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Abstract

Character animation is the task of moving a complex, artificial
character in a life-like manner. A widely used method for character
animation involves embedding a simple skeleton within a character
model and then animating the character by moving the underlying
skeleton. The character’s skin is required to move and deform
along with the skeleton. Research into this problem has resulted
in a number of skinning frameworks. There has, however, been no
objective attempt to compare these methods.

We compare three linear skinning frameworks that are com-
putationally efficient enough to be used for real-time animation:
Skeletal Subspace Deformation, Animation Space and Multi-Weight
Enveloping. These create a correspondence between the points
on a character’s skin and the underlying skeleton by means of a
number of weights, with more weights providing greater flexibility.
The quality of each of the three frameworks is tested by generating
the skins for a number of poses for which the ideal skin is known.
These generated skin meshes are then compared to the ideal skins
using various mesh comparison techniques and human studies are
used to determine the effect of any temporal artefacts introduced.
We found that Skeletal Subspace Deformation lacks flexibility
while Multi-Weight Enveloping is prone to overfitting. Animation
Space consistently outperforms the other two frameworks.

CR Categories: I.3.5 [Computing Methodologies]: Com-
putational Geometry and Object Modelling Graphics—Three-
Dimensional Graphics and Realism - Animation

Keywords: Skinning, Animation, Comparison, Real-time

1 Introduction

Traditional hand-drawn animation requires that each frame of an
animation be created explicitly. Computers may be used to reduce
the work required to create an animation sequence by providing a
degree of automation. Animating characters, such as people or ani-
mals, is a particularly demanding area of animation as the animated
character must move and deform in a manner that is plausible to the
viewer. Animating a character model described as a polygon mesh
by moving each vertex in the mesh is impractical. It is more con-
venient to specify the motion of characters through the movement
of an internal articulated skeleton from which the movement of the
surrounding polygon mesh may then be deduced. However, the
mesh must deform in a manner that the viewer expects, consistent
with underlying muscle and tissue, as in the case of a bulging
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bicep or creasing elbow. In this paper we consider methods
for specifying skin deformation based on the movement of an
underlying articulated skeleton, referred to as skinning frameworks.

When a high degree of accuracy and realism is required, the
physical structure of the muscle, fat and skin layers may be sim-
ulated in order to determine the character’s polygon model. Such
techniques are widely used in motion pictures where the polygon
mesh for each pose may be rendered offline and so a degree of
speed may be sacrificed for realism. In interactive applications,
such as virtual environments and computer games, efficiency is
vital and so less computationally demanding techniques are used
to provide approximations to the physical system. There has been
no previous attempt to objectively compare the quality of these
approximations.

The aim of this paper, rather than to introduce a novel skin-
ning technique, is to provide a comparison of three linear skinning
techniques. These are three of the most space- and time-efficient
skinning frameworks, suitable for real-time applications. The three
are:

1. Skeletal-Subspace Deformation (SSD) [Lewis et al. 2000;
Sloan et al. 2001; Wang and Phillips 2002; Kry et al. 2002;
Mohr et al. 2003]

2. Animation Space [Merry et al. 2006]

3. Multi-Weight Enveloping (MWE)[Wang and Phillips 2002]

We use example poses from an animation sequence to create a
skinning model which is then used to recreate the animation at a
later stage. The model is not exact and the reproduced animations
are approximations of the original movement.

Previously, the only quality analysis of animations produced
by these frameworks are visual comparisons performed by the
authors themselves. In this paper, we provide an objective
comparison of the animations generated by SSD, Animation Space
and Multi-Weight Enveloping based on how similar the recreated
animations are to the original animation used to create the model.

The error metrics we use to compare the quality of the ap-
proximations are geometric deviation and normal deviation. Since
these metrics do not account for temporal artefacts that could be
disturbing to a viewer, we conduct human studies to evaluate the
animation quality. Furthermore, we study the parameters used in
each of the frameworks in order to determine suitable values. The
analysis of the change in error as the values change also gives an
indication of the sensitivity of each framework to these parameters
and the resulting ease of use.

In the following sections there is a review of skinning tech-
niques, including a description of the three frameworks we
compare. We then discuss the manner in which the comparison is
undertaken. Lastly, we present our findings and conclude.

2 Formalism

In general, skinning frameworks define the skin’s movement as a
function of the underlying skeleton. In addition, some frameworks
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use the geometric information of a single pose, called the rest
pose. In this paper, we use a triangle mesh to represent the skin
of a character and so animation involves moving the vertices of
this mesh. The skinning frameworks could, however, be applied to
the control points of another representation such as a Bezier surface.

For the purpose of animating the character’s skin, we repre-
sent each bone by the transformation that takes a point from
bone-space to model-space. A bone may be thought of as defining
its own coordinate frame with one end at the origin and the length
of the bone lying along an axis. Through the use of homogeneous
coordinates, a bone’s transformation is described by a 4× 4 matrix
that changes a point’s coordinates from being relative to the bone’s
local coordinate frame, to being relative to the model’s coordinate
frame.

We make use of the following notation: the position of a
particular vertex, v, in the rest pose is written as v̂. Bones are
indexed from 1 to b. The transformation matrix associated with
bone i in its current pose is called Ti and the transformation of the
same bone in the rest pose is written as T̂i.

The position of the vertex v when moving rigidly with a par-
ticular bone may be found as follows: for each bone, i, the position
of the vertex in the rest pose is first transformed from model
coordinates (v̂) to bone coordinates (v̂i) by applying the inverse of
the rest pose bone transformation:

v̂i = T̂−1
i v̂.

The vertex in bone coordinates, v̂i, is then transformed back into
model coordinates by applying the transformation of the bone in its
new skeletal configuration:

vi = Tiv̂i = TiT̂
−1
i v̂.

This gives the vertex’s position when moved rigidly with bone i,
remaining stationary relative to it. The three skinning frameworks
are based on the idea of combining these vi in order to find the
position of v in a particular pose.

2.1 Skeletal Subspace Deformation

Skeletal Subspace Deformation is the simplest and most widely
used method for calculating skin deformations in real-time. It is
known under various names in the literature, for instance Linear
Blend Skinning, Enveloping and Vertex Blending. It was not
originally published but is described in papers that look to extend
and improve it [Merry et al. 2006; Lewis et al. 2000; Sloan et al.
2001; Wang and Phillips 2002; Kry et al. 2002; Mohr et al. 2003;
Mohr and Gleicher 2003b].

SSD determines the new position of a vertex by linearly
combining the results of the vertex transformed rigidly with each
bone. A scalar weight, wi, is given to each influencing bone and
the weighted sum gives the vertex’s position, v, in the new pose, as
follows:

v =

b∑
i=1

wiTiT̂
−1
i v̂. (1)

For bones which have no influence on the movement of a vertex,
the associated weight would be 0. The weights are set such that∑b

i=1
wi = 1.

SSD has a number of well-documented shortcomings [Merry
et al. 2006; Lewis et al. 2000; Sloan et al. 2001; Wang and Phillips

Figure 1: Meshes generated using SSD show loss of volume when
joints are rotated to extreme angles. Examples include the elbow
joint collapsing (left) and the “candy-wrapper” effect as the wrist
is rotated (right).

2002; Kry et al. 2002; Mohr and Gleicher 2003a]. The most
significant is that SSD-generated meshes exhibit volume loss as
joints are rotated to extreme angles. This is seen in joint collapses
and the “candy-wrapper” effect (Figure 1). These undesirable
results occur because of a lack of flexibility in the framework. In
finding the position of a vertex in a new pose, the transformation
matrices of the influencing bones are interpolated in a linear
manner. The linear interpolation of these matrices is not equivalent
to the linear interpolation of their rotations.

Despite these shortcomings, SSD remains popular because of
its simplicity and computational efficiency.

There has been significant research into improving the SSD algo-
rithm. One approach is to combine data interpolation techniques
widely used in facial animation to correct the error in the vertex
positions generated by SSD [Lewis et al. 2000; Sloan et al. 2001;
Kry et al. 2002]. The error for each vertex is calculated for a
number of example meshes and then interpolated to give the error
correction for a particular SSD-generated mesh. The drawback to
this method is its lack of scalability. An increase in the number of
example meshes is necessary to produce higher quality results but
this increases the storage and computation costs.

Another approach is to remove the linearity inherent in the
combinations of bone transformations used by SSD. Mohr and
Gleicher [2003a] introduce extra bones at the joints, which are
rotated halfway between the two connecting bones. Magnenat-
Thalmann et al. [2004] use a matrix blending operator developed
by Alexa [2002] and Kavan and Žára [2005] use the linear interpo-
lation of quaternions. All three methods are less computationally
efficient than SSD.

2.2 Animation Space

Animation Space [Merry et al. 2006] provides greater flexibility
than SSD by changing the single rest pose position of each vertex.
The original SSD equation (1) is rewritten by making the substitu-
tion pi = wiT̂

−1
i v̂, as follows:

v =

b∑
i=1

Tipi. (2)

The combination of the bone’s inverse rest transformation, the
vertex’s rest position and the weighting factor increases the
number of variable weights per bone influence to four – the four
components of the pi vector. This allows each component of the
vertex’s position to be influenced independently by each bone,
reducing the defects shown by the SSD framework.

Another, less obvious, strength of the Animation Space framework
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is the linearity of Equation 2. A benefit of this linearity, with
implications for subdivision, is that it allows new vertices to be
produced that are linear combinations of existing vertices. There
is no need to recompute the skinning model’s weights (possibly
an expensive process) as the pi vector for the new vertex may be
found by combining the pi vectors of the original vertices in an
affine manner.

With an increase in the number of weights, an additional
cost in time and space is to be expected. Each vertex now has
to store four weights per influencing bone, though this cost is
somewhat offset by no longer having to store a rest position.
Somewhat surprisingly, the time required to compute a vertex’s
new position is not much different from SSD [Merry et al. 2006].
This is due to the Animation Space weights being pre-multiplied
and so, in fact, requiring one scalar multiplication less than SSD
when calculating a vertex’s position. However, the passing of a
larger number of parameters to the calculation results in additional
overhead.

A concern when adding additional weights is how these weights
should be determined. Setting them directly, a common though
time-consuming task with SSD, is not viable for Animation Space.
Using a set of examples may leave some weights under-determined
and lead to overfitting (see Section 2.4.1).

2.3 Multi-Weight Enveloping

The third skinning framework that we consider, Multi-Weight En-
veloping [Wang and Phillips 2002], again changes the single scalar
weight factor from Equation 1. The transformation matrix of each
bone is combined with the inverse rest transformation and weight to
produce a weight matrix that gives, for each vertex, twelve weights
to each influencing bone. This is done by rewriting the SSD equa-
tion (1) with the substitution Mi = TiT̂

−1
i as follows:

v =

b∑
i=1

wiMiv̂.

The weight factor, wi, may then be combined with the new trans-
formation matrix to increase the number of weights that may be
set:

v =

b∑
i=1

(
wi,11mi,11 wi,12mi,12 wi,13mi,13 wi,14mi,14
wi,21mi,21 wi,22mi,22 wi,23mi,23 wi,24mi,24
wi,31mi,31 wi,32mi,32 wi,33mi,33 wi,34mi,34

0 0 0 1/b

)
v̂.

(3)
These additional weights allow each component of v to be
influenced, independently of one another, in each component of a
bone’s movement. As Merry et al. [2006] point out, the dimensions
of a bone’s movement are relative to the model and so may be
of limited usefulness. The increased flexibility should reduce the
volume loss artfacts exhibited by SSD.

As with Animation Space, the increase in the number of
weights carries an additional cost in storage space as well as
parameter passing. The time required to calculate a vertex’s
position is similar to that of SSD and Animation Space. This is
because MWE, like Animation Space, requires one less scalar
multiplication per bone influence than SSD which offsets the time
required for passing the additional parameters.

MWE has even greater flexibility than Animation Space and
therefore requires more information in order to set the large
number of weights per bone. The increased number of weights
mean that there is a greater possibility of some weights being

under-determined than in the case of Animation Space or SSD,
which could lead to problems with overfitting (see Section 2.4.1).

2.4 Determining the Weights

Setting the weights for SSD is a time-consuming and tedious pro-
cess. The change in the behaviour of a vertex as its weights are
changed is often counterintuitive and it may not be clear whether a
value exists which gives the desired position. Mohr, Tokheim and
Gleicher [2003] have produced a tool which allows the weights to
be manipulated interactively though this approach is still time con-
suming and not easily applied to Animation Space or MWE.

2.4.1 Training by Example

A recent approach, adopted by a number of authors [Merry et al.
2006; Mohr and Gleicher 2003a; Wang and Phillips 2002], is
to train the skinning model by setting the weights such that
they provide the closest possible geometric fit to a training set
of example poses. For each of the frameworks, a system of
equations may be set up using the positions of vertices across a
number of example poses as the solutions. This system is then
solved to find the unknown weights. As this system will likely be
over-constrained, it is solved in a least-squares sense to provide the
closest approximation to the examples.

An issue with using this method for setting the skinning
model weights, especially when the number of weights is large,
is that some weights may be inadvertently under-determined by
the example poses. This could happen when all examples of a ball
joint’s movement lie in one plane, for instance. The model that
gives the closest fit for that particular set of examples may react
badly when the joint’s full range of motion is exercised. This result
is referred to as overfitting.

2.4.2 Training Parameters

Both Animation Space and MWE require steps to be taken to
keep under-determined weights as small as possible. The method
suggested by the authors is the use of a regularisation parameter
which penalises the growth of poorly determined weights while
remaining small enough not to affect properly determined weights.
This parameter complicates the fitting process as the optimal value
may not be readily apparent.

In addition to a regularisation parameter, Wang and Phillips
[2002] use Principal Component Analysis (PCA) with MWE to
reduce the dimension of the linear system being solved. This
introduces another parameter, the number of principal components
being retained. This additional parameter further complicates the
fitting process as it is not clear to what degree the two parameters
interact with one another.

3 Testbed

We compare the three skinning frameworks based on the quality
of the approximate meshes they generate. Four data sets, each
consisting of a sequence of polygon meshes, representing the poses
of a character in an animation sequence, are used to determine
the error introduced. The data sets are: horse (a horse galloping),
armposes (an arm bending), camel (a camel galloping) and twist
(an arm with the wrist twisting). To the best of our knowledge,
these animated sequences were not created using any of the three
techniques compared and should therefore not favour a particular
skinning framework.
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Figure 2: System overview. Given a set of example meshes for a character our system first recovers the skeleton for each pose. A training set
of skeletons and meshes (green box) are then used to compute the weights for the skinning model according to the skinning framework (e.g.,
SSD). The model is then used to generate new meshes from specified skeletal configurations. These may come from the original meshes or
be skeletons in new poses. The models shown are the actual models used (left), along with the recovered skeletons (middle) and the meshes
generated using Animation Space (right).

These data sets do not have skeletons, which are required for
the skinning frameworks. Therefore, before the frameworks can
be used, skeletons must be recovered from the mesh sequences.
Figure 2 shows our process of skeletal recovery and subsequent
generation of the mesh approximations. For each of the skinning
frameworks a skinning model is trained using a subset, or training
set, of the data. The skinning models are then used to generate the
meshes for the full data set. By comparing the generated meshes
with the originals, the error introduced by each framework may be
calculated and then compared both against training examples and
unseen poses.

3.1 Skeletal Recovery and Mesh Generation

From each of the data sets, a training set is chosen. This is done by
taking a subset of the full data set which consists of meshes that are
evenly spaced through the animated sequence. This training set is
then used to recover a model’s skeleton in one of the poses, known
as the rest pose, which is chosen arbitrarily. The general approach
to recovering a character’s skeleton [Anguelov et al. 2004; James
and Twigg 2005; Cheung et al. 2003] is to first estimate which parts
of the input mesh sequence belong to a specific rigid section (RS)
and the corresponding transformations of that RS, then recover the
skeletal structure.

In part, we followed the approach of James and Twigg [2005] who
suggest that triangles with similar rotation sequences belong to the
same RS. They advocate using Polar Decomposition to extract a
triangle’s rotation sequence from the rest pose to each subsequent
pose. Triangles are then divided up into sets which have similar
rotation sequences using the Mean Shift clustering algorithm
[Cheng 1995; Comaniciu and Meer 2002]. Each set then indicates
a RS of the mesh. They do not recover the skeletal structure of the
character, but use the RSs to estimate the movement of the bones.
Anguelov et al. [2004] use the EM (Expectation-Maximisation)
algorithm to refine an initial estimate of the RSs and bone trans-
formations. The E-step optimises the assignment of mesh vertices
to RSs based on the RS transformations and the connectivity
of a mesh, which favours RSs that are connected. The M-step

then uses the Iterative Closest Point algorithm to find new bone
transformations. We apply the method of James and Twigg [2005]
to find new bone transformations in the M-step. Once the RSs
have been refined the skeleton can then be recovered and the bone
transformations found that align the skeletal bones in the rest pose
with each of the poses in the set.

Using the skeletons and a training set, the framework assigns
a number of weights to each vertex for each bone that affects its
position. Following the work of Sloan et al. [2001], Wang and
Phillips [2002] and Merry et al. [2006], we implement modified
least-squares solvers to assign these weights. Since each vertex’s
position is approximated for a particular pose individually, we
solve for the weights of a particular skinning model on a vertex
by vertex basis. By equating the position of each approximated
vertex with the position of the vertex in the known reference mesh,
we set up an over-constrained linear system that may be solved
in a least-squares sense. The weights found thus minimise the
geometric difference between the approximate and ideal vertex
position.

The weights form part of the skinning model for the charac-
ter, which is used to generate meshes for given skeletal positions.
The skeletal positions we use correspond with the meshes used in
the training set as well as meshes that were left out of the training
set. Testing against meshes which were not used in the training set
tests how well the frame work generalises.

3.2 Evaluating Approximation Quality

The trained skinning models are used to generate meshes for both
the training poses used in creating the model (to test closeness
of fit) and for other poses, not part of the training set (to test
generalisation). This is done for each of the data sets and then the
generated meshes are compared with the corresponding reference
meshes. In addition, temporal artefacts and the perceived quality
of the approximations are measured through human studies.

The mesh approximations generated are compared to the

180



originals using two of the Figures of Merit described by Silva
et al. [2005]. These are geometric deviation, a measure of the
geometric distance between each vertex of the approximate mesh
to the closest point on the reference mesh, and normal deviation,
the difference between the normals of corresponding vertices in
the approximate and reference meshes. The geometric deviation
gives an indication of how close the shape of the approximation
comes to the original. The normal deviation is an important
measure as normals are used in lighting calculations and so a
large deviation in the approximate mesh may produce visual
artefacts when the mesh is rendered. The mesh comparison
tool Polymeco [Silva et al. 2005] is used to measure the geo-
metric and normal deviation between each of the meshes generated.

The skinning frameworks will ultimately be used to create
animations for a user, so human studies seek to find which skinning
framework produces the best quality animations as seen by human
viewers. A skinning framework may produce meshes with low
geometric error, but still create temporal artefacts that are visually
disturbing to the user, such as a small defect flickering on and off
over time. To measure this type of artifact users were shown one of
the data set animations and the corresponding generated animation
side by side and asked to rate their similarity, on a scale of 0 to
10. The users were not told how to evaluate these images or what
similarity scale to use as we were interested in a user’s subjective
opinion of the animations generated rather than a defined metric.

3.3 Limitations

The limitations of the comparison that we carry out are mostly due
to the availability of data. We limit the comparison to the four data
sets stated above which, to the best of our knowledge, were not
generated with any of the three tested frameworks and so should
not favour any one unduly. In addition, the recovery of skeletons
for the data sets introduces some dependency on the skeleton fit
though the generation of these skeletons is necessary and the same
skeletons are used for all three frameworks.

4 Results

The results of our comparisons are presented as follows: we first
discuss the mesh comparisons carried out and then give the results
of the human studies. Finally, we discuss the usability of each skin-
ning framework, with particular reference to the setting of regular-
isation parameters.

4.1 Mesh Comparisons

For each of the data sets, two different subsets of the generated
meshes are of interest. The performance of a skinning framework
on the poses used to train the skinning model gives an indication of
the best case performance of the framework. The approximations
of poses that are not in this training set show how well a framework
generalises.

A representative selection of results for the horse data set are
given in Figure 3. The colour scale is kept constant across the
comparisons for the different frameworks so that the quality of the
meshes generated may be visually compared. A training set of 10
poses was used to train the respective skinning models, with the
poses being chosen to reasonably represent the full range of motion
of the horse. Rows (a) and (b) show a pose taken from the training
set used to set the weights of the respective skinning frameworks
with row (a) showing geometric deviation and row (b) normal
deviation. As these show, SSD fits the example poses least tightly
followed by Animation Space with MWE fitting most tightly.

This is expected due to the increasing flexibility of Animation
Space and MWE. It is interesting to note that all three frameworks
produced little error when generating poses from the training set
with the maximum geometric deviation for any training pose being
less than one percent of the horse’s length.

Rows (c) and (d) show the respective geometric deviation
and normal deviation of a pose not used to train the models. As
can be seen, MWE introduces greater error than either SSD or
Animation Space. This poor generalisation is due to overfitting
(see section 2.4.1). Animation Space performed far better on the
non-training set poses, giving better approximations than SSD to
the original data set.

The results for the other data sets were qualitatively similar
to that of the horse character. Error maps representing geometric
deviation for a non-training set pose from each of the other
three data sets are given in Figure 4. In general, MWE fits
the training poses tightly, but generalises poorly to new poses,
while Animation Space suffers far less from overfitting. SSD
exhibits the expected volume loss as may be seen in pose (a)
which is taken from the bending arm data set. The generated
meshes showed volume loss and creasing at the elbow due to
the inflexibility of the SSD framework. The MWE-generated
mesh had far greater error due to overfitting as the movement
of the vertices on the shoulder were not well specified by the
example poses, the shoulder moving little throughout the examples.

Another characteristic SSD defect is seen in the twisting arm
sequence (b) in which the wrist collapses in the “candy-wrapper”
effect, demonstrated by the area of high error in the figure. Both
MWE and Animation Space frameworks are better able to capture
the wrist’s movement but MWE again suffers from overfitting
on the sections that are under-determined by the training poses.
Animation Space outperforms the other two frameworks, removing
joint collapse while introducing little other error. Due to the
limited number of available poses, the skinning models for the
camel data set (c) were trained using only six example poses. The
smaller number of poses greatly increased the overfitting problems
experience by MWE, resulting in large errors for some poses (see
Section 4.3). Animation Space and SSD handled the reduced
number of training poses better, exhibiting far fewer extreme errors.

The results for the mesh comparisons are summarised in Ta-
ble 1 which shows that Animation Space produced consistently
lower errors than SSD and MWE. For example, MWE produces
between two (for the horse data set) and thirteen (for the armposes
data set) times more mean geometric error than Animation Space
while SSD introduces about twice as much error.

4.2 User experiments

In the human studies we requested users to provide a similarity
rating for each framework comparing a generated animation and
the corresponding reference data set. Higher similarity ratings
show that a framework produces approximations of a higher
quality. 19 students, studying a variety of degrees, volunteered to
compare the 24 animations. The animations were from the 4 data
sets, animated using 3 skinning frameworks from 2 viewing angles.
Each pair of animations that a user was asked to compare provides
a sample of how similar the user found the animations. There are
456 samples in total with 152 for each of the skinning frameworks.

The following results were obtained: SSD’s similarity rating
has a mean of 7.88 with a 95% confidence interval of [7.54;8.21]
and standard deviation of 2.09, Animation Space a mean of 8.88
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Figure 3: Geometric deviation (a and c) and normal deviation (b and d) when fitting example poses (a and b) and non-example poses (c and
d) of the horse data set. A training set of 10 poses was used to train each of the frameworks. Polymeco indicates the error by a colour scale,
blue being the least error and red the greatest error. Note that the colour scales are constant along the rows, that is for a set of meshes in a
particular pose, but differ down the columns, that is from pose to pose.

Figure 4: The geometric deviation for the armposes (a), twist (b) and camel (c) data sets. A training set of size 4, 3 and 6 respectively was
used to train the skinning frameworks. The SSD arm and twist exhibit joint collapse and candy-wrapper defects while MWE shows signs of
over-fitting.
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with a 95% confidence interval of [8.67;9.09] and a standard
deviation of 1.31, and MWE a mean of 6.28 with a 95% confidence
interval of [5.87;6.71] and a standard deviation of 2.63. Table 2
gives the t-test, which show that there are significant statistical
differences between the population means for all populations as
each of the p-values are less than 0.05. In short Animation Space
produces the meshes users found to be most similar to the ideal,
followed by SSD and then MWE.

4.3 Parameter Sensitivity

The quality of the meshes generated by each of the skinning
frameworks is dependent on one or more parameters. The setting
of these parameters affects the ease with which the framework may
be used. Although we made use of regularisation when training the
SSD skinning model, the small number of weights used results in
the framework showing no improvement, as seen in Figure 5(a).
This indicates that SSD requires no parameters to be set as part of
the model training process.

Animation Space benefits from regularisation, as exhibited in
Figure 5(b). The graph shows the effect of the regularisation
parameter on the mean geometric error for the entire horse data set.
The parameter is fairly easily set due to the flatness of the graph
around the single minimum which makes the parameter reasonably
robust. The two parameters required by MWE complicate the train-
ing process as the dimension of the parameter space is increased
and no study has been done of the relationship between them. The
surface plot in Figure 5(c) shows the flat trough around the point of
minimum error, which allows the parameters to be varied slightly
without having a drastic effect on the error introduced. The error
plots for the other three data sets behave similarly with the optimal
parameters value for each data set being in the same region. This
allows the results from one data set to be used as a starting point
when setting the parameter value for another.

Another consideration when using the skinning frameworks
to generate character skins is the sensitivity of the framework to
the number of example poses available. Since the creation of each
pose may require a significant investment in time and effort, this
sensitivity affects the usability of the framework. Figure 6 gives a
comparison of the change in error based on the number of example
poses used. Animation Space shows a gentle change in error, even
when only three example poses are used for the fairly complex
horse character, while SSD improves rapidly as further examples
are added. MWE shows a greater sensitivity to the number of
examples used, showing a large difference in error until 9 training
poses are used.

5 Discussion

We found the performance of Animation Space to be superior
to that of Skeletal Subspace Deformation and Multi-Weight
Enveloping (MWE) as evidenced by both human studies and mesh
comparisons. SSD produced the characteristic volume loss defects
and showed inherent limitations in its ability to closely fit the
example poses used for training. Despite these shortcomings, SSD
produced good approximations to most of the example animations.
MWE proved general enough to fit the example poses closely
but suffered from overfitting due to this flexibility. In contrast,
Animation Space was able to fit the example poses closely and did
not suffer from overfitting to the same extent, generalising well to
new poses.

A comparison of the computation speeds of the three frame-
works is carried out by Merry et al. [2006]. They create a

Figure 6: A plot of the mean geometric error against the size of the
training set. A skinning model for the horse data set was created
according to each of the tested frameworks.

simple renderer that implements animation in hardware and then
measure the frame-rate when rendering a number of different
models. This measures the speed with which the position of a
vertex may be found, given a particular skeletal configuration.
Animation Space performs the best, rendering approximately 50%
faster than SSD which, in turn, renders roughly twice as fast as
MWE. Note that these results are exaggerated as only the an-
imation algorithms are compared, not the entire rendering pipe-line.

The complexity of the code required to implement one of
the three frameworks may be compared in two parts. The anima-
tion calculation to find the position of a vertex in a particular pose
is virtually the same for all three of the frameworks [Merry et al.
2006]. The program to create a skinning model, that is determining
the weights that define the animation, is similar in length and
complexity for Animation Space and SSD. MWE requires the
additional application of Principal Component Analysis (PCA)
which increases the length and complexity of its model training
code.

Our comparison of the sensitivity of the three frameworks to
the number of example poses in the training set (Section 4.3)
showed that SSD and Animation Space are able to handle a small
number of examples better than MWE. This is due to the increased
amount of information required by MWE in order to determine the
large number of weights. With a small number of examples it is
likely that the movement of some vertices will be under-determined
and so result in poor generalisation and overfitting.

6 Conclusion

In this paper we have provided an objective comparison between
three real-time, linear skinning frameworks. This comparison
found Animation Space to consistently perform the best. SSD is
simple and efficient but exhibited characteristic errors, such as
join collapse. MWE created skinning models prone to overfitting,
due to the difficulty in determining the large number of weights
required, and adds complexity to the skinning framework. Ani-
mation Space is as simple as SSD but corrected much of the error
found with SSD while generalising well to new poses.

The comparison we conducted is objective in that the same
tests were carried out on each of the frameworks with the same
input poses and skeletons. These tests were designed to be similar
to the real-world use of these techniques and to measure the quality
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(a) SSD (b) Animation Space

(c) MWE

Figure 5: A plot of the mean error against the parameter values for each of the frameworks applied to the horse data set. SSD shows that the
closest fit is achieved with no regularisation and AS uses a parameter value of 0.015 for closest fit. The MWE framework uses two parameters,
one for the PCA and another for regularisation. The lowest mean error is found when the parameters equal 2 and 0.53 respectively. The SSD
and Animation Space graphs use 10 training examples while the MWE graph uses 13, which accounts for the lower error attained.
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Data Set Framework Mean Geom Error Max Geom Error Mean Normal Error Max Normal Error
AS 0.00073 0.0533 2.41 179.1

Horse MWE 0.00143 0.0991 4.29 178.8
SSD 0.00117 0.0687 2.43 177.3
AS 0.000314 0.0502 2.29 180

Camel MWE 0.006134 0.1095 7.66 180
SSD 0.001221 0.0785 3.18 180
AS 0.0169 0.475 0.683 21.6

Armposes MWE 0.2299 0.535 1.381 22.3
SSD 0.0269 0.961 1.249 55.6
AS 0.00218 0.0260 3.42 166

Twist MWE 0.01824 0.1267 14.46 179
SSD 0.00520 0.0421 6.23 85

Table 1: Mean and maximum approximation errors across all poses in each data set are given. The mean geometric error is the average
error across all vertices in a pose and all poses in the data set. Similarly, the mean normal error is the average deviation of the normal at
each vertex in degrees. The maximum geometric error and normal error are included.

Variable Group 1 Group 2 t-value df p Std.Dev. Std.Dev. F-ratio p
Group 1 vs Group 2 Mean Mean Group 1 Group 2 Variances Variances
SSD vs AS 7.88 8.88 −5.03 302 8.36×10−7 2.09 1.31 2.56 1.43×10−8

MWE vs SSD 6.29 7.88 −5.81 302 1.56×10−8 2.63 2.09 1.59 4.89×10−3

MWE vs AS 6.29 8.88 −10.9 302 1.90×10−23 2.63 1.31 4.06 1.24×10−16

Table 2: t-test for comparing the mean similarity rating of each of the skinning frameworks against each other. Each of the tests show that
there is a statistical difference between the means.

of the skin meshes they produce. The comparison is limited by
the number of example data sets used, as well as the possible
dependence of the comparison on the quality of the skeleton-fitting.
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