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We investigate whether specific properties of molecular

dynamics trajectory files can be exploited to achieve effective

file compression. We explore two classes of lossy, quantized

compression scheme: ‘‘interframe’’ predictors, which exploit

temporal coherence between successive frames in a

simulation, and more complex ‘‘intraframe’’ schemes, which

compress each frame independently. Our interframe predictors

are fast, memory-efficient and well suited to on-the-fly

compression of massive simulation data sets, and significantly

outperform the benchmark BZip2 application. Our schemes

are configurable: atomic positional accuracy can be sacrificed

to achieve greater compression. For high fidelity compression,

our linear interframe predictor gives the best results at very

little computational cost: at moderate levels of approximation

(12-bit quantization, maximum error � 10�2 Å), we can

compress a 1–2 fs trajectory file to 5–8% of its original size.

For 200 fs time steps—typically used in fine grained water

diffusion experiments—we can compress files to �25% of

their input size, still substantially better than BZip2. While

compression performance degrades with high levels of

quantization, the simulation error is typically much

greater than the associated approximation error in such cases.
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Introduction

The rapid increase in available computational power at high-

performance computing centers over the last decades has rev-

olutionized computational science. However, the concomitant

massive increase in the data produced by scientific simula-

tion—the so called ‘‘data deluge’’—has created another set of

problems. In the case of molecular dynamics (MD), simulation

trajectory files can now record the motion of millions of atoms

over nanoseconds to microseconds, producing terabytes of

data. Efficient data compression methods are thus needed, not

only for storage of these huge data sets, but also to facilitate

remote access to large data files for local analysis.

An effective MD compression scheme should exhibit the fol-

lowing characteristics:

• High compression. The ratio of the compressed trajectory

file size to the original uncompressed file size should be as

small as possible, as achieving significantly smaller file sizes is

the primary purpose of compression.

• Low run times. The computational cost of both compres-

sion and decompression should be minimal. For instance, the

particular case of compression for once-off transmission makes

no sense if compression times dominate over the original

uncompressed transmission time. However, for some applica-

tions, it is worth spending more time on compression (often

executed once on a more powerful machine) than on decom-

pression (often executed multiple times on less powerful

machines), if this will yield a better compression or faster

decompression times.

• Streaming. Ideally, an MD compression scheme should

allow for compression of MD frames, as they are produced.

This has multiple benefits: the simulation and compression

can be executed in parallel, the original uncompressed data

set can be held on secondary storage/disk, allowing for much

larger file sizes, and different subsets of the data can be com-

pressed independently in parallel.

• Configurability. It should be possible to sacrifice accuracy

for higher compression, when required. For instance, visualization

of MD trajectories typically requires less accuracy than analysis.

• Simplicity. Implementations of complex algorithms tend

to be less robust and harder to extend and maintain.

Although data compression is a well-studied problem, with

a number of schemes aimed at the compression of domain-

specific data (such as 3D models, images, and videos[1,2]), the

compression of MD trajectory files has not yet been explored

to any great extent. In most cases, the only available methods

are generic compression applications such as bzip2[3]—a pop-

ular and highly efficient public domain compressor used in

many scientific computing applications. MD compression

methods developed thus far consider neither the computa-

tional cost of compression nor the specific structure of the MD

data files. Often, the entire data set needs to be collected

before compression can begin, and the order of atoms in the

trajectory file may be sacrificed. The preservation of point

ordering across frames is essential for many postsimulation

analyses of MD trajectories. In addition, little attention is paid

to the characteristics of the input data or run time, though
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these factors can have a significant effect on the final utility of

the algorithms. Structural properties that might be exploited

are solvent water (which comprises a large proportion of

many simulated biological systems) and temporal coherence

(the positions of atoms tend not to vary significantly across

successive frames). Such domain-specific information can

potentially be leveraged to improve compression ratios.

Thus far, methods using principal component analysis (PCA)

have been the primary focus of data compression schemes for

MD.[4,5] PCA enables dimensionality reduction by discarding

redundant information—this allows atom locations to be rep-

resented with fewer coordinates, at the cost of accuracy. The

Essential Dynamics MD compression algorithm proposed by

Meyer et al.[4] compresses MD trajectory files to 5–20% of the

input file size, with a corresponding root-mean squared (RMS)

error of 0.5–0.1 Å. However, this method does not support

streaming, because all MD frames must be generated prior to

compression. File sizes are hence limited by the available phys-

ical memory. In addition, the authors do not provide run times

for their algorithm, so it is hard to assess the practicality of

their compression scheme for very large data sets. Run times

are, however, unlikely to be good, as PCA methods are expen-

sive: an Eigen problem is solved, requiring the inverse of a

large matrix system. It should also be noted that aggregate

measures like RMS tend to hide large but transitory spikes in

the error, which are very likely with the extreme dimensionality

reduction imposed by PCA.

Kumar and Tu[5] also use PCA for compression of MD trajec-

tories but focus on compressing the trajectory of each atom

separately. In their method, each trajectory is considered over

a contiguous subset of frames, and a PCA is computed for this

sequence. The reduced representation is then further com-

pressed by means of a Discrete Cosine Transform.[1] Their

quoted RMS errors are in the range of 0.2–0.45 Å. However,

the authors only discuss the compression step. For decompres-

sion, a set of basis 3-vectors and a mean 3-vector for each tra-

jectory is required, of which there may be millions. Further-

more, each frame block will require a new set of vectors. The

cost of storing this side information will severely impact com-

pression performance as the block size shrinks.

The existing extensive literature on point cloud compression

in the area of Computer Graphics[2,6,7] has potential, as yet

unexploited, application to MD trajectories: an MD frame can

be viewed as a 3D ‘‘point cloud’’ of atomic positions, with

additional metadata (such as velocity, atom ID, etc.) attached

to each point. The simplest approach to compressing volumet-

ric point clouds is to use an octree—a data structure that

decomposes a 3D volume into a series of nested cuboids. The

MD frame compressor proposed by Omeltchenko et al.[8] fol-

lows this approach, using an octree to store the atom posi-

tions, and then traversing the octree using a ‘‘Z’’ (space-filling)

curve to minimize prediction error between consecutive point

samples. Frames are compressed independently, so no attempt

is made to exploit temporal coherence in this method. Results

indicate an average compression to 12% of the original file

size at a quantization interval of �10�3 Å with this method.

Unfortunately, this scheme sacrifices the numerical order of

atoms in the MD file: the uncompressed file will not list the

atoms in the same order in which they were compressed.

The point cloud compressor proposed by Devillers and Gan-

doin[6] uses a kd-tree to ‘‘progressively’’ encode a general 3D

point cloud. The kd-tree is a generalization of the octree,

which allows for nonuniform splits of each parent node. The

algorithm traverses the kd-tree and outputs a sequence of

numbers representing the point count in each tree cell. Only

the count of one cell of a split parent cell need be encoded:

the other can be immediately inferred from the parent point

count. An arithmetic encoder[1] is used to optimally compress

the number of bits needed for each number in the sequence.

Unfortunately, in this scheme the entire data stream needs to

be decompressed to get back the original point set. While the

compression results are good, this again comes at the cost of

point ordering, because the scheme will not produce points in

the same order in which they were compressed.

Point cloud schemes usually use quantization to enable

high compression ratios: each point coordinate is allocated to

a specific bin in a three-dimensional grid. The number of bins

is determined by the available ‘‘bit budget’’ per coordinate. For

example, 12 bits per coordinate allows for 212 ¼ 4096 bins,

which uniformly subdivides the min/max range of that coordi-

nate. By comparison, a standard IEEE single precision ‘‘float’’

requires 32 bits of storage. Quantization makes the compres-

sion process inherently ‘‘lossy,’’ but lossless compression

schemes result in lower compression ratios and are only used

if every bit must be precisely reconstituted. In the case of MD

data, the input is already quantized to the precision permitted

by the floating point representation and the precision at

which data needs to be represented is context-dependent. We

take the view that additional quantization is often acceptable,

as seems to be the implicit assumption of all the compression

papers we have surveyed. In contrast to the PCA methods dis-

cussed earlier, quantization of the space gives an absolute

maximum error bound that will be never exceeded. For exam-

ple, the MD compression scheme of Omeltchenko has a maxi-

mum error bound of 10�3 Å, whereas the Essential Dynamics

paper does not report on errors below 0.1 Å, and these RMS

errors only permit compression ratios of around 14–22% for

the protein structures they explored.

After quantization, additional data compression of point

clouds can be achieved using the current frame data to pre-

dict the location of points that have not yet been processed.

A good prediction scheme will result in small prediction errors,

which can be losslessly compressed by means of ‘‘entropy cod-

ing.’’[1] The schemes most commonly used to compress points

clouds are tailored toward the compression of an implied 3D

mesh surface.[2,7] In these cases, sensible prediction schemes

can be devised that roughly approximate the implied surface

and lead to small prediction errors and correspondingly good

compression. However, the molecules in an MD simulation are

typically space-filling and thus not suited to such surface

predictors.

In this work, we investigate whether properties of common

MD trajectory files—the large proportion of solvent water in

many simulated systems and temporal coherence between
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frames—can be exploited to achieve better compression. Spe-

cifically, we develop and compare two classes of lossy, quan-

tized compression scheme: ‘‘interframe’’ predictors that exploit

temporal coherence between successive frames in a simulation

(using low-order polynomial predictors followed by adaptive

arithmetic entropy coding), and more complex ‘‘intraframe’’

schemes that compress each frame independently and exploit

the fairly rigid geometry of water molecules in MD simulations.

(The water compressor compresses each frame independently,

because water generally exhibits poorly correlated structure

across time.) In general, our proposed schemes exhibit high

compression ratios, low run times, streaming, configurability,

and simplicity.

We benchmark our algorithms against a number of pub-

lished methods: our optimized version of Omeltchenko et al.,[8]

Devillers and Gandoin,[6] as well as BZip2.[3]

We evaluate our methods on a number of trajectory files

incorporating a variety of structures at different quantization

levels and data sampling rates, to ensure broad coverage of

likely trajectory files and identify the most appropriate com-

pression schemes. We are particularly interested in the com-

pression of simulations with small time steps, because the limi-

tations of existing compressors have largely meant that,

currently, such simulations are substantially subsampled prior

to compression. Our results show higher compression ratios

and faster run times than both computationally expensive

point cloud compressors and current schemes designed specif-

ically for MD compression.

Methods

We focus on compression of atom positional data, in keeping
with prior work. Our compression algorithms begin with quan-
tization of the atomic coordinates as a first step and then pro-
ceed to lossless compression of this quantized data. We use a
simple linear quantizer[1] along each coordinate axis, as fol-
lows. Given a real value x [ [a, b], and a quantization budget
of q bits, x is mapped to an integer bin index, n [ [0, 2q � 1],
according to

n ¼ x � a

b� a
2q � 1ð Þ þ 0:5

j k
(1)

where b�c is the floor operator. To recover a real number x

from a bin number n, we evaluate

x ¼ aþ n
b� a

2q � 1

� �
(2)

The maximum quantization error for q bit quantization is a
function of the simulation bounding box size. More specifically,

max error ¼ 1

2q�1
box diagonal (3)

where box_diagonal is the diagonal length of the simulation

bounding box. When providing compression results we always

indicate the maximum quantization error and bounding box size.

Our compression algorithms produce quantized ‘‘bin num-
bers’’ for each positional coordinate as output. These bin num-

bers are not uniformly distributed over the entire range of
possible quantized numbers. Instead, they tend to cluster in a
way that can be usefully exploited by an entropy coder. Arith-
metic coding[1] allows one to closely approach the theoretical
entropy bound of the bin number sequence. A single arithme-
tic coder is used to compress the bin numbers for x, y, and z
quantized values, in turn. As each bin number is encoded,
new bits are added to a growing bit string that corresponds
to the encoded data stream.

Arithmetic encoder

We have chosen to implement a modified form of ‘‘adaptive
arithmetic coding.’’[9] Our implementation is based largely on
publicly available code.[10] Those parts of the code which han-
dle the symbol mapping and frequency calculations needed in
arithmetic coding have been replaced with our own data
structures. The principal justification for our modifications is to
reduce the size of the symbol table, because many bin values
are unlikely to be used. This, in turn, reduces the size overhead
associated with arithmetic coding.

A symbol’s frequency is stored in a ‘‘Fenwick tree’’[11] for effi-
cient updates and fast access. In the following pseudocode, the
table array represents the data stored in the Fenwick tree.

We need to store two mappings: a mapping from symbol
numbers to data for decoding and a mapping from data to
symbol numbers for encoding. The mapping from symbol num-
ber to data uses a simple array. We provide two procedures to
access data by symbol and add new data—Algorithms 1 and 2.

Algorithm 1 findDataFromSymbol(dataTable, symbol)

return dataTable[symbol]

Algorithm 2 addSymbolToData(dataTable, data)

symbol ( len(dataTable)

data[symbol] ( data

return symbol

We use a data structure called a ‘‘trie’’[12] to store the map-
ping from data to symbol numbers. The trie is structured like
a tree and allows efficient mapping from byte strings to other
data.

We describe two algorithms to retrieve a symbol from data
mapping from the trie and add a new mapping to the trie.

Algorithm 3 findSymbolFromData(trie, data)

trieNode ( trie

for all byte in data do

if hasChild(trieNode, byte) ¼¼ False then

return � 1

end if

trieNode ( child(trieNode, byte)

end for

return value(trieNode)

Algorithm 3 returns the symbol identifier if it is found other-
wise it returns �1. The child(trieNode, byteValue) returns the
byteValue’th child of trieNode, whereas hasChild(trieNode,
byteValue) tests if trieNode has the requested child. value(trie-
Node) returns the value of trieNode’s value variable.
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Algorithm 4 mapDataToSymbol(trie, data, symbol)

trieNode ( trie

for all byte in data do

if hasChild(trieNode, byte) ¼¼ False then

child(trieNode, byte) ( Trie()

end if

trieNode ( child(trieNode, byte)

end for

value(trieNode) ( symbol

Algorithm 4 associates data with a symbol id. Trie() is a
function that creates a new Trie node. The initial trie node
contains no children and the value stored at the node is initial-
ized to �1. Algorithm 5 interacts with the arithmetic coder to
output data. The arithmetic coder uses an ‘‘adaptive model.’’[9]

so additional work is done when encountering new symbols.

Algorithm 5 output(data)

symbolID ( findSymbolFromData(dataTrie, data)

if symbolID ¼¼ �1 then

mapDataToSymbol(dataTrie, data, numSymbols)

encode(_NEW)

updateFrequency(_NEW)

writeRaw(data)

numSymbols ( numSymbols þ 1

end if

if symbolID = �1 then

encode(symbolID)

updateFrequency(symbolID)

end if

The encode(symbol) function requests the arithmetic coder

to output the designated symbol. updateFrequency(symbol)

corresponds to updating the frequency of the symbol in the

Fenwick tree. writeRaw(data) is a method that we added to our

arithmetic coder. It allows us to safely output data to the stream

without interfering with the arithmetic coder. There are no

other special implementation details attached to this function.

Finally, Algorithm 6 reads a symbol from the arithmetic
coder:

Algorithm 6 read()

frequency ( decode()

readSymbol ( findByFrequency(frequency)

updateFrequency(readSymbol)

if readSymbol ¼¼ _NEW then

newSymbolData ( readRaw()

addSymbolToData(dataTable, newSymbolData)

numSymbols ( numSymbols þ 1

return newSymbolData

end if

if readSymbol = _NEW then

return findDataFromSymbol(dataTable, readSymbol)

end if

The decode function reads from the arithmetic coder. The
read data must be mapped from a cumulative frequency to a
symbol number. We exploit the properties of the Fenwick tree

(efficient prefix sum calculation) with the findByFrequency(fre-
quency) function returning the appropriate symbol id. read-
Raw() is analogous to the writeRaw() but used to read raw data.

Interframe prediction

For interframe prediction, we require only a small number of
preceding frames to predict atom positions in the new, unpro-
cessed, frame. This reduces the memory requirements of our
algorithms, and opens the way for compression of streaming
data. Once a prediction has been generated, the difference
between each atom’s true position and the prediction (a
‘‘delta’’) can be quantized and compressed using adaptive arith-
metic encoding.

The frames comprising an MD simulation are usually tempo-
rally coherent. This suggests the use of low-order polynomial
predictors to approximate the atom positions in the next
frame, relative to the frames already processed. It is assumed
that the frames are spaced equally in time.

The following predictors were implemented:
Polynomial. The polynomial predictor interpolates the cur-

rent position and K previous atom positions, {(x, y, z)(ti), i ¼
0,…,K}, and extrapolates the position in the next frame. When
K ¼ 0 we have a constant predictor, which gives rise to ‘‘delta
encoding.’’

Given a set of data points, {(t0, y0),…,(tK, yK)}, we can define
the Lagrange polynomial[13] as

Fy tð Þ ¼
XK
j¼0

yj‘j tð Þ (4)

where

‘j tð Þ ¼
Y

i¼0;i 6¼j

t � ti
tj � ti

(5)

Each atom coordinate will have a similar interpolant defined.
We can optimize this computation by noting that the ‘i
weights can be precomputed when we only evaluate F() at a
finite set of integral values. F() will only be evaluated over the
discrete set [0,K]. Typically, K is small (one or two for our
work), so the storage overhead is minimal.

Spline. Higher order polynomial interpolants tend to oscil-
late. To counter this, we also implemented a spline predictor
that only interpolates the first and last samples over the previ-
ous frames and smooths the intervening positional data. The
spline curve can then be used to predict the atom position in
the next frame. The (Bezier) spline interpolant[13] can be com-
puted using:

Fy tð Þ ¼
XK
i¼0

K
i

� �
1� tð ÞK�i tiyi (6)

Similar interpolants can be defined for each coordinate
function. Note that we have to scale the input parameter do-
main to ensure the interpolant values lie in the correct range:
t / t/K.

We can precompute the binomial coefficients, because we
only consider a small set of integral values of K.

Note that no additional calculation is required for each
atom, beyond the simple equations presented earlier.
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Algorithm 7 Interframe Compression

file_header ¼ {comp_params, f_params}

initialize AC state

write(stream, file_header)

while frames available do

f ¼ get_next_frame()

frame_header ¼ {bounding_box}

write(stream, frame_header)

for i ¼ 1 to number_of_atoms do

A ¼ quantize(Atom[i], bounding_box)

if no_prediction_frames then

d ¼ A

else

A* ¼ predict(pw[i], comp_params)

d ¼ quantize(A*) – A

end if

pw[i] ¼ update_pred_window(pw[i], A)

arithmetic_encode(stream, dx)
arithmetic_encode(stream, dy)
arithmetic_encode(stream, dz)

end for

end while

Algorithm 8 Interframe Decompression

initialize AC state

{comp_params, f_params} ¼ read(stream)

while stream has data do

{bounding_box} ¼ read(stream)

i ¼ 1

while frame has data do

dx ¼ arithmetic_decode(stream)

dy ¼ arithmetic_decode(stream)

dz ¼ arithmetic_decode(stream)

if no_prediction_frames then

A ¼ d
else

A* ¼ predict(pw[i], comp_params)

A ¼ quantize(A*) � d
end if

pw[i] ¼ update_pred_window(pw[i], A)

Atom[i] ¼ dequantize(A, bounding_box)

i ¼ i þ 1

end while

end while

The compression and decompression phases are summarized
by the pseudocode presented in Algorithms 7 and 8. Here,
pw[i] represents the prediction window for atom i and update_-
pred_window() adds and removes quantized atoms positions to
the appropriate prediction window. Note that prediction is
based on ‘‘quantized’’ atom coordinate values, because only
these are available to both the compression and the decom-
pression pass. The various mappings we referred to earlier have
not been expanded in this simplified outline.

Intraframe water predictor

As water is an important component in many simulations, one
cannot simply discard water molecules as a means of compres-

sion. However, water does display some structure, albeit very
locally.[14] As this structure is local, our water compressor does
not attempt to predict the movements of water molecules across
frames: the sequence is compressed on a frame-by-frame basis.

Each frame is processed to separate out water molecules
from nonwater constituents. The DCD/PDB input files enumer-
ate all atoms and the bonds they form with neighbors. Using
this information, we can generate a list of water molecules
and a list of nonwater atoms. The water predictors do not
attempt to compress nonwater constituents in any special
way: these atoms are simply quantized and subjected to inter-
frame delta encoding.

We use a water dimer model,[14] because this is easy to
implement and imposes a simple a priori constraint on adja-
cent loosely coupled water molecules. This setup is illustrated
in Figure 1. The oxygen, which is loosely bonded to the hydro-
gen, is expected to be �2.97 Å away from its neighboring oxy-
gen. In addition to this distance constraint, the vector created
by the ‘‘bound’’ OAH bond should be approximately lined up
with the vector attached to the ‘‘loose’’ OAH bond.

The water encoding scheme operates by building a span-
ning tree of ‘‘neighboring’’ water dimers and then traversing
the tree in a breadth-first fashion, compressing data as it pro-
ceeds. We use an approach similar to that of Merry et al.[7]: as
we traverse the tree, we write out the index of the best pre-
dicting encoder, along with the prediction deltas.

The edges in a tree induce a parent–child relationship. As
we proceed down each subtree, we use the molecular infor-
mation in a parent node to predict the orientation and posi-
tion of its children molecules.

Three water predictors are employed during tree traversal.
In the following, O0, H10, and H20 represent parent water atom
positions, and O, H1, and H2 the child atom positions we are
attempting to predict.

Constant. O is predicted as O0. This deals with some cases
were bonding information changes as the simulation pro-
gresses (information is fixed for the entire sequence);

H predictor1/2. The hydrogen predictor predicts O to be
along O0 � H10 or O0 � H20, approximately. More specifically
we assume a ¼ 0 and use O0 þ 2:97 � O0�H0 i

O0�H0 ik k for i ¼ 1, 2.
In all cases, we predict the new hydrogen locations as O,

because there is too much variability in the b parameter to do
otherwise.

A more detailed explanation of each stage is given as fol-
lows.

Algorithm 9 Graph Creation

create_graph(list_of_water_molecules):

graph ¼ graph of water molecules

kdtree ¼ KDTree(list_of_water_molecules.O_pos)

for all cur_mol in list_of_water_molecules do

radius ¼ 3 Å

for mol in kdtree.fixed_radius_search(cur_mol.O_pos, ra-

dius) do

graph.addEdge(cur_mol, mol)

end for

end for

return graph

Graph creation. we use a KD-tree for fast spatial lookups
when associating O atoms in ‘‘neighboring’’ water molecules.
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We can then add all water O atoms within a 3 Å radius as
new graph edges and proceed until all water molecules
have been processed. The pseudocode is shown in Algo-
rithm 9.

Algorithm 10 Spanning tree creation

create_spanning_component(graph, tree, component_root,

root):

min_priority_queue q

q.push((0, component_root ! root, constant))

while q not empty: do

(residual, v0 ! v, p) ¼ q.pop()

if v not in tree: then

tree add edge v0 ! v with predictor p

predictors ¼ {constant_predictor(p), h1_predictor(p),

h2_predictor(p)}

for all u in graph[v].children: do

if u not in tree: then

residual, predictor ¼ smallest_residual(u, predic-

tors)

q.add((residual, v ! u, predictor))

end if

end for

end if

end while

create_spanning_tree(graph):

root ¼ 0 // First molecule in file

spanning_tree ¼ tree()

for all v in graph do

if v not in spanning_tree then

create_spanning_component(graph, spanning_tree, v,

root)

end if

end for

Spanning tree creation. The above process connects water O

atoms to form a graph, but there may be isolated components

and there is no directionality to edges. We thus build a ‘‘mini-

mum spanning tree,’’ including the optimal predictor choice

(which will minimize delta/residuals) as we proceed. We use a

variant of well known Dijkstra’s shortest path algorithm[15]—

Algorithm 10. This will ensure that all components are linked

into the final tree and that each edge connects to its closest

predicted O atom neighbor.

Algorithm 11 Compression

compress(spanning_tree, water_molecules, root):

bfs_queue ¼ queue()

bfs_queue.push(root ! root)

while bfs_queue not empty do

v0 ! v ¼ bfs_queue.pop()

predictor ¼ spanning_tree.predictor_for(v0 ! v)

prediction ¼ prediction(v0, predictor)
water_molecule ¼ water_molecules[v]

O_residual ¼ water_molecule.oxygen – prediction

H1_residual ¼ water_molecule.hydrogen1 – water_mole-

cule.oxygen

H2_residual ¼ water_molecule.hydrogen2 – water_mole-

cule.oxygen

residual_encoder.encode(O_residual, H1_residual, H2_re-

sidual)

permutation_encoder.encode(water_molecule.index)

for u in spanning_tree.children(v): do

predictor ¼ spanning_tree.predictor_for(v ! u)

tree_encoder.encode(predictor)

bfs_queue.push(v ! u)

end for

end while

tree_encoder.encode(sentinel)

Compression. The spanning tree and per-edge predictor
choices are then compressed. The edges are encoded in
breadth first order, starting at the root of the tree and running
the procedure outlined in Algorithm 11 until all edges in the
breadth first queue have been processed. The adaptive arith-
metic coder introduced earlier is used to compress both the
prediction residuals (deltas) and the type of each predictor. A
permutation encoder is used to compress the permutation
vector required to correctly recover the water molecule order-
ing—see Algorithm 12.

Figure 1. Simple water dimer model.

Figure 2. Changes in compression ratio as a function of permitted approx-

imation error in Angstroms for the protein-normal dataset at a 2-fs sam-

pling rate. Omeltchenko, Quantization, and BZip2 compression exhibit

roughly comparable performance, whereas Delta and Linear compression

perform significantly better.
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Algorithm 12 Decompression

decompress(residual_decoder, tree_decoder, permutation_de-

coder):

q ¼ queue()

q.push((NULL, constant_predictor))

while q not empty: do

(parent, predictor) ¼ q.pop()

prediction ¼ predict(parent, predictor)

O_position ¼ residual_decoder.decode() þ prediction

H1_position ¼ residual_decoder.decode() þ O_position

H2_position ¼ residual_decoder.decode() þ O_position

child_preds ¼ list()

while true do

pred ¼ tree_decoder.decode_int()

if pred ¼¼ sentinal then

break

else

child_preds.push(pred)

end if

end while

index ¼ permutation_decoder.decode()

for pred in child_preds do

q.push((index, pred))

end for

water_molecules[index].oxygen ¼ O_position

water_molecules[index].hydrogen1 ¼ H1_position

water_molecules[index].hydrogen2 ¼ H2_position

end while

Decompression. Decompression reverses the compression
algorithm and regenerates a quantized frame—Algorithm 12.
This process recovers the tree structure, atom positions, and
molecule ordering.

Permutation encoding Unfortunately, the water compressor
does not guarantee that the trajectory file atom ordering will
be preserved across frames. This is a consequence of the tree
construction process that uses spatial proximity to associate
molecules, and thus determine tree traversal. These associa-
tions can change from frame to frame.

To deal with this issue, a permutation can be generated
which describes how to permute the original atom indices to
get the correct associations in the new frame. This is expen-
sive, however: each atom needs an index in this permutation
vector, and each frame (after the first) requires such a vector.
To compress this permutation vector, we apply the same
adaptive arithmetic coder used elsewhere in the compression
pipeline. If the order does not need to be preserved, this step
can be removed from the compression pipeline.

Evaluation

The evaluation of our compressors seeks to elucidate the

impact of several factors that may affect the efficiency of the

codecs. We examine the impact of the following factors:

Data quantization (Fig. 2). Quantizing the atom positional data

is vital to achieving useful compression ratios. We present

compression results for several quantization levels, all of which

yield an error much lower than 10�3 Å. Most reported

Figure 3. Changes in the compression ratio as a function of sampling, at

2, 20, 200, and 2000 fs sampling intervals. Omeltchenko, Quantization, and

BZip2 compression do not rely on interframe coherence, whereas Delta

and Linear compression do and degrade as the sampling interval increases.

The dataset is protein. Top: approximation error of 0.0091 Å (12-bit quanti-

zation); Bottom: approximation error of 0.00057 Å (16-bit quantization).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4. Changes in the compression ratio as a function of solvent ratio

for protein-normal (solvent ratio ¼ 0.275) and pure water (solvent ratio ¼
1.0) datasets at a 2-fs sampling rate and 0.00057 Å error. BZip2 compres-

sion is not affected by the solvent ratio, while, counter-intuitively, Bonds

compression, which exploits the structure of water, degrades as solvent ra-

tio increases. The ‘‘unordered’’ graphs show that if one discards atom order-

ing information, compression improves marginally. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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schemes choose a single quantization level, which may be

inappropriate and do not investigate this further.

Data sampling (Fig. 3). High fidelity simulations are often sub-

sampled to gain some insight into broad scale characteristics.

This subsampling step affects frame coherence and requires

careful scrutiny. We run tests at multiple subsampling intervals

to assess the impact of this operation on the compression ratio.

Water (Fig. 4). we wish to determine if explicitly modeling the

local intraframe properties of water can lead to a gain in com-

pression performance.

Simulation temperature. ‘‘hot’’ systems typically have different

frame to frame characteristics, and it is harder to predict the

future positions of points without running an expensive simu-

lation, which is not practical.

We implemented two generic point compressors: the kd-

tree point compressor[6] and the spanning-tree scheme of

Merry et al.[7] We included results for both BZip2 and straight

quantization, that is, compression by discarding precision bits

for each coordinate. We have also included our implementa-

tion of the MD compression scheme proposed by Omeltch-

enko,[8] as this is one of the few published MD-specific

compression schemes. This implementation was based on the

details provided in the article, and optimized where possible.

Simulation Details

To test our compression algorithms, six trajectory files were

generated, with simulation systems as listed in Table 1. In all

cases, the MD simulations were performed with the NAMD

package.[16] Solvate molecules were represented with the

CHARMM protein[17] and carbohydrate[18] parameter sets. Initial

velocities for the atoms were selected at random from a Boltz-

mann distribution at 300 K. All simulations were performed in

the canonical ensemble (constant nVT). The equations of

motion were integrated using a Leap-Frog Verlet integrator

with a step size of 1 fs. The SHAKE algorithm was used to fix

the length of bonds involving hydrogen atoms and the water

molecule geometry throughout each simulation. Nonbonded

interactions were truncated using a switching function applied

on a neutral group basis between 10.0 and 12.0.

Results and Discussion

We implemented two generic point compressors: the KD-tree

point compressor[6] and the spanning-tree scheme of Merry

Table 1. Information about the datasets used for experiments.

Dataset Molecule No. atoms Size (GB) Dim (Å) Time step (fs) # Frames % Solvent Temp. (K)

Protein-normal Ubiquitin 7053 19.73 40.7 � 42.4 �46.3 2 250,005 82.5 310

Protein-warm Ubiquitin 7053 19.73 40.7 � 42.4 �46.3 2 250,005 82.5 500

Pure water Water 5943 16.63 40 � 40 � 40 2 250,100 100 300

Carb-normal Maltose 10,353 2.91 3 � 55 � 55 1 25,100 94.3 300

Carb-isolated Maltose 45 1.44 3 � 55 � 55 1 2,500,100 0 300

DNA DNA 22,339 6.44 68.5 � 43.9 � 80.9 1 25,800 99.6 300

Columns are (from left): mnemonic used in figures, type of the primary molecule, number of atoms, size of the uncompressed simulation (in GB), simu-

lation box dimensions (in Å), simulation time step (in fs), number of frames in the simulation, percentage of solvent present, and temperature (in K).

Table 2. Computation time and compression ratios tabulated for six representative datasets (by row) against four compression schemes (by column) at

a quantization level of 12 and 16 bits (each table).

Dataset Err (Å)

Omeltchenko BZip2 Delta Linear

cratio Ctime dtime cratio ctime dtime cratio ctime dtime cratio ctime dtime

12 bit quantization

Protein-normal 0.0091 0.411 38.6 52.0 0.352 78.1 62.2 0.092 28.7 39.0 0.065 26.9 34.5

Protein-warm 0.0091 0.410 40.7 58.4 0.358 71.4 55.1 0.099 29.3 38.2 0.066 27.8 35.6

Pure water 0.0084 0.413 39.1 55.1 0.359 71.7 49.1 0.094 29.1 39.6 0.065 26.7 35.2

Carb-normal 0.0095 0.407 32.0 53.1 0.303 55.9 42.2 0.056 23.9 38.9 0.050 23.8 38.2

Carb-isolated 0.0095 0.486 64.8 118.8 0.068 70.2 64.7 0.079 73.8 64.5 0.084 74.8 64.7

DNA 0.014 0.408 32.3 54.2 0.288 56.8 44.3 0.050 25.9 40.9 0.048 23.4 39.0

16 bit quantization

Protein-normal 0.00057 0.538 47.4 65.7 0.488 94.9 70.3 0.215 43.5 62.3 0.173 41.3 61.4

Protein-warm 0.00057 0.537 48.4 66.2 0.489 96.7 72.7 0.223 45.1 61.5 0.174 39.2 57.2

Pure water 0.00052 0.539 49.0 67.5 0.492 93.6 65.7 0.218 43.6 60.1 0.174 38.9 55.2

Carb-normal 0.00059 0.533 40.6 60.5 0.483 79.6 56.7 0.173 36.1 52.8 0.118 31.6 47.3

Carb-isolated 0.00059 0.616 52.9 102.3 0.248 69.4 73.2 0.148 76.5 69.7 0.125 75.5 66.9

DNA 0.00087 0.534 40.1 65.2 0.478 78.7 62.6 0.166 38.2 56.8 0.109 30.3 49.1

The sampling rate is 2 fs. Maximum error (in Å) at each quantization level is provided in the second column. For each compression scheme, the col-

umns are (from left): the compression ratio, time to compress per GB (in seconds), and time to decompress per GB (in seconds). Linear compression

performs the best across all datasets in terms of both compression ratio and computation time. Experiments were executed on a single CPU of an Intel

i7 3.4 GHz quad-core with 16 GB of RAM.
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et al.[7] As neither of these schemes performs well compared

to BZip2, we exclude these results. In Table 2, we list results

for both BZip2 as well as our implementation of the MD com-

pression scheme proposed by Omeltchenko,[8] as this is one of

the few published MD-specific compression schemes. This

implementation was based on the details provided in the arti-

cle and optimized where possible.

Quantization level has the most significant impact on com-

pressibility. For example, quantizing a file of 32-bit IEEE single

precision numbers to 12-bit values compresses the file to

37.5% (12/32) of its input size. Applying further entropy cod-

ing will usually lead to further gains. Furthermore, each addi-

tional quantization bit utilized reduces the approximation error

by a factor of 2. Note that quantization error is directly related

to the size of the simulation box, as pointed out in section

‘‘Methods.’’ Our simulation box sizes are stated in Table 1, and

we list the associated quantization errors for all our results.

From Figure 2 and Table 2, it is clear that compression ratios

decrease linearly with a decrease in quantization level. Further-

more, the relative compression performance of the various

schemes does not change. This means that we can recommend

linear or delta prediction as the best schemes across all quanti-

zation levels. Note that these results are for a sampling rate of 2

fs; we clarify the affect of sampling rate on compression

performance later in this section. Linear compression shows a

noticeable gain over delta compression when the simulation

step size is small. A good trade-off between approximation

error and compression ratio exists at the 16-bit quantization

level. In this case, the maximum approximation error is 5.7 �
10�4 Å for our test cases, and our predictors achieve compres-

sion ratios of between 11 and 21%, as shown in Table 2.

At the 12-bit quantization level (9.1 � 10�3 Å maximum

error), the compression ratio improves to around 5–8.5% for

our examples, using linear prediction—Table 2. Observe that

the other schemes are consistently worse, by between 25 and

30%. Although the PCA-based method[4] achieves around 5%

compression at best, this is only possible with an enforced

RMS error of 0.1–0.5 Å. Extrapolating from Figure 2, our linear

predictor would achieve around 3% at 10-bit quantization

(maximum error 0.037 Å for our examples).

Our 12-bits quantization has an associated maximum repre-

sentational error of only 9.1 � 10�3 Å, which is well below the

error inherent in many experimental methods. It is also worth

noting that, if quantization levels of 10 bits are acceptable, then

the compression ratios of our schemes will improve markedly

across the board. By contrast, PCA-based methods cannot repre-

sent highly accurate nonlinear behavior, and their performance

is likely to degrade significantly, if high precision is required.

Next, we turn our attention to the impact of simulation step

size. Coordinates of the atoms in the system are typically pro-

duced in 1–2 fs time steps, but data ‘‘snapshots’’ may be

recorded much less frequently than this. Indeed, order to limit

the size of the trajectory files, data may be recorded less fre-

quently than is actually desirable for subsequent analyses.

Our simulations were run at a time step of 1–2 fs. This yields

extremely large data sets, which can be ‘‘down-sampled’’ for a

first-pass analysis. To determine the effect of simulation step

size, we subsampled the data by taking every nth frame,

where n ¼ {20, 200, 2000}. Results for the protein data set at

12-bit and 16-bit quantization are shown in Figure 3.

The linear and delta schemes perform best at all subsam-

pling levels, with delta gaining a small advantage over linear

prediction as the subsampling increases. This is expected,

because subsampling destroys frame-to-frame coherence and

predicting the new position as the old is likely to be as good,

or better, than any other scheme. As the sampling interval

increases, the compression ratios decrease monotonically at

between 5 and 10% for each additional factor of 10 increase.

To further clarify the impact of simulation step size, we have

shown compression results for all our data subsampled at 200

fs time steps—Table 3. Although the compression perform-

ance decreases with simulation step size, our schemes con-

tinue to outperform the benchmark methods.

Run-times are important when balancing fidelity against

compression gains, because better compressors often require

long run times. Some representative run times for our meth-

ods are given in Table 2. This table shows that, even for mas-

sive data sets, the times are not exorbitant, and that our pre-

dictors show improvement over the benchmark BZip2

application. The compression and decompression times are

somewhat asymmetric. For our predictors (delta, linear, and

spline), decompression generally takes longer than compres-

sion. Initially the difference ranges from 20 to 35% but dimin-

ishes as quantization level increases. Note that BZip2 takes

longer to compress than to decompress.

A further aspect of our compression analysis concerns the

possibility of exploiting the properties of water to bolster com-

pression gains in water-rich simulations. The results of apply-

ing our water model to two data sets—‘‘Protein-normal’’ and

‘‘pure water’’—with varying proportions of solvent (water) are

shown in Figure 4. We also present results for the benchmark

BZip2 compressor.

Table 3. Compression ratios tabulated for six representative datasets at

12 and 16 bit quantization.

Dataset Err (Å)

cratio

Omeltchenko BZip2 Delta Linear

12 bit quantization

Protein-normal 0.0091 0.411 0.371 0.235 0.255

Protein-warm 0.0091 0.410 0.371 0.252 0.269

Pure water 0.0084 0.413 0.373 0.241 0.259

Carb-normal 0.0095 0.407 0.369 0.214 0.232

Carb-isolated 0.0095 0.486 0.188 0.161 0.169

DNA 0.014 0.408 0.368 0.204 0.223

16 bit quantization

Protein-normal 0.00057 0.538 0.491 0.361 0.381

Protein-warm 0.00057 0.537 0.491 0.378 0.395

Pure water 0.00052 0.539 0.494 0.366 0.385

Carb-normal 0.00059 0.533 0.489 0.342 0.362

Carb-isolated 0.00059 0.616 0.307 0.270 0.277

DNA 0.00087 0.534 0.489 0.334 0.357

The sampling rate is 200 fs. The maximum error (in Å) at each quantiza-

tion level is provided in the second column. Delta compression edges

out Linear compression at this sampling rate. Our compressors continue

to perform best across all datasets. Experiments were executed on a

single CPU of an Intel i7 3.4 GHz quad-core with 16 GB of RAM.
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It is immediately apparent that the water compressor,

‘‘Bonds,’’ only performs marginally better than BZip2, which is

largely unaffected by the constituent atoms comprising a data

set (the two graphs for Bzip2 are essentially the same). Some-

what surprisingly, as the proportion of solvent increases, the

performance of the Bonds compressor actually decreases. This

can be attributed to the structuring of the first layer of solvent

water molecules by the protein solute, which is present in pro-

tein system, but not in pure water. This results in the first layer

of solvent waters being more structured and hence more eas-

ily predictable. The results demonstrate that in its current

form, the Bonds compressor is not competitive with our inter-

frame predictors, although it does still improve on bzip2. If

one does not need the atom indexing to be preserved across

frames, then compression performance increases by 3–5%.

The final aspect of the simulation, which might impact on

compressibility, is the simulation temperature. We ran the

experiments on the protein data set for both low (310 K) and

high (500 K) temperatures to assess what impact this had on

compression. This effects all schemes except bzip2, which

does not rely on higher-order information. The affect is, how-

ever, rather minor, only becoming apparent when the original

simulation is heavily down-sampled. In the case we evaluated,

the reduction in compression ratio varies from 2.5% at 12-bit

quantization to 4.8% at 20-bit quantization. It is debatable

whether this latter case corresponds to a plausible scenario,

however, as it is unlikely that great precision will be required

in atom positions if only 1 in every 1000 frames is retained.

Conclusions

We have developed and tested a number of lossy, quantized

compression algorithms designed specifically for MD trajectory

files: interframe predictors that exploit temporal coherence

between successive frames and an intraframe scheme that

compresses each frame independently and exploits the fairly

rigid geometry of water molecules in MD simulations. These

compression techniques satisfy the identified requirements of

high compression rates, low computational and memory over-

heads, streaming, configurability with regard to error bounds,

and simplicity of implementation.

Interestingly, first-order (linear) predictors tend to, on aver-

age, beat higher-order polynomial prediction for small time

step simulations. Linear predictors require only three simula-

tion frames and therefore do not need a complex disk-based

solution, even for very large simulations. The results for the

intraframe water compressions schemes are less compelling,

only showing a useful improvement if atom ordering is

discarded.

We demonstrate clear improvement over previously devel-

oped MD compression schemes where the compression of

high fidelity (small time step) simulations is required. In all

cases, we outperform the generic BZip2 compressor, which is

often used to achieve some level of compression for large

data sets. We find the interframe encoders to be fast, space-ef-

ficient and well suited to the compression of massive data sets

that cannot fit in memory. Where intervals between successive

frames in the trajectory file are large, a simple delta predictor

performs best. For high fidelity compression, our linear frame

predictor gives the best results at very little computational

cost: at moderate levels of quantization (max error �10 Å), we

can compress a trajectory file to 5–8% of its original size. This

accuracy is more than adequate for previews of data and for

some analyses. However, if necessary, we do support close to

full floating point precision, albeit with lower resulting com-

pression ratios. Our scheme is thus configurable and supports

different levels of compression, depending on the users’ accu-

racy requirement.

The methods we propose scale to massive trajectory files,

because they require at most three simulation frames to be

memory resident at any given time. Thus, they can be used to

facilitate the compression of trajectory files with small simula-

tion time steps, as they are generated, producing a signifi-

cantly smaller data buffer that can be streamed to a fast disk

array with less impact on total simulation time.

There are several avenues for future work. To improve the per-

formance of predictors, one could run a low fidelity MD simula-

tion rather than using simple trajectory extrapolation. Of course,

this would need to be a localized model to make it viable and

would inflate compression times significantly. In addition, each

trajectory can be predicted independently, making the com-

pression problem eminently suitable for parallelization. There is,

however, a space trade-off involved: processing trajectories

completely independently would, naively, require maintaining a

separate arithmetic coder state for each trajectory. Finally, one

can investigate predictors that exploit the known spatial rela-

tionships of atoms within a larger molecule. Once a particular

atom has been identified, the relative positions of its neighbors

are also constrained and can be more efficiently predicted.
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