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ABSTRACT

This paper details the evaluation and extension of the Q-Cog exper-
imental platform. The Q-Cog platform was evaluated through the
integration and evaluation of various agent architectures using new
performance metrics and testing scenarios. In order create these
new performance metrics and testing scenarios an investigation
into what is currently used in the field was done. From this the com-
mon performance metrics were gathered as a starting point. Once
the performance metrics and testing scenarios were implemented
formal experimentation was done. The results gathered regarding
the various agents were shown to be useful and had significance
which verified the use of the Q-Cog platform as an evaluation tool
as well as extended it. Additional features and extensions have also
been added to the Q-Cog platform and discussed. The purpose of
these extensions was to elevate the Q-Cog platform towards being
a mature research tool.
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1 INTRODUCTION

The aim for this paper is to further the vision of for the Q-Cog plat-
form which is to create an independent, pure and generic artificial
intelligence testing and simulation platform. This platform facili-
tates the independent development of artificial intelligence agents
that can then be evaluated through simulated testing scenarios. The
Q-Cog platform has a lot of potential to be extended and improved
in line with this vision. These improvements are outlined in section
7 and mainly fall under network stability and system robustness,
error handling as well as the extensions made to the platform. The
Q-Cog platform was evaluated through assessing and comparing
the performance for a number of different agent architectures.

To aid this endeavour an important objective of this research pa-
per was to investigate what evaluative testbeds/frameworks, testing
scenarios and performance metrics are currently used for evaluating
self-learning and adaptive agents. This was done in order to design
and implement new performance metrics and testing scenarios
which were then assessed in order to see whether they can measure
an agent’s performance meaningfully and accurately. Inspiration
was also taken from previous works already done using the Q-Cog
platform[19]. The agent architectures used for evaluation[10, 14]
were developed by Y. Dollie and J. Hooper independently and then
integrated into the Q-Cog Agent module[19]. These agents were

then evaluated in comparison with the default Q-Cog agent that
is built into the Q-Cog testbed. This agent utilizes reinforcement
learning with a dynamic policy selection mechanism([19].
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Figure 1: Default Q-Cog Agent Architecture

The agent architectures developed by Y. Dollie used a Belief-
Desire-Intention (BDI) agent architecture with the primary one us-
ing an additional reinforcement learning mechanism (R-BDI)[10].
The agent architectures developed by J. Hooper used Partially Ob-
servable Markov Decision Processes (POMDP) in its design with
the primary one utilizing model learning(PCog)[14]. Within this
work the performance of a self-learning agent refers to the effec-
tiveness of a cognitive agent within a given testing scenario using
a means of scoring its performance. For example the score could be
based on the time taken for an agent to complete a given goal/task.
The secondary objective of this project was to further extend and
improve the Q-Cog platform. This involved the development of an
executable version of the Q-Cog testbed referred to as Q-Cog Lite
and is discussed in section 7.2. This runtime version of the Q-Cog
testbed removed the dependency on the Unity3D Game Engine[11].
Q-Cog Lite was designed for researchers who wish to evaluate their
own agent architectures using pre-existing testing scenarios and
who do not wish to design their own testing scenarios.

2 BACKGROUND
2.1 The Q-Cog Platform

Q-Cog is an experimental artificial intelligence platform designed
for developing and testing of adaptive and self-learning agents in
3D environments that are both complex and unpredictable. It is
owned by the Centre for Artificial Intelligence Research (CAIR)[2].
It consists of an experimental 3D simulation testbed used for agent
development and evaluation and an agent integration module hence-
forth known as the Q-Cog Agent module[19]. The Q-Cog Agent
module is designed using the Java Programming Language and al-
lows an agent architecture to be developed independently from the
Q-Cog platform while still allowing it to be tested through the Q-
Cog platform. This is done in order to keep the agent architecture as



independent and unbiased as possible from the Q-Cog platform. The
Q-Cog testbed was developed using the Unity3D Game Engine[11]
and features adjustable simulation settings which can be used to
set the number of iterations for a simulation, a simulation speed
control mechanism, a data recorder, and finally a playback engine
that allows the playback of prior simulations for further analysis
whenever the user desires[19].

2.2 Defining Agent Performance, Metrics &
Scenarios

Agent performance can be described as how effective an agent
is in a given scenario using some means of scoring[6, 18, 20, 22].
The score itself is generally dependent on the complexity of the
environment and testing scenario. A classic example of a score
would be the time taken for an agent to complete a given goal/task.
Agent performance can be further broken down into a collection of
specific characteristics related to the agent and its architecture[8, 9,
15, 20-22, 27].

Examples of these characteristics are:

Planning time

Action execution time

Number of actions taken to complete a task/goal
Relative costs involved when running the agent during a
simulation

The relative costs referred to here relate to areas such as sensing
the surrounding environment or the cost to plan/replan a series of
actions. In order to evaluate the performance of an agent and its
adopted learning strategies which is essentially its architecture, a
controlled environment is required where experiments are run us-
ing appropriate performance measures (metrics) so that the agents
learning strategy can be effectively evaluated and possibly com-
pared with others[16]. The environment for this is known as a
simulated world and within the context of this research project
refers to the environments designed within the Q-Cog testbed[19].
Any experiments that are done to evaluate an agents performance
are conducted using the Q-Cog testbed with different testing sce-
narios that have an underlying goal that the agent is required to
attempt. It should be noted that metrics do not strictly refer to
an agent’s performance but also refer to the measurement of the
changes made to the parameters of the environment or actions
taken by an agent where applicable[22].

2.3 Interactive Learning and Self-Adaptation

Given the nature of this project, it was important to define the
common types of learning found in the field. An agent in this
context must be self-learning and adaptive thus it must show some
sort of change in performance when performing future tasks after
making observations in the world[23]. This section will give a
brief introduction to the common types of interactive learning.
The concept of learning is often found to be quite ambiguous, this
is because it is used in many different areas for problem solving.
Bearing this in mind, in this project learning will be defined as "a
change in a system that allows it to perform better when a task of
the system is repeated, or on a similar task is given"[25].

2.3.1 Reinforcement Learning. This is where an agent learns
from a series of reinforcements. Reinforcements refer to rewards,
punishments or both[23, 25, 26]. The task of reinforcement learning
is to use observed rewards to as best as possible learn an optimal
policy for an environment[23]. Some examples of reinforcement
learning are value iteration, policy iteration and Q-learning. In al-
gorithmic terms reinforcement learning estimates the action-value
function through the use of the Bellman equation as an iterative
update. Thereafter a reinforcement algorithm will converge to an
optimal action-value function([7, 15, 20, 25, 27].

2.3.2  Supervised Learning. Given a training set of example input-
output value pairs the agent will learn a function that will approx-
imate the output through mapping inputs to outputs. The final
goal is to get the approximate output value to be equal or as close
as possible to the desired output. This approximate output is the
primary form of evaluation for an agent under this learning mecha-
nism. Supervised learning is useful to problems where the expected
outputs are well known[25]. Within supervised learning, learning
is defined as a search through the space of possible hypotheses
(outputs) for one that will perform well, even when given new
data that is beyond the original training set[23]. Some examples of
supervised learning can be found are classification and regression
and neural networks[23, 25].

2.3.3 Unsupervised Learning. This is where an agent notices
patterns within inputs passed down to it while no form of feedback
is explicitly supplied. Essentially this means that the agent will learn
everything on its own while reaching some sort of convergence
criteria with no outside interference to guide it[13, 25]. The most
common example of unsupervised learning is clustering. Clustering
is where a collection of inputs are grouped (clustered) together
based around a chosen property potentially in a useful manner[23].
An additional example of where unsupervised learning is used is
neural networks[13, 25].

2.3.4 Deep Learning. Deep learning can be found in reinforce-
ment, supervised and unsupervised learning, it utilizes data repre-
sentations, hierarchies and neural network architectures to extract
high level features from very large datasets through training. Deep
learning has been used in various areas of research such as speech
recognition, visual processing, robotics, lifelong learning and cog-
nitive agent training[12, 20, 26, 27].

3 REVIEW OF LITERATURE & RELATED
WORK

3.1 Existing Testing Frameworks & Platforms

There already exist a number of testing frameworks that are used
to evaluate the performance of adaptive and self-learning agent
architectures as well as the various learning strategies that an agent
may have. Examples of these learning strategies that are assessed
can be found under reinforcement, supervised, unsupervised and
deep learning as mentioned above. Fundamentally there are two
types of testing frameworks/platforms that are used. The first type
are designed using their own custom software that create simulated
worlds with which agents can interact with[8, 9, 18, 22]. The second
type of testing framework make use of existing video game engines



as a foundation that are then further extended to allow for Al
research[5-7, 15, 20, 21, 27].

3.2 Common Performance Metrics

Through investigation the most commonly found areas of a cogni-
tive agent that are used for evaluating performance through metrics
were time, sensing, planning, deliberation, rate of world change and
commitment towards goals. Additionally there were other areas that
allowed for measurement of complexity and unpredictable(noisy)
elements within a testing scenario. These additional areas can be
broken down further into both rate of occurrence and the total
number of occurrences. All of the above can be represented as a
factor of time[5-7, 9, 15-17, 20-24, 27]. When investigating areas
relating to time it had been found that there were issues when eval-
uating an agent’s performance in real time and it was suggested
that it would be better to use a simulated clock for the environment
instead[18, 22]. Planning was also found to have the possibility
of including a subset of actions that were reflexive to changes
in the environment and therefore required separate measures for
evaluation[9]. Re-planning otherwise referred to as deliberation
was shown to be costly on performance and in order to counter
one could filter out the possible actions that could be deliberated
on which decreased the search space when planning. This indi-
cates that deliberation could have its own set of metrics that are
independent of planning[9, 17, 18, 21, 22, 24].

4 PERFORMANCE METRICS

This section details the evaluative metrics that have been added
to the Q-Cog platform during this project. At the time of writing
the Q-Cog platform has already implemented metrics per simula-
tion iteration relating to the number of predators killed and the
success or failure for a given scenario task/goal[19]. Additionally
the reasoning behind why certain areas from section 3.2 did not
have metrics assigned to them is discussed later in section 9.2.

4.1 Performance Score

The performance score of an agent is a numerical value calculated
using the proposed formula below which scores an agent’s perfor-
mance per iteration that can then be averaged to give an overall
simulation score at the end of a simulation. This metric gives an
overview evaluation of an agent’s performance which can be used
for preliminary analysis. As the analysis of an agent progresses one
can then delve deeper into individual metrics used to calculate the
performance score in order to assess the strengths and weaknesses
of an agent in specific areas which will indicate where changes
should be made to improve performance. This individual metrics
are described below in detail.

The formula for calculating a performance score is as follows:

e G = Goal Success or Failure per iteration
o T = Previous Survival Time / Current Survival Time

e A = Successful Attacks / Total Attacks

o F = Successful Flees / Total Flees

e P =Predators Killed / Number of Starting Predators

e Performance Score I = G + (T * (A + F + P)/3)

e Simulation Score S = I/ No. of iterations per simulation

4.2 Goal Success

The success or failure for a given scenario task/goal is a numerical
value where originally if an agent failed the value was set to 0 and
if an agent succeed then the value was set to 100. In this project the
value for goal success was changed and was set to 1. While this is a
simple change to the metric it is still critical change for calculating
the performance score above.

4.3 Survival Time Ratio

In order to record the survival time of an agent per iteration the
simulation clock built into the Q-Cog testbed was used. To clear
any ambiguity the testing scenarios of this project were solely
focused on agent survival and thus we refer to this time metric
strictly as survival time. The survival time metric is a cumulative
value based on the simulator clock as stated and from that a new
cumulative time metric was added to the Q-Cog platform. This
proposed survival time ratio (T) is represented by the ratio between
survival time at the completion of a previous iteration divided by
survival time at the completion of the current iteration. The benefit
of this metric was that we can immediately see the change in an
agents survivability per iteration which can then be used to improve
or penalize an agent’s performance score.

4.4 Action Ratios

An action ratio refers to the number of successful attempts for a
specific action during an iteration divided by the total number of
times that the specific action took place during that same iteration.
This measure was created because as an agent progresses through
a series of iterations it should learn when it is most appropriate
and effective to perform an action within a given testing scenario.
Therefore whenever an agent fails to perform an action in an ef-
fective manner it will then be reflected in it’s action ratio which
can be used as a performance score penalty. A number of action
ratios have been implemented so far and more could be potentially
added in future. The action ratios currently implemented within
the Q-Cog platform are based on the following actions: the agent
attacking (A); the agent fleeing (F); and the number of predators
killed during an iteration (P). While killing predators is not strictly
an action it can be considered a pseudo action as it is the task that
an agent must perform in order to survive in the testing scenario
as discussed in section 5.2.

5 DESIGNED SCENARIOS
5.1 The Sandbox

The Sandbox was not strictly designed as the final testing scenario
but more of a starting point for attempting to perform integration
testing of the various agent architectures[10, 14]. This scenario was
deliberately made simplistic with limited features in order to aid
with the integration testing process. The purpose of the Sandbox
was to make sure that the actions performed by an agent were
done correctly as defined within the Q-Cog platform and to see
if there were any errors with the commands sent to the agent via
the Q-Cog Agent module. Additionally the Sandbox facilitates the
testing of new features that are being designed and integrated into
the Q-Cog testbed without having to worry about the complexity of



a complete testing scenario interfering during testing. The Sandbox
was designed to be a very small 3D world (30 units x 30 units)
with only one of any feature or entity at a given time with that
an agent can interact with. This lowered the difficulty of goal/task
completion for an agent allowing for many quick simulations to
be run during the early stages of development and integration of a
new agent architecture into the Q-Cog platform.

Figure 2: The Sandbox

5.2 The Testing Scenario

Inspired by a previous scenario used in the Q-Cog platform[19]
the goal for this scenario was to kill all enemies in the world while
attempting to survive. What differentiated this testing scenario
from its predecessor were the following factors:

o The terrain of the world was deliberately designed to be
more complex in order to obscure visibility for both agents
and predators therefore increasing the difficulty of percep-
tion and navigation. This included having obstacles such
as trees, dunes and hills.

e More food sources were provided in order for an agent to
recover health more frequently at any given time giving
the agent greater survivability and learning time which
increased the richness of the data gathered.

e Two fixed fleeing locations were added so that an agent
can flee from an enemy towards the direction of the flee
location if it was in range as opposed to just running in the
opposite direction of an enemy. These fixed flee locations
were chosen to increase pressure on an agent as it had to
deliberate between the two possible flee locations while
under threat from enemies. It also allowed for a better
indication of when an agent had successfully fled from an
enemy.

e Six predators of three different types (Normal, Medium
Strong) were used. The parameters for the predators had
been adjusted to increase randomness and unpredictability
within the testing scenario. There are four normal preda-
tors as well as one medium and strong predator. The preda-
tor’s vision, wandering and chasing distance had been
increased and the attacking damage and range had been
given more variety based on its type. The physical sizes
of the predators had also been adjusted based on their
type. This enabled the agent to more effectively perceive a
dangerous predator since it had a greater chance of being
seen.

Figure 3: The Testing Scenario

6 EVALUATION APPROACH

The approach for this project was broken up into two distinct
phases.

6.1 Phase1

This phase focused on the integration of the new agent architectures[ 10,

14] into the Q-Cog platform as well as the development of any ex-
tensions that assisted with successful integration of the new agents
while being in line with the vision for the Q-Cog platform. The
phase followed an iterative design process where any development
changes required by Y.Dollie and J. Hooper were prioritised with
any improvements that would be useful for research purposes also
being added. Throughout this process any errors or bugs found
were dealt with as soon as reported in order to not delay moving
onto phase 2.

6.2 Phase 2

This phase focused on the implementation of the performance
metrics and the testing scenario as well as the final evaluation of
the various self-learning agent architectures mentioned in section
1 under experimental conditions. The experimental conditions for
the final evaluation were that a minimum of 3 simulations had to be
run with each simulation executing 20 iterations. The results from
the experiments were then statistically analysed and compared by
Y. Dollie and J. Hooper and any observations they had during the
experiment were recorded and then later discussed. The statistical
analysis involved a comparison of not only the simulation scores for
the various agent architectures but also an analysis of the individual
metrics that are mentioned in section 4. Furthermore with these
results Y. Dollie and J. Hooper could analyse any areas that they felt
were significant. If the results gathered were found to be accurate
and meaningful through the use of both the testing scenario and the
performance metrics then this project can be considered a success.

7 PHASE 1 RESULTS

This section covers the development and integration of the agent
architectures designed by Y. Dollie and J. Hooper[10, 14] as well as
the improvements, changes and extensions made to Q-Cog platform.
Additional details can be found in the found in the Q-Cog platform
repository[1]. This includes code documentation and all minor
changes made to the Q-Cog platform throughout the duration of
this project.



7.1 System Improvements

During the integration process of the new agent architectures[10,
14] the most critical area that needed to be assessed for stability
and possible improvement was the Q-Cog Agent Module which
functions as both a framework for agent development & integration
but also as a bridge for communication between an agent architec-
ture and the Q-Cog testbed. During testing it was found that the
network communication interface had not been designed to handle
network errors and client disconnections effectively.

The first issue was solved by outputting error messages when
network errors arose. The second issue was dealt with by immedi-
ately closing the network connection if either side of the network
interface disconnected at any time. This was done because a simu-
lation would then be considered corrupted as there was no point in
continuing a simulation if network commands were not being sent.

An additional issue found was that communication between the
Q-Cog module and testbed was not synchronous. This meant that
the module would continuously send commands across the network
connection interface without any form of feedback when activities
such as action completion, agent death, or task/goal success oc-
curred. This issue was resolved through the addition of completion
flags that were sent back to the module from the testbed when any
of the above events had occurred. The completion flags enabled Y.
Dollie and J. Hooper to improve their agent architecture’s overall
performance across the network by drastically reducing the net-
work packet overhead that occurred when attempting to run an
agent since the number of packets sent had drastically decreased.
During the assessment and further development of the Q-Cog plat-
form a number of improvements and extensions were made to the
existing functionalities & tools available. They were as follows:

Escape - End Simulation Earty
Hours: 0 Minutes: 0 Seconds: 7

Explore Merations Remaining: Max

Figure 4: The Advanced HUD

e The simulation information display now has an added
advanced mode that can be toggled which details more
in-depth information concerning the simulation, which
entities are currently still in the world and the network
traffic between the module and testbed.

o A simulation eventlog was created that stored the network
messages sent between the module and the testbed as well
as feedback when an agent interacted with any objects in
the simulated world. All logged events had a timestamp
attached based on the simulator clock time.

o All output files from the Q-Cog platform has been format-
ted to a standardized style and the simulation results are

now saved using the .csv file format to enhance readabil-
ity and compatibility with various software programs for
statistical analysis (i.e. Microsoft Excel, LibreOffice and
R-Studio). Furthermore all output files are now named and
stored in a unique folder based on the simulation’s number.

e The simulation playback engine[19] was extended to in-
clude not only the position of an entity during a simulation
but also its actions and health changes giving a more in-
formative simulation playback.

7.2 Q-Cog Lite

Since the aim for the Q-Cog platform is to create an independent,
pure and generic artificial intelligence testing and simulation plat-
form which can evaluate adaptive and self-learning agents. There
should be little or no biases or dependencies within the Q-Cog
platform. Originally the Q-Cog testbed had a dependency on the
Unity3D Game Engine in order to be used. This can be seen as a
severe limitation for potential users, particularly for users on Linux
distributions due to the lack of Unity3D support. The solution to
this problem was the development of a runtime version of the Q-
Cog testbed. This Q-Cog runtime version which is an executable of
the Unity3D project henceforth is referred to as Q-Cog Lite. Q-Cog
Lite allows researchers to run simulations using pre-designed test-
ing scenarios with configurable parameters without the need for
the Unity3D Game Engine[11].

Q-Cog Lite

Version 1.7

Testing Scenarios

Figure 5: Main Menu

7.2.1 Q-Cog Lite Features.

o No need for the Unity3D Game Engine to run the Q-Cog
testbed.

e Cross-Platform support for Windows, macOS & Linux dis-
tributions.

e A Main Menu where testing scenarios can be selected.

e A Settings Menu to configure simulation parameters such
as: number of iterations per simulation; maximum health
predators and the agent; set the simulation recording you
wish to play using the playback engine, and finally which
port you want the TCP network connection to be on to
connect to the Q-Cog Agent Module.

e A Loading screen when waiting for the Q-Cog Agent Mod-
ule to connect.

e Two testing scenarios that can run an external agent archi-
tecture or the default Q-Cog agent.



Settings

Figure 6: Settings Menu

7.3 Q-Cog Documentation

Given the inherent complexity of the Q-Cog project, easily acces-
sible code documentation was a critical requirement that had to
be addressed. With this in mind an important deliverable of this
project was to have comprehensive and accurate documentation
for the existing classes in the Q-Cog platform. This documentation
also had to include instructions for using the testbed and for setting
up an external agent architecture that would integrate with the
Q-Cog Agent module. This has been successfully achieved through
the use of Doxygen, a documentation generation tool used for a
variety of programming languages[3], and a specialized Unity3D
package that utilizes Doxygen.

7.3.1  Doxygen Unity3D Package. Using a .unitypackage created
by Jacob Pennock[4] a documentation website was generated for all
the C# scripts used within the Q-Cog testbed and additional setup
instructions for the Q-Cog platform were added.

CAIR_Lab_Project_QCog
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Figure 7: Q-Cog Documentation Website

8 PHASE 2 RESULTS

8.1 R-BDI Agent Results

Using the results produced by the Q-Cog testbed statistical analysis
was performed on the agent’s performance score, the number of
predators killed and the survival time per iteration in order to
determine if there was any statistical significance between the
various agent architectures. All of the statistical tests were carried
out using RStudio. The results indicated that on average the R-BDI
agent had the best performance score with the highest number of
predators killed. Furthermore the average survival time was better
than all the other agents with the only exception being the default

Q-Cog agent[10]. The averages of the results for the various agent
architectures can be seen below as well as which were found to
have statistical significance in comparison to the R-BDI agent.

Table 1: Agent Results on Average

Agent ‘ Predators Killed ‘ Survival Time ‘ Score
R-BDI 5.4 236.1 1.628813
BDI 5.2 323.9 1.52148
POMDP | 5 300.35 1.190819
MDP 2.3 178 0.7691907

Table 2: Statistical Significance between Agents

‘ Comparison ‘ Predators Killed ‘ Survival Time ‘ Score
R-BDI vs BDI - - -
R-BDI vs POMDP | - - Significance
R-BDI vs MDP Significance - Significance

8.2 PCog Agent Results

Using the results produced by the Q-Cog testbed statistical anal-
ysis was performed on the same areas of interest as in Y. Dollie’s
approach[10]. The PCog agent architecture was compared with a
differing set of agent architectures compared to Y. Dollie which
included a manually defined POMDP agent (spCog) and an addi-
tional agent architecture that picks actions at random (RCog). The
results indicated that the PCog agent successfully outperformed
the other agent architectures being tested with the exception of the
BDI agent architecture (referred to as BCog in the work)[10] which
had the best overall performance[14]. The averages of the results
for the various agent architectures in comparison to the PCog agent
can be seen below.

Table 3: Agent Results on Average

| Agent | PCog | SPCog | BCog | QCog | RCog |
Predators Killed | 4.75 | 4.45 5.01 2.5 0.1333
Survival Time | 257.4 [ 308.11 | 283.61 | 206.15 | 87.86
Score 122 [ 1034 [1545 [077 | 043

9 DISCUSSION
9.1 Agent Integration

It has been shown that the various agent architectures implemented
by both Y. Dollie and J. Hooper were successfully integrated into the
Q-Cog platform and the results outputted by the testbed matched
with what was seen while running the experiments with regards
to responsiveness and performance in comparison to the default
Q-Cog agent. An important point discussed by Y. Dollie was that
random chance cannot be completely ruled out when assessing an
agent architecture’s performance given the unpredictable nature



of the testing scenarios involved[10]. Both Y. Dollie and J. Hooper
made use of Q-Cog Lite for development and evaluation of their
respective agent architectures allowing them to make use of the Q-
Cog platform without the need to install the Unity3D Game Engine
which improved the overall efficiency and speed of the integration
process. This also avoided setting up the project from source code
negating possible dependency and corruptions issues that often
occur with video-game based projects that make use of version
control. Given that the Q-Cog platform is not a mature project and
is still very much in the early stages of development there were
a two major limitations found within the platform that are listed
below.

o The default Q-Cog agent which had been used as a founda-
tion for agent development had been designed for specific
use cases and testing scenarios that were created previ-
ously. This could be seen as contradictory to the vision for
the Q-Cog platform. What this means is that the agent logic
during a simulation was not as generic and decoupled as
it should be which did slow down the integration process
as previous methods and agent logic had to be updated
continuously during the integration process.

o The only available goal/objective for an agent was to kill all
the predators and to survive. Work has been done during
this project to further extend the possible goals/objectives
that an agent could be assigned to do in a testing scenario
but the integration process using the existing functionali-
ties of the Q-Cog platform was prioritised. The work that
had been started to resolve this issue was an additional
agent goal/objective using a key/door system where an
agent had to find a key in it’s surroundings and take that
to a door while fighting off enemies in order to success-
fully complete an iteration but this functionality is still
immature and has not yet been tested.

9.2 Performance Metrics

During the evaluation of the performance metrics and testing sce-
narios both Y. Dollie & J. Hooper had noticed areas of improvement
for their respective agent architectures by analysing the individual
performance metrics and thereafter updating their code accordingly.
Particularly in areas related to an agent attacking or fleeing a large
number of improvements were made during project based on how
the agent interacted with the environment and from the action ratio
performance metric results which indicated if their agents were
using actions correctly and effectively within the testing scenario.

During the design and development of the performance metrics
there were areas where additional performance metrics could have
been added based on the investigation of current works and liter-
ature in section 3.2. Unfortunately there were certain limitations
and considerations that had to be taken into account during the
project. One of the primary reasons behind the implementation of
the current performance metric collection was due to time aware-
ness required so that both Y. Dollie & J.Hooper had sufficient time
allocated for performing experiments in order to get enough useful
data for their analysis of their respective agents. Therefore certain
areas of evaluation such as time, agent actions, predator kills and
overall task/goal success were prioritised over other areas such as

sensing, deliberation and planning. In particular with regards to
sensing due to the nature of the perception engine in the Q-Cog
platform[19].

The perception engine creates perceptions of an agent’s envi-
ronment continuously which adds an additional complexity when
attempting to design a meaningful metric for an agent as it per-
ceives. In addition when designing the performance metrics it was
important that given the vision for the Q-Cog platform to design
the performance metrics to be as generic as possible and to have
as little reliance on an agent’s underlying architecture as can be
done. The reason being that analysing areas relating to planning
and deliberation through an agent’s architecture would create a
dependency on an agent’s architecture in order to generate data for
the desired performance metric which would have to be accounted
for when developing a new agent architecture. The performance
metrics implemented currently in the Q-Cog platform are generated
strictly using the Q-Cog testbed data and do not rely on an external
agent’s architecture. Both Y. Dollie and J. Hooper found statistical
significance in agent performance in comparison with the default
Q-Cog agent which indicated that the score metric was meaningful
as well as successful for measuring an agent’s performance within
the testing scenario. However an interesting observation was made
that the individual metrics used to calculate the performance score
had no statistical significance between agents.

9.3 Testing Scenarios

The Sandbox used for integration and testing during phase 1 had
been approved by both Y. Dollie and J.Hooper given usefulness
of having a low complexity testing scenario that would facilitate
quick and easy testing at the early stages of development. The
agent integration testing could be done on a feature by feature
with minimal effort until both agent architecture designers were
confident enough in their agents to perform formal experiments.
This indicated that the Sandbox was successful in performing its
given function. The testing scenario for formal experiment had a
sufficient level of difficulty and complexity that offered insight into
the improvements and changes that could be made to both Y. Dollie
and J. Hooper’s agent architectures[10, 14].

The testing scenario can then be considered successful since the
various agent architectures were able to learn and adapt effectively
to the scenario given enough time. It should be noted that Y. Dollie
did query the suitability of the testing scenario for agent learning
given the results produced for the agent architectures based on
reinforcement learning mechanisms[10]. However as stated overall
the testing scenario can be seen as successful given that the agents
were able to successfully complete the given task at least 1 or more
times during the early stages of testing and in the later stages the
agents where achieving higher levels of goal success of up to 50
percent. For future researchers it is important to be aware that
meaningful data can and should still gathered even if an agent
has failed it’s given task/goal in a simulation since this can used
to further improve an agent’s underlying performance given the
extensions made to the Q-Cog platform.



10 CONCLUSIONS

In conclusion the improvement and extension of the Q-Cog platform
has been a success given the successful development, integration
and evaluation of the various new agent architectures designed
by both Y.Dollie and ]J. Hooper. As stated in section 1 large im-
provements have been made to overall network stability, system
robustness, system performance and usability particularly through
the improvements made to not only the network communication in-
terface between the Agent Module and the testbed but also through
the introduction of Q-Cog Lite. The performance metrics and test-
ing scenarios that have been implemented have been shown to be
meaningful as well as being a successful addition to the Q-Cog plat-
form for evaluating an agent architecture’s performance. However
while some of the individual performance metrics were shown to
not have statistical significance between agent architectures they
were still crucial for the overall improvement of the various agent
architectures during the early stages of development and testing.
Finally while the Q-Cog platform is still in its early stages of de-
velopment it has been shown to be an effective research tool for
adaptive and self-learning agent development and evaluation with
the improvements and extensions made here only further increasing
its usefulness in the artificial intelligence community.

11 FUTURE WORK

There are a number of areas for future work in order to elevate the
Q-Cog platform towards being a mature research tool. These areas
are as follows:

o There exist a number of features and functionalities within
the Q-Cog code base that are not utilized in the currently
implemented testing scenarios and the implementation of
them could be seen as a considerable portion of future
work.

o Given that alarge focus of this project was the implemented
performance metrics there is still a lot of possible research
that can be done towards expanding the use of action ratios
in order to improve agent architecture development and
integration while improving the accuracy of the agent
performance score.

o The agent framework within the Q-Cog platform is still
heavily dependent on the previously designed testing sce-
narios and therefore there is a need to make it more generic
in order to be an effective foundation for the development
and integration of new agent architectures. By doing this
new agents can be designed and implemented with mini-
mal corrections made to the existing code base.

o There is a need extend the Q-Cog testbed to support vary-
ing agent goals/tasks that can then be set and used in
designing testing scenarios. An example of this would be
the key/door functionality that has been implemented.

o There is a need for the development of more testing sce-
narios that differ from the existing ones particularly with
regards to goals/objectives. This is in order to improve
agent learning and performance by using a collection of
unique testing scenarios which would give a more robust
evaluation of an agent architecture.

e The network communications that occur between the Agent
module and the testbed can be further optimized in order
to reduce network packet overhead in order for the Q-Cog
platform to run with better performance and lower system
resource usage.

e Finally, Q-Cog Lite has great potential to be further ex-
tended so that it gives more control over simulation pa-
rameters and possibly to allow for the initialization of the
Q-Cog Agent module without the use of the command-line.
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