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Abstract—The task of computer-based free-form shape design is fraught with practical and conceptual difficulties. Incorporating

elements of traditional clay sculpting has long been recognized as a means of shielding the user from these complexities. We present

warp sculpting, a variant of spatial deformation, which allows deformations to be initiated by the rigid body transformation or uniform

scaling of volumetric tools. This is reminiscent of a tool imprinting, flexing, and molding clay. Unlike previous approaches, the

deformation is truly interactive. Tools, encoded in a distance field, can have arbitrarily complex shapes. Although individual tools have

a static shape, several tools can be applied simultaneously. We enhance the basic formulation of warp sculpting in two ways. First,

deformation is toggled to automatically overcome the problem of “sticky” tools, where the object’s surface clings to parts of a tool that

are moving away. Second, unlike many other spatial deformations, we ensure that warp sculpting remains foldover-free and, hence,

prevent self-intersecting objects.

Index Terms—Interactive modeling, spatial deformation, self-intersection, remeshing.

�

1 INTRODUCTION

VIRTUAL sculpting has long been touted [1], [2] as a
natural and intuitive solution to the complex task of free-

form modeling. The familiar physical action of molding and

manipulating clay is linked to the difficult (and, for many

artists, unfamiliar) process of computerized shape design.

This is achieved by loosely emulating the molding of an

inelastic substance, such as modeling clay or silicone putty.

There are four broad approaches to virtual sculpting:

1. Surface Displacement. Using decay functions [1] or
displacement maps [3], a surface can be locally
perturbed. But, these deformations act only on an
object’s surface and are not transmitted across its
interior. As Zwicker et al. [3] concede, they are only
suitable for small to moderate modifications.

2. Physical Simulation. Recently, mass-spring [4], finite
element [5], and boundary element [6] methods have
been employed in real-time dynamically-driven de-
formation. This has the potential for unprecedented
physical accuracy, but the high computation costs
place a limit onmodel resolution in interactive design.

3. Boolean Operators. A volumetric tool can be used to
accrete material by Boolean addition or remove
material by Boolean subtraction from a volumetric
object represented as a 3D voxel map [7] or adaptive
distance field (ADF) [8]. This is reminiscent of
carving. One weakness of these operators is that
global operations overwrite and destroy localized
detail. Conceivably, this could be surmounted by
multiresolution methods, but we have yet to see
research on the implications of such a modification.
For example, a bend must be placed in an object

before detail is introduced. This order dependence is
a hindrance to exploratory design.

4. Spatial Deformation. Barr [9] and Sederberg and Parry
[2] were the first to indirectly reshape an object by
warping the surrounding space. This approach has
the virtues of computational efficiency, applicability
to a variety of object representations, and order-
independent localized or global effect. The results
are similar to molding a malleable substance.
Deformations are initiated by a range of manipula-
tors—points, curves, frames, and surfaces—but truly
general volumetric tools have, until now, rarely been
supported.

Boolean operators promote a tool-based carving meta-

phor. A tool-based moldingmetaphor is a helpful symmetry.
This is likely to be intuitive to many artists who are familiar
with using tools, such as a chisel, stylus, or even their

hands, during physical sculpting.
This paper introduces warp sculpting, a hybrid of spatial

deformation and distance fields. Deformations are created
by the rigid body transformation (with pose-interpolating

screw motions) or uniform scaling of volumetric manip-
ulators, loosely simulating a tool imprinting, flexing or
molding clay (see Fig. 1). Manipulators are represented,

with no restrictions on shape complexity, by a precomputed
distance field. This enables efficient reconstruction of the
distance from a sampled point on the object (a vertex) to the

manipulator’s surface. A decay function is applied to
smoothly taper the distance value and also demarcate an
offset region of influence around the manipulator. The

movement of the manipulator is moderated by the influence
value and transmitted to a vertex. In addition, we cater for
multiple simultaneous manipulators. Our novel contribu-

tions are: to improve usability by activating deformations
only where the manipulator presses into the object and to
provide rigorous conditions for preventing self-intersection.

A limitation of warp sculpting is that individual

manipulators have a static shape. This is crucial in enabling
precomputation of the manipulator’s distance field. We
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believe that this restriction can be supported by parallels

with physical sculpting, which often involves using a

relatively hard tool to mold a soft substance, such as a

stylus with clay. Furthermore, while individual shapes are

static, the relative position and orientation of a combination

of manipulators is not.
Warp Sculpting exhibits many useful characteristics:

. Smooth. The deformation is at least C1 continuous.
This imparts a smoothness reminiscent of clay and
is, incidentally, a subsidiary requirement for pre-
venting self-intersection. This does not prevent a
designer from introducing sharp creases with an
edged tool (and a finely sampled distance field).
Such features are sharp at coarse scales, but C1

smooth when examined at finer scales.
. Foldover-Free. Self-intersections in deformable space

often result in self-intersection of an embedded
object. This is highly unrealistic and contravenes
two-manifold representations and single sheet tex-
tures. Formally, warp sculpting is a homeomorph-
ism: It is foldover-free and allows a numeric inverse,
necessary for ray tracing and useful for undo
operations.

. Variable Local Control. A user is afforded dynamic
and independent control over the region of influence
around individual manipulators. Furthermore, glo-
bal low frequency deformation with broad influence
does not destroy high frequency detail.

. Interactive: Warp sculpting is interactive, capable of
> 10 deformations/s for up to 82; 000 vertices on
typical current processors. Vertices lying outside the
region of influence can be quickly bypassed.

. Accurate. The deformation obeys the constraints
imposed by the movement of the manipulator.
Vertices cannot penetrate into a manipulator and
those on the manipulator surface remain in contact
while pushed. There is a proviso for multiple tools
which break these properties when they collide.
There is also some approximation inherent in the use
of a sampled distance field, which tends to smooth
sharp features in the tool mesh, but this can be
reduced with greater sampling.

. Intuitive. Users can apply their experience with
physical sculpting to predict the behavior of warp
sculpting. In other respects, deformations are repea-
table, do not introduce oscillations, and are reminis-
cent of the molding and manipulation of clay. This is

not a slavish simulation. Aspects such as the lack of
reversibility, strict volume conservation and effects
of gravity are ignored.

Warp sculpting, as with other spatial deformations, is
largely independent of the object’s specific representation. It
can be applied with equal facility to ADF [11], level-set [12],
point-sampled [3], or polygon-mesh objects. Different
representations carry different benefits. With ADFs, the
carving metaphor of Kizamu [8] and the molding metaphor
of warp sculpting could be merged in a single system. With
level-sets, an object’s topology could be seamlessly altered
during warping. However, we have chosen a traditional
triangle mesh for portability and efficiency reasons and
defer integration with other representations to the future.

The remainder of this paper has the following structure:
Section 2 covers relevant previous work in the spatial
deformation literature. The underlying warp sculpting
algorithm is presented in Section 3. Section 4 shows how
multiple interacting manipulators are supported. Realism
issues, specifically how to deform normals, prevent fold-
over, and overcome clinging effects, appear in Section 5.
The paper concludes with a discussion of performance
results (Section 6) and a summary and recommendations
for future work (Section 7). Proofs of the underpinning
sufficient conditions for homeomorphism appears in the
appendices.

2 RELATED WORK

Spatial deformation as a field arose from the twist, taper,
and bend deformations of Barr [9] and Sederberg and
Parry’s [2] Free-Form Deformation. The basic premise is to
indirectly deform an object by warping its ambient space.
This is analogous [2] to setting a flexible shape in clear
plastic of the same consistency and then flexing the plastic,
with a corresponding distortion of the embedded shape.
The field is well researched and Bechmann [13] and
Milliron et al. [14] provide mathematical formalisms as
well as useful surveys.

Typically, deformations are specified by manipulators,
including parametric hyperpatches [2], [15], points [16], [17],
curves [10], [18], twisting frames [19], and 2 1

2D surfaces [20].
It is also common to warp a vertex by attaching it to the
closest point on a manipulator and imparting the motion of
this point, reduced as a function of distance, to the vertex. A
given vertex may even be influenced by a combination of
manipulators.

True volumetric manipulators are rare. Decaudin [21]
allows simple convex volumetric manipulators such as
spheres, cubes, and ellipsoids. Vertices are parametrized
according to their distance from the unique center of the
manipulator. This technique has the virtue of allowing
smooth, localized, and, above all, volume conserving
deformations, but the variety of tool shapes is severely
restricted. One strategy for building volumetric deforma-
tion tools would be to approximate them with a collection
of other manipulators, say, a cloud of directly manipulated
points [16]. Setting aside the difficulties of how to place
these manipulators and set their parameters to achieve
reasonable fidelity, the main problem is one of scalability.
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Fig. 1. Warp sculpting with volumetric tools (imprinting “S” into a

sphere), rotation (twisting a tube with a torus), and scaling (a toothed

ring is expanded from within and contracted from outside a cylinder).



Even simple tools require many manipulators. As tool
intricacy increases, the number of manipulators (and
computational overheads) rapidly become unmanageable.
In contrast, the speed of our technique is independent of the
tool’s complexity.

This raises the question: Why have fully general
volumetric manipulators not been developed? One reason
is that closest point queries on surfaces are computationally
expensive and certainly not consistent with interactive
modeling. We overcome this with static manipulators for
which distance values can be precalculated and recon-
structed interactively.

A second reason [14] is that closest distance parame-
trizations are prone to buckling artifacts, where a
C0 shearing discontinuity is introduced along medial lines
where vertices are equidistant from two or more manip-
ulator points. This is symptomatic of a lack of deformation
injectivity (one-to-one mapping), which can also cause
foldover or self-intersection.

In general, the problems of self-intersecting deformations
are well recognized [15], [18], [20], but have not been
comprehensively addressed. Milliron et al. [14] identify and
overcome buckling discontinuities in the context of Wires
by a convolution strategy. Borrel and Rappoport [17]
identify a “space tearing” phenomenon in connection with
their Simple Constrained Deformation (ScoDef) technique.
Unfortunately, they place the onus of identifying and
correcting self-intersection on the user. Blendeforming [23]
is a foldover-free (injective) and efficiently invertible
deformation designed specifically for ray-tracing. They
analyze the deformation of space and arrive at limits on
the translation of point and curve manipulations. Our
results are more broadly applicable to surface manipulators
and cover rotation and scaling as well as translation. Gain
and Dodgson [22] develop an automatic test for self-
intersection of Free-Form Deformations. They incorporate
the test into Directly Manipulated FFD [16] by breaking
long point manipulations into shorter injective pieces. We
adopt this approach of segmenting manipulations.

There are two notable exceptions to the paucity of
volumetric manipulators in spatial deformation. Mesh
Forging [24] drives deformation using conventional point
manipulators, but alters the locus of deformation using
“occluders” (distance fields defined on implicit functions).
The authors liken this to an anvil bracing the shape of an
object undergoing forging. However, occluders, unlike
warp sculpting tools, are statically placed.

Sweepers [25] also uses multiple tools encoded by
distance fields and decay functions. But, the fundamental
basis of their tool transformation is different. They exploit
Alexa’s [26] scalar multiplication operator on matrices to
directly weight the transformation of a tool. Admittedly,
this is an elegant formulation, but, unfortunately, it has two
serious consequences. First, it is difficult, given the inherent
nonlinearities involved, to derive bounds that prevent self-
intersection. Unlike our rigorous proof (see the appendices),
Angelidis et al.’s foldover bounds are stated as an unproven
conjecture. Second, Alexa’s matrix operations are expen-
sive. Angelidis et al. do not provide performance results for
Sweepers, but using Alexa’s reported computation costs

allows a suitable comparison of the weighted transforma-
tion operation. Using Alexa’s results, an interpolation costs
5:1� 10�6s for Sweepers (scaling from a 1GHz to 1.7GHz
machine) as against 2� 10�7s for Warp Sculpting (or 19.7K
versus 500K interpolated vertices at 10 frames per second).
So, in practice, Warp Sculpting is liable to be at least an
order of magnitude faster.

3 WARP SCULPTING ALGORITHM

Warp sculpting enables a variety of tools to interact with an
object in a way that loosely emulates shaping, imprinting,
and molding clay. The user controls the position and
orientation of tools, thereby generating a warping field that
indirectly deforms intersected objects. There are three
stages to deforming a vertex on an object’s surface in
accordance with the transformation of a tool:

1. Distance Field Reconstruction. The shortest Euclidean
distance from the vertex to the tool is closely
approximated by interpolating a sampled distance
field. The field samples are preprocessed, greatly
accelerating runtime distance calculations. Any ver-
tex outside the bounding box of the distance field is
assumed to fall beyond the influence of the tool.

2. Decay Function Calculation. A decay function is
applied to smoothly taper the distance value so that
it is 1 on and inside the tool and 0 at and beyond an
offset distance from the tool. The decay function
allows a user to interactively adjust the offset
distance and, hence, the region of influence around
a tool, subject to the bounds of the distance field.

3. Weighted Deformation. The tool’s transformation,
scaled by the decay value, is applied to the vertex.
Thus, vertices close to the tool receive most of the
tool’s rotation and translation, while those further
away are imparted correspondingly less.

Once all vertices within the tool’s influence have been
deformed, the tool’s position and orientation are updated,
ready for the user to continue sculpting.

Rigid body transformations emulate a tool moving along
a trajectory, but it is also useful to support uniform scaling.
For instance, shrinking a torus-tool allows a tube-shape to
be pinched inward. Combining rotation, translation, and
scaling into a single transformation presents unexpected
technical difficulties (see Section 3.3). Also, such complexity
is confusing from a user’s perspective. Hence, warp
sculpting separates rigid body transformations from uni-
form scaling.

A tool has a local coordinate frame FT and origin oT

within world coordinate space.1 The tool is given: 1) a rigid
body rotation RðrÞ, specified by an angle of rotation r about
a center oR and axis aR, and 2) a rigid body translation,
specified by a vector t. Alternatively, the tool could be
uniformly scaled by a factor s > 0 about a center of scaling
oS . The tool shape is encoded in a scalar distance field
�ðxÞ : IR3 7! IR, where the value �ðxÞ at a position x within
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1. Matrices and coordinate frames are represented in bold uppercase
(e.g., M), points and vectors in bold lowercase (e.g., v), and scalars in
italicized roman or greek lowercase (e.g., s; �).



the field provides the shortest Euclidean distance to the
surface of the tool. A decay function wðdÞ : IRþ 7! ½0; 1�
ensures that deformations are tapered with C1 continuity as
distance d ¼ �ðxÞ from the tool surface increases. The value
w weighting the tool’s transformation is: w ¼ wð�ðxÞÞ. The
transformation of the tool is transmitted to an object with
n vertices, pi; i ¼ 1; . . . ; n, according to the following
algorithm:

FOR pi; i ¼ 1; . . . ; n

x FTðpi � oT Þ
\\map pi to the local tool coordinate system

IF x 2 ð0; 1Þ � ð0; 1Þ � ð0; 1Þ THEN

\\ x falls within the distance field

d �ðxÞ
\\tri-quadratic reconstruction of distance

w wðdÞ \\ decay function smoothly tails off

pi  DðpiÞ \\ apply weighted deformation

oT  RðrÞoT þ t OR sðoT � oSÞ þ oS

FT  RðrÞFT OR sFT

\\ update tool origin and frame

DðpiÞ ¼
RðwrÞðpi � oRÞ þ wtþ oR rigid
wðs� 1Þ þ 1½ �ðpi � oSÞ þ oS scale:

�
ð1Þ

We now consider the distance field, decay function, and
tool transformation in further detail.

3.1 Distance Field Representation and
Reconstruction

A distance field is a shape representation that encodes, in a
sampled scalar field, the shortest distance to a surface.
Distance fields are widely used in intersection detection,
shape blending, and offsetting.

As mentioned in Section 2, many spatial deformation
techniques attach an object vertex to the closest point on a
manipulator at substantial computational cost. Using a
distance field allows much of this cost to be shifted from
runtime to preprocess.

There are a number of decisions inherent in using
distance fields: whether to use adaptive sampling, how to
distinguish interior and exterior samples, and what type of
distance metric and sample interpolation to employ. Our
decisions are motivated by the need for continuity (required
to prevent foldover [22]) and runtime speed (necessary for
interactivity).

We employ a true Euclidean metric. Samples interior
to a tool are accorded a 0 distance value to ensure that
vertices inadvertently trapped inside the tool receive full
deformation.

Adaptive sampling of the distance field is appealing since
it offers compact storage of tools with varying high and low
frequencydetail.However, there is an attendant cost of octree
traversal [11] to locate a vertex within a lattice cell. With a
uniform field �ðx; y; zÞ having l;m; n cells evenly distributed
on the unit parallelepiped x; y; z 2 ½0; 1�, it is trivial to obtain
the i; j; k cell index (i ¼ b‘xc) and u; v; w local cell coordinates
(u ¼ ‘x� i).

The samples of a distance field must be interpolated to
obtain a continuous distance value. Since trilinear interpola-
tion is first derivativediscontinuous at cell boundariesweuse

the triquadratic reconstruction of Barthe et al. [27]. The

reconstruction �ðx; y; zÞ is C1 everywhere with kr�k � 1.

3.2 Choosing a Decay Function

The decay function wðdÞ : IRþ 7! IR determines the smooth-

ness of the deformation surrounding a tool. As such, it must

satisfy several specific requirements: have compact support

(nonzero only on ½0; 1�) to bound the region of deformation

and be monotonically decreasing from wð0Þ ¼ 1 to wð1Þ ¼ 0.
There are additional considerations for preventing fold-

over (see Section 5.2): wðdÞmust be at least C1 on ð0; 1Þ with

w0ð0Þ ¼ w0ð1Þ ¼ 0. Also, theminimumof 1=w0ðdÞ should be as

large as possible since this places a practical restriction on the

magnitude of individual deformations. Finally, in the

interests of interactivity, wðdÞ should be rapidly computable.
There are a number of candidates which satisfy these

continuity and shape demands [10], [19], [28]. We choose to

use the Wires fn. of Singh and Fiume [10] since it is the least

costly and has the largest maximum reciprocal derivative.

Thus, the weighting value is:

wðdÞ ¼ ððdeÞ
2 � 1Þ2 if d � e

0 otherwise;

�
ð2Þ

where the parameter e controls the offset influence of the

tool. The region of effective deformation around the tool

expands and contracts as e is increased and decreased. If

greater geometric continuity is needed, then an appropriate

decay function can be constructed with piecewise B-spline

or Bézier curves.

3.3 Weighted Deformation from Tool
Transformations

Setting aside the issue of tool scaling, a tool’s trajectory is

likely to be in the form of an initial and final orientation

and position. From this, a rotation and translation must

be derived. Llamas et al. [19] show how to find the

minimal screw motion between frames, where the

translation vector (t) is parallel to the rotation axis

(aR;oR) and the rotation angle is minimal (r 2 ½0; ��).
Translation no longer alters the axis of rotation. The

advantages of this will become evident in Section 5.2.
Deformation of a vertex is an ordered composition of

rotation and translation (or uniform scaling) where the

rotation angle and translation distance (or scaling factor)

are weighted by the decay value. This closely follows the

treatment of Llamas et al. [19]. All that remains is to construct

the rotation matrix from the rotation angle r, decay value w,

and rotation axis a and then substitute this into (1):

RðwrÞ ¼ sinðwrÞMþ ð1� cosðwrÞÞM2

M ¼
0 �ark arj

ark 0 �ari
�arj ari 0

2
64

3
75: ð3Þ

The entire transformation ((1) and (3)) could be composed

into a single homogenous transformation matrix, but there

are no obvious vector parallelism benefits since it would

have to be reconstructed anew for each vertex.
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4 MULTIPLE TOOLS

There are clear benefits to combining multiple tools. The
dynamic interaction of different tools overcomes the static
nature of the individual components (as demonstrated in
Fig. 2). Stationary tools can exert an influence, acting as
anchors or anvils during stretching or pressing. Assemblies
of tools can save on repeated operations. To achieve this, the
transformation of several tools must be combined into a
single simultaneous deformation. In general, this combina-
tion of tools should not introduce unseemly bulges nor
allow the object to breach a tool’s surface. One strategy for
combining tools would be a weighted average in transfor-
mation space, which could then be applied to deform a
point. Ideally, the average should enforce a linear corre-
spondence between weighting values and the resulting
transformation, in the same way that slerping (spherical
linear interpolation) ensures a linear mapping during
interpolation between rotations by operating on the
quaternion hypersphere. Buss and Fillmore [29] generalize
this to a geodesic weighted average of multiple rotations
based on a least squares minimization. Unfortunately, this
does not incorporate translations and, so, cannot support
full rigid body transformations. Alexa [26] provides a
weighted average of fully general transformation matrices,
but without a guarantee of linear behavior. Ultimately, both
these strategies are rejected as too expensive, requiring
numerical iteration for every deformed vertex.

If we allow some nonlinearity in the mapping, then

working in Euclidean space proves to be both simple and

effective. Singh and Fiume [10] advocate using the decay

value to determine relative weighting in the average. The

closer a deformable point lies to a tool’s surface the more

that tool’s movement dominates over others in the

average. Assuming that there are m tools, each with an

independent distance field (�j), radius of influence (ej),

coordinate frame (FTj
;oTj

), and transformation (Dj), a point

is altered by a weighted average of individual tool

deformations, AðpÞ:

AðpÞ ¼
Pm

j¼1DjðpÞwk
jPm

j¼1 w
k
j

wj ¼ wjð�jðFTj
ðp� oTj

ÞÞÞ;
ð4Þ

where k controls the strength of localization around a tool.

Setting k ¼ 0 produces a conventional average. Low values

of k allow squeezed objects to penetrate a tool’s interior.

High values compress the zone of averaging and tend to

create kinks in an object. Experimentally, k ¼ 3 seems to

behave well as a reasonable compromise.

5 REALISM ISSUES

5.1 Deformation of Normals

Correct surface properties, such as normal vectors, texture

coordinates, and vertex colors, are central to the effective

lighting and rendering of objects. This topic is much

neglected in the spatial deformation literature.2

For the deformation of normals, the tacit assumption is

that these can be averaged from the orientation of the

surrounding deformed surface. But, even if the surface is

adequately sampled, this is still a gross approximation of

derivative behavior. A direct deformation of normals using

the covariant transformation rule is preferred.

In fact, accurate normals can then be used as a driver for

adaptive curvature-based mesh resampling. This is parti-

cularly necessary when a small detailed tool encounters a

coarsely sampled object (as is demonstrated in Fig. 3). Sharp

features can then be captured without forcing the rest of the

mesh to have the same level of detail. We adopt the

adaptive refinement and decimation scheme of Gain and

Dodgson [30].

It is unclear how to treat deformed texture coordinates

and vertex colors. Careful resampling is warranted in the

case of small distortions [3], but warp sculpting is designed

to allow radical shape alteration. In this instance, texturing

works better as a separate postprocess, perhaps using

texture painting [32], in an analog to the final painting and

decorating of clay sculpture. The covariant transformation

rule provides a formula for the deformation of a normal

(n 7! n0):

n0 ¼ detðJÞ � J�Tn ¼ detðJÞ2J?Tn;

where J is the 3� 3 Jacobian matrix whose entries are

partial derivatives of the deformation function. The

transpose of the adjoint (J?T ) can be computed more

rapidly [33] than the transpose of the full inverse (J�T )

and, since we intend normalizing the vector anyway, the

coefficient can be dropped (n0 ¼ J?Tn=kn0k).
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2. With the notable exception of Barr [9].

Fig. 2. A dynamic hand tool, constructed from a jointed hierarchy of

16 rigid finger segments, closing to grip a sphere.
Fig. 3. The necessity for mesh resampling. A pawprint tool is impressed

into the object (with wireframe overlaid). (left) Without resampling, fine

detail is lost. (right) With adaptive refinement, tool detail is captured.



For a single tool, the Jacobian has the form:

Ja;b ¼
@Da

@pb

¼
@R
@pb
ðp� oRÞ

h i
a
þRðwrÞa;b þ @w

@pb
t ðrÞ

@w
@pb
ðs� 1Þ

h i
ðp� oSÞa þ wðs� 1Þ þ 1½ ��ab ðsÞ:

8><
>:

ð5Þ

�ab is the Kroënecker delta. colbðFT Þ is the bth column of FT .

Further:

@w

@pb

¼ 4
d

e

� �2

�1
" #

d

e2
r� � colbðFT Þ; ð6Þ

@R

@pb

¼ r
@w

@pb

cosðwrÞMþ sinðwrÞM2
� �

: ð7Þ

The distance field gradient r� could easily be calculated

by the central difference method, but a linear derivative

affords more accuracy [27].
For multiple tools, the function A must be considered:

Ja;b ¼
@Aa

@pb

¼ 1

ð
P

j w
k
j Þ

2

X
j

wk
j

 ! X
j

DjðpÞa kwk�1
j

@wj

@pb

 "

þ @DjðpÞa
@pb

wk
j

�
�

X
j

DjðpÞawk
j

 ! X
j

kwk�1
j

@wj

@pb

 !#
:

The partial derivatives
@wj

@pb
and

@DjðpÞa
@pb

are versions of (6) and

(7) with parameters particular to tool j.
Normal deformation is fairly expensive: Deforming a

normal is six times as costly as deforming a vertex.

However, much of the calculation is reusable in other

contexts (D and � during point deformation and r� in

gradient toggling). We believe that the cost is warranted by

the improved accuracy.

5.2 Preventing Foldover

Many spatial deformation methods generate foldover of the

ambient space and potential self-interpenetration of the

embedded object. This is physically unrealistic, breaks two-

manifold mesh conditions, and prevents a numerical

inverse. A typical case is illustrated in Fig. 4 (top right),

where a cog is raised around a sphere with the object

trapped in between. The cog is translated well beyond its

initial region of influence and drags the object’s surface into

self-intersection.
The answer lies in limiting the extent of individual

transformations. Following Gain and Dodgson [22], we

subdivide large tool transformations into a sequence of

intermediate transformations, which are small, contiguous,

and foldover-free. Fig. 4 (bottom right) demonstrates the

success of this strategy, with 32 successive transformations

moving the tool along the same path and reaching the same

position and orientation as Fig. 4 (top right), without

foldover.

Breaking a tool transformation into n successive inter-

polating steps requires subdividing the degree of translation

and rotation or scaling: tn ¼ t=n, rn ¼ r=n, or sn ¼ s1=n.Warp

sculpting is applied with these new parameters. After each

step, the tool frame and origin are updated. Earlier decisions

becomeclear: Theaxis of rotation andcenter of scaling remain

constant and the final tool configuration after n steps is the

sameas before. Thenumber of subdivision steps is important;

too few and foldover will not be prevented, too many and

interactivity degrades. The appendices provide an upper

boundon theextentof tool transformation sufficient to ensure

foldover-free warp sculpting.
For individual tools, deformations are limited by the

following inequalities:

ðrÞ : 1
e rn�R þ ktnkð Þ <

ffiffiffiffi
27
p

8

ðsÞ : sn � 1ð Þ �S

e <
ffiffiffiffi
27
p

8 if s � 1

1� snð Þ 1þ 8ffiffiffiffi
27
p �S

e

� �
< 1 if 0 < s < 1:

The size of a deformation step thus depends on the

magnitude of scaling (s), rotation (r), translation (ktk), and
tool effect (e); �R or �S encode the distance of active

deformation from the center of rotation (oR) or scaling (oS),

respectively, to the furthest fringe of the tool’s effect.
The inequalities for multiple tools are:ffiffiffi

3
p

cn þ c2n þ 1ffiffiffiffi
27
p c3n < 1

ðrÞ : c ¼ 8ffiffiffiffi
27
p maxj

1
ej
ð�Rj
ðrnj
þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos rnj

p
ÞÞ

h
þ ðkþ 1Þktnj

k
�

ðsÞ : c ¼ 8ffiffiffiffi
27
p sn maxj

1
ej
�Sj

h i
þ sn

sn ¼ s
1
n

s ¼ maxjðsjÞ � 1 if maxjðsjÞ > 2�minjðsjÞ
1�minjðsjÞ otherwise:

�
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Fig. 4. Preventing self-intersection in warp sculpting: (top) Object
foldover and tool-object interpenetration caused by over-large rotation or
translation (with object interiors in red). (bottom) Foldover-free deforma-
tion by breaking the tool transformation into shorter steps (8 and
32 subdivisions for left and right, respectively).



To find the number of subdivision steps, solve for n in
the above inequalities (using a bisection or Newton search)
and round up to the nearest integer (dne).

These conditions ensure that Warp Sculpting will not
produce a foldover of coordinate space. However, a poorly
sampled object, which does not follow the deformation, may
still self-intersect. Fortunately, this type of self-intersection
can always be removed by adaptively refining the object. In
contrast, a spatial foldover is far more damaging because it
cannot be circumvented by resampling.

5.3 Gradient Controls

Warp sculpting acts by influencing the ambient space
surrounding a volumetric tool. Unfortunately, this some-
times causes surfaces to unrealistically cling to a tool. For
example, during translation, an object will conform to and
follow a nearby tool even as it is withdrawn (Fig. 5
(middle)). In scaling, the contraction of a tool causes the
neighboring surface to collapse inward. Finally, a tool
rotated in place imparts a friction-like twist to the
surrounding shape. These effects are sometimes desirable,
but they need a more controlled and intuitive interface. For
instance, extruding a portion of the surface is better
achieved with a pincer tool or by protruding a tool from
under the skin of the object.

The solution is to automatically deactivate deformation
depending on the swath of tool movement and the relative
position of tool and object. We refer to this as a Gradient
Toggle. By examining the deviation of the distance field
gradient (r�ðxÞ) from the normalized deformation vector
(normðDðpÞ � pÞ), it can be established whether an object
point lies on the leading or trailing side of a deformation.
Warp sculpting is active if the following inequality is
satisfied for any object point within the zone of active
deformation of a tool:

� ¼ r�ðxÞ � ½DðpÞ � p�=kDðpÞ � pk > �‘: ð8Þ

Here, the value � captures the cosine angle relationship
between tool position and tool movement relative to a
point, ranging from � ¼ 1 (aligned) to � ¼ �1 (opposite). A
cutoff of �‘ ¼ 0:2 works well in practice. This test is
comparatively inexpensive since most of its quantities are
needed in any event for the deformation of points and
normals.

A simple gradient toggle will not succeed if a tool needs
to be simultaneously active and inactive in different
regions. For example, as a tube tool is narrowed, it is useful

if the distance field is operational within the inner radius,
but suppressed beyond the outer radius.

One solution is to design “multitools” with the desired
behavior. In Fig. 6 (center), a two-part tube with separate
inner and outer casings facilitates narrowing and widening
without the deformation spreading unduly into the sur-
rounding space. Unfortunately, such multitools can be
difficult to design since the result depends on the relative
influence and positioning of the components.

An alternative is to moderate the decay value according
to a piecewise function on � : w ¼ fð�ÞwðdÞ. We call this a
Gradient Swath. We introduce two parameters, �u, above
which deformation is full, and �‘, below which deformation
is nil. The Wires fn. is used to smoothly interpolate between
these bounds:

fð�Þ ¼
1 if � > �u
0 if � < �‘
ðð �u���u��‘Þ

2 � 1Þ2 otherwise:

8<
:

Fig. 6 (right) shows how vertices beyond the outer radius
are unaffected because the tool shrinks inward while the
gradient in these regions faces outward.

Of course suitable changes must also be made in (6) and
the appendices. The upper bound on the derivative of w in
the foldover condition now becomes:

max
@w

@p

				
				 ¼ 8ffiffiffiffiffi

27
p 1

e
þ 1

�u � �‘

2

c

� �
;

where c is the axial length of a direction field cell.
Incorporating this into the foldover conditions of Section 5.2
thus introduces a dependence on cell size since even the
simplest tool will have medial lines or points with a
diametric gradient change across a single cell. Smaller cells
merely localize these instantaneous direction changes. So, it
is important to achieve a careful balance in the distance
field between undersampling (losing tool detail) and over-
sampling (increasing foldover steps).

The problem can be overcome to an extent by decoupling
the sampling resolution of distance and direction. The
distance field can be supersampled with a Gaussian filter
for the purposes of calculating the gradient, allowing larger
lattice cells at the expense of less detailed discrimination
between the leading and trailing edges of fine tool detail.

6 RESULTS

Fig. 7 shows stills from the design of a Celtic chalice. The
initial circular symmetric form is achieved by emulating a
potter’s wheel and revolving the object on its central axis.
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Fig. 5. Preventing clinging objects: (left) A comb tool is pressed into a

pad object. (middle) The object is dragged as the tool withdraws. (right)

A gradient toggle automatically deactivates warping when required.

Fig. 6. Delimiting deformation with multiple tools: (left) Shrinking a tube

tool affects adjacent objects. (middle) Overcome by adding a static outer

tube. (right) Overcome using movement swaths (�u ¼ 0:0; �‘ ¼ �0:8).



Unfortunately, if the tool is merely held in place, the object

tends to bunch along the leading side. Rather, the tool is

punched repeatedly inward on each rotation step. By

varying the angle of punching and translation along the

axis of revolution, different effects are possible, such as

hollowing out the inner bowl of the chalice. Several other

aspects of Fig. 7 are noteworthy. A rubbed effect is created

by subtly expanding the radius of effect for parts of the

Celtic braiding. Later, a spherical dent flexes but does not

destroy the detail of the pattern. The final chalice was

created in less than an hour of modeling time.
The performance of warp sculpting has been tested on a

3GHz P4 with 512 MB RAM. For a single tool and one

homeomorphic step (n ¼ 1 in Section 5.2), up to 82; 000

vertices within the tools influence can be interactively

deformed at a rate of 10Hz. The impact of other factors is

highly variable:

. Distance Field Density. Sampling is a once of
preprocess and has no direct influence on inter-
activity, with the notable exception of movement
swaths. However, detailed tools (with high density)
generally require greater mesh refinement.

. Radius of Effect (e). Expanding the influence of the
tool (by increasing e) has two contradictory out-
comes: More object vertices are warped, but in fewer
foldover steps.

. Number of Tools (m). Warp sculpting is linear in the
number of overlapping tools (for m > 1). However,
there is a sharp jump in cost when moving from one
to two tools since the foldover bounds for multiple
tools are more stringent. As a point of reference,
warp sculpting with a dynamic hand, as in Fig. 2
(m ¼ 16 and n ¼ 1) deforms 13; 250 vertices at 10Hz.
Typically, one to six finger components influence a

given vertex. In practice, the influence of all
components seldom overlap completely.

. Foldover Steps (n). Tool transformations that are large
relative to the area of tool influence require a
significant number of subdivisions. For instance,
Fig. 4 requires n ¼ 8 and 32 for the single and
multiple tool cases. Each foldover step is treated as a
separate deformation. Of course, small controlled
motions generate fewer subdivisions and are, thus,
more interactive.

. Gradient Controls (�u; �‘; c). Here, the performance
costs of the gradient toggle are negligible as long as
intermediate calculations are cached for reuse dur-
ing actual deformation. Gradient swaths increase the
number of foldover steps (n ¼ 16 in Fig. 4 (left) for
�u � �‘ ¼ 1:0 and c ¼ 0:05).

7 CONCLUSIONS

This paper has introduced warp sculpting, a modeling
technique that facilitates spatial deformation through an
underlying distance field. Deformations are instigated by
the rigid body transformation or uniform scaling of
complex volumetric tools. The influence of a tool tapers to
a user adjustable distance from the tool surface. The effect is
reminiscent of physical sculpting, where a variety of tools
are used to imprint, mold, and reshape clay.

Warp sculpting is smooth (C1 continuous) by construction
and foldover-free because large tool transformations are split
up into small steps that are guaranteed to be homeomorphic.
The tool shape iskept static so that the scalardistance field can
be precomputed. This enables interactive deformation of
significantly sized objects (> 10Hz for up to 82; 000 vertices).
The scale of sculpting can be expanded or contracted by
resizing the tool or adjusting its radius of influence. Tools can
be combined in a single deformation that accurately reflects
multiple shapemovement. Global deformations alter, but do
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Fig. 7. Sculpting a chalice using a potter’s wheel method and various tools, including a spindle, disc, torus, knotwork stamp, and sphere.



not erase local details. Finally, the usability of warp sculpting
is improved by introducing a gradient toggle that combines
the direction of tool transformation with the radiating
orientation of the tool’s surface to prevent the object
unrealistically clinging to the tool.

There are several directions in which warp sculpting can
fruitfully be extended, particularly with regard to user-
interface issues. A numerical inverse would allow a
memory-saving “undo” operation and also support ray-
tracing. We currently control tool transformations with a
2D mouse. A 3D tracker or force-feedback device would be
preferable. Constructing tools with multiple components
requires considerable trial and error and some automated
design guidelines could help here. In short, warp sculpting
would benefit from a cycle of usability evaluation and
interface refinement.

Like other spatial deformation methods, warp sculpting
is well suited to animation, particularly in approximating
the interaction of hard with soft objects. Fig. 3 demonstrates
this potential with a pawprint imprinted into sand. Warp
sculpting is ideal for interactive applications such as
computer games and virtual reality, where conventional
physics simulations are too costly.

APPENDIX A

CONDITIONS FOR HOMEOMORPHISM

A spatial deformation function D with associated Jacobian
matrix J is a homeomorphic mapping and thus foldover free
iff [22]: D has continuous first partial derivatives and
detðJÞ > 0. The first condition holds because the decay
function (w), distance reconstruction (�), and transformations
are all C1. All that remains is to find a lower bound on detðJÞ
for single andmutliple tool rigid transformation and scaling.

Operating in the 3D Geometric Algebra3 greatly simpli-

fies these proofs. We note that the Jacobian (detðJÞ) is

equivalent to the magnitude of the derivative 3-blade

k @D
@p1
^ @D

@p2
^ @D

@p3
k. Subsequent appendices summarize the

derivation of bounds for single and multiple tools.

APPENDIX B

BOUNDS FOR SINGLE TOOLS

Proof. In geometric algebra, the rigid transformation of a
single tool takes the form:

DðpÞ ¼ Rðp� oRÞR�1 þ wtþ oR;

where R ¼ expð� 1
2 rwAÞ is the rotor in the bivector plane

of rotation A ¼ I3a. The partial derivative are:

@D
@pb

¼ Rb þ Eb þ
@w

@pb

t;where

Rb ¼ Rðp� oRÞR�1
� �

c r
@w

@pb

A


 � ð9Þ

Eb ¼ RebR
�1: ð10Þ

The 2-blades with duplicate R and @w
@pb

t vector

components vanish due to linear dependence: Ri ^
Rj ¼ 0 and @w

@pi
t ^ @w

@pj
t ¼ 0 8i; j 2 f1; 2; 3g. Mixed R and

@w
@pb

t 2-blades cancel using the antisymmetry of the vector

outerproduct:

Ri ^
@w

@pj

tþ @w

@pi

t ^Rj ¼
@w

@pi

@w

@pj

ðRðp� oRÞR�1crA ^ tÞ

þ @w

@pi
@w
@pj

ðt ^Rðp� oRÞR�1crAÞ

¼ 0:

The derivative 3-blade B ¼ @D
@p1
^ @D

@p2
^ @D

@p3
thus re-

duces to:

R1 ^ E2 ^R3 þ E1 ^R2 ^ E3 þ E1 ^ E2 ^R3 þ @w
@p1

t ^ E2 ^ E3
þ E1 ^ @w

@p2
t ^ E3 þ E1 ^ E2 ^ @w

@p3
tþ E1 ^ E2 ^ E3

¼ r @w
@p1
ðp� oRcAÞ1I3 þ r @w

@p2
ðp� oRcAÞ2I3

þ r @w
@p3
ðp� oRcAÞ3I3 þ @w

@p1
t1I3 þ @w

@p2
t2I3 þ @w

@p3
t3I3 þ I3

because rotation is distributive over the outerproduct

and does not alter blade magnitude.

detðJÞ ¼ k @D
@p1
^ @D

@p2
^ @D

@p3
k

¼ r @w
@p � ðp� oRÞcAþ @w

@p � tþ 1:

To guarantee homeomorphism requires:

minðdetðJÞÞ > 0

) r max k @w@p kmax kp� oRk þmax k @w@p k ktk < 1

) 8ffiffiffiffiffi
27
p 1

e
ðr�R þ ktkÞ < 1:

Establishing bounds for scaling of a single tool follows
a similar path to the proof for rigid body transforms:

@D
@pb

¼ Sb þ Eb;where

Sb ¼
@w

@pb

ðs� 1Þðp� oSÞ

Eb ¼ wðs� 1Þ þ 1½ �eb:

Due to linear dependence, Si ^ Sj ¼ 0.

B ¼ S1 ^ E2 ^ E3 þ E1 ^ S2 ^ E3
þ E1 ^ E2 ^ S3 þ E1 ^ E2 ^ E3

detðJÞ ¼ wðs� 1Þ þ 1½ �2 wðs� 1Þ þ 1½

þ ðs� 1Þ @w
@p
� ðp� oSÞ

�
minðdetðJÞÞ > 0:

s � 1:

� ðs� 1Þ minðwÞ �max
@w

@p

				
				max kp� oSk


 �
< 1

) ðs� 1Þ 8ffiffiffiffiffi
27
p �S

e
< 1:
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3. We adopt the notation of Dorst and Mann [34].



s < 1:

ð1� sÞ maxðwÞ þmax
@w

@p

				
				max kp� oSk


 �
< 1

) ð1� sÞ 1þ 8ffiffiffiffiffi
27
p �S

e


 �
< 1:

ut

APPENDIX C

BOUNDS FOR MULTIPLE TOOLS

Proof. In finding a bound for the homeomorphism of

multiple tools, an alternative form of (4) is appropriate:

A ¼ pþ
X
j

ðDjðpÞ � pÞwk
j

" #
=
X
j

wk
j

@A
@pb
¼
X
j

�j Rjb þ
@wj

@pb
tj

� �
þ
X
j

�jEjb þ
X
j

�jbðDðpÞ � pÞ

�j ¼
wk

jP
j w

k
j

�jb ¼ 1P
j
wk
j

k wk�1
j

@wj

@pb
� 1
ð
P

j
wk
j Þ

2

P
jkw

k�1
j

@wj

@pb

h i
wk

j :

Here, Rjb and Ejb are tool specific versions of (9) and (10)

from Appendix B. Since the weighted combinationP
j �jEjb maintains orthogonality and normalization of

the basis vectors:

X
j

�jEj1

 !
^

X
j

�jEj2

 !
^

X
j

�jEj3

 !					
					 ¼ 1:

This provides an upper bound for the other pseudoscalar

components. Note that the volume of a pseudoscalar is at

a maximum when the constituent vectors are orthogonal:

ka ^ b ^ ck � kak kbk kck. A weighted average achieves

its maximum when the largest element is the sole

contributor. Thus:

max
X
j

�j Rjb þ
@wj

@pb
tj

� �					
					

¼ max
j

maxð@wj

@pb
Þðrj�Rj

þ ktjkÞ
h i

max
X
j

�jbðDðpÞ � pÞ
					

					
¼ k max

j
max

@wj

@pb

� �
kDðpÞ � pk


 �

¼ k max
j

max
@wj

@pb

� �
ðktjk þ �Rj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos rj

p
Þ
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X
j

�jEjb

					
					 ¼ 1P

j
wk
j

X
j

wk
jkEjbk ¼ 1:

Let cb ¼ maxj½maxð@wj

@pb
Þð�Rj

ðrj þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos rj

p
ÞÞ þðkþ

1Þktjk� then:

kck ¼ 8ffiffiffiffi
27
p max

j

1

ej
ð�Rj
ðrj þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos rj

p
ÞÞ



þ ðkþ 1Þktjk

�
:

Finally, the condition detðJÞ > 0 equates to:

c1 þ c2 þ c3 þ c1c2 þ c2c3 þ c1c3 þ c1c2c3 < 1

1 1 1½ �T �cþ c1 c2 c3½ �T � c2 c3 c1½ �Tþmaxðc1c2c3Þ < 1ffiffiffi
3
p
kck þ kck2 þ 1ffiffiffiffi

27
p kck3 < 1:

A similar derivation process produces bounds for scaling

of multiple tools:

kck ¼ 8ffiffiffiffiffi
27
p s max

j

1

ej
�Sj


 �
þ s

s ¼
maxjðsjÞ � 1 if maxjðsjÞ > 2�minjðsjÞ

1�minjðsjÞ otherwise:

(

ut
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