1302.7118 , 754.2118

Score W = 309, p-value = 0.002643

Examining the results of applying the Wilcoxon rank sum test
to both the predator kill and score results it can determined that
while there is no statistically signi�cant di�erence in the number
of predators killed, there is a signi�cant result in the comparison
of performance score between The R-BDI and POMDP agents. In
examining the Survival time the application of Welch Two Sample
t-test between the R-BDI and POMDP, returns a p-value >0.05 and
thus no statistical signi�cance can be conclusively determined.

Table 8: Results of Signi�cance Testing R-BDI vs POMDP

Results
Predator Kills W = 354.5, p-value = 9.029�06

Survival time
t = 1.5144, df = 33.005, p-value = 0.1394
95 percent con�dence interval:
-203.3791 , 1387.7791

Score W = 371, p-value = 3.286�07

Finally the application of the Wilcoxon rank sum test to both
the predator kill and score results obtained between the R-BDI and
MDP agents indicates that a statistically signi�cant result can be
found along both metrics, with both tests reporting p-values<0.05.
In contrast however when examining the Survival time, the appli-
cation of Welch Two Sample t-test between the R-BDI and MDP
returns a p-value >0.05 and thus no statistical signi�cance can be
conclusively determined.

The results conclusively show that there is no statistically signif-
icant di�erence between the R-BDI and BDI agents. While when
comparing the R-BDI agent to the POMDP and MDP agents a sta-
tistical signi�cant di�erence is observed along at least one metric.

7 DISCUSSION
The results obtained clearly suggests a a strong statistically signif-
icant result between the performance of the R-BDI and POMDP
agents when considering the score metric and between the perfor-
mance of the R-BDI and MDP agents when considering both the
predator kills and score metrics.

However there was no statistically signi�cant result observed when
comparing the R-BDI agent to the BDI agent along any of the three
metrics. The results obtained between the two agent architectures
were virtually indistinguishable, with tests for signi�cance report-
ing p-values approaching 1. This begs the question of whether the
addition of reinforcement learning was truly an improvement to
the agent architecture. While the average performance showed an
improvement the statistical analysis showed that random chance
could not be conclusively ruled out as a possible cause for the
observed performance increase. Another consideration is the suit-
ability of the testing scenario used as a measure of learning, and
whether or not a di�erent testing environment would provide a
better environment in which to evaluate the e�ect of learning and
self-adaptation in AI and thus e�ectively measure the impact the
addition of reinforcement learning had.

There was no statistical signi�cance in the comparison of the sur-
vival time metric between agents. When considering the survival
time metric, a larger survival time may not always be indicative
of improved performance, a short iteration survival time but suc-
cessful iteration completion indicates that the agent was able to
successfully complete the task quickly. This can be seen when look-
ing at Table 2, it is clear that the R-BDI has a signi�cantly lower
average survival time when compared to the BDI and POMDP
agents, yet still maintains a higher average success rate and thus
also a higher average number of predators killed. This highlights

9



that while survival time on its own is not necessarily a su�ciently
robust measure of performance when combined with the context
of other metrics it provides an important insight into the overall
performance of an agent.

In addition to these results during the execution of the experimental
simulations the following points of interest were observed:

The behavior of the R-BDI showed that over the course of a
simulation it learned, unlearned and relearned certain strategies
as a result of sudden successes or failures. This is apparent in ob-
serving the way in which the agent becomes extremely aggressive
or defensive in response to a series of sudden successes or fail-
ures respectively and over-corrects in its change of behavior. The
agent would win a number of iterations, become bold in its action
strategy prioritizing attacking vs �eeing and eating, as a result the
agent would lose a number of subsequent iterations until the rein-
forcements made it more defensive and it began to succeed once
more. In contrast the POMDP and MDP agents maintained rather
consistent behaviors by the end of the simulations as a result. This
�uctuating behavior can be attributed to the learning rate of the
agent being too high and not being discounted over time, and thus
it over compensated in response to the reinforcements it received
and did not adequately discount future rewards to converge to an
optimal strategy, and thus creating the observed cyclical behavior
shifts from aggressive to defensive and back.

Finally it is interesting to note that the R-BDI, BDI and POMDP
agents all had rather comparable performances, especially given
the vastly di�erent underlying architectures of the BDI and POMDP
agent agent models .

8 CONCLUSIONS
The lack of any statistically signi�cant di�erence between the R-
BDI and BDI agent performances within the evaluation scenario
illustrate how the addition of reinforcement learning provided a
negligible change in agent performance and o�ers no clear improve-
ment or advantage.

The clear statistical di�erence in performance score between the
R-BDI and POMDP agents leads to the conclusion that in the given
evaluation scenario the R-BDI agent was better suited and able to
produce a better score. This is further reinforced when comparing
the relative survival time and success rates, the R-BDI agent is not
only successful more often it also completed the iteration tasks
in a shorter amount of time. This highlights the strength of the
underlying BDI agent architecture to focus on and pursue particular
goals, while being less reliant on initially exploring and learning
an underlying environment model.

Finally when comparing the R-BDI and MDP agents one can con-
clude that statistically the R-BDI agent was able to both outperform
the MDP agent in terms of performance score and predator kills.
The large di�erence observed in survival time in conjunction with
the relative di�erences in success rate also further support the im-
proved performance the R-BDI agent showcased over the MDP
agent.

Ultimately this research project concludes with the design and im-
plementation of the R-BDI cognitive agent architecture. Resulting
in the successful extension to the Q-Cog experimental platform
with the addition of a rational agent capable of self-learning and
adaptation

9 FUTUREWORK
This project has looked at the design and implementation of the
R-BDI agent architecture in order to create a rational agent capable
of self adaptation and learning within a 3d virtual world.

The R-BDI architecture itself in its current form has the poten-
tial to be expanded further to include a more robust reinforcement
learning mechanism, which is tied in to more than just a goal and
plan restriction mechanism. Rather there is potential for adding
reinforcements to particular plans and policies in an e�ort to create
an agent which is de�ned in a more generic manner and learns the
optimal plan to execute given a speci�c goal. Creating an agent
that utilizes a form of policy iteration to select the optimal plan
when many are possible.

Given the shift in research towards creating hybridized agent archi-
tectures, speci�cally those utilizing the BDI-POMDP hybrid frame-
works, there is potential for the extension of the R-BDI architecture
to include a POMDP planner or policy generator, allowing such an
agent to operate in an environment where it does not have a com-
plete set of prede�ned plans. This hybrid architecture would allow
the R-BDI to plan and act in an unknown environment without
having a completed set of pre-de�ned policies and be better able to
adapt to the environment through the creation of new policies.

There is also potential for the extension of the reasoning capa-
bilities of the R-BDI agent to facilitate reasoning about probabilistic
observations and knowledge. The development of a probabilistic
reasoner which is centered around the BDI agent model would allow
for more complex and comprehensive goal and plan deliberation
strategies.

10 ACKNOWLEDGEMENTS
This work would not have been possible without the continued
work and support of my co-researchers William Grant & Jonah
Hooper. And special thanks to my supervisors Prof.Thomas Meyer
and Assoc Prof.Deshen Moodley who have o�ered guidance and
advice throughout this endeavor

10



REFERENCES
[1] Malte Aschermann, Philipp Kraus, and Jörg P Müller. 2016. LightJason. In

Multi-Agent Systems and Agreement Technologies. Springer, 58–66.
[2] K. Bauters, K. McAreavey, J. Hong, Y. Chen, W. Liu, L. Godo, and C. Sierra. 2016.

Probabilistic Planning in AgentSpeak using the POMDP framework. Springer
International Publishing. http://eprints.uwe.ac.uk/31001/

[3] Rafael H Bordini, Lars Braubach, Mehdi Dastani, A El F Seghrouchni, Jorge J
Gomez-Sanz, Joao Leite, Gregory O’Hare, Alexander Pokahr, and Alessandro
Ricci. 2006. A survey of programming languages and platforms for multi-agent
systems. Informatica 30, 1 (2006).

[4] Rafael H Bordini and Jomi F Hübner. 2005. BDI agent programming in AgentS-
peak using Jason. In Proceedings of the 6th international conference on Computa-
tional Logic in Multi-Agent Systems. Springer-Verlag, 143–164.

[5] Michael Bratman. 1987. Intention, plans, and practical reason. (1987).
[6] Lars Braubach, Alexander Pokahr, andWinfried Lamersdorf. 2004. Jadex: A short

overview. In Main Conference Net. ObjectDays, Vol. 2004. 195–207.
[7] Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. 2004.

Goal Representation for BDI Agent Systems.. In ProMAS, Vol. 3346. Springer,
44–65.

[8] Juan C. Burguillo-Rial, Martin Llamas-Nistal, David Fernandez-Hermida, and
Fernando A. Mikic-Fonte. 2010. A BDI-based intelligent tutoring module for the
e-learning platform INES. 6. https://doi.org/10.1109/FIE.2010.5673365

[9] CAIR. 2017. CAIR. (2017). http://cair.za.net/
[10] Anthony Rocco Cassandra. 1998. Exact and approximate algorithms for partially

observable Markov decision processes. (1998).
[11] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Herrera. 2011. A

practical tutorial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation 1, 1 (2011), 3–18.

[12] MP George and AL Lansky. 1987. Reasoning about Actions and Plans: Proceed-
ings of the 1986 Workshop. (1987).

[13] William Grant. Evaluating and Extending the Q-Cog Platform. Unpublished
manuscript. (????).

[14] Alejandro Guerra-Hernández, Amal El Fallah-Seghrouchni, and Henry Soldano.
2004. Learning in BDI multi-agent systems. In CLIMA. Springer, 218–233.

[15] Jonah Hooper. POMDP learning in partially observable 3d virtual worlds. Un-
published manuscript. (????).

[16] Sven Koenig and Reid Simmons. 1998. Xavier: A robot navigation architecture
based on partially observable markov decision process models. Arti�cial Intel-
ligence Based Mobile Robotics: Case Studies of Successful Robot Systems (1998),
91–122.

[17] Xiang Li and Xiao-Ping Chen. 2005. A real-time planning system in dynamic
nondeterministic environments. CHINESE JOURNAL OF COMPUTERS-CHINESE
EDITION- 28, 7 (2005), 1163.

[18] Prasanna Lokuge and Damminda Alahakoon. 2005. Reinforcement learning in
neuro BDI agents for achieving agent’s intentions in vessel berthing applications.
In Advanced Information Networking and Applications, 2005. AINA 2005. 19th
International Conference on, Vol. 1. IEEE, 681–686.

[19] Peter Molyneux. 2001. Postmortem: Lionhead StudiosâĂŹ Black & White. Game
Developer (2001).

[20] Emma Norling. 2004. Folk psychology for human modelling: Extending the
BDI paradigm. In Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 1. IEEE Computer Society,
202–209.

[21] Alexander Pokahr, Braubach Lars , and Winfried Lamersdorf. 2005. A Goal
Deliberation Strategy for BDI Agent Systems. Multiagent System Technologies,
Vol. 3550. Springer Berlin Heidelberg, Berlin, Heidelberg, 82–93. https://doi.org/
10.1007/11550648_8

[22] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI
reasoning engine. Multi-agent programming (2005), 149–174.

[23] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[24] Anand Rao. 1996. AgentSpeak (L): BDI agents speak out in a logical computable
language. Agents breaking away (1996), 42–55.

[25] Anand Rao, Michael P George�, and others. 1995. BDI agents: From theory to
practice.. In ICMAS, Vol. 95. 312–319.

[26] Gavin Rens, Alexander Ferrein, and Etienne van der Poel. 2010. A belief-desire-
intention architechture with a logic-based planner for agents in stochastic do-
mains. (Aug 18, 2010). http://hdl.handle.net/10500/3517

[27] Gavin Rens and Deshendran Moodley. 2016. A hybrid POMDP-BDI agent ar-
chitecture with online stochastic planning and plan caching. Cognitive Systems
Research 38, 22 (Nov 2016), 185. https://doi.org/10.1016/j.clinmicnews.2016.10.005

[28] Stuart Russell, Peter Norvig, and Arti�cial Intelligence. 1995. A modern approach.
Arti�cial Intelligence. Prentice-Hall, Egnlewood Cli�s 25 (1995), 27.

[29] Richard S Sutton andAndrewGBarto. 1998. Introduction to reinforcement learning.
Vol. 135. MIT Press Cambridge.

[30] Unity Technologies. Unity Game Engine-O�cial Site. Online][Cited: October 9,
2008.] http://unity3d. com (????), 1534–4320.

[31] Michael Waltham. Design and implementation of the Q-Cog Architecture. Un-
published manuscript. (????).

[32] Michael Wooldridge. 2009. An introduction to multiagent systems. (2009).
[33] Michael Wooldridge and Nicholas R Jennings. 1995. Intelligent agents: Theory

and practice. Knowledge engineering review 10, 2 (1995), 115–152.

11

http://eprints.uwe.ac.uk/31001/
https://doi.org/10.1109/FIE.2010.5673365
http://cair.za.net/
https://doi.org/10.1007/11550648_8
https://doi.org/10.1007/11550648_8
http://hdl.handle.net/10500/3517
https://doi.org/10.1016/j.clinmicnews.2016.10.005

	Abstract
	1 Introduction
	2 Related Work in BDI Agents 
	2.1 Current BDI Agent Research & Development
	2.2 BDI Agents Utilizing Reinforcement Learning

	3 General Project Background
	3.1 Q-Cog Experimental Platform
	3.2 Defining a BDI Architecture
	3.3 Defining Reinforcement Learning
	3.4 Defining MDP's & POMDP's

	4 System Design
	4.1 BDI Agent Design
	4.2 BDI Reinforcement Learning Extension

	5 Development & Evaluation Procedures
	5.1 Agent Performance & Evaluation

	6 Results Gathered
	6.1 Testing for Significance

	7 Discussion
	8 Conclusions
	9 Future Work
	10 Acknowledgements
	References

