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Abstract 

We present the RhoVeR (Rhodes Virtual Reality) system and classify it as a second generation 

parallel/distributed virtual reality (DVR) system. We discuss the components of the system and 
thereby demonstrate its support for virtual reality application developmenf its configurable, 
parallel and distributed nature, and its synthesis of first generation DVR techniques. 
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1. Introduction 

The RhoVeR (Rhodes Virtual Reality) system is intended both as a flexible founda- 

tion for developing virtual environments and as a research testbed for investigating 
critical aspects of virtual reality (VR). The platform can be likened to an operating 

system in that it provides an environment and tools to support VR applications. We 

classify RhoVeR as a second generation VR system. In this scheme first generation 
systems are typified by an ad hoc approach, as different systems (such as VROS [3] and 

DVS [S]) explored different techniques with early VR hardware. By contrast, the second 

generation subsumes successful elements of the first generation and allows for greater 
structural expansion and alteration. There are four characteristics of RhoVeR which 

support this classification: 

(i> Conj~gurable. The RhoVeR system allows considerable flexibility within a 
well-defined structure. The benefits are threefold: as ever-more sophisticated VR 
equipment becomes available it can be incorporated into the system, the specific 
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topology requirements of an application can be catered for, and a spectrum of VR 
systems can be emulated for the purpose of simulation and fundamental research. 

(ii> Parallel. RhoVeR supports both true parallelism, with multiple independent 

processes which communicate via message-passing and are spread across a network of 

processors, and pseudoparallelism (multiprogramming), with a number of processes 

hosted by a single processor. 

(iii) Distributed. There are three techniques for distributing data amongst processes in 

a RhoVeR configuration. A sophisticated Virtual Shared Memory mechanism is used for 

data of global significance. Distribution is enhanced by shared tables and message-pass- 

ing for faster, more direct communication requirements. 

(iv) Virhml reality support. Virtual reality issues, such as latency and general 

performance, and the requirements of virtual reality entities, such as the creation and 

manipulation of worlds and objects, have received significant attention in the evolution 

of RhoVeR. 

A discussion of the structure of the RhoVeR system and the realization of these four 

characteristics forms the remainder of this paper. 

2. Structure 

A central objective of the RhoVeR system is the rapid creation of VR applications. 

The challenge here is to balance the exigencies of versatility, so that the system can 

adapt to the burgeoning diversity of VR applications and support hardware, and 
structure, so that development is guided and accelerated by a ready-made framework. 
This balance is accomplished by extreme modularity, which allows the inclusion of 

additional features, such as support for new I/O devices, without sacrificing the existing 

structure. 
A given RhoVeR application consists of a collection of event-driven processes, each 

of which executes independently and is an instance of a predefined module type. These 
module types define broad classes of VR system components, such as input, objects, 
worlds and output. The system supports multiple users, each of whom have access to a 

tailored collection of input and output module instances, but are not treated as a special 
case in the system. This makes the introduction of additional users simple and elegant. 

Communication between module instances is accomplished by three mechanisms: 

Event-Passing, which enables point-to-point communication between any two processes 
and is the substrate uponlwhich the other two techniques rely, shared tables (ShapeData), 

which are cached within a process and distributed on demand, and a Virtual Shared 
Memory, which is a data structure accessible to all processes. The first generation 
system DIVE [I .2] makes use of a similar Event-Passing approach which is coupled with 
a replicated database visible as a shared memory block. 

The components of the RhoVeR system can be separated into two categories: module 
types (Fig. 1 j which can be likened to the bricks from which an application is 
constructed, and support libraries (Fig. 2) which provide the functionality to cement 

modules into a cohesive whole. 
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Name 

World 

Function 

Centralized co-ordination and 

VSM Manager 

Input 

Outpu1 

Object 

global attribute repository 

Control and distribution of shared memory structures 

Input data-capture and processing 

Rendering a view of the world 

Specification of attributes and behaviour 

of 3D virtual objects 

Application Support Collision D tet e L ion, Gesture Recognition and Timing 

Fig. I. Listing of module types. 

2.1. Module types 

- World. A world module provides centralised co-ordination of all modules within its 
domain. It is responsible for such housekeeping tasks as removing and merging 
processes, coordinating addressing services, and allocating system unique identifiers. 
The world module also stores global attributes, broadcasts global events and defines 
default responses to these events. For instance , gravity would be a global attribute and 
the world module would regularly transmit gravity events to which the default response 
would be falling. This type of separation of world and object attributes occurs in first 
generation systems such as AVIARY [lo]. 

- VSM Manager. The VSM Manager enables access to Virtual Shared Memory data 
by all processes within a world and proliferates this VSM data across an application 
topology. 

- Znpur. These interfacing modules are responsible for capturing and processing raw 
input device data and passing a stream of extracted information to the relevant module 
destinations. Currently implemented input modules include device drivers for the 
Polhemus InsideTRAK and Fifth Dimension Technologies 5thGlove. 

- Output. RhoVeR output modules generate a view of the virtual environment. Each 
output module gathers information from the Virtual Shared Memory and locally cached 

Name I Function I 

Building hierarchies of Parenthood and Ownership 

Managing and distributing locally cached 

Process Ma.nagnrnent Creating, merging and removing processes 

Debug Time-stamping and process-level debugging 

Fig. 2. Listing of support libraries. 
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ShapeData as required. The principal advantage of not requiring that data be explicitly 
sent to an output module is that any number of such modules can be included with no 
other alteration of the system. 

- Object. An object module describes both the behaviour and appearance of a 
three-dimensional shape within the virtual environment. The shape of an object is loaded 
from an OFF (object file format) file and then stored in a ShapeData table within the 
object process. Attributes which are subject to frequent change, such as position and 
orientation, are held in Virtual Shared Memory. 

- Application Support. Other available modules include Gesture Recognition (which 
converts input data to a higher-level symbolic form), Collision Detection (which 
examines the VSM and generates events when objects collide), and a Timer Module 
(which enhances real-time control by generating tick events at specified intervals). 

2.2. Support libraries 

- Control. The control libraries support hierarchies of parenthood and links of 
ownership. A parenthood hierarchy stores the position and orientation of a child relative 
to its parent. An ownership link allows the controlling object (and no other) to alter 
aspects of a subsidiary object, ‘such as position, orientation, and ShapeData. 

- Event. These libraries implement a socket-based model of message-passing with 
capabilities such as inter-machine communication, buffering, and both blocking and 
non-blocking message receipt. 

- ShapeData. Each module is provided with a locally cached ShapeData table, which 
typically contains high-volume externally accessible information such as an object’s 
polygon-mesh structure. The ability to externally alter elements in a ShapeData table is 
also supported. 

- Process Management. These routines cater for starting up and removing processes. 
Primitive load balancing is effected by killing a process on one processor and restarting 
it on another. Also, a merge function allows similar modules to be grouped within a 
single process which is controlled by simple multithreading, and consequently reduces 
the load of active processes. This mergin, = is not automatic but must be instigated 
manually by the merging process. Merged behaviour is present in AVIARY [l 11, which 
employs Event-servers that allow a single process to control many objects. 

3. Ant Psychology: An application 

In this section a sample RhoVeR application is presented with the intention of 
illustrating the interaction of the various system components. 

The Ant Psychology application consists of a collection of ants wandering around on 
a plane. These ants are generated by hives scattered across the plane. When a collision 
occurs the ants concerned are notified by a Collision Detection process and will tumble 
away from the point of impact. 

This application was created as a testbed for RhoVeR. Each requirement of the 
application tests a different aspect of the system (Fig. 4). Fig. 3 shows the system in an 
entity-relationship format. 
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IC bounding spherl: 

of all ant bodies 
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Stable State. Event 

Ant StarhIp Event 

Fig. 3. Entity-relationship diagram for the Ant Psychology application. 

On startup, World and VSM Manager processes are created. The VSM Manager in 
turn spawns a number of hive objects and output modules, a timer, a surface object, and 
a Collision Detection module. Only some of these modules are visible: the plane which 
demarcates the ant’s world, a few pyramidal Ant Hives, and the Collision Detection 
module shown as an ‘eye in the sky’. Each visible object has several ShapeData fields 
associated with it, including its colour, texture and polygon-mesh structure. 

Ant Hives are represented by pyramids, the tips of which protrude above the plane. 
As new ants are born these pyramids move upwards revealing more of the buried shape 
and thereby denoting a larger hive. Initially each hive registers with the Timer module 
so as to be sent tick events at specified intervals. On receipt of a rick event, the hive 
requests the VSM manager to generate the three objects that form a new ant. 

Performance under variable load 

Ant legs moved by ant body 

Dynamic ob,ject. creation 

Fig. 4. Ant Psychology as a testbed for RhoVeR 
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An ant consists of a box-like body and two legs. This two-legged ant was initially 
intended as the forerunner of a full six-legged ant, but we have become rather attached 
to the bipedal version. Immediately after being born, the body object, with which the 
ant’s personality is associated, requests parenthood of its left and right legs, so that these 
become controlled by and positioned relative to the body. The new-born ant then 
requests the Timer module to transmit a tick event to it every few milliseconds. These 
are used to prompt the motion of the ant, a fraction of a step at a time. Ants walk in a 
fixed direction (which is occasionally randomly altered) and with a gait determined by a 
sinusoidal function. They continually monitor their position to avoid walking off the 
edge of the planar world. 

The Collision Detection module functions as follows: each time it receives a tick 
event from the Timer module, it compares the bounding spheres of all object pairs and 
sends collision events to pairs that lie too close together. This prototype is intended as a 
test of the Virtual Shared Memory and is by no means a definitive Collision Detection 
method. 

As the number of ants and hives increases there is a proliferation of processes and 
their corresponding overheads. To improve system-wide efficiency, a scheme for 
merging similar objects is implemented. Thus each of the following classes of object are 
subsumed into a single process: hives, left legs, right legs, and bodies from the same 
hive. The distinction that ant bodies not be merged indiscriminately allows ants from 
different hives to behave differently. There are some intricacies in this merging process: 
when two processes with different ShapeData or state variables are merged, these must 
be accommodated in the merged result. Once merging is accomplished the redundant 
process can be eliminated, thereby freeing up system resources. 

Applications such as this Ant Psychology example can be overlaid on the basic 
RhoVeR system very easily. 

4. RhoVeR as a second generation VR system 

By definition the development of a second generation VR system must involve an 
analysis of the similarities and differences in existing (first generation) systems. 
RhoVeR goes further by allowing the use of these different approaches within a 
consistent environment with the intention of judging their relative performance charac- 
teristics. 

The Event-Passing layer in RhoVeR is a basic support structure on top of which a 
variety of distribution techniques can be implemented. An examination of VR systems 
[4] has revealed that most are distributed using some form of message-passing for 
inter-process communication and synchronization. Using Event-Passing it is possible to 
implement constructs such as the client-server approach [3,9], the master-slave setup 
used in the MR Toolkit [6] or the dead-reckoning found in NPSNET [7]. 

Some high level distribution mechanisms have already been built into RhoVeR to 
facilitate research into virtual reality. These are the ShapeData extensions, which are 
unique to RhoVeR and Virtual Shared Memory, which is modelled on shared memory 
schemes found in other VR systems [1,2,5]. Both are built on top of an Event-Passing 
substrate. 
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5. Parallel aspects of RhoVeR 

The RhoVeR system consists of a number of processes capable of executing 
concurrently, on one or more machines. To simplify discussion, the aspects of the 
system running on a single machine will be referred to under the heading of parallelism, 
while those involved with communication between machines will fall under the section 
on distribution. 

On a single machine, usually running a variant of the UNIX operating system, 
RhoVeR processes are implemented as standard UNIX processes. Some measure of data 
sharing between these processes is required and this is implemented through a message- 
passing mechanism. The processes also communicate through a Virtual Shared Memory 
area, which on a single machine is easily implemented directly as a shared physical 
memory block. Every process has read-only access to the shared memory block, with 
limited write permission being determined by the ownership hierarchy. 

Each process is event-driven, and acts in response to some external event. This has 
the advantage of simplifying scheduling, since once an event has been serviced the 
process will sleep until the next event. Load on the processor is consequently greatly 
reduced. 

Since RhoVeR requires relatively large UNIX processes which typically consume 
significant resources even for trivial tasks, it is expedient to limit the number of active 
processes in the system. Object modules are generally the most abundant processes and 
are thus prime candidates for a system of process merging. This merging is accom- 
plished after process creation and so provides a potential load balancing facility. Once in 
place, modules can migrate to less heavily laden processors, or even be moved in 
response to the analysis of traffic patterns. 

An advantage of the event-driven nature of the system is that, provided a few 
conditions are enforced, the chance of deadlock can be significantly reduced, to levels 
typical of standard sequential programs. 

A skeleton of the Event-response loop of a RhoVeR process is listed below: 
loop 

Event=BlockGetEvent ( ); 
Call service routine for Event 

forever 
This process will remain dormant until an event arrives, after which it responds with an 
appropriate service routine. This routine will consist of either standard sequential code, 
or a call to the SendEvent or G&Event routines. Neither the GetEvent nor the 
SendEuent procedures will ever block since communication is completely asynchronous, 
but GerEuent is often called repeatedly in a tight loop until an event arrives. 

This allows the deadlock scenario outlined below: 
Process Pl 
Send P2 request 
Block until event from P2 

Process P2 
Send Pl request 
Block until event from Pl 
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Under certain conditions two processes can each be expecting a reply from the other 
which each is unable to provide until their requests are satisfied. 

Some restrictions on the nature of events circumvent this problem. Consider a 
situation which involves communication between only two processes and at least one 
must wait for a response. We classify events which trigger a response as server events. 
By definition the process providing a response is the Server and the waiting process is 
the Client. Now consider the following restrictions: 

- Clients may only block when waiting for a response from a Server. 
- Blocked Clients must respond to Server events. 
- Servers must return with no possibility of blocking. 

Given these rules, a process can only block when waiting for a response from a server, 
and every process will always eventually respond to server events. The last stricture can 
be relaxed, provided the server acts as a client while it is blocked. It is a useful condition 
to include however, since it improves efficiency by limiting possible message paths and 
disallows infinite cyclic client-server chains. Communication involving more than two 
processes has to date been rare but can easily be remodelled as a client-server chain. 

6. Distributed aspects of RhoVeR 

RhoVeR is designed to be extremely versatile and applicable to any equipment 
configuration. A module may be located on any host, with the exception of the VSM 
Manager which is replicated on every host in use. Thus modules can be matched to 
machines with the appropriate computation and communication capabilities. For in- 
stance, output modules can be placed on graphics machines capable of rendering in 
hardware and computation intensive modules on high-end hosts. 

The inter-process communication facilities offered under RhoVeR fit into three 
categories. The most basic form is direct Event-Passing. This is used to implement the 
other forms of distribution, as well as for any specialised communication required by a 
particular application. Part of the RhoVeR design called for a system suitable for 
research into distributed virtual reality (DVR) systems in general. The Event-Passing 
layer allows techniques from other DVR systems to be quickly and easily emulated. To 
qualify as a DVR system in its own right, RhoVeR provides more specialised communi- 
cation facilities that simplify the creation of virtual reality applications. 

The ShapeData extensions focus on sharing data amongst a subset of processes. This 
data is typically fairly large and is changed only at irregular intervals. It includes the 
polygon-mesh shape of an object (which the output modules access extensively) and 
colour and texture information, although it is not confined to visual aspects alone. 

A particular ShapeData structure is owned and maintained by a single process, but 
duplicate portions are stored where required. When the owner changes an entry in its 
ShapeData, it sets a flag in the VSM and so signals associated processes to update their 
local versions. 

The Virtual Shared Memory is the third inter-process communication facility. A 
block of memory is provided whose contents are distributed across every host in the 
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system. It is structured as an array with a single small record element for each process. 
These records store details that are in demand by a spectrum of processes, such as the 
type, position, and ShapeData modification status of a process. 

The VSM is implemented on each host as a block of shared memory. The local VSM 
Manager collects update events from processes with the appropriate permissions. It then 
changes the local copy and propagates these changes to VSM Managers on other hosts. 
The possibility of overwriting records has been eliminated by allowing only the owner 
process to write to a record but the synchronisation of VSM caches is not guaranteed. 
This, however, is acceptable within the virtual reality problem domain. 

The Event-Passing mechanism is implemented using TCP/IP. This protocol has 
several advantages: it allows RhoVeR to function across the Internet and it guarantees 
the transmission of events. Other Internet compatible DVR systems rely on UDP, which 
does not support event acknowledgement and is hence capable of superior performance. 
However, its use mandates either additional checks for dropped messages, or the 
occasional loss of data. The implementation of UDP-based Event-Passing is a possible 
future enhancement to the system. 

7. Performance issues 

There are two main factors that affect the performance of a parallel/distributed 
system: the efficiency of data propagation and process computation. The focus of this 
section is on measures undertaken to improve these aspects in the RhoVeR system. 

7.1. Data propagation 

Each of the three data distribution methods (VSM, ShapeData, Event-Passing) is 
optimised for a different form of propagation. The VSM is intended for global access to 
small frequently altered elements of data. Since the VSM is resident on each machine 
and is implemented as a shared memory block, machine-wide update is immediate. The 
only delay is caused by data transfer across machine boundaries. The ShapeData 
mechanism supports large data structures that are only needed by a subset of processes 
and are changed infrequently. Retransmission of ShapeData is circumvented by cacheing 
local duplicates. Dedicated change counters within the VSM are used to signal that 
portions of the original ShapeData have been altered. In this way only the changed fields 
are retrieved. Low-level Event-Passing is restricted to direct point-to-point communica- 
tion. An experimental flow-control feature is in place to reduce latency by preventing a 
glut of events from being sent from high-traffic processes. 

7.2. Computational eficiency 

An event-driven paradigm is computationally efficient, since processes sleep between 
handling events and do not consume significant processor time. This is further enhanced 
by merging similar objects, so as to reduce the load of processes on the system. 
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8. Conclusion 

This paper has discussed four key facets of the RhoVeR (Rhodes Virtual Reality) 
system: the control mechanism, parallelism, data distribution, and performance issues. 

- The control sections of RhoVeR allow the assembly of VR objects into parenthood 
hierarchies and support the notion of ownership. 

- From a parallel viewpoint RhoVeR consists of a collection of independent event- 
driven processes,, with facilities in place for merging processes and preventing 
deadlock. 

- RhoVeR also has a sophisticated three tier approach to data distribution drawn in 
part from first generation systems: Event-Passin g, ShapeData tables and a Virtual 
Shared Memory. Each of these levels caters for different communication require- 
ments. 

- The real-time considerations inherent in virtual reality make performance issues 
critical and the subsystems of RhoVeR have been analyzed and designed with this 
constraint in mind. 

We believe that these aspects of the RhoVeR system support its classification as a 
second generation parallel/distributed virtual reality system. 

There are several areas of possible expansion and research in the system: alternatives 
to TCP/IP as the underlying network protocol should be explored, extensive bench- 
marking and monitoring of RhoVeR performance is necessary and a scripting language 
would be helpful in specifying startup conditions. 
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