IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001 289

Preventing Self-Intersection under
Free-Form Deformation

James E. Gain and Neil A. Dodgson

Abstract—Free-Form Deformation (FFD) is a versatile and efficient modeling technique which transforms an object by warping the
surrounding space. The conventional user-interface is a lattice of movable control points but this tends to be cumbersome and
counterintuitive. Directly Manipulated Free-Form Deformation (DMFFD) allows the user to drag object points directly and has proven
useful in an interactive sculpting context. A serious shortcoming of both FFD and DMFFD is that some deformations cause
self-intersection of the object. This is unrealistic and compromises the object’s validity and suitability for later use. An in-built
self-intersection test is thus required for FFD and its extensions to be truly robust. In this paper, we present the following novel results:
a set of theoretical conditions for preventing self-intersection by ensuring the injectivity (one-to-one mapping) of FFD, an exact
(necessary and sufficient) injectivity test which is accurate but computationally costly, an efficient but approximate injectivity test which
is a sufficient condition only, and a new form of DMFFD which acts by composing many small injective deformations. The latter
expands the range of possible deformations without sacrificing the speed of the approximate test.

Index Terms—Free-form deformation, direct manipulation, self-intersection, space homeomorphism.

1 INTRODUCTION

REE-FORM Deformation (FFD) [7], [29] and its extensions

form a class of highly intuitive, versatile, and efficient
free-form modeling and animation tools. They address the
task of computer-assisted shape design and modification by
warping the ambient space containing an embedded object.
However, a major drawback which is often overlooked in
the literature is the self-intersection of objects under FFD. In
this paper, we present a novel solution to this problem by
developing two self-intersection tests: the first exact,
although inefficient, and the second approximate, but
efficient. Finally, we seamlessly incorporate this latter test
into Directly Manipulated Free-Form Deformation
(DMFFD) [19], [8], providing a robust and interactive
modeling tool which prevents self-intersection.

Free-Form Deformation employs a hyperpatch (the
three-dimensional analog of a two-dimensional parametric
patch) to demarcate a deformable portion of world
coordinate space. A lattice of control points governs the
shape of this hyperpatch. The FFD process is analogous [29]
to setting a deformable shape inside a block of jelly of the
same consistency and then flexing this jelly, resulting in a
corresponding distortion of the inset shape. Unfortunately,
specifying deformations by moving lattice control points
has proven awkward [19]. Instead, the Direct Manipulation
extensions to Free-Form Deformation (DMFFD) replace the
cumbersome lattice interface with a set of user-defined

e J.E. Gain is with the Collaborative Visual Computing Laboratory,
Computer Science Department, University of Cape Town, Private Bag
RONDEBOSCH, 7701, South Africa. E-mail: jgain@cs.uct.ac.za.

e N.A. Dodgson is with the Rainbow Graphics Group, Computer Laboratory,
University of Cambridge, New Museums Site, Pembroke Street, Cam-
bridge, CB2 3QG, UK. E-mail: Neil.Dodgson@cl.cam.ac.uk.

Manuscript received 14 May 1999; revised 24 Aug. 2000; accepted 27 Oct.
2000.

For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number 109812.

constraints, each consisting of a point within the hyperpatch
(usually on the object’s surface) and its intended motion.
The lattice changes necessary to satisfy these constraints are
then calculated.

FFD in its seminal form [7], [29] utilized a Bézier
hyperpatch with the associated lattice restricted to an initial
regular parallelepiped configuration. Later research ex-
panded the range of FFD by generalizing the topology of
the initial lattice [11], [22] and coupled adaptive meshing
schemes to FFD in order to address degradation in the
quality of objects under deformation [16], [26], [14]. The
Free-Form Deformation methods can be characterized as
lattice-based spatial deformations. There are, however, two
other types of control mechanism. Curve-based deforma-
tions [5], [10], [21], [31] bind spatial distortions to the
motion of curves and point-based spatial deformations [19],
[8], [9], [4], of which DMFFD is an instance, are controlled
by direct point manipulation.

A serious weakness common to all forms of spatial
deformation is the potential for self-intersection of an object.
This interpenetration of portions of the object’s surface is
problematic for a number of reasons. First, it is highly
counterintuitive. No real-world solids can contort in this
fashion without rupturing and, as a consequence, it is
unlikely to fulfill the intentions of the modeler. Second, self-
intersection contravenes the correctness of the affected
object. For instance, some boundary representation systems
support only 2-manifold solids (where any point and
neighborhood on the manifold is topologically equivalent
to a disk in the plane) and these are invalidated by
interpenetrating faces [13]. It also compromises certain
applications, notably rendering, which often assumes that
only the outside of a polyhedron is visible, and texturing
algorithms that rely on a “single sheet” property. The
importance of an absence of self-intersection is evidenced
by its inclusion in the ISO STEP Standard for CAD data

1077-2626/01/$10.00 © 2001 IEEE

290 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.4, OCTOBER-DECEMBER 2001

transfer [17]. Finally, the prevention of self-intersection is
required for the existence of an inverse. This has implica-
tions for building a workable (memory and computation
efficient) “undo” operation.

The focus of this paper is on automatically detecting and
preventing self-intersection under FFD. We begin with a
brief survey of related work. This is followed by a
background explanation of the notation and mechanism of
Free-Form Deformation and Direct Manipulation. We then
present a series of novel results:

e a set of theoretical conditions for preventing self-
intersection by ensuring the injectivity (one-to-one
mapping) of the FFD hyperpatch,

e an exact (necessary and sufficient) injectivity test of
the FFD Jacobian which is accurate but computa-
tionally costly,

e an efficient but approximate injectivity test which is
a sufficient condition only and may, as a conse-
quence, falsely reject valid deformations,

e a new form of DMFFD which acts by composing
many small injective deformations. This expands the
range of possible deformations and enhances realism
without sacrificing the speed of the approximate
test.

2 RELATED WORK

Self-intersection has been largely overlooked in the spatial
deformation literature. Perhaps this is because, in the case
of FFD, the lattice provides an indication to experienced
users of the degree of deformation. However, the lattice is
not always a transparent guide to self-intersection. A lattice
with overlapping faces does not necessarily imply self-
intersection. Conversely though, a lattice without overlap
does provide a good indication that there is no hyperpatch
self-intersection. Nevertheless, even the limited feedback
provided by an FFD lattice is not available in curve and
point-based spatial deformation.

There are several passing references to the dangers of
self-intersection in the spatial deformation literature [11],
[21], [22], but only Borrel and Rappoport [9] embark on a
concerted investigation. They identify a “space-tearing”
phenomenon (similar to Fig. 3b) in connection with Simple
Constrained Deformation (ScoDef), a radial point-based
technique. The problem is ameliorated by a method of
duplicating point manipulations, but this places the onus of
identifying and correcting self-intersection on the user.

Contemporary work by Joy and Duchaineau [20] pre-
sents an analysis similar to our efficient sufficient injectivity
test (Section 7). They also employ a conic-hull hodograph to
identify possible zeros in the Jacobian of deformation.
However, their research is focused on the boundary
determination and rendering of trivariate solids rather than
self-intersection prevention.

Self-intersection has garnered much attention in the
context of offset curves and surfaces [18]. For instance,
Maekawa et al. [23] develop necessary and sufficient
conditions for preventing the self-intersection of tubular
pipe surfaces which are offsets from a rational curve.

There has been comprehensive research into establishing
perturbation bounds on vertices and control points which
preserve the topological form of polyhedral 2-spheres [33],
rectilinear finite polyhedra [1], and objects composited from
Bézier curves and surfaces [2]. This vein of research relies
(like our own) on conditions for ensuring a space home-
omorphism which, inter alia, prevents self-intersection.
These results are extensible to FFD and would provide
limits on the displacement of lattice control points. In
contrast, our methods are more directly applicable to other
spatial deformation techniques (e.g., direct manipulation).

3 FREE-FORM DEFORMATION

Free-Form Deformation is a modeling tool which warps the
space surrounding an object and thereby transforms the
object indirectly. This is achieved by imposing a parametric
hyperpatch onto a portion of world coordinate space and
linking distortions in the hyperpatch to object vertices.

FFD can be formulated as a mapping, F : R¥—R*—R?,
from world space, X = (z,y, 2), through the local parameter
space of the hyperpatch, U = (u,v,w), to deformed world
space, X = (&,7, 2). This is achieved by two functions: the
embedding and deformation functions, F(U)= X and
F(U) = X. The composition of F and F~' constitutes FFD:
F(X) = F(F (X)) = F(U) = X.

The medium of deformation is a hyperpatch, usually
defined as a trivariate polynomial tensor product volume.
This is a straightforward extension of one-dimensional
curves to three dimensions. The curve’s control polygon,
which indicates the adjacency of control points, generalizes
to a control lattice. Likewise, just as curves may be divided
into piecewise segments (on a subinterval of the univariate
domain), so, too, a hyperpatch may be broken into cells
(each defined over a parallelepiped block of the trivariate
domain). Deformation is achieved by linking distortions of
the hyperpatch to object vertices. A lattice of control points,
P, weighted by polynomial basis functions, B}, with index
and order s, governs points within the hyperpatch,
F(U) = F(u,v,w), as follows:

a+l b

+
F

m c+n
B Bm
k=1

F(U) Bp(w) - Pye. (1)

Il
—
Il
—

=17
With this background in place, FFD proceeds in three
stages:

1. Object vertices which fall within the undistorted
hyperpatch are assigned parametric u,v,w coordi-
nates (F~! is applied). In terms of the earlier
metaphor, the shape being deformed is set inside a
block of jelly.

2. A number of control points are displaced (P become
P), with a consequent distortion of the hyperpatch.
This equates to flexing the jelly.

3. The deformed version of (1) is applied repeatedly to
all of the parametrized object vertices to produce a
deformed version of the object. So, by the analogy,
the inset shape is warped along with its cocooning

jelly.

GAIN AND DODGSON: PREVENTING SELF-INTERSECTION UNDER FREE-FORM DEFORMATION 291

®o $o $o ®o * v *--o- $-- $o ¢
| | ! ! ! | | i | |
1 ! ! ! ! I I I i i
| | | | i | | | | |
AR s e Dl TN R SR e L
: : : : Lo ! ;
| | | ! s . Y | |
! | I I - L o
M $os | Al oo
| : : | b i S |
1 | | | . ' (N |
*--——- ¢-———- - *-——-—- . ¢ / B * - .
! i i i i | ; h ! !
! | | | | M ! i ! !
| | | | | | PO . | |
- *--——- *-———- [E—— . - B T .
(a) (b)

Fig. 1. Two-dimensional Free-Form Deformation with a uniform cubic
B-spline basis. (a) Predeformation: A regular initial lattice with four cells
(in red) and an embedded circle. (b) Postdeformation: The user
repositions control points and the cells and object are deformed.

In the interests of computational efficiency and presenta-
tion brevity, we adopt a uniform B-spline basis and a
regular axis-aligned initial lattice with control points evenly
spaced in a parallelepiped configuration. Now, due to the
linear precision property of B-splines [12], the embedding of
vertices is immediate (X =U and F! is the identity
function). This allows us to drop the embedding function
from further consideration and we need consider only the
deformation function. Fig. 1 provides an example of this
type of Free-Form Deformation.

4 DiIrRecT MANIPULATION

Controlling deformations by moving lattice vertices while
producing sculpted results tends to be cumbersome and
counterintuitive [19]. Specifying even simple deformations
requires a good working knowledge of splines and FFD.
While a deformation “follows” control point displacement,
exact control of a given object point is difficult. Also, the
lattice tends to clutter the screen and obscure the object
being created. Even worse, some lattice control points may
be hidden within the object. It would be preferable if the
user could drag object points directly and have the
surrounding surface conform smoothly. This is the inten-
tion behind the Direct Manipulation extensions to Free-
Form Deformation (DMFFD) [19], [8]. For instance, pushing
or pulling a single object point will create either a dimple or
a mound in the object’s surface. More complex manipula-
tion can be achieved by simultaneously moving several
points and calculating the lattice changes required to induce
these effects.

DMFED can be broken down into three steps: The user
provides a number of constraints, each composed of a point
and its intended motion, the lattice control points are
altered to meet these constraints, and this new lattice is
applied through standard FFD to the original object (see
Fig. 2).

To achieve this, some mathematical foundations must
first be established. The deformation form of (1), applied to
multiple object points, can be concisely expressed using
matrix notation as:

BP =F, (2)

KEY

Lattice

P
-
re

’

Inset
Object

Cell
Contour

————r*""/f:"‘/‘
f .

Constraint

Fig. 2. Two-Dimensional Directly Manipulated Free-Form Deformation.
(a) Setup: A single point and vector constraint on a circle within an FFD
lattice. (b) Lattice alteration: Control points are repositioned to satisfy the
constraint. (c) Deformation: The altered lattice is applied via FFD to the
circle.

where F is an r x 3 matrix with each row holding the
deformed coordinates of an object point. P is a ¢ x 3 matrix
of repositioned control point coordinates. It is formed by
cycling through F and placing in P, without duplication, all
control points that influence each object point under
consideration. This means that a control point is only
included if it contributes a nonzero weight to at least one
object point. B is an 7 x ¢ matrix of tensor product basis
functions, with the weight entries in column j of B matched
to the control point in row j of P. A particular (i, j) entry of
B is zero if the control point in row j of P does not affect the
object point in row i of F. Essentially, the basis summation
in (1) is expanded, reordered, interspersed with zeros, and
fitted into a row of B [15].

Both P and F can be separated into undeformed and
delta components as P = P + AP and F = F + AF, respec-
tively. This allows us to recast (2) so as to focus on the
change in control and object points under FFD.

BP=F
= B(P + AP) =F + AF (3)
= BAP = AF.

Normally, FFD evaluates the alteration in object points,
AF, by multiplying the basis matrix of spline weights, B,
and the list of control point changes, AP, but direct
manipulation reverses this. The user specifies a selection
of object points, F, and their intended motion, AF, and the
new control point positions, P + AP, are found. In
mathematical terms, we seek to solve for AP in the system
of linear equations B AP = AF, given B and AF.

This process is very well defined if B is square (r = ¢)
and nonsingular, in which case, AP can be solved explicitly

292 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.4, OCTOBER-DECEMBER 2001

Fig. 3. Self-intersection under two-dimensional DMFFD. (a) Over-
extension: An elongated constraint vector reaching beyond the area of
effect of its associated point. (b) Overconstraint: Two nearly coincident
constraint points are wrenched in opposite directions.

as AP = B ! AF. Unfortunately, B is seldom a square
matrix and the system is thus either underdetermined or
overdetermined. In the former case, there are more
unknowns than equations (r < ¢) and an infinite number
of solutions. In the latter case, there are more equations than
unknowns (r > ¢) and there is no exact solution since not all
of the constraints can be met. Only the underdetermined
case is considered here since interactive sculpting presup-
poses a rapid sequence of relatively simple deformations.
Hence, the number of direct manipulation vectors (r) is less
than [-m-n, which is the minimum number of control
points (¢ > 1-m - n).

To solve for AP, we rely on a formulation known as the
pseudoinverse [27], represented by B*, which extends the
definition of the inverse. In the underdetermined situation,
it minimizes the sum of squares (or norm) of the solution
matrix (||AP||). This corresponds roughly to finding the
smallest overall change in the control points consistent with
a valid solution. The pseudoinverse can be explicitly
evaluated according to BT = B”(BB”)™" [27]. This leads
to an overall solution for (3):

AP = B"(BB”) ' AF. (4)

For interactive performance, this is best solved [15] by
exploiting the sparse structure of the basis matrix and using
Choleski Factorization [28].

5 INJECTIVITY ANALYSIS

This work addresses a flaw in both Free-Form Deformation
and its Direct Manipulation extensions. Certain lattice
distortions cause self-intersection of an embedded object.
Fig. 3 shows two such cases in the context of DMFFD, which
is particularly prone to this problem because large
deformations may be instigated by relatively small con-
straint movements.

Hyperpatch self-intersection is a necessary but not
sufficient condition for object self-intersection. Thus, self-
intersection within an FFD hyperpatch is required to cause
self-intersection of the object, but a self-intersecting hyper-
patch does not always produce a self-intersecting object.

This paper focuses on ensuring that FFD does not
introduce self-intersection. It is implicitly assumed that
the predeformation object is free from self-intersection.

There are two approaches to the detection of self-
intersection, each with its strengths and concomitant
weaknesses. A space-based test would predict the self-
intersection of an FFD hyperpatch by analyzing its
associated lattice. Such a test is independent of both the
object’s representation and geometry. Once a particular FFD
is established as injective, it can be applied to an object with
any internal description (be it implicit, CSG, or B-Rep) or
shape (no matter how convoluted) without fear of self-
intersection. The alternative is to check for intersection on a
polygon-by-polygon basis. This naive object-based test
suffers from numerous failings. It is computationally
prohibitive, cannot detect the complete inversion of an
object, can only be applied after deformation, requires a
polygon-mesh and is subject to error caused by the
approximation inherent in this representation [15]. Given
these considerations an analytic lattice-based self-intersec-
tion test is preferable.

Self-intersection requires that at least two points in the
initial space map under FFD to a single point in deformed
space. In particular, the inset object becomes self-intersect-
ing if two or more points on its boundary prior to
deformation are forced by FFD to coincide. An injective
(one-to-one) mapping means that every predeformation
point is transformed to a unique and separate postdeforma-
tion position. Injectivity thus implies non-self-intersection.
The following theorem provides a set of requirements for
injectivity (and, more broadly, homeomorphism) of FFD:

Theorem 1. Let F be a spatial deformation function of the form
F: X—X; X, X CR" and J be the Jacobian matrix of F. F
is a homeomorphism (injective, onto, and invertible) from X to
X iff

1. F has continuous first partial derivatives,
2. det(3) > 0.

Theorem 1 relies on two coupled theorems: the Inverse
Function Theorem [32], which gives requirements for local
injectivity in the neighborhood of a point, and a result, due
to Meisters and Olech [24], which extends this to an entire
closed bounded domain.

The first condition in Theorem 1 is easily met by
ensuring at least C; continuity of the basis functions in F.
B-splines in particular are n —k—1 times continuously
differentiable on an order n basis at a knot of multiplicity &
[12] and n — k > 2 is therefore required. Maintaining this
continuity at the join between the FFD hyperpatch
boundary and surrounding space can be achieved by a
shell of static or “phantom” control points [6]. This
condition on the boundary of FFD, together with
det(J) > 0, enables the full space homeomorphism of F :
R"—R" advocated by many authors [33], [1], [23]. If this
seam continuity is not enforced, then the injective domain is
restricted to the hyperpatch into which the entire object
must be embedded.

The second condition relies on the positivity of the FFD
Jacobian, det(J). The Jacobian at a point provides a measure

GAIN AND DODGSON: PREVENTING SELF-INTERSECTION UNDER FREE-FORM DEFORMATION 293

Fig. 4. Two Jacobians which are represented as height fields above a
two-dimensional domain and correspond to the self-intersecting
deformations in Fig. 3. The peaks and troughs show areas of expansion
(blue) and contraction (green). Injectivity is broken where the Jacobians
drop below the black ground plane.

of the local distortion. If a two-dimensional domain is
envisaged as an elasticated sheet, then the Jacobian
indicates the existence and magnitude of expansion
(det(J) > 1), contraction (0 < det(J) < 1), or foldover
(det(J) < 0) caused by contorting the sheet. A deformation
is perfectly volume preserving if the Jacobian is uniformly
unity (det(J) =1) [29]. In Theorem 1, the positivity
restriction (rather than the more conventional prevention
of singularity, det(J)#0) avoids the inversion of the
domain that occurs with uniformly negative Jacobians.
Fig. 4 plots two deformation Jacobians as height fields on a
planar domain. These correspond to the self-intersecting
direct manipulations in Fig. 3. Note the dark regions where
the Jacobians fall below the plane det(J) =0 and which
signal that the deformations are folding back upon
themselves.

This theorem is applicable to all forms of FFD: It is
independent of dimension (it can be applied with equal
ease to planar or volume warping), basis (be it Bernstein or
B-spline, rational, or nonrational), and lattice topology.

6 A NECESSARY AND SUFFICIENT INJECTIVITY TEST

The Jacobian of Free-Form Deformation is a mapping of the
form det(J) : R3—R, which associates a scalar distortion
value, d, with each point in the hyperpatch domain, U. A
necessary and sufficient FFD injectivity test should establish
within machine precision whether these values reach or
drop below zero anywhere in the domain, thereby breaking
the injectivity conditions of Theorem 1.
The Jacobian of FFD (det(J)) takes the form:

oF, 9F, OF,
ou v dw

9F, 0F, 0F
det(J) =det | 52 v Tr . (5)
OF. OF. OF.

The injectivity test can be decomposed into two stages:
The deformation Jacobian is converted into a conventional
trivariate tensor product hyperpatch with scalar control
points and this is then recursively subdivided into subcells
until, by examining the signs of the refined control scalars,
either a negative subcell is encountered or all subcells are

found to be positive. This algorithm can now be examined
in more detail:

1. A tensor product expression for the deformation
Jacobian can be obtained by substituting the partial
derivatives of (1) into (5) and regrouping terms:

a+l a+l a+l
det(J) =" "> Bi'(u)- Bi(u)- Bj(u)-
d=2 e=1 f=1
b+m b+m b+m
DD B (v) - Bf'(v) - B (v)- (6)
=2 j=1 k=1
ctn ctn c+n
>0 Bi(w) Bi(w) Bi(w)- ¢,

r=2 s=1 t=1

where

¢:det[ﬁ;;> Y Pl (7)

and
stt} = (Isd,jjt - pd—l,j,t)
P = (13(“, - ~e,i71,s)

eis

15;;:} = (Isjlk,r - Isf,k,r—l)-

The components along each axis of (6) are the
products of three B-spline basis functions (e.g.,
B (u) ® B'(u) ® Bl(u)).

2. Equation (6) is particularly unmanageable since it is
costly to evaluate and standard operations such as
subdivision cannot be applied directly. There is a
useful set of recurrence relations, discovered by
Morken [25], that allows the algebraic product of
two B-spline functions to be represented under
certain linear combinations as a single higher order
B-spline function. This can be applied repeatedly to
simplify the B-spline products in (6) and obtain a
more tractable trivariate tensor product form,

det(3) =3"3S"S " Bl(u) - BI(v) - BX(w) - 0op, (8)

o=1 p=1 ¢=1
where 6=0a(2l-1)+1-3, p=b2m—1)+m -3,
Gg=c@n—-1)4+n-3, [=3(1-1), m=3m-1),
and 7 =3(n—1). Each control scalar, g, is a
combination of determinant scalars, ¢, and product
B-splines.

Details of the discrete product bases and their
evaluation, as well as how new product knot
sequences are formed from the constituent multi-
plicand sequences, can be found in [25]. It is worth
noting, however, that, although the order of the
B-spline functions is substantially increased (from I,
m, and n to 3(l—1), 3(m—1), and 3(n—1),
respectively), this does not apply to the knot
continuity, which remains Cj_y, Cy,—2, and C,_s.
This almost complete degeneracy results from large
knot multiplicities and this simplifies the conversion
to multi-Bézier form in the next stage. Forming the
control scalars g,,, in (8) is very costly, even if the

294 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.4, OCTOBER-DECEMBER 2001

discrete product bases are amenable to preevalua-
tion, as they are in the uniform B-spline FFD case.

3. The algorithm next focuses on each cell of the
deformation Jacobian (8) in turn. A cell under
consideration is converted from B-spline to Bézier
form using repeated insertion of domain knots [12].
This is useful because Bézier curves (and, hence,
hyperpatches) interpolate their endpoints and thus
have a tighter convex hull than their uniform
B-spline counterparts. Since the final stage of the
injectivity test relies on recursively shrinking the
convex hull toward the hyperpatch, this conversion
improves the starting conditions.

4. Recursive subdivision proceeds by successively
refining the control scalars of each Jacobian Bézier
cell into eight subcells. The de Casteljau algorithm
[12] is applied repeatedly to split the cell along the u,
v, and then w coordinate axes. The subdivided
control scalars converge quadratically toward the
Jacobian hyperpatch. The recursive subdivision
search space is an Octree, with each node (cell)
spawning eight children (subcells). The leaves of the
Octree are subcells whose control scalars are either
all negative or all positive, which, by the convex hull
property of B-splines [12], implies that the subcell
itself has the same uniformity of sign over its
domain. The injectivity test reports “success” if all
leaf nodes in the recursive subdivision Octree are
positive and terminates with “failure” immediately
upon generating a negative node. A recursive
subdivision procedure is preferred to iterative
search because of its robustness in locating the
absolute (rather than merely local) minimum.

This necessary and sufficient test is capable of
precisely separating injective and noninjective de-
formations, but its computation burden is high. An
SGI Octane (R10000 x 195MHz) requires at least 37 s
to test the injectivity of a single-celled hyperpatch,
even without any recursive subdivision of the
Jacobian control scalars (in Step 4). If 10 updates
per second is considered reasonably interactive,
then, even without the additional overhead of FFD,
this test is roughly two orders of magnitude too
slow.

7 AN EFFICIENT SUFFICIENT INJECTIVITY TEST

Our necessary and sufficient injectivity test, while exact, is
computationally costly and thus not suitable for use in an
interactive context. We modify the precise algorithm to
produce a weak sufficient test. This sacrifices the full range
of injective deformations for improved performance by
classifying some valid deformations as self-intersecting.

The positivity of the Jacobian control scalars (¢ > 0) in (6)
is, by the positivity of B-splines [12], a sufficient condition
for injectivity of FFD. This test can be optimized by:
1) exploiting the local control of B-splines, which allows the
determinant scalars to be evaluated in - m - n blocks and
2) precalculating the partial derivative vectors (P, P,
and]5<“'>) over the entire lattice. Unfortunately, this test
remains inefficient.

A geometric interpretation of the control scalars (¢) is the
key to improving this situation. Each determinant (¢)
represents the signed volume of a parallelepiped whose
edges are formed from the three component vectors
(P, P P)). The volume’s sign is determined by the
orientation of one vector relative to the plane formed by the
other two. This relationship is expressed in the following
vector equation:

¢ =det[P P Pl]

_ (Pl x pl). Pl 9)

The cross product (7 = P x P®") produces a vector
normal to the plane defined by its arguments (P, P{)).
The dot product (¢ =7 -P™) is negative or positive,
depending on whether the angle between 7 and P™ is
either obtuse (>7) or acute (<%). In other words, ¢ is
positive if P falls on the same side of the orientation
plane as 7, zero if it lies in the plane, and negative if it lies
on the opposite side.

Now, rather than expensively testing ¢ for all cell-wise
combinations of partial derivative vectors, enclosing convex
hulls are formed around the derivative vectors for each axis.
These hulls are used in an approximate test for the sign of ¢.
The algorithm proceeds as follows:

1. All the partial derivative vectors for each axis are
calculated by taking the difference of adjacent lattice
control points along the u, v, w axes. By basing these
derivative vectors at a fixed position in Euclidean
space (the origin), a hodograph [12] is formed. Next,
the angle of deviation of each hodograph element
from its associated axis is found and stored. For
efficiency reasons, the intermediate value, ¢t = tan26,
is used in place of the angular axis deviation, 6. If a
u-oriented derivative is P = (a,b,c), then t{ =
(b? + c?)/a® (assuming a > 0). As soon as a <0 is
encountered, the test is halted with a negative ¢
result relative to the v and w axes. The other angular
deviation metrics, t® and t*?, can be evaluated in a
corresponding fashion.

2. For each cell (C) in the deformed hyperpatch:

a. The maximum angle measure, mln m) miw),
among the derivative vectors local to C'is found
for each axis. Once converted into angles
(0 = arctan \/m), these define half-cones cen-
tered on the appropriate axis, which represent
convex hulls bounding the cell derivatives.

b. Equation (9) can now be recast in terms of these
conic-hulls.

e Cross Product: As long as two conic hulls
(CARNRD bounding orthogonal axes (u, v) do
not overlap (i.e., 0 4+ 0" < 7), then a
bound for the divergence of their cross
product (8*) from the third axis (w) can be
found using spherical trigonometry [30]:

0* = arcsin(\/sin2 0" +sin? 6. (10)

GAIN AND DODGSON: PREVENTING SELF-INTERSECTION UNDER FREE-FORM DEFORMATION

Fig. 5. The three-dimensional conic-hull hodograph of an injective FFD
cell. Left: Bounding cones for the lattice edges (9,6, 6(")) and a
cross product (9*) are established. Right: The two w-axis bounds
(6, 6%) sum to less than 90 degrees.

e Dot Product: As long as two conic hulls
around the same axis (6%,6") diverge by
less than 90 degrees (0 + 0 < I), the dot
product of any two vectors within those
conic hulls will be positive and, hence,
satisfy ¢-injectivity.

3. The test halts (and reports noninjectivity) immedi-
ately on failing the conic hull test for any cell.
Otherwise, the test continues until all cells have been
processed (and injectivity is reported).

The conic hull hodograph of a ¢-injectivite FFD is shown
in Fig. 5 and a pseudocode version of the algorithm appears
in the Appendix. If a faster (but less accurate) ¢-test is
desired, then, in Step 2, a single set of conic hulls can be
found for the entire hyperpatch, rather than a set for every
cell. Conversely, greater accuracy (at the expense of
efficiency) can be achieved in two ways: 1) by recursively
subdividing hyperpatch cells and applying the conic hull
tests more locally and 2) by creating conic hulls which are
not centered on the hyperpatch axes and bound the
derivative vectors more tightly.

It is worth noting that the conic-hull hodograph
injectivity test on a hyperpatch cell is O(l - m - n) and well

295

over three orders of magnitude faster than the original O(/® -
m3 - n?) ¢-test from (7).

8 ADAPTIVE SUBDIVISION OF DIRECT
MANIPULATION

The conic-hull hodograph injectivity test, while efficient,
severely limits the range of allowable Free-Form Deforma-
tions. However, it can be incorporated in DMFFD to
produce an efficient and versatile variant which circum-
vents this problem. In principle, a set of direct manipulation
constraints (F, AF) is broken into shorter injective steps.
This is a recursive procedure (as detailed in the Appendix),
which, on failure of the conic-hull hodograph test, splits
every constraint in the set into two adjoining pieces. A
constraint, with point (F) and displacement vector (AF)
parts, is split into two halves (F,1 AF) and (F + 1AF, 1 AF),
which join head to tail and are tested for injectivity
separately. A maximum recursion depth can be set based
on interactivity considerations and, if this is exceeded, then
the direct manipulation is classified as illegal and self-
intersecting. Otherwise, adaptive subdivision replaces a
single ¢-failing direct manipulation with an ordered collec-
tion of ¢-injective direct manipulations which are applied
independently and in sequence to collectively achieve the
original constraints.
The advantages of this technique are as follows:

e The results are guaranteed to be injective (non-self-
intersecting) if classified as such.

e The principle of adaptive subdivision is extensible to
other point-based spatial deformation techniques.

e The range of DMFFD is expanded. The behavior of
deformations is altered so that some pathological
constraints (e.g., the overextended or overcon-
strained deformations of Fig. 3) no longer cause
self-intersection.

e The deformation results are intuitive and, as can be
seen in Fig. 7, mirror some of the properties of highly
elastic modeling clay. A problem with the basic

Type of Deformation
18 M 1L 28 2M 2L
8
'g 145 | 0.0127s 0.0269s | 0.0522s 0.0253s | 0.03606s 0.0492s
>
[
g 545 | 0.0234s 0.0472s 0.0882s 0.0411s | 0.0588s 0.0772s
s}
:
Z 2113 | 0.0623s 0.1244s 0.2204s 0.1039s | 0.1486s 0.1937s

[1] Type 1 and 2 deformations are constraint scaled versions of Fig. 7[1C] and 7[2C] respectively.
S= % length constraint vectors, M = full constraint vectors, L = 1 % length constraint vectors.

[2] Red entries represent update rates of less than 10 Hz.

[3] Timings taken on an SGI Octane (R10000 x 195 Mhz)

[4] The execution times for figures 7[1C] and 7[2C] are marked in blue

Fig. 6. Timings for a range of injective deformations applied to a polygon-mesh object at different resolutions.

296 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

YN

NN

NN
NN
TAVAY}

YAVAVY/
 YAVAV/

S

aw;

L
78
).

—
Y

[1B]

| AVav

S

\V\ A 1\

KSR S
F e
L e

o
Y
o

VOL. 7, NO.4, OCTOBER-DECEMBER 2001

N
i

W

: Ao
AVAv A
SRR

VAN

S RAVATA,3 1

Ay
SO0

Fig. 7. Comparisons of injective and noninjective DMFFD. (1A) and (2A) Direct manipulation constraints (red) on a squashed hemisphere (blue). (1B)
and (2B) Conventional noninjective DMFFD applied to these constraints causes self-intersection. (1C) and (2C) Injective DMFFD applied to

adaptively subdivide these constraints prevents self-intersection.

DMFFD algorithm is that, in order to maintain
continuity, certain portions of the hyperpatch may
be distorted far more than the constraint points. This
problem is significantly reduced by our technique.
e The timings in Fig. 6 show that the algorithm
exhibits complex behavior that is highly dependent
on the magnitude and type of deformations. How-
ever, as long as the number of direct manipulation
constraints and recursive subdivision levels are
within reasonable bounds, this technique can be
applied in an interactive sculpting context.
Andersson et al. [2] consider cusp formation as well as
singularities and self-intersection. In the context of injective
DMFED, cusps may form if the depth of the recursive
subdivision is particularly great. We highlight this as an

area for future consideration.
At each level of recursion, our injective DMFFD

technique consistently splits every constraint in half. This
works well in practice. As an alternative, the constraints
could be split in different proportions at different depths of
recursion or even within a single constraint set. In this way,
the number of lattice changes (L) and, hence, deformation
steps could be reduced. Also, certain extreme direct
manipulations, for example, two constraints intersecting
midway, could be prevented from causing self-intersection.
The challenge, left for future research, is to develop an
efficient algorithm for determining the optimal splitting
proportions among constraints.

9 CONCLUSION

The principle contribution of this paper is a robust variant
of Directly Manipulated Free-Form Deformation which
prevents self-intersection by composing many small in-
jective (one-to-one) deformations. This process entails
decomposing direct manipulation constraints into injective
steps. Injective DMFFD has advantages in efficiency,
intuitivity, and versatility beyond guaranteeing non-self-
intersection. The technique is suitable for interactive use,
behaves with greater physical realism akin to manipulating
highly malleable modeling putty, and expands the range of
valid deformations by preventing overextension, where
constraint points are dragged beyond their volume of
influence, and overconstraint, where small constraint
motion generates wild hyperpatch distortion.

Injective DMFFD depends on three novel and indepen-
dently useful developments, namely:

e A set of conditions for enforcing injective deforma-
tions and, hence, preventing self-intersection.
Although formulated in terms of FFD, this theory
is applicable to all forms of spatial deformation.

e A precise (necessary and sufficient) FFD injectivity
test which is accurate to within machine precision.
This test is too computationally costly for inclusion
in three-dimensional interactive sculpting, but it is
suitable for two-dimensional interactive image
warping.

e An approximate (merely sufficient) FFD injectivity
test that relies on a geometric construction and is

GAIN AND DODGSON: PREVENTING SELF-INTERSECTION UNDER FREE-FORM DEFORMATION 297

[3A]

Fig. 8. A more complex comparison of injective and noninjective DMFFD. (3A) Direct manipulation constraints (red) on a rubbery chain object (blue)
with separate non-overlapping links. (3B) Conventional noninjective DMFFD causes self-intersection. (3C) Injective DMFFD prevents self-

intersection.

highly efficient. This test sacrifices the full range of
injective deformations for improved performance
and may falsely reject some valid deformations.
The research outlined in this paper is focused on
detecting and preventing self-intersection under lattice-
based spatial deformation. However, some of our results,
specifically the injectivity conditions of Theorem 1 and the
process of adaptively subdividing and then concatenating
small injective deformations, are directly applicable to
curve and point-based techniques, as well as certain forms
of image warping [3]. The extension of these developments
to cover all types of spatial deformation would thus be an
area of fruitful future research.

APPENDIX

FindDeviation(t, a, b,)
(Calculate the axial deviation of a vector)

IF a <0 THEN
RETURN “fail”
t— (V*+c?)/ad®

InjectiveTest(AP)
(Test hyperpatch injectivity by forming
three-dimensional conic-hull hodographs)

FOR all 2 = (a,b,¢) DO
FindDeviation(t\", a, b, c)

ijk

FOR all %) = (a,b,¢) DO
FindDeviation(t,E;}i, b,c,a)

FOR all 2 = (a,b,c) DO
FindDeViation(t% ,C,a,b)

FOR each lattice cell C

FOR all ¢t ¢t® ¢ in C DO
m = maz(t™), m® = maz(t™)
m® = maz(t™),

0 — arctan(vm®), 6% — arctan(vm®)

6) — arctan(vm))

IF (6 + 6" > 1) THEN
RETURN “noninjective”

ELSE
0* — arcsin(V/sin?0") + sin?0")
IF (0" 4 6) > 1) THEN

RETURN “noninjective”
RETURN “injective”

InjectSubdiv(F, AF, L, d)

(Recursively subdivide (up to depth d) a set of
direct manipulations (F, AF) into injective steps.
If successful, the procedure returns a sequence

of lattice changes (L))

IF d < maximum recursion depth THEN
AP = B"AF
IF InjectiveTest(AP) = “injective” THEN
Append AP to L
ELSE
InjectSubdiv(F, AF, L, d+1)
InjectSubdiv(F + 3 AF, 1AF, L, d + 1)
ELSE
STOP and RETURN “noninjective”

ACKNOWLEDGMENTS
This work was supported by the British Commonwealth

Scholarship Commission and St. John's College, University
of Cambridge. The authors are grateful to Malcolm Sabin
for his “subversive” ideas, which helped to strengthen this

research.

REFERENCES

[1] L.-E. Andersson, SM. Dorney, T.J. Peters, and N.F. Stewart,
“Polyhedral Peturbations that Preserve Topological Form,”
Computer Aided Geometric Design, vol. 12, no. 8, pp. 785-799, Dec.
1995.

[2] L.-E. Andersson, T.J. Peters, and N.F. Stewart, “Selfintersection of
Composite Curves and Surfaces,” Computer Aided Geometric
Design, vol. 15, pp. 507-527, May 1998.

[3] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurin, “Image Warping
by Radial Basis Functions: Application to Facial Expressions,”
CVGIP: Graphical Models and Image Processing, vol. 56, no. 2,
pp- 161-172, Mar. 1994.

[4] F. Aubert and D. Bechmann, “Animation by Deformation of
Space-Time Objects,” Computer Graphics Forum (Proc. Eurographics
'97), vol. 16, no. 3, pp. 57-66, Sept. 1997.

[5] A.H. Barr, “Global and Local Deformations of Solid Primitives,”
Computer Graphics (Proc. SIGGRAPH '84), vol. 18, no. 3, pp. 21-30,
July 1984.

298

o]

(]
8]

]

(10]

(1]

[12]

(13]

(14]

(15]

[16]

(7]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO.4, OCTOBER-DECEMBER 2001

R.H. Bartels,].C. Beatty, and B.A. Barsky, An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling. Los Altos,
Calif.: Morgan Kaufmann, 1987.

P. Bézier, Numerical Control: Mathematics and Applications. Wiley,
1972.

P. Borrel and D. Bechmann, “Deformation of n-Dimensional
Objects,” Int’l]. Computational Geometry and Applications, vol. 1,
no. 4, pp. 427-453, 1991.

P. Borrel and A. Rappoport, “Simple Constrained Deformations
for Geometric Modelling and Interactive Design,” ACM Trans.
Graphics, vol. 13, no. 2, pp. 137-155, Apr. 1994.

Y.-K. Chang and A.P. Rockwood, “A Generalized de Casteljau
Approach to 3D Free-Form Deformation,” Computer Graphics
(Proc. SIGGRAPH '94), pp. 257-260, July 1994.

S. Coquillart, “Extended Free-Form Deformation: A Sculpturing
Tool for 3D Geometric Modeling,” Computer Graphics (Proc.
SIGGRAPH '90), vol. 24, no. 4, pp. 187-196, Aug. 1990.

G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide, fourth ed. San Diego, Calif.: Academic Press, 1997.
J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer
Graphics: Principles and Practice, second ed. New York: Addison-
Wesley, 1991.

J.E. Gain and N.A. Dodgson, “Adaptive Refinement and Decima-
tion under Free-Form Deformation,” Proc. Eurographics UK 99,
pp- 7-18, Apr. 1999.

J. Gain, “Enhancing Spatial Deformation for Virtual Sculpting,”
Technical Report 499, Computer Laboratory, Univ. of Cambridge,
UK., Aug. 2000.

J. Greissmair and W. Purgathofer, “Deformation of Solids with
Trivariate B-Splines,” Proc. Eurographics ‘89, pp. 137-148, Sept.
1989.

M. Hardwick, D.L. Spooner, T. Rando, and K.C. Morris, “Sharing
Manufacturing Information in Virtual Enterprises,” Comm. ACM,
vol. 39, no. 2, pp. 46-54, Feb. 1996.

C. Hoffmann, Geometric and Solid Modeling: An Introduction. San
Mateo, Calif.: Morgan Kaufmann, 1989.

W.M. Hsu,].F. Hughes, and H. Kaufman, “Direct Manipulation of
Free-Form Deformations,” Computer Graphics (Proc. SIGGRAPH
'92), vol. 26, no. 2, pp. 177-184, July 1992.

K. Joy and M. Duchaineau, “Boundary Determination for
Trivariate Solids,” Proc. Pacific Graphics '99, pp. 82-91, Oct. 1999.
F. Lazarus, S. Coquillart, P. Jancéne, “Axial Deformations: An
Intuitive Deformation Technique,” Computer-Aided Design, vol. 26,
no. 8, pp. 607-613, Aug. 1994.

R. MacCracken and K.I. Joy, “Free-Form Deformations with
Lattices of Arbitrary Topology,” Computer Graphics (Proc.
SIGGRAPH '96), pp. 181-188, Aug. 1996.

T. Maekawa, N.M. Patrikalakis, T. Sakkalis, and G. Yu, “Analysis
and Application of Pipe Surfaces,” Computer-Aided Geometric
Design, vol. 15, no. 5, pp. 437-458, May 1998.

G. Meisters and C. Olech, “Locally One-to-One Mappings and a
Classical Theorem on the Schlicht Functions,” Duke Math.].,
vol. 30, pp. 63-80, Mar. 1963.

K. Morken, “Some Identities for Products and Degree Raising of
Splines,” Constructive Approximation, vol. 7, no. 2, pp. 195-208,
Apr.-June 1991.

UM. Nimscheck, “Rendering for Free-Form Deformations,”
Technical Report 381, Computer Laboratory, Univ. of Cambridge,
UK., Oct. 1995.

B. Noble, Applied Linear Algebra. Englewood Cliffs, N.J. : Prentice
Hall, 1969.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, second ed.
Cambridge, U.K.: Cambridge Univ. Press, 1992.

T.W. Sederberg and S.R. Parry, “Free-Form Deformation of Solid
Geometric Models,” Computer Graphics (Proc. SIGGRAPH '86),
vol. 20, no. 4, pp. 151-160, Aug. 1986.

T.W. Sederberg and R.J. Meyers, “Loop Detection in Surface Patch
Intersections,” Computer Aided Geometric Design, vol. 5, no. 2,
pp- 161-171, July 1988.

K. Singh and E. Fiume, “Wires: A Geometric Deformation
Technique,” Computer Graphics (Proc. SIGGRAPH '98), pp. 405-
414, July 1998.

M.R. Spiegel, Theory and Problems of Advanced Calculus. McGraw-
Hill, 1987.

[33] N.F. Stewart, “Sufficient Condition for Correct Topological Form

in Tolerance Specification,” Computer Aided Design, vol. 25, no. 1,
pp- 39-48, Jan. 1993.

James Gain received the BSc (Hons) and
MSc degrees in computer science from
Rhodes University, South Africa, in 1994
and 1996, respectively. In 2000, he obtained
the PhD degree, entitled “Enhancing Spatial
Deformation for Virtual Sculpting,” from the
University of Cambridge. He is currently a
senior lecturer in the Computer Science
Department at the University of Cape Town,
South Africa, and a member of its Collabora-
tive Visual Computing Laboratory.

Neil Dodgson received the BSc degree in
physics and computer science from Massey
University, New Zealand, in 1988 and the PhD
degree from the University of Cambridge in
1992. He is currently a university lecturer in the
Computer Laboratory at Cambridge, where he
coleads a research group in computer graphics
and image processing. Dr. Dodgson is a fellow
of Emmanuel College, Cambridge, a member of
the IEE, and a Chartered Engineer.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

