
Parallel Computing 23 (1997) 991-1000

PARALLEL
COMPUTING

ELSEVIER

Building the second generation of
parallel/distributed virtual reality systems

Shaun Bangay * , James Gain, Greg Watkins, Kevan Watkins

Department of Computer Science, Rhodes University, Gruhumstown, South Africa

Received 1 June 1996; revised 7 November 1996

Abstract

We present the RhoVeR (Rhodes Virtual Reality) system and classify it as a second generation

parallel/distributed virtual reality (DVR) system. We discuss the components of the system and
thereby demonstrate its support for virtual reality application developmenf its configurable,
parallel and distributed nature, and its synthesis of first generation DVR techniques.

Keywords: Distributed virtual reality; Ant Psychology

1. Introduction

The RhoVeR (Rhodes Virtual Reality) system is intended both as a flexible founda-

tion for developing virtual environments and as a research testbed for investigating
critical aspects of virtual reality (VR). The platform can be likened to an operating

system in that it provides an environment and tools to support VR applications. We

classify RhoVeR as a second generation VR system. In this scheme first generation
systems are typified by an ad hoc approach, as different systems (such as VROS [3] and

DVS [S]) explored different techniques with early VR hardware. By contrast, the second

generation subsumes successful elements of the first generation and allows for greater
structural expansion and alteration. There are four characteristics of RhoVeR which

support this classification:

(i> Conj~gurable. The RhoVeR system allows considerable flexibility within a
well-defined structure. The benefits are threefold: as ever-more sophisticated VR
equipment becomes available it can be incorporated into the system, the specific

_ Correspondmg aulhor. E-mail: cssb@cs.ru.ac.za.

0167-g I9 I /97/S 17.00 Copyright 0 1997 Elsevier Science B.V. All rights rcscrvcd

PI/ SO167-8191(97)00040-9

992 S. Bangay et al./Parallel Computing 23 (1997) 991-1000

topology requirements of an application can be catered for, and a spectrum of VR
systems can be emulated for the purpose of simulation and fundamental research.

(ii> Parallel. RhoVeR supports both true parallelism, with multiple independent

processes which communicate via message-passing and are spread across a network of

processors, and pseudoparallelism (multiprogramming), with a number of processes

hosted by a single processor.

(iii) Distributed. There are three techniques for distributing data amongst processes in

a RhoVeR configuration. A sophisticated Virtual Shared Memory mechanism is used for

data of global significance. Distribution is enhanced by shared tables and message-pass-

ing for faster, more direct communication requirements.

(iv) Virhml reality support. Virtual reality issues, such as latency and general

performance, and the requirements of virtual reality entities, such as the creation and

manipulation of worlds and objects, have received significant attention in the evolution

of RhoVeR.

A discussion of the structure of the RhoVeR system and the realization of these four

characteristics forms the remainder of this paper.

2. Structure

A central objective of the RhoVeR system is the rapid creation of VR applications.

The challenge here is to balance the exigencies of versatility, so that the system can

adapt to the burgeoning diversity of VR applications and support hardware, and
structure, so that development is guided and accelerated by a ready-made framework.
This balance is accomplished by extreme modularity, which allows the inclusion of

additional features, such as support for new I/O devices, without sacrificing the existing

structure.
A given RhoVeR application consists of a collection of event-driven processes, each

of which executes independently and is an instance of a predefined module type. These
module types define broad classes of VR system components, such as input, objects,
worlds and output. The system supports multiple users, each of whom have access to a

tailored collection of input and output module instances, but are not treated as a special
case in the system. This makes the introduction of additional users simple and elegant.

Communication between module instances is accomplished by three mechanisms:

Event-Passing, which enables point-to-point communication between any two processes
and is the substrate uponlwhich the other two techniques rely, shared tables (ShapeData),

which are cached within a process and distributed on demand, and a Virtual Shared
Memory, which is a data structure accessible to all processes. The first generation
system DIVE [I .2] makes use of a similar Event-Passing approach which is coupled with
a replicated database visible as a shared memory block.

The components of the RhoVeR system can be separated into two categories: module
types (Fig. 1 j which can be likened to the bricks from which an application is
constructed, and support libraries (Fig. 2) which provide the functionality to cement

modules into a cohesive whole.

S. Bangay et al./ Parallel Computing 23 (1997) 991-1000 993

Name

World

Function

Centralized co-ordination and

VSM Manager

Input

Outpu1

Object

global attribute repository

Control and distribution of shared memory structures

Input data-capture and processing

Rendering a view of the world

Specification of attributes and behaviour

of 3D virtual objects

Application Support Collision D tet e L ion, Gesture Recognition and Timing

Fig. I. Listing of module types.

2.1. Module types

- World. A world module provides centralised co-ordination of all modules within its
domain. It is responsible for such housekeeping tasks as removing and merging
processes, coordinating addressing services, and allocating system unique identifiers.
The world module also stores global attributes, broadcasts global events and defines
default responses to these events. For instance , gravity would be a global attribute and
the world module would regularly transmit gravity events to which the default response
would be falling. This type of separation of world and object attributes occurs in first
generation systems such as AVIARY [lo].

- VSM Manager. The VSM Manager enables access to Virtual Shared Memory data
by all processes within a world and proliferates this VSM data across an application
topology.

- Znpur. These interfacing modules are responsible for capturing and processing raw
input device data and passing a stream of extracted information to the relevant module
destinations. Currently implemented input modules include device drivers for the
Polhemus InsideTRAK and Fifth Dimension Technologies 5thGlove.

- Output. RhoVeR output modules generate a view of the virtual environment. Each
output module gathers information from the Virtual Shared Memory and locally cached

Name I Function I

Building hierarchies of Parenthood and Ownership

Managing and distributing locally cached

Process Ma.nagnrnent Creating, merging and removing processes

Debug Time-stamping and process-level debugging

Fig. 2. Listing of support libraries.

994 S. Banguy et al./ Purallel Computing 23 (1997) 991-1000

ShapeData as required. The principal advantage of not requiring that data be explicitly
sent to an output module is that any number of such modules can be included with no
other alteration of the system.

- Object. An object module describes both the behaviour and appearance of a
three-dimensional shape within the virtual environment. The shape of an object is loaded
from an OFF (object file format) file and then stored in a ShapeData table within the
object process. Attributes which are subject to frequent change, such as position and
orientation, are held in Virtual Shared Memory.

- Application Support. Other available modules include Gesture Recognition (which
converts input data to a higher-level symbolic form), Collision Detection (which
examines the VSM and generates events when objects collide), and a Timer Module
(which enhances real-time control by generating tick events at specified intervals).

2.2. Support libraries

- Control. The control libraries support hierarchies of parenthood and links of
ownership. A parenthood hierarchy stores the position and orientation of a child relative
to its parent. An ownership link allows the controlling object (and no other) to alter
aspects of a subsidiary object, ‘such as position, orientation, and ShapeData.

- Event. These libraries implement a socket-based model of message-passing with
capabilities such as inter-machine communication, buffering, and both blocking and
non-blocking message receipt.

- ShapeData. Each module is provided with a locally cached ShapeData table, which
typically contains high-volume externally accessible information such as an object’s
polygon-mesh structure. The ability to externally alter elements in a ShapeData table is
also supported.

- Process Management. These routines cater for starting up and removing processes.
Primitive load balancing is effected by killing a process on one processor and restarting
it on another. Also, a merge function allows similar modules to be grouped within a
single process which is controlled by simple multithreading, and consequently reduces
the load of active processes. This mergin, = is not automatic but must be instigated
manually by the merging process. Merged behaviour is present in AVIARY [l 11, which
employs Event-servers that allow a single process to control many objects.

3. Ant Psychology: An application

In this section a sample RhoVeR application is presented with the intention of
illustrating the interaction of the various system components.

The Ant Psychology application consists of a collection of ants wandering around on
a plane. These ants are generated by hives scattered across the plane. When a collision
occurs the ants concerned are notified by a Collision Detection process and will tumble
away from the point of impact.

This application was created as a testbed for RhoVeR. Each requirement of the
application tests a different aspect of the system (Fig. 4). Fig. 3 shows the system in an
entity-relationship format.

S. Bangay et al./Parallel Computing 23 (1997) 991-1000

cc Position and
IC bounding spherl:

of all ant bodies

(/--.+.<:--------------1

Stable State. Event

Ant StarhIp Event

Fig. 3. Entity-relationship diagram for the Ant Psychology application.

On startup, World and VSM Manager processes are created. The VSM Manager in
turn spawns a number of hive objects and output modules, a timer, a surface object, and
a Collision Detection module. Only some of these modules are visible: the plane which
demarcates the ant’s world, a few pyramidal Ant Hives, and the Collision Detection
module shown as an ‘eye in the sky’. Each visible object has several ShapeData fields
associated with it, including its colour, texture and polygon-mesh structure.

Ant Hives are represented by pyramids, the tips of which protrude above the plane.
As new ants are born these pyramids move upwards revealing more of the buried shape
and thereby denoting a larger hive. Initially each hive registers with the Timer module
so as to be sent tick events at specified intervals. On receipt of a rick event, the hive
requests the VSM manager to generate the three objects that form a new ant.

Performance under variable load

Ant legs moved by ant body

Dynamic ob,ject. creation

Fig. 4. Ant Psychology as a testbed for RhoVeR

996 S. Bangay et al./ Pamllel Computing 23 (1997~991-1000

An ant consists of a box-like body and two legs. This two-legged ant was initially
intended as the forerunner of a full six-legged ant, but we have become rather attached
to the bipedal version. Immediately after being born, the body object, with which the
ant’s personality is associated, requests parenthood of its left and right legs, so that these
become controlled by and positioned relative to the body. The new-born ant then
requests the Timer module to transmit a tick event to it every few milliseconds. These
are used to prompt the motion of the ant, a fraction of a step at a time. Ants walk in a
fixed direction (which is occasionally randomly altered) and with a gait determined by a
sinusoidal function. They continually monitor their position to avoid walking off the
edge of the planar world.

The Collision Detection module functions as follows: each time it receives a tick
event from the Timer module, it compares the bounding spheres of all object pairs and
sends collision events to pairs that lie too close together. This prototype is intended as a
test of the Virtual Shared Memory and is by no means a definitive Collision Detection
method.

As the number of ants and hives increases there is a proliferation of processes and
their corresponding overheads. To improve system-wide efficiency, a scheme for
merging similar objects is implemented. Thus each of the following classes of object are
subsumed into a single process: hives, left legs, right legs, and bodies from the same
hive. The distinction that ant bodies not be merged indiscriminately allows ants from
different hives to behave differently. There are some intricacies in this merging process:
when two processes with different ShapeData or state variables are merged, these must
be accommodated in the merged result. Once merging is accomplished the redundant
process can be eliminated, thereby freeing up system resources.

Applications such as this Ant Psychology example can be overlaid on the basic
RhoVeR system very easily.

4. RhoVeR as a second generation VR system

By definition the development of a second generation VR system must involve an
analysis of the similarities and differences in existing (first generation) systems.
RhoVeR goes further by allowing the use of these different approaches within a
consistent environment with the intention of judging their relative performance charac-
teristics.

The Event-Passing layer in RhoVeR is a basic support structure on top of which a
variety of distribution techniques can be implemented. An examination of VR systems
[4] has revealed that most are distributed using some form of message-passing for
inter-process communication and synchronization. Using Event-Passing it is possible to
implement constructs such as the client-server approach [3,9], the master-slave setup
used in the MR Toolkit [6] or the dead-reckoning found in NPSNET [7].

Some high level distribution mechanisms have already been built into RhoVeR to
facilitate research into virtual reality. These are the ShapeData extensions, which are
unique to RhoVeR and Virtual Shared Memory, which is modelled on shared memory
schemes found in other VR systems [1,2,5]. Both are built on top of an Event-Passing
substrate.

S. Bangay et al. / Parallel Computing 23 II 997) 991-1000 991

5. Parallel aspects of RhoVeR

The RhoVeR system consists of a number of processes capable of executing
concurrently, on one or more machines. To simplify discussion, the aspects of the
system running on a single machine will be referred to under the heading of parallelism,
while those involved with communication between machines will fall under the section
on distribution.

On a single machine, usually running a variant of the UNIX operating system,
RhoVeR processes are implemented as standard UNIX processes. Some measure of data
sharing between these processes is required and this is implemented through a message-
passing mechanism. The processes also communicate through a Virtual Shared Memory
area, which on a single machine is easily implemented directly as a shared physical
memory block. Every process has read-only access to the shared memory block, with
limited write permission being determined by the ownership hierarchy.

Each process is event-driven, and acts in response to some external event. This has
the advantage of simplifying scheduling, since once an event has been serviced the
process will sleep until the next event. Load on the processor is consequently greatly
reduced.

Since RhoVeR requires relatively large UNIX processes which typically consume
significant resources even for trivial tasks, it is expedient to limit the number of active
processes in the system. Object modules are generally the most abundant processes and
are thus prime candidates for a system of process merging. This merging is accom-
plished after process creation and so provides a potential load balancing facility. Once in
place, modules can migrate to less heavily laden processors, or even be moved in
response to the analysis of traffic patterns.

An advantage of the event-driven nature of the system is that, provided a few
conditions are enforced, the chance of deadlock can be significantly reduced, to levels
typical of standard sequential programs.

A skeleton of the Event-response loop of a RhoVeR process is listed below:
loop

Event=BlockGetEvent ();
Call service routine for Event

forever
This process will remain dormant until an event arrives, after which it responds with an
appropriate service routine. This routine will consist of either standard sequential code,
or a call to the SendEvent or G&Event routines. Neither the GetEvent nor the
SendEuent procedures will ever block since communication is completely asynchronous,
but GerEuent is often called repeatedly in a tight loop until an event arrives.

This allows the deadlock scenario outlined below:
Process Pl
Send P2 request
Block until event from P2

Process P2
Send Pl request
Block until event from Pl

998 S. Bangay er al./Parallel Computing 23 (1997) 991-1000

Under certain conditions two processes can each be expecting a reply from the other
which each is unable to provide until their requests are satisfied.

Some restrictions on the nature of events circumvent this problem. Consider a
situation which involves communication between only two processes and at least one
must wait for a response. We classify events which trigger a response as server events.
By definition the process providing a response is the Server and the waiting process is
the Client. Now consider the following restrictions:

- Clients may only block when waiting for a response from a Server.
- Blocked Clients must respond to Server events.
- Servers must return with no possibility of blocking.

Given these rules, a process can only block when waiting for a response from a server,
and every process will always eventually respond to server events. The last stricture can
be relaxed, provided the server acts as a client while it is blocked. It is a useful condition
to include however, since it improves efficiency by limiting possible message paths and
disallows infinite cyclic client-server chains. Communication involving more than two
processes has to date been rare but can easily be remodelled as a client-server chain.

6. Distributed aspects of RhoVeR

RhoVeR is designed to be extremely versatile and applicable to any equipment
configuration. A module may be located on any host, with the exception of the VSM
Manager which is replicated on every host in use. Thus modules can be matched to
machines with the appropriate computation and communication capabilities. For in-
stance, output modules can be placed on graphics machines capable of rendering in
hardware and computation intensive modules on high-end hosts.

The inter-process communication facilities offered under RhoVeR fit into three
categories. The most basic form is direct Event-Passing. This is used to implement the
other forms of distribution, as well as for any specialised communication required by a
particular application. Part of the RhoVeR design called for a system suitable for
research into distributed virtual reality (DVR) systems in general. The Event-Passing
layer allows techniques from other DVR systems to be quickly and easily emulated. To
qualify as a DVR system in its own right, RhoVeR provides more specialised communi-
cation facilities that simplify the creation of virtual reality applications.

The ShapeData extensions focus on sharing data amongst a subset of processes. This
data is typically fairly large and is changed only at irregular intervals. It includes the
polygon-mesh shape of an object (which the output modules access extensively) and
colour and texture information, although it is not confined to visual aspects alone.

A particular ShapeData structure is owned and maintained by a single process, but
duplicate portions are stored where required. When the owner changes an entry in its
ShapeData, it sets a flag in the VSM and so signals associated processes to update their
local versions.

The Virtual Shared Memory is the third inter-process communication facility. A
block of memory is provided whose contents are distributed across every host in the

S. Bangay et al./ Parallel Computing 23 (1997) 991-1000 999

system. It is structured as an array with a single small record element for each process.
These records store details that are in demand by a spectrum of processes, such as the
type, position, and ShapeData modification status of a process.

The VSM is implemented on each host as a block of shared memory. The local VSM
Manager collects update events from processes with the appropriate permissions. It then
changes the local copy and propagates these changes to VSM Managers on other hosts.
The possibility of overwriting records has been eliminated by allowing only the owner
process to write to a record but the synchronisation of VSM caches is not guaranteed.
This, however, is acceptable within the virtual reality problem domain.

The Event-Passing mechanism is implemented using TCP/IP. This protocol has
several advantages: it allows RhoVeR to function across the Internet and it guarantees
the transmission of events. Other Internet compatible DVR systems rely on UDP, which
does not support event acknowledgement and is hence capable of superior performance.
However, its use mandates either additional checks for dropped messages, or the
occasional loss of data. The implementation of UDP-based Event-Passing is a possible
future enhancement to the system.

7. Performance issues

There are two main factors that affect the performance of a parallel/distributed
system: the efficiency of data propagation and process computation. The focus of this
section is on measures undertaken to improve these aspects in the RhoVeR system.

7.1. Data propagation

Each of the three data distribution methods (VSM, ShapeData, Event-Passing) is
optimised for a different form of propagation. The VSM is intended for global access to
small frequently altered elements of data. Since the VSM is resident on each machine
and is implemented as a shared memory block, machine-wide update is immediate. The
only delay is caused by data transfer across machine boundaries. The ShapeData
mechanism supports large data structures that are only needed by a subset of processes
and are changed infrequently. Retransmission of ShapeData is circumvented by cacheing
local duplicates. Dedicated change counters within the VSM are used to signal that
portions of the original ShapeData have been altered. In this way only the changed fields
are retrieved. Low-level Event-Passing is restricted to direct point-to-point communica-
tion. An experimental flow-control feature is in place to reduce latency by preventing a
glut of events from being sent from high-traffic processes.

7.2. Computational eficiency

An event-driven paradigm is computationally efficient, since processes sleep between
handling events and do not consume significant processor time. This is further enhanced
by merging similar objects, so as to reduce the load of processes on the system.

1000 S. Bungay et al./Parallel Computing 23 (1997) 991-1000

8. Conclusion

This paper has discussed four key facets of the RhoVeR (Rhodes Virtual Reality)
system: the control mechanism, parallelism, data distribution, and performance issues.

- The control sections of RhoVeR allow the assembly of VR objects into parenthood
hierarchies and support the notion of ownership.

- From a parallel viewpoint RhoVeR consists of a collection of independent event-
driven processes,, with facilities in place for merging processes and preventing
deadlock.

- RhoVeR also has a sophisticated three tier approach to data distribution drawn in
part from first generation systems: Event-Passin g, ShapeData tables and a Virtual
Shared Memory. Each of these levels caters for different communication require-
ments.

- The real-time considerations inherent in virtual reality make performance issues
critical and the subsystems of RhoVeR have been analyzed and designed with this
constraint in mind.

We believe that these aspects of the RhoVeR system support its classification as a
second generation parallel/distributed virtual reality system.

There are several areas of possible expansion and research in the system: alternatives
to TCP/IP as the underlying network protocol should be explored, extensive bench-
marking and monitoring of RhoVeR performance is necessary and a scripting language
would be helpful in specifying startup conditions.

References

[l] M. Andersson, C. Carlsson, 0. Hagsand, 0. St% DIVE - The Distributed Interactive Virtual Environ-

ment Tutorials and Installation Guide for DIVE version 2.2, Swedish Institute of Computer Science,

Kista, Sweden, 1993.

[2] M. Andersson, C. Carlsson, 0. Hagsand, 0. St& DIVE - The Distributed Interactive Virtual Environ-

ment, Technical Reference for DIVE Version 2.2, Swedish Institute of Computer Science, Kista, Sweden,

1993.

[3] S. Bangay, Parallel Implementation of a Virtual Reality System on a Transputer Architecture, MSc.

Thesis, Department of Computer Science, Rhodes University, 1993.

[4] S. Bangay, A comparison of Virtual Reality Platforms, Unpublished paper, available via anonymous ftp

from cs.ru.ac.za as /www/vrsig/SDB04.ps.Z, 1994.

[5] W. Bricken, G. Coca, The VEOS Project, HITL Technical Report TR-93-3, Human Interface Technology

Laboratory, University of Washington, 1993.

[6] M. Green, L. White, Minimal Reality Toolkit Version 1.4: Programmer’s Manual, Department of

Computer Science, University of Alberta, Edmonton, Alberta, 1995.

[7] M. Macedonia, M. Zyda, D. Pratt, D. Btutzman, P. Barham, Exploiting reality with multicast groups: A

network architecture for large-scale virtual environments, in: Proc. of the IEEE Virtual Reality Int. Symp.

‘9.5, North Carolina, 1995.
[8] D. Pountain, Provision: The Packaging of Virtual Reality, Byte, October, 1991.

[9] D. Schmalstieg, M. Gervautz, P. Stieglecker, Optimizin, 0 communication in distributed virtual environ-

ments by specialized protocols, in: Proc. of the 3rd Eurographics Workshop on Virtual Environments,

Monte Carlo, Manaco, 1996.

[IO] D. Snowdon. A. West, T. Howard, Towards the next generation of Human-Computer Interface,

Informatique ‘93: Interface to Real and Virtual Worlds, March, 1993.

[I I] A. West, R. Howard, R. Hubbold, A. Murta, D. Snowdon, D. Butler, AVIARY - A Generic Virtual

Reality Interface fat- Real Application, Virtual Reality Systems, May, 1992.

