
POMDP Learning in Partially Observable 3D Virtual Worlds
Jonah Hooper

University of Cape Town
Cape Town, Western Cape, South Africa

jonah.graham.hooper@gmail.com

ABSTRACT
In this paper we describe PCog - a system for POMDP based model
learning and test the validity of that method in a 3D virtual world.
The method used is based on Utile Suffix Memory which is used
to generate an Markov Decision Process (MDP) which is then con-
verted into a Partially Observable MDP using a series of transfor-
mations. PCog exhibited positive performance characteristics in
comparison to a BDI based agent and manually defined POMDP.
PCog is a novel application of model based POMDP learning to a
real time system.

KEYWORDS
POMDP, 3D Virtual Worlds, BDI, Partial Observability

1 INTRODUCTION
This paper addresses the problem of stochastic planning and acting
in a 3D real time game environment using partially observable
markov decision processes. The challenging aspect of these sorts of
environments is that their large state spaces are not easily modelled
as Partially Observable MDPs. Concretely this paper extends a tech-
nique of off-line model based POMDP learning to derive POMDPs
on the fly in real time 3D Unity[6] based testing environment. The
environment is a CAIR[1] lab project called QCog. The entire sys-
tem used to perform the model learning and planning will from
here on be known as PCog.

Other reinforcement learning techniques that are used to solve
this problem include model-free value and policy iteration. In ad-
dition there is also model based learning that attempts to learn
parameters for markov models with defined states. This paper fo-
cusses on model based learning where an agent can only observe
some part of it’s environment and where it’s state space is large,
complex and unknown to the agents designers. We do however
assume that this environment can be modelled using Markov De-
cision Process. In addition the notion of partial observability and
degree of belief are also discussed in this paper.

There are were two primary aims of this project - to extend the
QCog architecture to support planning with partially observable
Markov decision processes and to assess whether those extensions
provide reasonable performance improvements when compared
to other techniques. In addition to agent performance we consider
the tradeoffs of the technique from the perspective of an agent
designer.

In order to solve the problem above this paper used a technique
of MDP learning called Utile SuffixMemory (USM)[3.2] and adapted
it to create a POMDPs[2.5]. An agent learns the states of it’s world
through observations it receives as it interacts with its environment.
In addition the generated POMDP is refined as the results of taking

actions using the generated POMDP are fed back into the USM
module and used to create better POMDPs.

This method has been shown to perform comparatively to a
belief desire intention agent and a hand defined defined POMDP.
PCog also performs far better than the default Q-Learning based
agent in Q-Cog. Our method also allows for an agent designer to
have less knowledge of their environment than the BDI and static
POMDP approaches.

This paper will start with the background section covering the
basics of reinforcement learning, the QCog framework and Utile
SuffixMemory. It will show the overall design of PCog in the design
section and elaborate on more specific implementation details in
System Implementation. Results, discussion of qualitative observa-
tions are found in the Results and Discussion sections respectively.

2 BACKGROUND
2.1 QCog
QCog is an architecture designed for adaptive self-learning agents
in 3D environments that are both complex and unpredictable. It
is owned by Centre for Artificial Intelligence Research (CAIR)[1].
It is designed to be an experimental platform for agent develop-
ment and evaluation using the Unity3D Game Engine[6]. The unity
game is a test harness used to assess the abilities of agents. It will
be referred to as test bed from now on. Currently QCog contains
a reinforcement learning mechanism that uses a dynamic policy
selection mechanism that enables a cognitive agent to adapt to
unknown situations in its environment[14]. Entities placed in the
simulated world are designed to be generic and extensible for ease
of use within the architecture. QCog features adjustable simulation
settings which can be used to set the number of iterations you wish
to perform, a simulation speed control mechanism, a data recorder
which records important data metrics during the simulation, and
finally a playback engine that allows simulations to be recorded
and played back for further study whenever the user desires[14].
In the testbed the agents vision is restricted to a 180 degree hemi-
sphere and it it often has it’s vision obscured by obstacles. These
restrictions add an aspect of partial availability to the agent.

2.2 Belief Desire Intention Architecture
Belief Desire Intention (BDI) is an architecture for designing and
constructing intelligent agents[7]. It is based on the Belief Desire
Intention model of human cognition[7]. Beliefs are the current
model of the agents state. Desires are long term goals that the agent
may wish to achieve. Intention is the current desires that are being
prioritised for achievement.



2.3 Markov Decision Processes
Markov decision processes are models of stochastic environments
in which reinforcement learning takes place. MDPsconsist of a
discrete set of states S , a set of actions A and a set of conditional
probabilities between actions and states known asT - the transition
function. More formally MDPscan be defined as a 4-tuple of the
form[2]

MDP = (S,A,T ,R, s0) (1)
where
• S - the set of states
• A - the set of actions
• T - T is a function where T (s,a, s ′) is the probability of tran-
sitioning to state s ′ given action a and state s .
• R - R is a function where R(s ′,a) is the reward for taking
action a and arriving in state s ′
• s0 - the starting state

2.4 Reinforcement Learning
Reinforcement learning is a subset of the larger field of machine
learning which typically deals with training artificial intelligence
agents to act more effectively in their environments. More con-
cretely reinforcement learning can be expressed as the problem of
controlling an agent so that it acts optimally in a Markov Decision
Processes (MDP)[20, pp 4]

MDPs are extensions of Markov Models[16] which are environ-
ments in which there is a transition function T which jumps from
state to state according to some conditional probability distribution
T (s ′ |s) where s ′, s ∈ S . The difference between Markov Models and
Markov Decision Processes is that an agent in a Markov Decision
Process can interact with its environment using actions.

2.4.1 Model Based and Model Free Learning. There are two pri-
mary types of reinforcement learning - model based and model
free learning. Model based learning involves learning a model (typ-
ically an MDP) of the environment perceptions of the agents state,
when taking actions actions and receiving rewards[18]. An agent
will typically learn a transition T (s,a, s ′) and reward R(s,a) which
are the transition and reward functions respectively. Under this
scheme the agent must assume that the state of the model is known
ahead of time and is fully observable. Model free learning is the
process of learning a value function - that is some function Q(s,a)
that represents the action in state s that will result in the highest
reward over time. Model learning assumes only a state space - it
does not require an explicit model of the transition function or
reward function.

2.4.2 Value Iteration. Value iteration is model free learning that
involves successively approximating a better value associated with
each state and possible action [? , p. 109] In other words value
iteration involves approximating a function Q : S ×A→ R which
is the best expected long term reward of taking action a in state s .

2.4.3 Policy Iteration. Policy iteration is a model free learning
technique. A policy - π (s) - is a sequence of actions that could be
taken from state s . Policy iteration will iterate through possible
policies until it finds π∗(s) which is the optimal sequence of actions
to take from state s .

2.4.4 Q-Learning. Q-learning is an algorithm for value iteration
that was used for the primary agent demonstrated in QCog[14]. It
is the reason for the Q in QCog. Q-learning is summarised by the
following formula[10]:

Q(st ,at ) ←Q(st ,at )+
α[rt + γmaxa∈AQ(st+1,a)
−Q(st ,at )]

t represents the time epoch. st+1 is a successor state to st . Q :
S × A− > R is the expected value of taking action a ∈ A in state
s ∈ S . An agent using Q-learning will maintain a Q-Table [10] which
is a data structure that stores the values of the Q-table. The table is
updated at each time epoch using the Q function. QCog - the java
code base MessageClient - PCog client in the code base TestBed -
the Unity test application PCogMessageHandler - python module
that interprets messages from the PCogClient ModelLearner - a
state machine that dictates exploration and exploitation strategy
of PCog. It also maintains the Utile Suffix Memory model Percep-
tionProcessor - this module takes raw perceptions coming from the
MessageClient and discritises them into a form that is compatible
with the reinforcement learning module. Also contains methods
for scoring perceptions - IE a reward function. It also contains an
exploration strategy.

2.5 Partially Observable Markov Decision
Process (POMDPs)

A POMDP is a model of a stochastic process where the current
state of the agent is unclear. A "belief state" is maintained about
the POMDPs environment which is a probability distribution over
a set of states. The belief state is often denoted as b(s) where s is
a state and

∑
s ∈S b(s) = 1 where S is the set of states. The agent is

able to infer beliefs on it’s environment by making use of the idea
of observations. Observations are emitted when an agent arrives
in a new state having taken some action. Observations allow the
agent to update it’s belief state based on new information.

Formally, a POMDPcan be defined[5, 12] by a 7-tuple of values
-

P = (S,A,R,Z ,T ,O,b0) (2)
• S - set of states
• A - set of actions
• Z - set of observations
• R - R(s ′, s,a) is a function that maps every state action pair
to a real number. This is the reward of taking action a in s
and arriving in s ′.
• T -T (s ′,a, s) is the probability of transitioning to state s ′ ∈ S
given action a ∈ A and incident state s ∈ S
• O - O(z,a, s ′) is the probability of observing z ∈ Z given
action a and state s ′.
• b0 - a probability distribution over S that defines the starting
belief state.

2.6 POMDPscompared to MDPs
Recall that MDPs2.3 are stochastic processes where an agent can
make decisions that effect their environments. POMDPs are a gen-
eralisation of the idea of MDPs. They allow for the admission of

2



partial information to the underlying model of a MDP. A POMDP
model assumes that a system has an underlying MDP but the cur-
rent state of the agent is only accessible through observations. This
lack of information is represented using the belief state. This addi-
tion does add complexity when attempting to solve the model. The
task of "solving" or "planning" is the process of finding a sequence
of actions a ∈ A which lead to the highest amount of reward over
either finite or infinite number of future actions. Since the current
state of a POMDPis not known, the state is represented as b, the
belief state, which is a probability distribution. There are infinitely
many possible belief states. This is in contrast to MDP which have
finitely many possible understandings of where it is in it’s environ-
ment - it’s current state s ∈ S . This difference allows POMDPs to be
more general than MDPs but presents additional computational and
conceptual hurdles when attempting to find an optimal policy for
an environment. Methods for finding optimal policies in MDPs are
typically not usable for POMDPs because they are computationally
expensive[4]. Exact algorithms rely on constructing an MDP from a
POMDP by representing possible future belief states as a piecewise
linear convex function(PLC). When planning in a POMDP there
are many possible belief states that can be generated from deci-
sions made in the POMDP. The number of belief states can increase
exponentially[5] as we look further into the future. This processes
is computationally expensive since it involves solving a linear pro-
gramming problem[4] to find the best PLC function. POMDPsdo not
distinguish between actions that reveal information about the state
of the agent and actions that affect the environment by causing the
agent to transition to another state. As such a POMDP implicitly
encodes a "cost of information" in it’s model - a concept that does
not exist in MDPs. In other words - efficient POMDP planning will
often result in an agent taking additional actions that reveal more
information about it’s environment so that it can be more certain
about the cost of taking future actions.

2.7 Belief State Update
In order to plan under a POMDP the agent must update it’s belief
state for ever action and observation that it takes. This belief state
update can be expressed in the following way:

bn (s ′) =
O(s ′,a,o)∑s ∈S T (s,a, s ′)bn−1(s)

Pr (o |a,b) (3)

This represents the degree of belief that we are in s ∈ S given that
we took action a ∈ A and observed o ∈ Z . Further we can define a
function called State Estimator (SE). State Estimator finds the next
belief state given that an agent in the POMDP model took a and
observed o.

SE(b,a,o) = bn (4)
The reward function of a POMDP provides feedback on taking an
action a in state s and arriving in state s ′. But when planning in
a POMDP and agent is not aware of it’s current state. It only has
access to a belief state bn which is a probability distribution. Hence
the expected reward for taking action a given belief s is∑

s ∈S
R(a, s)bn (s) (5)

When planning in a POMDP we are interested in finding an action
that maximises reward over some given, possibly infinite horizon.

The value of the best action is given by

V ∗(b,h) = max
a∈A

∑
s ∈S

R(a, s)b(s)

+ γ
∑
o∈Z

O(o,a, s ′)V ∗(SE(b,a,o),h − 1)

whereγ ∈ [0, 1] is known as the discount factor. The discount factor
is used to weight the importance of future actions in the value
function calculation. γ = 1 forces future actions to be weighted
equally to current actions and γ = 0 states that only the immediate
action is considered in the reward calculation. h ∈ Z+ is the horizon
that dictates how far into the future we should plan. The function
Q∗(b,h) gives the action that maximizes future discounted reward.
It is represented as

Q∗(b,h) = argmaxa∈A[
∑
s ∈S

R(a, s)b(s)

+ γV ∗(SE(b,a,o),h − 1)]

2.8 Monte Carlo Approximations
Since PCog has the potential to contain a large state space (dis-
cussed in the design section) being able to solve POMDPs with
large state spaces is required. In practice Utile Suffix Memory can
create POMDPs with large state spaces as well. Traditional POMDP
solution algorithms like value iteration and policy iteration suf-
fer from a curse of dimensionality. [Silver and Veness] proposes
a ground-breaking POMDP approximation algorithm known as
POMCP. Makes use of both particle filters and Monte-Carlo Tree
Search (MTCTS) to approximate a solution to a given POMDP. The
algorithm can compute policies which approximate the maximum
expected utility to arbitrary error 0 < ϵ . POMCP constructs a his-
tory node h for a sequence of actions a ∈ A and observations o ∈ Z .
Each history will refer to a node in a search tree. The POMCP algo-
rithm assumes some generative model (o, s ′,a)~G(s,a). G is used
to sample actions, states and observations. The algorithm selects
the action to take using following equation:

argmaxa∈AV (bh) + c
√

loдN (h)
hb

(6)

where
• V (bh) is the value function of node h given belief state b
• N (h) is the number of visits to node h
• c is a discount factor

POMCP assumes that the exact belief state can be found from a
given history h ∈ H and state s ∈ S . POMCP uses a particle filter
to appoximate a value for B(s,h) to avoid state estimation function
(recall SE) which can be intractable for extremely large states.

2.9 Utile Suffix Memory
Utile Suffix Memory is a method for learning Markov Decision
processes from a set of actions and observations. It has also been
shown[17] that POMDPs can be derived from USM trees with some
simplifying assumptions. USM assumes that an agent is operating
in an environment where it can perceive observations (o ∈ Z ) and
can take actions (a ∈ A). Utile Suffix Memory organises its actions
and observations in a suffix tree data structure from which it can
derive an MDP.

3



For each action the agent takes it receives an observation and
a reward. The ith action, observation and reward triple is given
by (ai ,oi , ri ). These tuples are organised into a series of instances
which are a linked list where the triple at time t is linked to previous
triples. Instance at time t is given by

Tt =< Tt−1,at−1,ot , rt > (7)

Utile Suffix Memory is a suffix tree constructed from the suffixes
of given instances. The suffix tree will contain actions in the odd
rows and observations in the even rows. Older observations of the
USM tree are stored at the top of the tree. Each node in the suffix
tree contains a set of instances which have suffixes that led them
to that node in the suffix tree. Nodes in the tree act as buckets for
instances that reach those tree nodes. The deeper a node is in the
tree the father back in time it occurred.

To ensure more efficient tree expansion (McCallum) calls for
maintaining a fringe bellow the suffix tree. A fringe node contains
references to sequences of instances that contain a prefix that is
equal to a preceding suffix for some window. The leaves of these
fringes are not initially considered to be part of the official leaves
(states) of the tree. The leaf nodes of the fringe are made into states
of the USM if there is a statistically significant difference between
the expected values (see equation (10)) of their instances and that
of their parent official leaf. An example of a USM tree with suffixes
and fringe nodes can be seen in figure (1).

In order to insert a value in the tree the USM insertion algorithm
will trace n preceding instances of some instanceTt . There are three
possible outcomes that can occur when inserting an instance into
the tree:
• A fringe element s is reached - s is promoted to a full leaf
node and state. All of s ancestors are no longer fringe nodes
• The a leaf of the tree is reached - in this case a new state is
added to the tree and the tree is extended to include Tt
• An internal non-fringe node s is reached - Tt is added to the
bucket of instances in node s

Figure 1: Example of a Utile Suffix Memory tree with fringe
nodes connected by dotted lines

To construct a USM tree the agent initially will set out to explore
in it’s environment. The agent will record what it sees and will add

instances to the suffix tree. The leaves of the suffix tree become the
states of the agent.

The leaves of the tree can be referred to as s . Each leaf can also
be used to refer to the suffix of instances that was used to travel
from the root of the tree to the leaf. We denote the leaf node of
instance Ti as L(Ti ) . We denote the set of all instances associated
with leaf node s as τ (s) . All instances associated with s that contain
action a are denoted by τ (s,a) .

The immediate reward of being in state s and taking action action
a can be given by

R(s,a) =
∑
Ti ∈τ (s,a) ri
|τ (s,a)| (8)

In other words the reward of taking a in s is the average reward
of taking a while attempting to reach state s as the agent makes
observations.

Similarly the transition function is given by

T (s ′,a, s) = |∀Ti ∈ τ (s,a) L(Ti+1) = s
′ |

|τ (s,a)| (9)

Intuitively this represents how many possible points there were
in the suffix tree wherein action a was taken and led to the next
instances landing up in tree s ′ instead of s .

The value function of a USM tree can be found in the following
manner

Q(s,a) ← R(s,a) + γT (s ′,a, s)U (s ′) (10)

whereU (s,a) is the utility function of the Utile Suffix Memory. U
is given by

U (s ′) = max
a∈A

Q(s ′,a) (11)

The performance of calculating Q can be sped up using dynamic
programming. Q is similar to simple Q-learning of a MDP.

To expand fringe nodes underneath leaf nodes [McCallum] rec-
ommends the following procedure:

(1) For each official leaf node of the USM tree - in other words
all states s ∈ S

(2) For each child node c of leaf s
(3) For each instance - Ti - in the child c that is a fringe node,

calculate it’s utility usingUf (Ti )
(4) Calculate the utility of each instance in the official leaf node

s usingUf (Ti )
(5) Compare the two distributions using a two sampled KS test
(6) If the distributions are different (we reject the null hypothesis

of KS test) promote the fringe node to an official leaf node
(7) Repeated the process until no new fringe nodes can be pro-

moted to leaves or there are no fringes left

Uf (Ti ) is taken to be U (Ti ) = ri + U (L(Ti )) where L(Ti ) is the
leaf node associated with instance Ti (if this node is in the fringe
then this would be the last leaf node one would encounter while
traversing to the given fringe node).

This procedure ensures that a fringe node is only "promoted" to
a leaf if it adds enough new information that justifies adding it as a
state.

4



2.10 Planning in USM
In order to plan in a USM tree an agent must choose the action that
has the highest expected value. The next best action (a∗)is given by

a∗ = argmaxa∈AQ(L(Ti ),a) (12)

whereTi is some instance and L(Ti ) is the leaf node associated with
that instance.

3 RELATEDWORK
3.1 POMDP Based Model Learning with Braum

Welch
[Koenig and Simmons] suggest using a hill climber algorithm that
learns a sensor model Pr (o |s,a) that would most likely generate a
sequence of observations and actions ({ot ,at ,ot−1,at−1, ...}) that
were observed by the agent. The approach assumes that there is a
known state space in the model s ∈ S that the agent already knows.

3.2 Model Based POMDP Learning using Utile
Suffix Memory

(Shani) describes a method of converting USM into POMDPs. The
state space (S) of the POMDP is given by the set of all leaves of
the USM suffix tree. The observation (Z ) and action (A) spaces are
defined as part of the environment. Under this scheme the transition
function of the model is given by 9. The reward function ignores the
effect of the arrival state but still constitutes the reward function
for a valid POMDP. It is given by 8.

Defining an observation function for USM requires the notion of
sensor accuracy. Sensor accuracy is defined as Pr (o = o′)which can
be interpreted as the probability that observation o could actually be
an observation o′. This is a slightly weaker requirement than that
of the observation function of a POMDP which requires a mapping
between states, actions and observations but is still sufficient to
construct a valid POMDP. (Shani) suggests deriving O from the
USM in the following manner

O(a, s,o) = Pr (o = o(s)) (13)

where o(s) is the last observation associated with the tree node for
state s . o has the signature o : S → Z where Z is the observation
space. So Pr (o = o(s)) is the probability that observation o would
be viewed immediately before reaching state s .

3.3 Choice of Learning Algorithms
Utile Suffix Memory based approach was chosen instead of the
BaumWelch because it does not require an agent designer to explic-
itly model the state space of the environment. This is in contrast
with Baum Welch which does require a state space to be specified.
With the Utile Suffix Memory approach an agent designer would
only have to design a reward function for the agent and not have
to design a state space.

4 DESIGN OF PCOG
4.1 Overview
The primary constraints that drove the design and architecture
of the PCog agent was that the most compelling POMDP library,

Figure 2: A diagram of the flow of information within PCog

AI-toolbox[21], was only usable from C, C++ and python. In ad-
dition there was already logic implemented to process messages
from the test bed in the Java based QCog agent. To simplify the
implementation and to reduce possible avenues for introducing
new bugs and errors in communication between a Python based
agent and the test bed - the QCog framework was extended to act as
a intermediary between PCog and the test bed. The QCog module
(Humanoid) maintains agents view of the environment. PCogClient
extracts that information and passes it on to the PCog python code
base.

As a consequence of the PCog related extension, we extended
QCog to allow it to communicate with external processes which can
advise it how to plan and act. These extensions allow an arbitrary
agent on an arbitrary computer to communicate with the testbed
or form a component of the QCog architecture. This design choice
was made to exploit the maintenance of the testbeds state which
was handled by the Humanoid class in QCog.

The figure 2 provides an overview of the PCog architecture. Some
of these components are covered in more detail later on.
• QCog - the java code base
• Humanoid - a singleton class in QCog that maintains the
agents idea of the testbed.
• PCogClient - sends and receives messages over a TCP-
Socket between java code base and python based PCog agent
• TestBed - the Unity test harness application
• PCogMessageHandler - pythonmodule that acts as a TCPServer
that listens for messages for new state changes in the PCog-
Client.
• PerceptionProcessor - this module is defined by the agent
designer. It contains functionality to convert the raw infor-
mation from the test bed into a discitised representation.
This module also defines the observation space Z . It accepts
state received through PCogMessageHandler and returns
instances which can be inserted into the USM Module in the
model learning agent.
• ModelLearner - a statemachine that handles POMDPmodel
generation and agent exploration and exploitation. Also
maintains the Util Suffix Memory.
• POMCP Solver - a thin layer on top of POMCP algorithm
implemented in AI-toolbox. Accepts descriptions of POMDPs
from the test bed and returns the action that best maximises
the description.

4.1.1 Message Client - PCogClient. PCog client is an extension
to the QCog architecture that allows the offloading of decision

5



making to an external agent accessible through a TCP socket. PCog-
Client sends immutable snapshots of the current state of the test
bed according to the QCog agents perception (which is stored in
the Humanoid class). The immutable subset of the code would be
converted into JSON and sent over to PCog. The immutability of
these created snapshost also allowed the PCogClient to analyze
state changes in the environment. The messaging client also ab-
stracts the notion of time in the testbed away from PCog. This is
discussed in more detail in 6.1. PCogClient is also paired with a
TCP server - PCogMessageHandler - on the python side of PCog
which processes messages received from PCogClient.

4.1.2 Perception Module. The perception layer mirrors the per-
ception layer created by (Michael[14]). The perception layer accepts
the testbed state from the PCogClient and converts it into the ob-
servation space. In other words the testbed takes some world state
W and converts it into o ∈ Z .W can be seen as the current state
of the testbed which is extremely large and possibly continuous.
Perception is considered an interface in PCog.The perception en-
gine contains a reward function for the observation. This is based
on the world stateW rather than o. This is used to create ri for for
(ai−1,oi ) ∈ A×Z . This is used to create instanceTi . This allows an
agent designer to prioritise specific behaviors and results that PCog
can observe. In other words a Perception Module can be defined in
the following way:
• R : O ×O → R - a reward function based on the current and
the previous observations
• Πe :W → A - an exploration policy that maps the current
world state to an action
• Perceive :W → O - an optional function that takes some
complex state -W - from an external source and converts it
into an observation O

A designer of the agent will typically implement all 3 of those
functions.

4.1.3 Utile Suffix Memory Module. The utile suffix memory
module contains an implementation of the Utile Suffix Memory.
The utile suffix memory module maintains the following primitive
states
• Z - a set of allowed observations
• A - a set of allowed actions
• I - root node of the instance linked list
• R - the root of suffix tree
• S - set of suffix tree leaf nodes
• w - number of instances to consider part of history when
inserting into the tree. In other words the instance suffix
length. The tree height would thus be 2w without using
fringe insertions.

This module handles the insertion of new perceptions into the tree
and the creation of the POMDP from the perceptions.

4.1.4 Model Learning State Machine. The model learning state
machine is an abstraction that handles the exploration, generation
of models and maintenance of the USM. The model contains the
following hyper parameters
• ϵ - an exploration vs exploitation constant
• U - a utile suffix memory

• m - how many iterations between each update of the learned
POMDP model
• P - POMDP model derived from U . This is initially non-
existent
• O - a perception module

This module was created because it provides an abstraction bar-
rier between the storage of data - USM Module - and the training
strategy for the agent. It also ensured that PCogMessageHandler
could be free from handling logic associated with the agents deci-
sion making.

4.2 Software Libraries
TheAI-toolbox library[21]was used to solve the constructed POMDPs.
Using a library was a design decision that was taken to increase
development time and reduce the likelihood of mistakes being made
in POMDP solving. This particular library was chosen because it
had a wide range of POMDP solving algorithms implemented like
Incremental Pruning[3], POMCP[19] and Witness Algorithm. It
also presented a simpler programming model than other libraries
like pemani4911 and [22] since it does not require the creation of
a complex class hierarchy to construct a model which stands in
contrast to the other two libraries mentioned. Only vectors of floats
are required to specify a POMDP model in Svalorzen.

4.3 Discretising Environment
The QCog test bed is a real time environment[14]. The test bed
sends a stream of updates on it’s environment state which were
passed to the QCog java API. Extensions were made to the QCog
java API (Cite Yusri andWills work) that allowed the agent to detect
whether an action that it made complete. The actions effected by
this were the FLEE, ATTACK and EAT (6.1) actions. PCogClient
added support for running the explore action until an entity was
seen in the test bed. This allowed the agent to view actions in the
world as a series of discrete synchronous state changing commands.

5 SYSTEM IMPLEMENTATION
PCog is a POMDP model learning framework that interlops with
the QCog environment. The basic idea of model learning is that
the agent will spend some time "exploring" it’s environment. In
the case of PCog "exploration" is some policy Πe (o) ∈ A where
o ∈W andW is the world space of the testbed and where A is the
set of allowed actions available to an agent. The agent will spend
some time taking actions in it’s environment. During this period
the agent constructs a Utile Suffix MemoryU .

Once the agent has perceived enough of it’s environment it will
derive a POMDP - P - fromU using a functionG (G for generate).
The concept of "enough" of the environment is defined as a set
number of iterations. This idea could be defined in future work.
The agent will then follow a policy called ΠU ,P (o, ϵ) ∈ Awhich is a
composite policy derived from two policies: Πe and ΠP . Πe (o) ∈ A
is an arbitrary policy that can be specified by an agent designer. In
the case of PCog it is a set of rules that the agent follows. ΠP (bh ) is
the optimal policy derived from planning in POMDP P . We pick Π
with a probability of 0 ≤ ϵ ≤ 1 We construct bh from some history
of past perceptions h ∈ H where H is a list of previously observed
perceptions.

6



In other words ΠU ,P (o) ∈ A can be defined in the following way

ΠU ,P (o, r ) =
{
Πe (o) if ϵ < r

ΠP (B(o))
(14)

where r ∈ [0, 1] is a random number sampled from the uniform dis-
tributionU and B : H → ∆(s)where ∆(s) is the set of all probability
distributions over S .

5.1 Exploration and Model Refinement
Once a new POMDP was generated from Utile Suffix Memory the
agent will plan off that POMDP (P ). In addition to planning off
P the agent will also take an action from a specified exploration
(recall ΠU ,P (5)) policy with probability ϵ . This step allows the
agent to discover new sequences of actions. Currently the epsilon
value does not change. Varying the value of ϵ ∈ [0, 1] according
to some exploration strategy could be seen as an instance of the
multi-armed bandit problem and could be explored in future work.

By sampling actions from the P and adding them to the utile
suffix memory instance we allow regressive patterns developed by
P to be corrected when a new POMDP is generated. In this way
we are iteratively improving the performance of the P that gets
generated. Regeneration of P is controlled by a parameter known as
m. Everym perceptions a new POMDP is generated and deployed.
From experimentation it was found that too many regenerations
caused performance regressions(8.4)

5.2 Planning with the POMDP
Once Pi has been constructed from the USM tree it’s initial belief
state still needs to be found so that planning can be performed on
the POMDP. The initial belief state of the POMDP was found by
traversing the most recent sequence of instances from the root tree
node to find the current state of the agent in the suffix tree. If no leaf
state is found then the a uniform distribution over the set of possible
successor states to the last internal tree node is chosen as the initial
belief state. Once the belief state is found the POMDP is solved
using the POMCP algorithm2.8 implemented in AI-Toolbox[21].
The derived POMDP is used as an approximation of the world. The
agent then performs planning on this approximation to find the
next best action.

5.3 Exploration Strategies
Before a POMDP can be derived from the utile suffix memory the
agent must explore it’s environment and discover new states. Ex-
plore in this context does not refer to the EXPLORE action discussed
in 6.1 but rather to a policy (recall Πe ) that the agent uses to dis-
cover new information about it’s world. Two explorations policies
were considered by the agent - the first was a "smart exploration"
strategy. Smart exploration policy was a hand written strategy that
provided some intelligence to the agents behavior. For example the
strategy would guide the agent to eat berries when they are seen
or attack a wolf when one is seen. The second exploration policy
- random exploration - picks actions at random regardless of the
state of the environment. Use of the smart explore policy allows
the agent designer to encode their intuitions of the environment
into the final POMDP that is produced by PCog.

5.4 Observation Space
The allowed observations for the state space is given by the follow-
ing 7-tuple:
• predator_visible ∈ {0, 1} - 1 instructs the agent that a preda-
tor is visible
• f ood_visible ∈ {0, 1} - 1 instructs the agent that food is
visible
• health_level ∈ {0, 1, 2} - the level of the agents health with
0 being the lowest level
• movement ∈ {0, 1, 2} - amount the agent moved since the
last action with 0 being stationary, 1 being medium amount
of movement and 2 being a lot of movement
• died ∈ 0, 1 - did the agent die in this observation - with 1
being that the agent did die

The mechanism used to derive the observation function in PCog
differs from the one suggested by [Shani] since the test bed frame-
work has no notion of sensor accuracy (recall Pr (o = o′)). In order
to handle this the observation function of a POMDP derived from
Utile Suffix Memory is defined as

O(s,a,o) =
{ | {τ (s,a) |Obs(Ti )=o } |

|τ (s,a) | if |τ (s,a) > 1
1
|Z |

(15)

where S is the set of all leaf nodes that are also states. This way an
observation function can be taken to mean "If we reached state s
how often would we view o having also taken action a on the way".
In the case that no actions have been observed to reach state a then
since we have no information we assume that every observation is
equally likely to be viewed in s and action a.

6 EXPERIMENT DESIGN
The QCog test bed was used to test the performance of the agents.
The test bed originally designed designed as a real time test bed to
assess the performance of Q-Learning based agents in a real time
test environment. Some adaptations and simplifications were made
to make it easier to model the environment as a POMDP.

6.1 Scenario Description
The test scenario centers around an agent which explores it’s en-
vironment and attempts to survive. The agent maintains health
level h ∈ {0, ..., 10}. The agent dies if h <= 0. The test scenario
contained 6 predators which would attack and damage the agents
health when they were close to the agent. Each of the 6 predators
attacks caused different damages. There were also 4 berry bushes
which the agent could eat to increase it’s health. The agent was
allowed to take 4 kinds of actions in the test bed -
• EXPLORE - A randomwalk around the map. Does not attack
or eat any entities. Must not be confused with Πe which is a
policy.
• ATTACK - attacks the closest predator
• EAT - eats the closest berry
• FLEE - flees one of two predefined waypoint

The test bed communicates with client agents in real time. This
is in contrast with a model where the test bed waits for inputs
before updating it’s own internal state of the world. When a client
agent sends a message to the testbed, the agent will attempt to

7



complete that action regardless of whether it was busy completing
a different action. The real time nature of this environment made it
more difficult to model since the time taken to process a decision
would have an effect on the performance of the agent. In order to
deal with this caveat some effort was taken to ensure that actions
would run until "completion". PCogClient allows ATTACK , EAT
and FLEE to run until an "action complete" flag is sent from the
test bed or until some timeout is reached. EXPLORE runs until the
agent sees some entity (Berries or Predators).

Partial information in the test bed is encoded by the agent only
having a forward facing hemisphere for it’s field of vision. Other
potential avenues of partial observability that were not accounted
for was the differing strength of the wolves.

Runs of the testbed are divided into simulations and iterations.
Iterations are a single run of the scenario until the agent is killed or
kills all the predators. Agents are allowed to retain learned informa-
tion between iterations. Simulations are groups of many iterations.
Agents cannot retain learned information between simulations.

6.2 Experiment Details
We tested PCogs performance against 4 different agents
• RCog - An agent that picks actions at random. This agent
provides a lower bound for performance
• BCog - A Belief Desire Intention[9] based Agent with prob-
abilistic notions.
• QCog - Q-Learning based agent described by (Michael). This
is the default agent in the test bed.
• spcog - A manually defined POMDP

The agents were scored according to a scoring system developed
by (Grant). The following metrics were used:
• G - 1 if the agent killed all predators, otherwise 0
• T - length of time the agent survived for
• A - number of attacks that did damage / number of attacks
• P - number of predators killed / total predators
• F - number of times agent successfully fled / total number
of time fled

These metrics are combined in the following way to get the score
metric

S = G +T
A + P + F

3
(16)

In addition to score we used number of kills and survival time
to measure agent performance. A kill is when an agent attacks a
predator causing its health to drop bellow zero. Survival time is the
time the agent took to complete an iteration. The iteration ends
when an agent dies or kills all the predators.

We thought that these metrics best capture the agents perfor-
mance with score being a more find grained metric.

Each agent was run for 3 simulations. Each simulation contains
20 iterations. Making a total of 60 iterations per agent. The results
were recorded by the build in metrics system.

7 RESULTS
In this section we discuss some quantitative metrics of the agents
performance. The metrics chosen for discussion were score (recall
S), number of kills and survival time. Bellow is a table of the mean

performance of the agents across all recorded iterations for the
selected metrics:

Table 1: Mean agent perfomances

Agent PCog SPCog BCog QCog RCog
Kills 4.75 4.45 5.01 2.5 0.1333
Score 1.22 1.034 1.545 0.77 0.43

Survival Time (s) 257.4 308.11 283.61 206.15 87.86

Figure 3: Histogram of number of kills for each agent type

Figure 4: Histograms for the survival times for 4 of the 5
agents

7.1 Statistical Tests
Table 2: KS Test of score distribution - PCog vs other agents

Agent SPCog BCog QCog RCog
p 0.3777 7.57 × 10−6 1.64 × 10−6 9.992 × 10−16
D 0.167 0.45 0.4883 0.7333

Table (2) shows the D-statistic and P-statistic of the score metric of
all agents tested against PCog. We ran two factor non-parametric
KS-test on each pair of metrics for all the agents. Running KS
tests on PCogs kill rate revealed that the while BCog appears to
have a higher kill rate but the difference in kill ratios between

8



Figure 5: Stacked histograms of the scores of the tested
agents

BCog and PCog is not statistically significant. In addition, the kill
rates of SPCog and PCog are not statistically different which seems
to explain why their scores appear not to be different(2). It was
found that the SPCog, PCog and BCog all outperformed QCog in a
statistically significant fashion. This confirms the visual intuition
presented in figure (3).

The score metric of the agents revealed no statistically signifi-
cant performance differences between PCog and SPCog. BCog out
performed all other agents in score in a statistically significant
fashion according to KS tests. A somewhat unintuitive result is that
the scores of SCog and QCog are not from the same distribution
according to the KSTest as one would expect from figure (3).

Overall BCog is the highest performing agent in score. This result
is statistically significant with p = 0.05. PCog is second with the
second highest score and kill rate.

All the agents have very similar survival times which appear to
come from the same distributions - confirming visual intuition in
figure (4).

The full analysis of the results was conducted in the R program-
ming language and can be found here.

8 DISCUSSION
Ultimately the results of experiment are promising as PCog is con-
cerned. The agent performs surprisingly well against agents that
have more information about their environments. Model based
POMDP learning has not been used to perform planning in a real
time system of this nature. The results indicate that POMDP model
learning is a viable approach to developing adaptive systems. That
being said some strange and somewhat regressive behaviours were
noticed which are also discussed in this section. The performance of
PCog against QCog is not discussed in this section because QCogs
performance was extremely poor compared to PCog (see table (1)).
We suspect that this is due to a lack of tuning of the agent to a new
test bed.

8.1 PCog vs Hand Crafted
PCog appears to perform slightly better than SPCog - a hand crafted
POMDP. While the results are not statistically significant this is
an encouraging sign for the algorithm. SPCog requires knowledge

of the underlying environment in which the agent exists. It re-
quires significant simplifying assumptions to make modeling the
environment easier. For example - SPCog has only 8 states. It does
not represent different health levels of the agent. SPCog can be
said to be more brittle to change since it cannot be generalised to
new environments. PCog requires only two things - reward and
observations - to be specified. This allows it to construct its own
internal representation of the environment. PCog requires less en-
coded knowledge about its environment in comparison to BCog
and SPCog. BCog encodes a set of beliefs and goals in its design. An
agent designer must have an idea of a good strategy to construct a
BDI. In summary both SPCog and BCog both require designer of
the agent encode a strategy and state space. PCog does not make
that requirement. The POMDPs generated by PCog can also be
reused in new scenarios. The best PCog POMDP that is developed
could theoretically be used repeatedly for the scenario. PCog could
also be viewed to generate a POMDP as an end goal.

8.2 Hyperparameters
The PCog has a significant number of hyperparameters which
could have an effect on its performance. These include the type of
exploration policy being used. Random exploration policy had a
noticeable negative effect on performance when compared to using
smart exploration policy. In addition - the fact that the test bed
updates clients in real time means that changing event processing
or running the agent on a different computer could result in differ-
ent performances for the agent. Having many hyper parameters
results in additional complications for the agent designer as hy-
perparameters introduce a large vector of possible performance
regressions and new complexity for a designer to learn. Hyperpa-
rameters can also make the system more brittle and over specific to
certain problems which leads into the next section. That being said
BCog encodes strategic information into the agent design. SPCog
the agent designer has to approximate an MDP for the environment
before engaging in further learning. If viewed in the context of
those configurations the many hyperparameters of PCog look like
less of an issue.

8.3 Influence of Smart Explore
At present it is unclear how much of the score PCog achieved is a
result of Smart Explore. A PCog agent would on many instances
get stuck in loop of the same actions in the test bed. Smart explore
would fix this regressive behavior by taking an action that gets the
agent out of a behavior loop. How significant this effect has on the
agents results requires more explanation. That being said smart
explore is an essential part of the reinforcement learning strategy
since it allows PCog to learn new sequences of actions to perform.

8.4 Overfitting
As PCog was running the POMDPs that get generate seemed to
get larger and larger. In addition the agent appeared to repeat
previous sequences of actions. One could argue that with too much
training PCog was starting to overfit itself to specific sequences of
experience it had seen. This is somewhat counterproductive because
it means that PCog is not generalising but is rather copying. Future
work could include studying this effect more.

9

https://github.com/Ivan1931/pcog-results


8.5 Performance Issues
While observing the agents behavior in the test bed the following
common patterns were observed that could help explain why the
agent performs worse than BCog.

The agent would often get stuck in loops of states especially
during repeated actions. To mitigate this behavior random actions
from smart exploration were seeded with probability of ϵ ∈ [0, 1].
These random actions would usually break the agent out of it’s
exploration loop.

The agent would often rapidly switch between different actions.
This seems to be a consequence of the nature of USM algorithm
being encoded in the POMDP. The algorithm learns a sequence
of actions which have the best reward. In a sense the USM tends
to learn policies rather than individual actions. As a consequence
POMDP will alias a sequence of actions to the incorrect state - this
issue could be mitigated with more state information about the test
bed environment in future.

The agent tended to get more cautious - favoring exploration and
fleeing - as the simulation went on. This is possibly due to the fact
that the agent was penalised heavily when it died. Experimentation
showed that more aggressive strategies were more appropriate in
the scenario so this can account for a reduction in score.

Overall the state space of the test bed is highly complicated.
(Shani) obtained most results from a far simpler test environment.

9 FUTUREWORK
POMDP based model learning is a relatively obscure field and has
not been applied to training agents in a real time continuous domain
such as the QCog testbed. Future work could include developing
more intelligent exploration - perhaps using ϵ-greedy algorithm to
find a balance between model exploration and model exploitation
(IE planning off generated POMDP). In the current implementation
of the POMDP based model learning framework a static reward
function is defined for an entire epoch. Future work could include
making the reward function dynamic and adaptive allowing for
PCOG to be more adaptive to new environments. While high level
goals should remain unchanged in complex test bed scenarios the
best strategy will change quite steadily as the epoch continues. For
example an agent should be more aggressive when there is only one
predator remaining rather than many. The POMDPs generated by
the model learning algorithm later on in the running of the epoch
tended to be quite large. (Shani) suggests a method for merging
USM tree branches to reduce the state space size but did not include
it in their final implementation since the merging algorithm was
rarely used. Future work could include implementing an algorithm
that effectively merges tree branches that are similar to each other
and do not provide a significant classification advantage. Or an
improved POMDP generation algorithm that takes the similarity
of states into account when developing transition functions. The
reward function described in (8) does not make use of a discount
factor. Neither is a discount factor used in the observation function
mentioned in (15). Future work could investigate the use of discount
factors on the performance of the agent. In summary, future could
address some of the performance issues in the discussion section
and create better strategies to balance the model based learning
agents exploration and exploitation parameters.

10 CONCLUSION
In this project we developed PCog - a POMDP based model learn-
ing framework. We evaluated the performance of PCog in a 3D
virtual world against a series of other agent architectures. The
PCog POMDP model learning provides a POMDP model learning
framework that allows an agent to approximate POMDPs for it’s
environment. PCog is - to our knowledge - the first application
of POMDP based model learning to a real time 3D virtual world.
The agent is able to outperform an MDP agent and perform com-
paratively to a BDI based agent when run in the testbed. Further
PCog was able to outperform a hand written POMDP. This indi-
cates that PCog - and model based online learning - is a viable
approach for constructing POMDPs for a complex real time test
environment. Further - it also shows that POMDP model learning
using Utile Suffix Memory is a viable strategy for MDP learning in
environments where the underlying MDP parameters are unknown,
which is especially true in complex real time environments. That
being said there are a number of performance issues and regressive
behaviours that PCog exhibits. The results of the experiment show
that POMDP based model learning is a valid approach for training
agents that plan and act effectively in real time 3D virtual world
with partial information.

11 ACKNOWLEDGEMENTS
Thank you to Dr Gavin Rens for guidance and feedback. Thanks
to Professor Deshen Moodley for supervision. Thanks to William
Grant and Yusri Dollie for their tireless development of the Q-Cog
platform.

REFERENCES
[1] 2017. CAIR. (2017). http://cair.za.net/
[2] Oguzhan Alagoz, Heather Hsu, Andrew J Schaefer, and Mark S Roberts. 2010.

Markov decision processes: a tool for sequential decision making under uncer-
tainty. Medical Decision Making 30, 4 (2010), 474–483.

[3] Anthony Cassandra, Michael L Littman, and Nevin L Zhang. 1997. Incremental
pruning: A simple, fast, exact method for partially observable Markov decision
processes. In Proceedings of the Thirteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., 54–61.

[4] Anthony Rocco Cassandra. 1998. Exact and approximate algorithms for partially
observable Markov decision processes. (1998).

[5] Anthony R Cassandra. 1998. A survey of POMDP applications. In Working notes
of AAAI 1998 fall symposium on planning with partially observable Markov decision
processes, Vol. 1724.

[6] Unity Game Engine. [n. d.]. Unity Game Engine-Official Site. Online][Cited:
October 9, 2008.] http://unity3d. com ([n. d.]), 1534–4320.

[7] Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael
Wooldridge. 1998. The belief-desire-intention model of agency. In International
Workshop on Agent Theories, Architectures, and Languages. Springer, 1–10.

[8] William Grant. [n. d.]. Extending the Q-Cog platform. ([n. d.]).
[9] Afsaneh Haddadi and Kurt Sundermeyer. 1996. Belief-desire-intention agent

architectures. Foundations of distributed artificial intelligence (1996), 169–185.
[10] Mance E Harmon and Stephanie S Harmon. 1996. Reinforcement learning: A

tutorial. WL/AAFC, WPAFB Ohio 45433 (1996).
[11] Sven Koenig and Reid Simmons. 1998. Xavier: A robot navigation architecture

based on partially observable markov decision process models. Artificial Intel-
ligence Based Mobile Robotics: Case Studies of Successful Robot Systems (1998),
91–122.

[12] Michael L Littman. 2009. A tutorial on partially observable Markov decision
processes. Journal of Mathematical Psychology 53, 3 (2009), 119–125.

[13] R Andrew McCallum. 1995. Instance-based utile distinctions for reinforcement
learning with hidden state. In ICML. 387–395.

[14] Waltham Michael. [n. d.]. Design and implementation of the Q-Cog Architecture.
Unpublished manuscript. ([n. d.]).

[15] pemani4911. 2017. pemami4911/POMDPy: POMDPs in Python. (2017). https:
//github.com/pemami4911/POMDPy

10

http://cair.za.net/
https://github.com/pemami4911/POMDPy
https://github.com/pemami4911/POMDPy


[16] Lawrence Rabiner and B Juang. 1986. An introduction to hidden Markov models.
ieee assp magazine 3, 1 (1986), 4–16.

[17] Guy Shani. 2007. Learning and solving partially observable markov decision
processes. Ph.D. Dissertation. Ben-Gurion University of the Negev.

[18] Guy Shani, Ronen I Brafman, and Solomon E Shimony. 2005. Model-based online
learning of POMDPs. In European conference on machine learning. Springer, 353–
364.

[19] David Silver and Joel Veness. 2010. Monte-Carlo planning in large POMDPs. In
Advances in neural information processing systems. 2164–2172.

[20] Richard S Sutton and Andrew G Barto. 2011. Reinforcement learning: An intro-
duction. (2011).

[21] Svalorzen. 2017. Svalorzen/AI-Toolbox: A C++ framework forMDPs and POMDPs
with Python bindings. (2017). https://github.com/Svalorzen/AI-Toolbox

[22] Unknown. 2017. pomdp-solve. (2017). http://www.pomdp.org/code/

11

https://github.com/Svalorzen/AI-Toolbox
http://www.pomdp.org/code/

	Abstract
	1 Introduction
	2 Background
	2.1 QCog
	2.2 Belief Desire Intention Architecture
	2.3 Markov Decision Processes
	2.4 Reinforcement Learning
	2.5 Partially Observable Markov Decision Process (POMDPs)
	2.6 POMDPscompared to MDPs
	2.7 Belief State Update
	2.8 Monte Carlo Approximations
	2.9 Utile Suffix Memory
	2.10 Planning in USM

	3 Related Work
	3.1 POMDP Based Model Learning with Braum Welch
	3.2 Model Based POMDP Learning using Utile Suffix Memory
	3.3 Choice of Learning Algorithms

	4 Design of PCog
	4.1 Overview
	4.2 Software Libraries
	4.3 Discretising Environment

	5 System Implementation
	5.1 Exploration and Model Refinement
	5.2 Planning with the POMDP
	5.3 Exploration Strategies
	5.4 Observation Space

	6 Experiment Design
	6.1 Scenario Description
	6.2 Experiment Details

	7 Results
	7.1 Statistical Tests

	8 Discussion
	8.1 PCog vs Hand Crafted
	8.2 Hyperparameters
	8.3 Influence of Smart Explore
	8.4 Overfitting
	8.5 Performance Issues

	9 Future Work
	10 Conclusion
	11 Acknowledgements
	References

