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Adaptive Refinement and Decimation under
Free-Form Deformation

James E. Gain and Neil A. Dodgson

The Computer Laboratory
University of Cambridge

Abstract

The Free-Form Deformation (FFD) methods are a family of intuitive, iefficand
versatile free-form modelling techniques, which rely on an ambient watheof
space cocooning an embedded object. However, the distortion caused by FFD
significantly degrades the approximation quality of polygon-mesh objects. We
present a curvature-based adaptive refinement and decimation algorithm which
solves this problem in the context of repeated interactive FFD and improves on
previous work [21, 12, 20] in three respects: it addresses sampling issues, incor-
porates decimation as well as refinement, and reduces computational complexity

1 Introduction

The field of aesthetic free-form modelling (or interactive sculpting & sometimes called)
addresses the task of computer-assisted shape design. It is distinguishetidotonesd mod-
elling techniques such as Constructive Solid Geometry, Primitive Insiguatnid Generalized
Cylinders [10] by permitting unrestricted manipulation of an object’s surfédso, the aes-
thetic appearance of the final form is the only concern and no consideration is gifianct
tional properties such as volume, tensile strength and aerodynamics.

There is considerable research into adapting physically-based methodsftrfre@od-
elling [25]. This approach allows a user to deform a solid in a physicallystea(and hence
intuitive) fashion, since it directly incorporates mechanics, but it is orgrand computation
intensive. More recently this inefficiency has been reduced through a rangetridtia@ss
[4, 18, 22].

At the other end of the complexity spectrum are the Regular Deformations [1]. These
are extremely efficient but of limited utility since they offer only sgiecstylized deformations
- taper, twist and bend.

Between these extremes lies Free-Form Deformation (FFD) and ée®ahs, a family
of highly intuitive, powerful and efficient modelling techniques, which rely oambient warp
of the space containing an embedded object. An analogy [24] would be setting a deformable
shape inside a block of jelly of the same consistency and then flexing this ggiylting in
a corresponding distortion of the inset shape. FFD has other strengths apart froemeffic
it can always be applied as long as sample points can be extracted from an ethbbpde
and is thus independent of the object’s underlying representation, and it can be eigher loc



global in effect depending on the scope of the deformation relative to the object.

FFD in its seminal form [24] employed a Bézier hyperpatch (the three- mroaal
analogue of a two-dimensional Bézier patch) in an initial parallelepiped coafigarto de-
marcate a deformable portion of world co-ordinate space. This has since beealigeddn
hyperpatches on different bases [12, 8, 16] and with generalized topologies [6, IY hdsF
also found widespread application in modelling [13, 8, 11] and animation [5, 7, 15]l dh a
these, deformation is controlled by repositioning control points (much as in cadreuaface
design). Unfortunately, this interface is cumbersome and counter-intuitiveafldisplay of
the lattice (control points connected in a grid) tends to clutter the screen acurelbise object
being created. Even worse, some lattice control points may be hidden within .ol
would be preferable if the user could drag object points directly and have the hypeaitate
ations necessary to induce these effects automatically calculatedsTihésprinciple behind
the direct manipulation extensions to FFD [3, 14].

Rendering objects which have undergone FFD is problematic. If Polygon Scan Con-
version is employed then a continuous object should be approximated in polygon-mesh form
prior to FFD. The primary difficulty is that this approximation degrades under FESOpre-
viously flat (and sparsely covered) regions become sharply undulating. Conydriggily
curved areas may be warped to near planarity and be wastefully ovatsatwith polygons.
These problems can be avoided by coupling an adaptive polygon-mesh refinement and decima
tion scheme to FFD. The conversion to polygon-mesh fprrar to FFD is motivated by two
concerns: a clean separation between the refinement/decimation schethe anderlying
representation (be it B-spline, implicit or CSG), and the ability to effily apply a possibly
lengthy sequence of deformations to the object in an interactive modelling context.

There are currently three FFD rendering algorithms, but all have shortcomitiysew
spect to repeated interactive deformation.

Greissmair and Purgathofer [12] take a triangle-element polygon-mesh and subdivide
adjacent triangles at the midpoint of their common edge by examining the position of this
midpoint after FFD. This approach is efficient but lacks symmetry, since afiyement is
provided. This implies that under a sequence of deformations the object’'s compleyity ma
grow without bound even if its overall curvature decreases.

Parry [21] subdivides triangles in a polygon-mesh based on a combination of their curva-
ture and projected screen size. One edge in every triangle is heulystitsitified as a “long
side”. Subdivision of an edge may only take place if it is marked as a “long &igdjoth
adjacent faces, otherwise the surrounding triangles are recursively subdivitiethis con-
dition is satisfied. This process is more computationally costly than @maiss algorithm,
may initiate unnecessary refinement and also lacks symmetrical demmmat

Nimscheck [20] adapts an advancing front finite element mesh generation lahgdoit
the rendering problem. The input is a completely general polygon-mesh with both carvex a
concave polygons and any number of holes piercing the object. The output is a triangulated
approximation, which is within a user-specified tolerance of the “true” objectrUe. This
power and generality comes at the expense of efficiency and this technique is ablkesiat
real-time applications [20].

This paper presents an adaptive refinement and decimation scheme that isthésed
research of Greissmair [12] and Nimscheck [20] and tailored to repéatdctive FFD. Our
contributions are as follows:

1. We incorporate a complimentary decimation process which merges facearin pla-
nar areas and thereby reduces the polygon-mesh complexity (number of vertices, edges
and faces).



2. We trigger refinement or decimation by testing the deviation between surfan®ls
at edge endpoints (adapted from [20]). As will be shown, this has efficiency advantage
over Greissmair’'s midpoint displacement condition [12].

3. We identify and develop measures to ameliorate the serious sampling pscddsoci-
ated with refinement and decimation under FFD.

The remainder of this paper is divided into three sections: The notation and meunhanis
of Free-Form Deformation are explained, with particular reference tofaamB-spline basis;
a method for evaluating the change in first derivative properties under FFDnglgseribed
and, finally, our adaptive refinement and decimation algorithm is outlined and siesstus

2 Free-Form Deformation

Free-Form Deformation is a modelling tool which warps the space surrounding art abge
thereby transforms the object indirectly. This is achieved by imposing a ararnyperpatch
onto a portion of world co-ordinate space and linking distortions in the hyperpatch ta objec
vertices.

FFD can be formulated as a mappitig, i3 — R? — %3, from world space, through the
local parameter space of the hyperpatch, to deformed world space. Thus avVeteéx, y, z)
is mapped to parameter spacelas= (u,v,w) and transformed under deformation back to
world space asX = (7,7, z). This is achieved by two functions: the embeddifgl/) = X,
and deformation/'(U) = X, functions. The composition of and ~! constitutes FFD:
F(X)=F(FYX))=F({U)=X.

The agency of deformation is a hyperpatch, defined as a trivariate piecewdsegiac
tensor product volume. This is a straightforward extension of one-dimensional ¢arvese
dimensions. The curve control polygon which indicates the adjacency of control points gen-
eralizes to a control lattice. Likewise, just as curves may be dividedpiecewise segments
(on a subinterval of the univariate domain), so too a hyperpatch may be brokenlist@aeh
defined over a parallelepiped block of the trivarisltelomain). Points which lie within the hy-
perpatch can be formulated as a sum of control points weighted by polynomial basierfisncti
as follows:

a+l—1 b+m—1 c+n—1

Q = F(u,v,w) Z Z Z B (u im (V) Ben(w) - Pk Q)

where( is a point within the hyperpatch ard = (u, v, w) are its local parameter space co-
ordinates. B are the basis functions (the first subscript denotes the index and the second the
order) andP are the lattice control points.

With this background in place, FFD proceeds in three stages:

1. Object vertices which fall within the undistorted hyperpatch are assigaetmetric
u, v, w co-ordinates F'~' is applied). In terms of our earlier metaphor, the shape being
deformed is set inside the jelly.

2. A number of control points are displaced kecomeP), with a consequent distortion of
the hyperpatch. This equates to flexing the jelly.

3. Equation 1 Fin the FFD notation) is applied repeatedly to all of the parametrised object
vertices to produce a deformed version of the object. So, by the analogy, thehapet s
is warped along with its cocooning jelly.
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Figure 1: A two-dimensional cubic B-spline area with a single cell and an embeediek:
[A] pre-deformation, [B] post-deformation.

A specific example will help to clarify the Free-Form Deformation prgcékinteractiv-
ity is an overriding concern, then the use of uniform cubic B-splines is appropAateiform
knot sequence ensures that all basis functions are shifted versions of each otteliraghl-
uation is thus amenable to optimization. Also, if the initial (undistortedjcattonsists of
control points evenly spaced in a parallelepiped configuration, and the parametendd
co-ordinate systems are aligned (ie. the’, «/ axes of the hyperpatch match thiey, z axes
exactly), then due to the linear precision property of B-splines [9] the embeddiregtafas is
immediate { = U andF'~' is unnecessary).

This form of FFD is illustrated in a two-dimensional analogue by figure 1. In figure 1A
the lattice is shown in its initial base-state together with an aasaticell and an embedded
vertex. If the control point positions are altered, then the cell which they defideformed
from its initial box-shape and so too is the object vertex (see figure 1B).

LAl Gl St St St Sl Sl SR
‘ ‘ ‘ | ‘ ‘ ‘ ‘ mmm Deformable
Zone

| — Influenced

o ] Zone
‘ . q ,,,,,, Phantom
‘:”” ””,l Zone

. ) ¢ o Control
‘ | Point

Figure 2: A FFD lattice showing deformable, influenced and phantom zones.

There are two further issues concerning this style of FFD which should be mentioned:

e There may be cells whose control points are unaltered and which do not perturb object

vertices which fall within them. Instead of applying FFD only to have the pabi
point return unchanged, a bit index, which flags cells with altered control point&ecan
consulted. In this way, if a control point is moved, then the cells that it inflleace
marked in the index.



e The fringes of the lattice may, without careful attention, produce anomalous continuit
degradation. To prevent this, the lattice is partitioned into three shejle¢fi2). At the
centre is the deformable zone, with any number of control points and their corresponding
cells. Around this lies the influenced zone, which is affected by the moverheantrol
points in the deformable zone and is two cells thick. At the edges a single-layered
phantom zone of static control points guards against boundary conditions (as outlined
by Bartels et al. [2]). These phantom vertices are preferred to thentyipp of vertices
previously proposed by Hsu et al. [14], which introduces additional complexity into the
FFD algorithm.

3 First Derivative Properties

It is vital in certain instances to compute not only the new position of objedtesitbut also
their first derivative properties (normal and tangents). These provide firat dean object’s
shape and are useful for rendering algorithms (such as Phong shading [10]) and curvature
based adaptive refinement and decimation, as developed here.

The Contravariant and Covariant transformation rules [19] provide a meanspginga
tangents and normals under general transformations of the fermR?* — R3. These can
be adapted to FFD, and after some algebraic manipulation (including the dregafdicaling
factors), this produces the FFD transformation rules:

Covariant: =(J-J9T. Ny @)
Contravariant: T =J.J Ty

HereJ andJ are the Jacobians @& andF respectively. The superscript star (6g) denotes
the adjoint of a matrix.7x, Ty and Nx, Ny are the tangents and normals before and after
deformation.

The optimized version of FFD outlined in the previous section (a uniform cubiciBespl
basis combined with a parallelepiped axis-aligned initial latticeyadl these transformation
rules to be further simplified:

Covariant: Ng =JT. Ny 3
Contravariant: Ty =J - Tx
where
[ O0F, 9F, OF, |
ou ov ow
3 _ | oF, oF, oF,
I=15 3¢ 7 (4)

OF, OF, OF.
L Ou ov ow |

The partial derivatives in equation 4 are B-spline hyperpatches influencedduyraef control
points (P) and take the following form:

(9F a+l—2 b+m—1 c+n—1

- Z > Z Bii—1(u) - Bjm(v) - Ben(w) - [Pig1,jk — Pijg) (5)
7=0



(9F a+l—1 b+m—2 c+n—1 B B
v Yo > Y Bu(w): Bijm-1(v) Bra(w) - [Pijyik — Pijsl (6)
=0 =0 k=0

(9F a+l—1 b+m—1 c+n—2 B B
ou > Y > Bi(w):Bjm(v) Bru—1(w) - [Pijrsr — Pijal @)
i=0 = k=0

4 Adaptive Refinement and Decimation

Itis now possible, with these mathematical foundations in place, to presecumvature-based
adaptive refinement and decimation algorithm. This can be visualized asstaefinements
in successive layers, which later decimations will remove in severder.

As a preliminary, all vertices and edges in the original (undeformed) polygon-aresh
tagged to indicate that they are at the base level of the refinement hier&iftéyeach suc-
cessive Free-Form Deformation the algorithm scans all edges and cagsgoeabset of these
as candidates for either refinement or decimation.

If either
(a) at least one of the endpoints of an edge has been deformed and the normals at these end-
points diverge after FFD by more than a certain threshold aidglg X or
(b) the edge is longer than a certain maximum lendth,(),
then the edge is placed on the refinement heap.

This heap is ordered by decreasing edge length. This dictates an order of subdivision
that tends to reduce the number of ill-formed (sliver) triangles by splittimg ledges first
[12]. Slivers, which are thin wedge-shaped triangles, should be avoided beycean cause
rendering artefacts in Gouraud shading, Phong shading and Radiosity [20].

Converselyijf both
(a) the angle between deformed endpoint normals is below a decimation threghp)daOd
(b) the edge is shorter than the defined maximum lenbih.(),
then the edge’s endpoints are marked as possible candidates for vertex-centeneatideci

b b
_ d _ d
a
c c
[Al [B]

Figure 3: Refinement - subdividing an edge at its midpoint: [A] pre-subdivision, [B] post-
subdivision.

The refinement stage (adapted from Greissmair and Purgathofer [12]) repestiedtts
edges from the refinement heap until none remain. Each extracted ledge subdivided
according to figure 3 and the four new edges, bm, cm, dm are tested for refinement and
if necessary inserted into the refinement heap. The only subtlety is thabhemeint levely,
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is assigned to the vertex and the two new edgesi, dm, andr is set at one more than the
highest level amongst the verticesb, ¢, d (ie. » = maz (Giever: bicver, Clevet» Aiever) + 1). The
remaining edgesyn, cm, are assigned the same level as their source adge

Decimation proceeds by grouping candidate vertices according to their refinEwelnt
These groups are processed in descending order so that later refinementsoxezrérst. A
candidate vertexy, is decimated only if it has:
(a) exactly four incident edges which all pass the decimatioratest
(b) all four adjacent vertices at the same or lower level than
In this case decimation proceeds by exactly reversing a previous refinenmentefiexn and
its two incident edges at the same refinement level are removed. If wietheise edgesm
anddm, then decimation is carried out according to figure 3 in reverse.

There are a number of points pertaining to this algorithm that are worth examining:

Edge

Normal

Endpoint

Figure 4: A condition under which the refinement classification fails.

1. Sampling issues become important in two instances. Firstly, it may ,occtesting

for refinement, that the endpoint normals of an edge do not diverge significantly even
though the edge undulates inbetween (figure 4). In general, sampling theory dictates tha

such a situation cannot be completely avoided since pathological cases cga béva

constructed. However, the problem can be curtailed by subdividing edges that ane longe

than a certain maximum and thus sampling at a higher resolution. Secondly, tésting

endpoints of an edge to establish whether the edge fall within a deformed cgll, ma
erroneously fail if only a bounded inner section of the edge is deformed. Even worse,

deformation may take place within a face without affecting its edges. Juggests
that a test to determine if a given face intersects any deformed telisquired. The
computational overhead for such a test is substantial and can be avoidedahtjest
edges in the object are shorter than the extent of a lattice cell. For thesmnsea
maximum edge length, ..., is built into the refinement and decimation conditions. In
practice, for a given FFDL,,,., is set to the minimum cell extent.

2. Our second refinement/decimation trigger is Nimscheck’s endpoint normal dmerge
test [20]. The expression = 1 — n; - 1y Is an efficient method of evaluating this
trigger since it approximates the angtge,between two unit normals;; andn,. As
long as this angle is acuté « 7) the property: = 1 — cos(6) holds. An alternative
condition is Greissmair’'s midpoint distance test [12]. Here the midpoingf the pre-
FFD candidate edge, is found and FFD is applied to produge The trigger condition

7



Endpoint Normal Midpoint Distance

Algorithm' | Pre-Trigger | e = 1 — 7y - i m = Fgq(midpoint(e))
m* = midpoint(€)
find normals ¢, f.) of
faces incident om
d=m—m*

di = |fi-d|
dy = |f2 ) d|
e =dy +dy
Post-Trigger| m = F(midpoint(e)) | -
Number of | Pre-Trigger | 3a + 3m 255a + 320m + 15d + 2s

Operation$ | Post-Trigger| 225a + 296m + 6d 0

Total Cost | Pre-Trigger | 6.21 629.81
Post-Trigger| 553.18 0

(1) wheree is the edge test prior to FFD, amds the post FFD version with normal end-
pointsfi; andis

(2) @ = addition/subtractioryn = multiplication, d = division, s = square root

(3) The arithmetic operations are given the following rekatost, based on timings taken
on an SGI Indy: addition/subtractian multiplication1.07, division1.91, square root .88

Figure 5: An efficiency comparison of the endpoint normal and midpoint distance tests



is then the sum of the distancesioffrom the faces adjacent to the candidate edge. The
endpoint normal divergence test is chosen over the midpoint distance test becdsise of i
efficiency advantages (as shown in table 5). In particular, the midpoint dafiomis
shifted from before to after the trigger and this becomes significant whenithatggh
volume of non-triggering edge tests.

3. In our implementation a straightforward heap with a binary tree strucdwmployed.
A potential improvement would be to select a heap that was optimized for fneque
heap operations as established by profiling the algorithm. For example, Greiascha
Purgathofer [12] proposed a Pagoda Heap.

o

[A] [B] [C]

Figure 6: The importance of ordered decimation: [A] pre-decimation, [B] illegaimation
of vertexp which prevents further decimation, [C] legal decimation of vertexhich allows
later decimation op.

4. The decimation procedure is restricted to vertices with a very psarrounding topol-
ogy (which is produced in the refinement stage) and is applied in a specific ofden, w
is controlled by the refinement level labelling of edges and vertices. Thragatlons
are justified for several reasons:

(a) Aslongas no decimation of base level vertices is allowed, the refingédecimation

(b)

(©)

algorithm is restricted to overlaying topological detail. This ensuresitmadrtant
aspects in the original topology (such as feature edges) are maintained.

The topology restrictions have considerable efficiency benefits. The aiverrsat

a scheme which allows any number of edges incident on the decimation vertex
(rather than just four). Schroeder et al. [23] achieve this by removing thexvert
and all incident edges and then triangulating the resulting gap. The problem is
thus reduced to tessellating an arbitrary polygon, which represents a sighifica
additional overhead.

The ordering constraint ensures that refinement is fully reversible.llydédaa

region is distorted from planar to convoluted and back to planar over a sequence
of Free-Form Deformations, it should return to its original topology. Given the
topology restrictions imposed on decimation, this is only possible in general (as
illustrated by figure 6) if refinements are placed in a stack from which dr@ydp
element can be removed by decimation.



5 Conclusion

In this paper we have extended and improved Greissmair’s adaptive refihalgerithm [12]
by:

e incorporating an efficient, fully symmetrical decimation scheme thanhtaads the un-
derlying initial topology,

e addressing sampling problems caused by a disparity between the scope of affnee-F
Deformation and the size of individual faces in the polygon-mesh object,

e reducing the computation cost of the refinement/decimation trigger condition.

Figure 5 shows the application of our algorithm to a sequence of two sample defor-
mations. This is contrasted against the same deformations without subsequemeagfine
or decimation. Figure 5A displays an undistorted low-resolution object. In figurehBB t
object has undergone an extruding Free-Form Deformation and adaptive meshing. This in-
volves 200 refinements at parameter valag,, = = and executes i0.0168 seconds on an
R10000 x 195Mhz SGI Octane processor. Figure 5C shows the same deformation without
any refinement. A second flattening deformation is then imposed on the objegtiie §B to
produce figure 5E. Notice that the centre of the nearly flat crater is now wdgtetidrsatu-
rated with polygons. Figure 5D illustrates the result of an adaptive meshipdfstg. = =
andf,.., = §) comprising32 refinements an@2 decimations which is completed (n0095
seconds. These screen shots demonstrate both the necessity of adaptive mémehaeci-
mation, and the efficacy of our technique.
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X [C]

[D] [E]

Figure 7: Refinemen and Decimation: [A] an initial object, [B] an extruding deformation
with adaptive refinement, [C] the sameextruding deformation without refinement,

[D] a flattening deformation with refi nement/decimation,[E] the same flattening
deformation without any refinement/deémation.
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