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Abstract
Traditionally, levels of detail (LOD) for animated characters are computed from a single pose. Later techniques
refined this approach by considering a set of sample poses and evaluating a more representative error metric. A
recent approach to the character animation problem, animation space, (AS) provides a framework for measuring
error analytically. The work presented here uses the animation-space framework to derive two new techniques to
improve the quality of LOD approximations.

First, we use an animation-space distance metric within a progressive mesh-based LOD scheme, giving results
that are reasonable across a range of poses, without requiring that the pose space be sampled.

Second, we simplify individual vertices by reducing the number of bones that influence them, using a constrained
least-squares optimization. This influence simplification is combined with the progressive mesh to form a single
stream of simplifications. Influence simplification reduces the geometric error by up to an order of magnitude, and
allows models to be simplified further than is possible with only a progressive mesh.

Quantitative (geometric error metrics) and qualititative (user perceptual) experiments confirm that these new
extensions provide significant improvements in quality over traditional, naı̈ve simplification; and while there is
naturally some impact on the speed of the off-line simplification process, it is not prohibitive.
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1. Introduction

Character animation brings a static model to life by defining
how its geometry changes over time. In real-time applications
(such as games), the standard approach is to model a stick-
figure skeleton, or rig, then weight the influence of each
bone on each vertex of the model, or skin. The animator may
then control the bones of the rig, and the skin will deform
accordingly.

Level of detail (LOD) refers to a class of techniques for
managing the complexity of highly detailed models. Multiple
representations of the base model are created, with varying
amounts of detail, each of which should approximate the
original as well as possible. The most appropriate represen-

tation is then selected for the task at hand. Standard applica-
tions include rendering (with distant models at lower detail),
compression, and progressive transmission [Hop96].

In this paper, we address the problem of combining the
fields of character animation and level-of-detail. Tradition-
ally, LOD representations of an animated character have been
produced by applying a static LOD algorithm to a single pose
of the character, namely the rest pose in which the model
was created. Since this is only designed to be a good approx-
imation in that pose, the quality in other poses may suffer.
Figure 1(a) shows an example of this: the rest pose has the
horse standing straight, so the naı̈ve approach eliminates the
geometry necessary to represent the ankles and makes a poor
approximation to the tail in the pose shown.
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Figure 1: Three forms of influence simplification with comparable influence counts. (a) Traditional simplification based on the
rest pose collapses the knees and ankles. (b) Simplification in animation space, our first contribution, improves the rear ankles
and the tail. (c) Influence simplification, our second contribution, further improves the front legs and the curve of the neck and
back.

Our approach is based on a particular method of char-
acter skinning, AS, which represents vertices as points in a
high-dimensional space. We measure the error of approxi-
mations directly in this space, rather than in any particular
pose. Figure 1(b) shows the advantage of this strategy.

Standard LOD techniques work by reducing the geomet-
ric detail of models—eliminating vertices, edges and faces.
However, the cost of either storing or rendering a model de-
pends on the number of influences of bones on vertices: in our
implementation, a vertex with four influences takes roughly
three times as long to transform as a vertex with only one
influence. A further contribution is influence simplification,
an LOD technique that removes influences from vertices, and
adjusts the remaining influences to minimize the resultant er-
ror. We also demonstrate that influence simplification may be
combined with a progressive mesh in a unified framework.
Figure 1(c) shows an example of this.

We start with general background on character animation
and LOD in Section 2. Section 3 covers previous approaches
to merging the two fields. Sections 4 and 5 describe our
two contributions, namely progressive meshes in AS and
influence simplification. We finish with results in Section 6
and conclusions in Section 7.

2. Background

2.1. Character animation

There are many algorithms used for character animation;
Collins and Hilton [CH01] provide a survey. We will de-
scribe only two animation methods here: skeletal subspace
deformation (SSD) and AS [MMG06]. Both are real-time
skeletal animation methods, meaning that an animator posi-
tions the bones of the model, and this in turn drives the skin.
The relationship between the bones and the skin is controlled
by a set of weights.

2.1.1. Skeletal subspace deformation

In the case of SSD, there is a scalar weight for every bone-
vertex pair. Most of these weights are zero, since for example,

Figure 2: The collapsing-elbow and candy-wrapper effects
are well-known flaws in SSD.

it makes no sense for the position of a wrist bone to have any
influence on the feet. We refer to the non-zero weights as
influences: the bone is said to influence the vertex.

At this point, we introduce some notation. Let v be a vertex
that is to be animated, wi be the weight corresponding to this
vertex for bone i and Gi be the matrix that transforms from
the local space defined by bone i to model space. Variables
marked with a hat (Ĝ and v̂) indicate values in the rest pose,
while variables without a hat refer to the current pose of an
animation. Between the rest pose and the current pose, each
bone i is transformed by GiĜ

−1
i , and SSD transforms v̂ into

v by a weighted linear combination of these transformations:

v =
∑

i

wiGiĜ
−1
i v̂ where

∑
i

wi = 1. (1)

The transformations in Equation (1) are generally rigid
(rotations and translations), but their linear combination may
not be rigid. As a result, SSD has well-known shortcomings
(shown in Figure 2), but despite this, it remains popular for
real-time applications due to its simplicity, efficiency, and the
established base of modeling tools and rendering systems that
support it. Nevertheless, there are many proposed algorithms
that address these flaws [SRC01, MG03a, KCŽO08, WP02,
MMG06].

2.1.2. Animation space

Animation space is one approach to address the flaws in SSD.
In Equation (1), one can define pi = wiĜ

−1
i v̂, and thus write
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SSD as

v =
∑

i

Gipi = (
G1 · · · Gb

)
⎛
⎜⎝

p1

...
pb

⎞
⎟⎠ . (2)

The matrix and vector above are labelled G and p, and
referred to as the animation projection matrix and the
animation-space position of the vertex, respectively. This
substitution increases the degrees of freedom, and is not
reversible (that is, given an arbitrary pi , it is not possible
to construct corresponding wi and v̂). The extra degrees of
freedom make it possible to overcome the flaws in SSD by
judicious selection of the vector p. The only restriction is that
p, the sum of the homogeneous components of the pi vectors,
is 1. This is equivalent to the requirement that

∑
wi = 1 in

SSD, and ensures the convention that v has a homogeneous
weight of 1.

Apart from addressing the flaws in SSD, AS has two ad-
vantages that concern us here. First, it is a generalization
of SSD, and thus the algorithms presented in Sections 4
and 5 can be applied to existing models created with SSD.
More importantly, those algorithms depend on the L2,2 metric
of animation space, which measures the root-mean-squared
geometric distance between points, with the average taken
across all poses. Let E[f (x)] be the expected value of f (x),
where x is a random variable. The L2,2 distance between p
and q is defined as a norm on the difference s = p − q, with
G being the random variable:

‖s‖2,2 =
√

E
[‖Gs‖2

2

]

=
√

E[sT GT Gs]

=
√

sT E[GT G]s. (3)

The expectation E[GT G] is labelled P, and called the ex-
pectation matrix. Merry et al. [MMG06] show how this ma-
trix may be estimated from a combination of samples (such
as from a pre-defined animation) and assumptions about the
independence of joints. Note that P depends only on the
probability distribution of poses, and is independent of
the vertices. Thus, it is practical to estimate P once from
thousands or even hundreds of thousands of poses (e.g., ev-
ery frame in several hours of animation). The number of
samples used does not change the cost of evaluating the L2,2

metric, which is quadratic in the number of influences on p
and q.

2.2. Level of detail

Most level-of-detail schemes for polygonal models are based
on the progressive mesh [Hop96]. This is a data structure that
represents a sequence of simplifications, each of which col-
lapses an edge to a single vertex and removes up to two faces
from the model (see Figure 3). A typical progressive mesh

Figure 3: Appearance-preserving simplification, showing
an edge collapse v1v2 → v′ in parametric space. Dashed
lines represent the new neighbourhood, and dots represent
the corners of cells.

scheme uses a priority queue to rank potential edge collapses
according to some metric on the local neighbourhood, and
repeatedly applies the best collapse [Hop96, GH97]. This
yields a sequence of meshes M = M0, M1, . . . , Mn where
each differs from the previous one only in a small neigh-
bourhood. Luebke [Lue01] provides a survey of the wide
variety of level-of-detail schemes, including those based on
progressive meshes.

An important consideration in rendering modern charac-
ters is texture: a model will typically have high-detail colour
information, and sometimes lighting information such as nor-
mal or specularity, associated with the surface by means of a
parametrization. If the texture coordinates are poorly approx-
imated, the textures will appear to slide across the surface,
even if the geometry is accurate. Appearance-preserving sim-
plification (APS) is a method that addresses this directly:
the metric of a simplified representation is a conservative
approximation of the maximum distance between the orig-
inal and simplified representations, with the distances mea-
sured between points that have the same texture coordinates
[COM98]. An additional innovation is that the original model
may be sampled to produce a normal map, allowing the orig-
inal normal information to be texture-mapped onto the sim-
plified model and thus yielding high-fidelity lighting. This
makes APS advantageous even for models with no existing
parametrization, as by first computing a parametrization one
may take advantage of this high-fidelity lighting.

Sander et al. [SSGH01] make several modifications to
APS, including a “memoryless” form of the metric. When
considering a candidate collapse that would transform Mi to
Mi+1, they take the cost of the collapse to be the deviation
between Mi and Mi+1, rather than the deviation between
M0 and Mi+1 as in standard APS. This reduces memory
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requirements and simplifies the implementation. They also
use the half-edge collapse, in which one end-point of an edge
is collapsed to the other, rather than both end-points being
collapsed to a new vertex. This constrains simplifications
to lie within the convex hull of the original model, and so
convex regions tend to lose volume as they are simplified.
The advantage of the half-edge collapse is that there is no
need to optimize the location of a newly introduced vertex,
and indeed no new vertices need to be introduced and stored.

3. Related Work

While both character animation and LOD are mature fields,
there is relatively little research on combining them, and
most techniques consider generic animation without taking
advantage of the structure of skeletally animated characters.

Geometry videos [BSM∗03] extend the idea of geometry
images [GGH02] to animations. A geometry image is an
encoding of a model into an image via a parametrization: the
three colour channels of each pixel contain the X, Y and Z
position of a point on the model. A geometry video is simply
a sequence of geometry images, which is compressed using
techniques from the field of video compression.

Shamir and Pascucci [SP01] use a single progressive mesh
computed from one pose. They improve on the naı̈ve algo-
rithm by using a directed acyclic graph (DAG) indicating the
dependencies between simplifications, and dynamically ad-
justing a cut through this DAG. This approach has previously
been used for view-dependent LOD [XV96], but in this case
the “view” depends on the view-point in time. Additionally,
they propose mechanisms to handle changes in attributes
(such as vertex colour), connectivity and topology. Similar
approaches have been used by Kircher and Garland [KG05]
and Payan et al. [PHB07], which start from a simplification
from the first frame and make progressive updates over time.

Deformation-sensitive decimation (DSD) [MG03b] is
closer to our approach. A single progressive mesh is con-
structed, and only the originally computed representations
are used (as opposed to a cut through a dependency graph).
Instead of run-time adjustments, the edge collapse metric is
modified to take a set of poses into account. The authors use
a quadric error metric [GH97], averaged over a number of
sample poses. Huang et al. [HCC06] add an extra term to pe-
nalise simplifications of areas that undergo deformation, and
also dynamically adjust a graph-cut at run-time to improve
the quality of each frame.

The methods discussed above are all designed for a general
animation, rather than specifically for a character animation.
DeCoro and Rusinkiewicz [DR05] adapt DSD to charac-
ters animated with SSD, which accommodates two improve-
ments. First, sample poses are automatically generated with
stratified random sampling, based on a specified probability
distribution for each joint. Secondly, the quadrics for each

vertex are transformed back into the reference pose, and may
be added to give a single quadric during the initialization
phase. As a result, the more computationally intensive sim-
plification phase has no additional cost over a static LOD
implementation.

Dynamic adjustment of a graph cut is relatively expen-
sive, and is not well-suited to current GPU designs [Die00].
The other methods listed here are based on modifications
of the error metric, and require no specific run-time ma-
nipulation. In other words, the simplifications can be used
as replacements for naı̈ve, rest-pose simplifications, with no
modifications to the renderer. However, the production of the
simplifications during pre-processing is relatively expensive
due to the sampling, as some part of the algorithm is at least
O(SV) for S samples and V vertices. Although DeCoro and
Rusinkiewicz [DR05] report reasonable results with 16 sam-
ples, it would be more satisfying to separate the estimation of
the pose-space probability distribution from per-vertex/edge
operations. Animation space achieves this: only certain mo-
ments of the distribution are needed to compute the L2,2

metric, and these can be computed (analytically or by nu-
merical means) from a specified distribution, or estimated
from a supplied animation sequence, where it is practical to
use thousands of samples.

If sampling is used, then our algorithm has complexity
O(SB + B2 + I 2V + V log V ) for S pose samples, B bones,
I influences per vertex and V vertices; the terms are respec-
tively for estimating per-bone probability distributions, com-
puting P from these, measurements of the L2,2 metric, and
for maintaining the priority queue. In a typical model, B is
quite small (under 100) and I is even smaller (under 10) re-
gardless of the number of vertices, so in the case of many
samples and vertices, we expect our algorithm to perform
significantly better than one with an O(SV) term.

4. Progressive Meshes in Animation Space

We base our approach on appearance-preserving simplifica-
tion (APS). Apart from its intrinsic advantages, APS works
well in this context because it uses a parametrization to deter-
mine the correspondence between different representations
of a model. This would otherwise be quite difficult and costly
to determine in a high-dimensional space such as animation
space.

Figure 3 shows the neighbourhood of an edge collapse in
parameter space. Within each region, or cell, of the diagram,
both Mi (the mesh immediately prior to the collapse) and
Mi+1 (the mesh produced from Mi by the collapse) are linear
in the parametric coordinates, and hence so is the vector
representing the difference between corresponding points.
Since these cells are convex, it follows that the maximum
difference between Mi and Mi+1 occurs at one of the cell
corners, marked by dots in the figure.
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This is all that is needed to compute the memoryless APS
metric for a candidate collapse. While Cohen et al. [COM98]
try several possibilities for placing v′, Sander et al. [SSGH01]
restrict v′ to coincide with either v1 or v2, and we have
followed this as it reduces the number of cell corners to
consider, as well as simplifying the implementation.

In animation space, the situation is no different: we sim-
ply replace the Euclidean metric with the L2,2 metric when
measuring the deviation at cell corners.

The standard form of APS, in which the deviation is mea-
sured between M0 and Mi+1, is more complicated. Measuring
the exact Hausdorff distance is prohibitively expensive, so a
conservative approximation is used instead. A bounding box
is associated with each face, which bounds the vector be-
tween any point on that face and the corresponding point
in M0. These are combined with the offset vectors at the
cell corners to produce updated bounding boxes for the faces
in the new neighbourhood. The primary advantage of this
form is that it provides guaranteed error bounds. However,
the memoryless form generally produces results of similar
quality, while being simpler to implement and more time-
and memory-efficient to execute [SSGH01].

The standard form of APS can be adapted to animation
space, but doing so accentuates the disadvantages of this
form. Bounding boxes must now be stored and manipulated
in animation space, which has four dimensions per bone. The
approximation quality is also poor if the bounding boxes are
axis-aligned, because the axes are not conjugate with re-
spect to the expectation matrix P (recall that the L2,2 norm is
defined as ‖s‖2

2,2 = sT P s). Instead, we use bounding paral-
lelepipeds with sides parallel to the eigenvectors of P, which
produces better results. Unfortunately, it destroys the sparsity
of animation-space coordinates, further increasing time and
memory requirements.

5. Influence Simplification

In adapting APS to animation space, we have thus far treated
vertices as atomic entities which all cost the same to store or
render. In animation space, however, the cost to store a vertex
is directly proportional to the number of bones that influence
it. The rendering cost is more implementation-dependent, but
the number of influences is still a significant consideration.

We now describe influence simplification, a method for
reducing the number of influences on a vertex in an optimal
way. Given a vertex, an influence simplification removes one
influence from the vertex, and also modifies the remaining
influences so that the new vertex is as close to the original as
possible in the L2,2 metric.

Let p be a vertex in animation space. Without loss of gen-
erality, suppose p is influenced by bones 1, 2, . . . , k, and that
we wish to eliminate the influence from bone k (we try to

eliminate each influence of p in turn, and take the simplifi-
cation with the minimum deviation). The simplification will
replace p with p + s, subject to the constraints:

1. s is influenced by (at most) bones 1 through k.

2. sk = −pk , to cancel the influence on p.

3. s is a vector, i.e., s = 0 (recall that s is the sum of the
homogeneous components of s).

4. ‖s‖2,2 is minimal subject to the above.

Both p and s have non-zero coordinates only in those di-
mensions of animation space corresponding to the first k
bones, and working only within this subspace improves the
performance of the optimization. Let p̃ and s̃ be the coordi-
nates of p and s in this subspace, and P̃ be the submatrix of
P consisting of the first k rows and columns. The optimiza-
tion can then be reformulated as minimising s̃T P̃ s̃ subject to
As̃ = b, where A is a 5 × 4k matrix and b a 5-vector that
together encode constraints 2 and 3 above.

This is a relatively straightforward optimization prob-
lem when P̃ is non-singular. Write P̃ as UDUT , where
U is orthogonal and D is diagonal. This is possible be-
cause s̃T P̃ s̃ ≥ 0 for all s̃, and hence P̃ is non-negative defi-
nite symmetric. Let C = P̃

1
2 = UD

1
2 UT , let s̃′ = C s̃ and let

A′ = AC−1. The problem may now be rewritten as minimis-
ing ‖s̃′‖ (the Euclidean norm) subject to A′s̃′ = b, which is
simply a matter of projecting the origin onto the subspace
defined by the constraint. The same approach applies when it
is singular (which is not unlikely [MMG06]), but some extra
steps must be taken to regularise the problem.

This process is quite slow. The computational cost can be
amortised by noting that the most expensive steps, namely
computing the diagonalization of P̃ and manipulating A, do
not depend on p but only on the set of bones that influence it
and the influence that is to be removed. We cache the results
of these expensive computations and re-use them on nearby
vertices, which often have the same influences. Cache hit
rates are very close to 100%, and this optimization produces
at least an order-of-magnitude speedup.

5.1. Combination with progressive meshes

Apart from defining the optimization, the L2,2 metric can
be used to measure the deviation of an influence simplifi-
cation. Since both APS and influence simplification define
deviations in terms of the L2,2 metric between two points
in correspondence, the two types of simplification can be
interleaved in a single sequence of simplifications. For mem-
oryless APS, this is quite straightforward. The priority queue
of potential simplifications now contains both edge collapses
and influence collapses. When a half-edge collapse is per-
formed, the vertex that was eliminated must also be removed
from the priority queue, apart from the usual book-keeping
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Figure 4: Edge updates from an influence simplification.
When the central vertex is simplified, the edge collapses cor-
responding to the solid edges must be updated.

common to all progressive mesh algorithms. When an in-
fluence is removed from a vertex, every edge incident on a
triangle containing this vertex must be updated in the priority
queue (see Figure 4), and if the vertex still has more than one
influence, it must be re-evaluated for further simplification.

Similarly, it is possible to combine influence simplifica-
tion with standard APS, yielding collapse costs that are a
conservative bound on the L2,2 distance between any two
corresponding points, by making appropriate updates to the
per-face bounding boxes. However, we will see that this pro-
duces poor results, so we will not elaborate further on it.

6. Results

6.1. Quality

We used six models to test our implementation, shown in
Figures 1 and 5. Cylinder is an artificial example (a sim-
ple cylinder with a bend in the middle) produced by fitting
an animation-space model to a set of examples [MMG06];
horse, cat and arm are more realistic models produced with
the same fitting process. Cyberdemon is a character from
Doom III (copyright Id software and used with permission),
and mancandy is a demonstration model from the Blender
test suite, with two steps of Catmull-Clark subdivision
applied.

In Figure 6, we compare our methods of simplification
against traditional LOD based only on the rest pose. In all
cases, we are using memoryless APS, and we have chosen
representations whose number of influences are as similar
as possible. As expected, regular 3D simplification provides
particularly poor results around the joints of the legs and tail,
which are the parts that move most during the animation. The
error is particularly evident on the back-right ankle, which
disappears at 680 influences. Using influence simplification
reduces the number of edge collapses required to maintain a
satisfactory level of geometric detail.

Of course, influence simplification may occasionally pro-
duce a sub-optimal result, as illustrated by the last figure in
6(c). In this pose, and for a very coarse level of detail, the

Figure 5: Test models: cat, arm, cyberdemon, mancandy
and cylinder. The horse model is shown in Figure 1.

simplified approximation fails to represent a particular vertex
in the chest of the horse accurately which leads to a localised
protrusion. Fortunately this level of detail is generally used
for distant models, and the corresponding screen space error
would thus be negligible.

The rest pose of the mancandy model has most joints
in a bent pose, so using the L2,2 metric contributes little.
Figure 7 shows a close-up of the hand, where this metric
improves the shape of the wrist and of the bottom finger.
Influence simplification significantly improves the curvature
of the palm.

Figure 8 shows graphs of the root-mean-square (RMS)
geometric deviation of a number of models simplified using
three methods, plotted against the number of influences in
the model. The means are taken over both the surface of the
model and the frames of an animation. Because the errors
span many orders of magnitude, the errors are shown relative
to rest-pose simplification for clarity.

The horse and cat models indicate that influence simpli-
fication combined with standard APS (dashed red) does not
give reliable quality, although the results are better for the
other models. The solid lines represent memoryless APS,
which is the preferred form for our method. Simplification
in animation space, even without influence simplification,
consistently produces results that are better overall, and are
slightly worse only with extreme simplification of some of
the models.
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Figure 6: The horse at three LOD, for three simplification methods. Notice how simplification computed purely on the rest pose
does not correctly handle the joints at the ankles and in the tail, causing them to vanish.

Figure 7: Mancandy’s hand at a low level of detail. The most visible artefacts are in the silhouettes of the upper wrist and
lower palm.

Introducing influence simplification has more variable re-
sults. Generally it makes an improvement, in some cases
by an order of magnitude, but in the case of mancandy the
results are worse for intermediate levels of detail (LOD).
We conjecture that the disappointing results for mancandy

are caused by large translation components in the model’s
joint matrices, which are poorly handled in our estima-
tion of P from sample poses. Since large translations are
anatomically implausible, we do not expect this to be a se-
rious problem in general. It is also worth noting that for
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Figure 8: Simplification errors, normalised relative to those for 3D rest-pose simplification, for the six models. The dashed lines
show standard APS, while the solid lines of corresponding colours show memoryless APS. Note that simplification proceeds
right-to-left along each graph.

the influence counts in question, the absolute error is less
than 10−4—less than the quantization error of many “loss-
less” compression schemes [AG04]—and so the difference
is unlikely to be visible even when the model is in the
foreground.

Influence simplification is particularly beneficial in two
areas. During the initial simplification steps (to the right
in each graph), superfluous influences may be eliminated
at very little cost. While this effect is most obvious in the
artificial cylinder model, it is also clearly present in the real-
world cyberdemon model, where almost 250 influences are
removed before the graph is even visible above the axis. This
also suggests that influence simplification may be used as

a method to restrict the number of influences in a model,
possibly allowing different LOD to be selected depending on
hardware capabilities.

The second area in which influence simplification excels is
extreme simplification. For an influence count where a pure
progressive-mesh algorithm is forced to apply all legal edge
collapses, using influence simplification allows some detail
to be preserved while instead eliminating some influences.
Furthermore, influence simplification is able to produce rep-
resentations with fewer total influences than is possible with
only edge collapses. Since APS cannot apply collapses that
alter the texture space covered by the model, this is not a
trivial concern.
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6.2. User tests

Geometric error is not necessarily a good indicator of per-
ceived quality. For example, displacing every vertex by a
fixed amount will yield a large geometric error but there
will be no apparent loss of quality, while displacing only a
random 50% of the vertices by the same offset will yield
less geometric error but will look far worse. We conducted
tests with users to validate the results of the geometric error
tests.

Each test sample involved showing a user a pair of short
video clips (7–8 seconds). Each video showed a number of
copies (typically 100) of the same animated character. Within
each pair, the content was the same, as was the camera path
(an inward spiral to show a range of angles and distances),
and only the LOD mechanism differed. Rather than showing
the videos side-by-side, which would have allowed the user
to make pixel-level comparisons, we showed the videos se-
quentially so that they would be evaluated qualitatively. After
the videos were shown, the user was asked to select which
one was better, with a forced choice.

For each of the test models except the cylinder, we created
three progressive meshes using

(a) edge collapses, ranked on the rest pose;

(b) edge collapses, ranked by the L2,2 metric;

(c) edge collapses and influence simplifications, ranked by
the L2,2 metric.

In every case, we used memoryless error metrics. In the
first set of tests, we compared (a) to (b), with an error tol-
erance of 1.5, 3 or 6 pixels for (b), and a tolerance for (a)
that yielded, as closely as possible, the same total number
of influences across all frames of the video. The second set
compared (b) to (c) similarly, although some samples had
to be dropped as without influence simplification, it was
impossible to reduce (b) to an equivalent influence count
to (c).

We had 23 volunteer test subjects, mostly students and staff
at a university. For each combination of subject, model, test
type and pixel tolerance we took two samples, one with the
order of the two videos reversed to control for ordering bias.
For each subject, the order of the samples was randomized,
and also interleaved with samples from a third test type,
which is not the subject of this paper. In a pilot study, we
found strong evidence of a learning effect, where users would
learn to identify specific artefacts, and were less likely to
make random choices in later samples. To control for this, we
first conducted a training phase, consisting of a third sample
of each type (with the order of the two videos being random).
These samples were collected exactly as for the experiment
phase and users were not made aware of any difference, but
the results from the training phase were discarded.

In the first experiment (rest-pose versus AS), we expected
that the error tolerance would be an influencing factor, with
more statistical significance at higher error tolerances (since
with a zero or small tolerance, the result is indistinguish-
able from the ideal, irrespective of the LOD algorithm). We
were surprised to find that the reverse was true. At 1.5 pixels,
there was a significant preference (p < 0.002) for animation-
space simplification over rest-pose simplification, while at 3
and 6 pixels there was no statistically significant result. We
conjecture that at 1.5 pixels the errors in the rest-pose simpli-
fications are just noticeable to users but those of animation-
space simplifications are not, while at higher tolerances, users
are unable to distinguish between large errors with little rel-
ative difference.

In the second experiment (with influence simplification
versus without), the choice of scene was highly significant.
This is not surprising, as some models have more redundant
influences than others. Only the horse and mancandy models
showed statistically significant results, with users preferring
influence simplification. This is in spite of the apparently
poor performance of influence simplification on mancandy
shown in Figure 8, confirming that the central areas of this
graph (where influence simplification performs poorly, but
where absolute errors are minuscule) are less important.

6.3. Off-line performance

Table 1 summarises properties of the models, and shows the
impact of our improvements on the time required to produce
progressive meshes. Although the animation-space metric is
more expensive to compute, a substantial portion of the run-
ning time is devoted to other calculations such as identifying
the cell corners and maintaining the priority queue, and thus
using the AS metric adds at most 50% overhead. It should
be noted that in all three methods we used the same code,
whereas an implementation designed specifically for the 3D
case may be expected to perform slightly better.

Influence simplification is more expensive, as we must
solve an optimization problem for each potential simplifica-
tion. We cache factorizations of P̃ and A, for the last 1024
influence sets encountered. The low cache miss rates shown
in Table 1 are instrumental in maintaining performance, and
as a result, running times increase by a factor of at most 3.2.
We found that a larger cache has diminishing returns, and the
cost of searching the cache becomes a disadvantage.

6.4. Rendering performance

Influence simplification somewhat complicates rendering,
since the resulting models are not representable within the
SSD framework. We implemented a renderer to measure
the impact on performance. It uses geomorphing [Hop96]
to smoothly interpolate between LOD, and tangent-space
normal maps [PAC97] to reconstruct the original lighting.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



22 B. Merry et al. / Simplifying Character Skins with Analytic Error Metrics

Table 1: Relative pre-processing performance of the memoryless simplification methods.

Time (s) Ratios
Influences Cache

Model Vertices Bones per bone 3D AS AS+IS AS/3D AS+IS/3D miss rate

Arm 1,600 4 2.1 1.7 2.2 4.3 1.3 2.5 0.0016%
Cyberdemon 2,282 65 1.5 1.6 2.1 4.8 1.3 3.1 0.26%
Cylinder 2,426 2 2.0 2.6 3.0 5.9 1.2 2.3 0.00044%
Cat 7,207 26 2.2 7.8 10.3 18.8 1.3 2.4 0.0099%
Horse 8,431 25 2.6 9.5 13.7 26.3 1.4 2.8 0.018%
Mancandy 42,654 96 2.4 64.6 92.6 203.8 1.4 3.2 0.038%

Note: 3D is traditional simplification of the rest pose, ignoring animation; AS is animation-space edge collapses; and AS+IS is AS with the
addition of influence simplifications. Cache miss rate is the number of times that matrix factorizations are not found in the cache during influence
simplification.

Table 2: Rendering performance in frames per second, for a nomi-
nal 2-pixel error tolerance. Captions are as for Table 1.

Model Copies None 3D AS AS+IS

Arm 100 321 720 698 698
Cyberdemon 102 146 215 212 214
Cylinder 100 329 963 974 976
Cat 100 55 311 296 296
Horse 100 32 232 214 211

1,020 3 25 25 25
Mancandy 100 6 40 40 40

Note: 3D is traditional simplification of the rest pose, ignoring an-
imation; AS is animation-space edge collapses; and AS+IS is AS
with the addition of influence simplifications.

This requires six 4-vectors to be used in vertex transfor-
mation for each influence on a bone: a position and two
tangents for each of two levels of detail. With the 16 per-
vertex attributes guaranteed by OpenGL, this would limit a
straightforward implementation to two influences per vertex.
To avoid this limit, we encode the animation-space positions
and tangents into textures, which we access from the vertex
shader.

Merry et al. [MMG06] have previously shown that us-
ing animation-space coordinates for rendering actually im-
proves performance over a straightforward SSD renderer, as
the weight is pre-multiplied. Table 2 shows the rendering per-
formance with the method described above at 1280 × 1024
on a GeForce 8800GTX and a Core2Duo E6600 (clock speed
2.4 GHz). With the exception of the 1,020-instance horse
scene, the scenes and camera paths are the same as those
used in user testing.

The apparent drop in performance when using animation-
space simplification is due to the way error is measured:
when rendering the naı̈ve simplifications, the tolerance is for
a 2-pixel error in the rest pose, but the actual error may be

much greater, whereas the animation-space LOD are chosen
for an average error of 2 pixels across all poses. Thus, while
sometimes slightly slower, these representations will more
accurately meet the nominal pixel tolerance.

It should be noted that the same code-paths are used when
LOD is disabled, and in particular, geomorphing is still done.
It is thus likely the speedups will not be quite as dramatic in
practise.

We had hoped that influence simplification would improve
rendering performance, due to fewer influences needed for
a given tolerance, and also because further simplification is
possible. While there are indeed fewer influences rendered,
Table 2 suggests that this is not the bottleneck in the ren-
dering pipeline. Our implementation has a relatively high
per-object overhead (around 15μs), but recent extensions
to the OpenGL API, such as instancing [Gol06] and bind-
able uniforms [BL08] have the potential to reduce the over-
heads involved and may make influence simplification more
beneficial.

7. Conclusions

We have demonstrated two improvements to the quality of
LOD for articulated characters. The first is to perform com-
putations in animation space. Unlike previous approaches to
the problem, no sampling of the pose space is required. Sam-
pling may be used to estimate the matrix P, but this is done
once rather than per-vertex, and so it is practical to use very
large sample sizes. While animation-space computations al-
low this method to be applied to animation-space models, it
may also be applied to SSD models, and the output is again a
sequence of SSD models due to the half-edge collapse. Thus,
while our method is limited to articulated models, it is not
necessary to use animation space in either modelling or ren-
dering. As with previous work that samples the pose space
[MG03b, DR05], the algorithm is applied entirely off-line,
and there is no special work to be done during rendering.
We have not done a direct comparison to this prior work,
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but we expect visual quality to be at least as good due to
the analytic error computations and the use of appearance-
preserving simplification.

The second contribution is influence simplification, which
eliminates influences rather than geometry. This improves
quality and allows for more extreme simplification than is
otherwise possible. It is also useful for eliminating redun-
dant influences in a base model (independently of any run-
time LOD), for example to meet a hardware limitation on the
number of influences per vertex. The disadvantages are the
additional computational cost (but only during preprocess-
ing), and the fact that output models may not be representable
within SSD. This makes it undesirable for compression or
progressive transmission of SSD models, but it is useful for
rendering due to the improved quality [MMG06].
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