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Terrain Amplification with Implicit 3D Features
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Fig. 1. From a 2D input height field, our method automatically generates an implicit model for representing the terrain, which is augmented with complex
3D landform features such as caves, overhangs, cliffs, arches, or karsts. Our model can also represent dramatic and scenic science fiction landscapes such
as floating islands, or giant rock spires.

While three-dimensional landforms, such as arches and overhangs, occupy
a relatively small proportion of most computer-generated landscapes, they
are distinctive and dramatic and have an outsize visual impact. Unfortu-
nately, the dominant heightfield representation of terrain precludes such
features, and existing in-memory volumetric structures are too memory
intensive to handle larger scenes.

In this article, we present a novel memory-optimized paradigm for rep-
resenting and generating volumetric terrain based on implicit surfaces. We
encode feature shapes and terrain geology using construction trees that ar-
range and combine implicit primitives. The landform primitives themselves
are positioned using Poisson sampling, built using open shape grammars
guided by stratified erosion and invasion percolation processes, and, fi-
nally, queried during polygonization. Users can also interactively author
landforms using high-level modeling tools to create or edit the under-
lying construction trees, with support for iterative cycles of editing and
simulation.

We demonstrate that our framework is capable of importing existing
large-scale heightfield terrains and amplifying them with such diverse
structures as slot canyons, sea arches, stratified cliffs, fields of hoodoos,
and complex karst cave networks.

CCS Concepts: • Computing methodologies → Shape modeling;

Additional Key Words and Phrases: Procedural modeling, landscapes,
implicit surfaces

This work is part of the project PAPAYA funded by the Fonds National pour la Société
Numérique and the project HDW ANR-16-CE33-0001, supported by Agence Nationale
de la Recherche. This work also received a grant from Bourg en Bresse city and CCI
de l’Ain.
Authors’ addresses: A. Paris, E. Galin, A. Peytavie, and E. Guerin, Université de
Lyon, 23 Avenue Pierre de Coubertin, 69100 Villeurbanne, France; emails: {axel.paris,
eric.galin, adrien.peytavie, eric.guerin}@liris.cnrs.fr; J. Gain, University of Cape
Town, South Africa; email: jgain@cs.uct.ac.za.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/09-ART147 $15.00
https://doi.org/10.1145/3342765

ACM Reference format:

Axel Paris, Eric Galin, Adrien Peytavie, Eric Guérin, and James Gain. 2019.
Terrain Amplification with Implicit 3D Features. ACM Trans. Graph. 38, 5,
Article 147 (September 2019), 15 pages.
https://doi.org/10.1145/3342765

1 INTRODUCTION

Truly three-dimensional landscape features are some of the most
visually arresting and memorable elements of real terrains. They
are formed by different physical processes (including joint frac-
turing, percolation, and stratified erosion), take a variety of forms
(from steep-walled canyons to underground cave complexes), and
exhibit different scales (from mineral deposits, such as stalac-
tites, less than a meter in diameter, to sea cliffs stretching for
kilometers).

The sheer variety of shapes and scales of these landforms
presents significant modeling challenges and, despite the wide ap-
plication of digital terrain in games, film, and simulation, and ex-
tensive research in this area, effectively representing and generat-
ing 3D landforms remains an unsolved problem. This is because
most solutions address only 2 1

2 D heightfield terrains, and those
that are truly 3D either focus on specific structural forms or are
limited in the achievable resolution due to memory considerations.
There is thus a need for compact, memory-efficient models for
representing large terrains featuring sparse and local volumetric
landforms.

Existing methods fall into three categories: procedural genera-
tion, which applies phenomenologically inspired algorithms; ero-
sion simulation, where erosion patterns are carved into a base ter-
rain; and example-based synthesis, in which samples from scans
of real terrains are extracted and combined. These generally rely
on heightfields, which locate scalar elevation values on a regular
grid at a single sampling resolution. As a consequence, steep areas,
such as cliffs, are generally undersampled, and overhanging fea-
tures, simply cannot be represented. The alternative—an explicit
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volumetric representation—is also problematic as such structures
are memory intensive and, consequently, previous 3D terrain ap-
proaches either focus on smaller isolated landforms (Beardall et al.
2007; Ito et al. 2003; Jones et al. 2010) or represent larger landscapes
at a lower sampling resolution (Becher et al. 2017, 2018; Peytavie
et al. 2009).

Instead, we provide a conceptually simple solution to the prob-
lem of representing and authoring 3D terrain across a range of

scales, achieved through a unified implicit surface model. This
allows 2 1

2 D elevation models to be augmented with compact,
memory-efficient sculpting primitives that encode volumetric
landforms. Our approach can be integrated with existing model-
ing pipelines, captures a wide variety of landforms from under-
ground cave complexes to coastal cliffs, incorporates geomorpho-
logical effects, such as stratified erosion and invasion percolation,
and provides extensive user control (Figure 1).

Our implicit model allows the automatic enhancement of ter-
rains with complex 3D landforms and generates visually appeal-
ing, although sparse, geological shapes, which are nonetheless
essential for synthesizing dramatic and scenic landscapes. Fur-
thermore, detail can be enhanced even where overhangs are not
strictly present, such as on steep slopes and vertical sections. This
is warranted because these often represent visually prominent
landmarks.

At the heart of our method are various construction trees for
blending implicit primitives that individually represent the input
terrain, landform shape modifiers, and geological structure, and
collectively provide a full 3D volumetric terrain. In this we are
inspired by and extend the notion of Implicit BlobTrees (Wyvill
et al. 1999) and Feature Primitives (Génevaux et al. 2015). Query-
ing this new implicit terrain representation during surface extrac-
tion allows us to bypass an explicit and memory-intensive volu-
metric representation. Our pipeline imports a 2 1

2 D input terrain
and converts it into a coherent implicit surface, identifies 3D fea-
ture sites, and as specified by the user applies different generation
algorithms, such as grammar-like production rules or erosion pro-
cesses, to sculpt and augment the terrain with overhanging land-
forms. Finally, the sparse implicit representation is efficiently poly-
gonized using a novel locally adaptative approach that generates
a final mesh amplified with 3D terrain features.

More precisely, the main technical contributions of our work
include the following: (1) a procedural model for representing the
underlying geology of a terrain (Section 4) and guiding the gen-
eration processes (Section 6) in a memory-efficient fashion; (2) a
coherent implicit surface-based sparse landform construction tree
(Section 5) that supports the compact encoding of 3D terrains with
local 3D landforms, such as arches and overhanging cliffs; (3) ef-
ficient 3D landform generators, which analyze the characteristics
of the input terrain and assemble primitives to emulate erosion
processes, such as stream or sea erosion, or incorporate specific
landforms, such as goblins (Section 6); and (4) an efficient implicit
surface polygonization algorithm (Section 7) adapted to the sparse
amplified terrain data structure of our volumetric terrains. More-
over, we demonstrate that our model supports both procedural
landform shaping processes and interactive editing for the creation
of complex terrain using high-level tools that bolster iterative re-
finement with seamless cycles of editing and simulation.

Our approach is the first capable of generating sparse volumet-
ric landforms over terrains that exhibit both fine detail and large
extent, as demonstrated in Figure 1. This work primarily benefits
the entertainment industry, and could be implemented in middle-
ware applications for handling scenic terrains with 3D landforms.

2 RELATED WORK

The field of synthetic terrain modeling, as surveyed by Natali et al.
(2013) and more recently by Galin et al. (2019), can be separated
into three classes of techniques: procedural generation, erosion
simulation, and example-based synthesis. The overwhelming fo-
cus across these categories is on the creation of 2 1

2 D height fields,
with elevation specified for points on a regular grid.

Procedural generation exploits two characteristics of real ter-
rains: the self-similarity of landforms across a range of scales and
translations (Ebert et al. 1998) and the strong shaping influence
of river networks and hydrological erosion. Generally, the first
aspect is captured algorithmically through multi-frequency noise
functions and the second through constrained procedural subdivi-
sion (Belhadj and Audibert 2005; Kelley et al. 1988; Prusinkiewicz
and Hammel 1993), diffusion (Hnaidi et al. 2010; Tasse et al. 2014),
or warping and blending (Gain et al. 2009; Génevaux et al. 2013,
2015; Rusnell et al. 2009), which can even extend to entire planets
(Derzapf et al. 2011).

Although these core algorithms can efficiently generate near-
infinite landscapes with unlimited precision, they only provide in-
direct global control and produce terrains without any underly-
ing geomorphological structure. The paucity of user control can
be corrected by allowing users to interactively specify constraints
through sketching or painting (Gain et al. 2009; Hnaidi et al. 2010;
Tasse et al. 2012, 2014), but the problem of geomorphological real-
ism remains.

Erosion simulation (Musgrave et al. 1989) approximates the
geological evolution of terrain through iterations of hydraulic ero-
sion (Chiba et al. 1998; Nagashima 1998), subsurface tectonics
(Cordonnier et al. 2018), or an amalgam of secondary erosion ef-
fects (Cordonnier et al. 2017) applied to a base terrain. Clearly, sub-
surface strata play an important role in such simulations. Often
this is encoded as a cell-based grid of layered stacks, with differ-
ent thicknesses and material properties for the layers of each cell-
specific stack (Cordonnier et al. 2017, 2018; Roudier et al. 1993).
Nevertheless, since the layers are solid and contiguous, this rep-
resents a layered extension of heightfields rather than a true 3D
representation.

While simulation approaches can realistically capture an in-
creasing variety of geological phenomena, they are difficult to con-
trol and computationally demanding. Even with GPU acceleration
(Mei et al. 2007; Vanek et al. 2011) these methods cannot be used
to author large-scale finely sampled terrains that match a user’s
intent.

Example-based synthesis approaches borrow from texture
synthesis and combine realism and high-level user control by
stitching new terrains from patches (Tasse et al. 2012; Zhou et al.
2007), pixels (Gain et al. 2015), or radial primitives (Guérin et al.
2016) extracted from exemplars. They are thus heavily reliant on
sourcing high-quality digital elevation models for the exemplar
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database. Early patch-based terrain synthesis driven by a user-
painted 2D map (Zhou et al. 2007) has subsequently been improved
in terms of both computational efficiency and user control (Gain
et al. 2015; Tasse et al. 2012). Larger-scale alternatives include com-
piling a dictionary of feature-rich radial primitives that can later
be extracted, sparsely placed and blended to form a terrain (Guérin
et al. 2016) or using generative adversarial networks to learn and
apply a correspondence between user sketch maps and scanned
terrains (Guérin et al. 2017). These methods are fast, controllable,
and locally realistic but can fail to respect large-scale geomorpho-
logical patterns, such as drainage networks.

In general, these techniques build on variants of a 2 1
2 D height-

field encoding, which limits the resolution achievable on steep
slopes and precludes truly three-dimensional features such as
overhangs, arches, and caves. There have been attempts to ad-
dress this with alternative underlying representations: advected
surfaces (Gamito and Musgrave 2001) borrow from fluid simula-
tion by warping terrain according to a differentiable vector field.
With suitable restrictions on the vector field, the 3D output surface
can be guaranteed to be connected and non-self-intersecting. Alas,
authoring is generally limited to a single global function and the
surface extraction requires ray marching, which can be expensive.

Voxel structures are at the heart of several volumetric ap-
proaches. Ito et al. (2003) emulate fracturing along rock joints by
linking neighboring voxels and then selectively breaking these
links in fracture zones. Stability analysis is then used to reposi-
tion or remove connected voxel structures. Although realistic, this
strategy is costly, difficult to author, and limited to a specific effect.
Beardall et al. (2007) and later Jones et al. (2010) focus on modeling
small-scale self-contained columnar structures, notably hoodoos
and goblins. Users define initial conditions, such as a rough overall
shape and the resistance of stratified voxels, and then spheroidal
and cavernous erosion operators are iteratively applied. The curve
diffusion method of Becher et al. (2018) is more general in scope.
It extends the heightfield diffusion of feature curves (Hnaidi et al.
2010). These curves embody prominent landforms, like ridges and
river beds, and constrain altitude along the curve, but also, cru-
cially, the orthogonal slope. This is extended to 3D by writing fea-
ture, noise, and diffusion attributes into a voxel grid, from which
a surface can later be extracted. Nevertheless, because the voxel
grid is encoded explicitly, available memory limits the achievable
resolution.

In the Arches system, Peytavie et al. (2009) expand the concept
of stacked layers, first introduced for erosion simulation, by in-
corporating water and air layers and thereby enabling caves and
overhangs. A limited set of sphere and generalized cylinder tools
are available for users to carve away and accrete material. Al-
though more compact than voxels, the grid of material stacks is
again stored explicitly and the stabilization process introduced to
spread unstable materials to neigboring grid cells prevents alter-
nating strata of materials.

All these techniques suffer to a greater or less extent from mem-
ory and authoring issues and, with some exceptions (Becher et al.
2018; Peytavie et al. 2009), tend to be restricted in application to
a single global function (Gamito and Musgrave 2001), fracturing
effects (Ito et al. 2003), or weathering of small isolated structures
(Beardall et al. 2007; Jones et al. 2010).

In contrast, our implicit model efficiently combines 2 1
2 D and vol-

umetric information, which allows a bounded memory footprint
and thus the ability to model far larger scenes. We also provide
amplification processes and authoring tools at various levels of ab-
straction, enabling the creation of a wide variety of 3D landforms,
including, but not restricted to, cave networks, hoodoos, canyons,
stratified overhanging cliffs, and karsts.

3 OVERVIEW

This section provides an overview of the implicit construction
trees that form the basis for the geology and implicit terrain mod-
els central to our technique. This is followed by a presentation of
the workflow for generating 3D terrain features (see Figure 2).

3.1 Construction Tree Models

Two structures are central to our 3D amplification of terrains: a
geology model G for compactly encoding the stratification char-
acteristics of the bedrock, and an implicit terrain model T , which
defines the surface and captures complex volumetric landforms.
Both are variants of hierarchical implicit construction trees with
leaves that are implicit primitives and internal nodes that are com-
bining operators. A depth-first walk of such a tree is equivalent to
a function evaluation for a given 3D point in the domain. Crucially,
these implicit construction trees enable a representation of volu-
metric data with a compact memory footprint.

In the case of geology, leaves of the construction tree are implicit
skeletal primitives that define rock resistance for every point in
space. The internal nodes are either binary operators for combin-
ing sub-trees or unary operators for reproducing folds and faults
using various forms of warping. In effect, the geology tree provides
a resistance function, denoted as ρ.

For terrain T , the leaves are implicit shapes hierarchically com-
bined to create specific geomorphological features (e.g., hoodoos,
caves, and tunnels) and ultimately merged with the overall terrain
using blending, carving, and warping operators. The correspond-
ing terrain field function is denoted as f .

3.2 Amplification Workflow

The stages of our amplification process are depicted in Figure 2.
To begin with, we automatically convert the representation from
a 2 1

2 D heightfield H , provided as input, to an implicit 3D terrain
model T (Section 5). In this implicitization step, care is taken to
ensure that the implicit surface of T accurately embeds the sur-
face of the initial heightfield H . This is coupled with a geology
construction tree G, which defines bedrock resistance in the form
of strata and fault lines.

This combined representation (Terrain and Geology) is
amenable to various 3D modifications, such as blending and carv-
ing. Specifically, we augment T with 3D landforms encoded as
sub-trees that are attached to and hence modify the construction
tree of the terrain T . Those landforms are generated at the most
interesting locations, in our case where rock resistance ρ (p) is low.
During an authoring session, the user can choose from a library
of geology and effect archetypes defined as pre-constructed or
procedurally generated construction trees. Alternatively, they
can manually edit the geology construction tree G by locally
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Fig. 2. Overview of our terrain amplification: Starting from a 2 1
2 D heightfield H , we first perform an implicitization process to create an implicit terrain

model T suitable for 3D augmentation. At the same time, a model of the underlying geology G is created by the user. Next, a landform generation process
converts T into an augmented construction tree T̃ with sparse 3D features where required. Efficient polygonization is then used to extract a final mesh.

adjusting bedrock resistance, incorporating faults and folds, or
re-weighting specific local erosion effects (see Section 6).

Ultimately, the amplified terrain is polygonized or rendered di-
rectly using ray-tracing. In this regard, we accelerated the polygo-
nization of our volumetric implicit surface-based terrains by ex-
ploiting the compact support of volumetric landforms (Section 7).

Our framework incorporates multiple levels of user control: the
geology and the parameters of the erosive agent (such as the sea
level or the stream power) can be edited, the sampling process
steered, and new features added. We also provide real-time au-
thoring tools in the form of volumetric brushes that can be applied
directly to the terrain.

As an illustration of a typical workflow (see Figure 2), a shore
with undercut sea cliffs and caves could be created by deriving
T from an input 2 1

2 D elevation model, adding a stratified con-
struction tree with layers of hard and soft rock for geology, and
applying an erosion process according to a user-supplied control
field V and the characteristics of the terrain. This process would
probabilistically influence the inclusion of subtractive spheroidal
erosion primitives in the terrain construction tree leading to over-
hangs and caves.

3.3 Notation

Throughout this article, terrains and 3D landforms are created pro-
cedurally by building on atomic functions. We rely extensively on
3D simplex noise functions, denoted as n : R3 → [0, 1], and com-
bine them into a fractal Brownian motion function t , defined as a
sum of scaled simplex noise n over o octaves:

t (p) =
k=o∑
k=0

1

2k
n(2k

p).

We also use warping functions to distort the terrain surface by
deforming space in a neighborhood. Such a warp ω is a home-
omorphic mapping ω : R3 → R3. In implicit modeling, the field
function of a warped surface is defined as f̃ = f ◦ ω−1.

Finally, д represents a compactly supported C2 continuous
falloff function based on distance r to some geometry of interest,
and parameterized by a radius of influence R:

д(r ) =
⎧⎪⎨
⎪
⎩

(
1 − (r/R)2

)3
if r < R,

0 otherwise.

Fig. 3. An example of the hierarchical construction of a complex geolog-
ical structure. Horizontal strata representing rock layers at different con-
sistency are folded by warping (on the right) and this is separated off by
a fault line from a turbulence function (on the left). Blend nodes combine
the subtrees.

4 GEOLOGY MODEL

In nature, landforms, such as karsts, cliffs, and overhangs, are
controlled not only by geomorphological processes, but also by
the structure of the underlying geology. This defines the rock
type of the different strata, and deformations, such as folds and
faults. These bedrock characteristics lead to differentiated erosion
rates, which can give rise to complex formations, such as arches
and hoodoos.

In our system, these geological characteristics are defined as
a procedural field function ρ : R3 → [0, 1] that characterizes the
strength with which the bedrock resists erosion at any point in
space. The least and most resistant bedrock have resistance values
of 0 and 1, respectively. Depending on requirements this function
may be locally continuous (in the case of folds and warps) or dis-
continuous (in the case of faults).

We implement the resistance function as a hierarchical con-
struction tree (Figure 3), with internal nodes that modify or
combine resistance values spatially demarcated by the leaf node
primitives. We have created several specific primitives and
warping operators in order to effectively model bedrock strata.

4.1 Turbulence Primitives

Turbulence primitives are often used as a basis for more complex
geology trees. Let λ0 denote the fundamental wavelength; the re-
sistance is then defined as a function of elevation:

ρ (p) = t (pz/λ0).

This creates a set of horizontal strata whose resistances are
defined by the turbulence function t . Figure 3 showcases two
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Fig. 4. Different forms of geology showcased on a simple cliff terrain: sim-
ple strata combined with noise, folds produced by a warping operator, a
local increase in bedrock resistance produced by sphere primitives, and a
fault line. Pale colors map to more resistant and darker to less resistant
bedrock, respectively. Note that we applied a small erosion to the cliff to
visually differentiate the strata.

kinds of turbulence primitives: noise on the left and a strata
obtained from a turbulence combined with a fold on the right.

4.2 Plane Primitives

Turbulence primitives allows us to create stratified geology easily
but lack user control. We extend the geological model by introduc-
ing plane primitives, defined by the distance from a planar skeleton
primitive, which acts as a central core (Figure 4 [Strata]). Let d de-
note the signed distance to the plane, д the falloff function, and λ0

the fundamental wavelength; then the resistance is

ρ (p) = д ◦ d (p) + t (p/λ0).

Some scaled turbulence t is added to the potential field to approx-
imate irregularities, such as small fractures and joints that reduce
rock durability. In most of our scenes, the geology tree was first
created by blending multiple plane primitives with a turbulence
primitive. As in implicit modeling (Wyvill et al. 1999), blended re-
sistance is defined as the sum of the resistance of the sub-trees:
ρA+B = ρA + ρB .

In addition, we improve user control with skeletal primitives
(spheres and curves blended with the construction tree) that lo-
cally modify bedrock resistance (Figure 4 [Local]). These are par-
ticularly useful for defining more resistant spatial regions that re-
tard erosion and form promontories, or, in contrast, less durable
regions leading to caves or arches (Section 6).

4.3 Fold and Deformation Operators

Folds and deformations (see Figure 4 [Warp]) contribute vital re-
alism to geological strata patterns. They are defined as warping
operators ω : R3 → R3 that deform space. Recall that, as in im-
plicit modeling, the modified field function of a warped sub-tree
is defined as f̃ = f ◦ ω−1, where ω−1 (p) = p + δ (p) and δ denotes
the displacement function.

In our system, random folds are introduced using a 3D turbu-
lence function as displacement: δ (p) = t (p/λ0), with λ0 being the
fundamental wavelength of the turbulence. Another useful defor-
mation operator is tapering, which can be applied to locally com-
press strata.

4.4 Faulting Operators

Faults are generated by introducing discontinuities in the resis-
tance function on the boundary of a given domain. Let ΩF ⊂ R3

be such a domain and ωF : R3 → R3 an associated warping

Fig. 5. In this example, the hoodoos were created by blending several per-
turbed sphere and cone primitives, and merging with the ground. Creases
and cracks were added by a using warping operator.

Fig. 6. Heightfield implicitization: given a C1 elevation function h over a
2D domain Ω ⊂ R2, we construct a 3D primitive with field function f such
that the implicit surface S = {p | f (p) = T } matches H .

function. Given an input resistance function ρ, faults are created
along the boundary of the domain ∂F by warping ρ strictly inside
ΩF :

ρF (p) =

{
ρ ◦ ω−1

F (p) if p ∈ ΩF ,
ρ (p) otherwise.

Figure 4[Fault] shows an example of a fault created with a planar
boundary and a translational warp; this results in a discontinuity
in the resistance function, which in turn yields sheared strata.

5 IMPLICIT TERRAIN MODEL

Our terrain model T is based on the same underlying hierarchi-
cal construction tree as the geology model. The difference is that
primitives and their sub-tree aggregations portray landforms with
a compact volumetric support, such as hoodoos (Figure 5), rather
than strata and bedrock density. Crucially, the model must also
be amenable to the extraction of a final mesh surface. To achieve
this, we associate a field function f : R3 → R with T defining the
intensity of a given position in space. The surface of the terrain
is the set of points where the field function equals a user-defined
threshold value T :

S = {p ∈ R3, f (p) = T }.
The value of f at a point p is computed by a depth-first traversal of
the construction tree with evaluation of the potential field at each
visited node.

5.1 Implicitization of Input Terrains

A heightfield is an unworkable format in the context of 3D land-
forms. Consequently, transforming input 2 1

2 D terrains into our im-
plicit 3D construction tree representation is a necessary precursor
to any volumetric operations (Figure 6). The challenge is to derive
a compactly supported function f : R3 → R from H , such that
the implicit surface T taken at a particular field value T embeds
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Fig. 7. Our implicitization process allows derivation of a consistent im-
plicit field function representation from an input heightfield and a domain
Ω ⊂ R2.

H . A bounding prism and a compact field function are required so
that the resulting field function falls off to 0 at the border of the
domain. This property guarantees that terrain primitives have no
influence on the field function beyond a user-controlled distance
threshold. This is particularly important when blending multiple
terrains (see the case of the floating islands in Figure 20) or when
carving caves or arches deep into the bedrock (see Figure 13).

This conversion is achieved by assembling a subtree T with
three nodes: (1) a vertical prism primitive delimiting the extent of
the terrain Ω both horizontally and vertically. It has a field function
fP that is equal toT within the prism and tails off to zero outside;
(2) a surface primitive, with a field function fT whose value is
related to distance from the input heightfield and attains a value
of T when this distance is zero; and (3) an intersection node that
combines fP and fT to produce f .

The shape of the input terrain is therefore preserved, but in an
implicit form using a field function that combines three functions:
(1) a bounding function fP , (2) a surface distance fT function, and
(3) a falloff function that guarantees that f should have a com-
pact support. The definition of a prism-based region of influence
extending beyond and surrounding the initial terrain H is essen-
tial for combining in subsequent landforms primitives, for instance
when using the smooth blending operator. Using a domain Ω of
arbitrary shape allows us to create sections of volumetric terrain
with complex horizontal support (Figure 7), which can be com-
bined as illustrated in Figure 20.

In more detail: for the prism, we define an enclosing domain as
the Minkowski difference P = (Ω � B (R)) × Δz, where Ω denotes
the compact support of the heightfield elevation function h, B (R)
is a disk centered at the origin with radius equal to the falloffR, and
Δz denotes the range of elevations over Ω. The field function of the
corresponding prism primitive is defined as fP = д ◦ d (p,P). The
radius of influence R defines the extent of the potential field inside
and outside the initial terrain surface skeletonH .

For the surface primitive, we seek to construct a field function
fT such that the extracted implicit surface S = {p | f (p) = T } at
field value T embeds H . Let h(p) denote the elevation function
of the input terrain H over domain Ω ∈ R2 and v (p) = h(pxy ) −
pz the signed vertical distance to the surface. We define fT over
domain Ω ×R as

fT (p) = σ ◦v (p).

The function σ is a compactly supported sigmoid-like attenua-
tion function that limits the range of fT to [0, 2T ]. We construct it
as a piecewise odd cubic function (i.e., σ (−x ) = −σ (x )) satisfying
the constraints σ (0) = 0, σ ′(0) = 1, σ (R) = 2T , σ ′(R) = 0:

σ (x ) =
⎧⎪⎪⎨
⎪⎪
⎩

T + x +
3T − 2R

R2
x2 +

R − 2T

R3
x3 if 0 <x <R,

2T otherwise.

The function σ limits the range of the
terrain field function fT to [0, 2T ], with a
minimum of 0 beyond the prescribed dis-
tance R, and a maximum of 2T at a distance
of R or greater beneath the terrain surface.
This is important to allow control when
sculpting the implicit terrain with other primitives: the shape of
the surface of the terrain no longer influences the field function
beyond R. Finally, the terrain field function f is obtained by inter-
secting fT and fP :

f = min( fT , fP ).

This subtree provides aC1 compactly supported volumetric terrain
primitive, such that H ⊂ T over the domain Ω � B (R). Because
such terrain subtrees are fully consistent with other volumetric
primitives, they can be combined and sculpted just as readily. As
an illustration, terrain implicitization makes it possible to fashion
floating islands simply by intersecting two terrains, one of which
is inverted with respect to the other (see Figure 1). Note that our
representation is compatible with any type of 2 1

2 D terrain, either
in the form of DEM data or function-based models, such as proce-
durally generated terrains (Ebert et al. 1998) or construction trees
(Génevaux et al. 2015).

5.2 Sculpting Primitives

In our system, we augment an implicit terrain model T with
sculpting primitives to create diverse volumetric features, such as
arches and caves. Sculpting primitives are controlled by a geomet-
ric skeleton S and a surrounding spatial density function f , which
can be written as a composition f = д ◦ d of the falloff function
д (with a radius parameter R controlling the extent of influence)
and the Euclidean distance d (p,S) to the skeleton S. For exam-
ple, the simple and computationally efficient point-based primitive
uses the Euclidean distance d (p) = ‖c − p‖ to its skeletal center
point c.

Skeletal primitives come in two broad classes: infinitely thin
primitives, built around points, line segments, and curves (Wyvill
et al. 1999), where the field tails off directly from the skeleton,
and volumetric primitives, such as spheres, cones, boxes, ellip-
soids, and more complex geometry (Barbier and Galin 2004), which
have a constant field within their volume and only fall off from the
boundary (see Figure 8). The former are helpful in delineating lin-
ear features and locations, such as stratification and point erosion,
while the latter are effective for carving arches and karst struc-
tures, as described in Section 6.

One limitation of basing primitives on Euclidean distance is that
it leads to smooth rounded shapes, which do not match the irregu-
larities inherent in rocky surfaces. There is thus a need for suitably
perturbed skeletal primitives. However, simply adding noise to f
(i.e., placing a noise node at the root of the construction tree) often
introduces unwanted holes and disconnected surface components,
and removing such artifacts is computationally expensive (Gamito
and Maddock 2008).
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Fig. 8. We use sphere primitives with positive energy to sculpt the terrain
and create arches. Negative skeletal primitives such as points are used to
model caves and deep overhangs.

Fig. 9. Skeletal primitives with anisotropic star-shaped noise displace-
ment for point c and curve Γ skeletons.

Rather, in the spirit of Crespin et al. (1996), we convert Euclidean
distance into an anisotropic metric by deforming the area of influ-
ence parameter R with turbulence t (p). Let s : R3 → R3 denote
the projection of p onto an arbitrary skeleton. We compute the
normalized projection direction u (p):

u (p) =
p − s (p)

‖p − s (p)‖ .

The projectionv (p) of p onto the boundary of the primitive is then
defined as v (p) = s (p) + Ru (p). Finally, the modified anisotropic
distance to the skeleton is

d̃ (p) =
‖p − s (p)‖
R + t ◦v (p)

.

This method can be used to perturb the shape of any skeleton with-
out artifacts, as illustrated in Figure 9 for the case of point-based
and curve-based anisotropic star-convex primitives.

5.3 Operators

Operators are internal nodes that combine sub-trees. Our model
implements blending and Boolean operators as described by Wyvil
et al. (1999). Recall that blending, denoted as B (NA,NB ) defines
intensity as the sum of the intensities of the two sub-trees: fA+B =

fA + fB , whereas union and intersection are defined by computing
the minimum and maximum field values of the sub-trees.

Our model includes warping operators that distort the shape
of the implicit surface by deforming the surrounding space. Such
nodes are useful for generating fine details over extended regions
of space.

To enhance control we localize deformations by limiting their
influence to a compact domain D. Let fD : R3 → [0, 1] denote
a compactly supported field function over D, which in this case
characterizes the magnitude of warping applied to a point p. We
incorporate this into the warping node as

f̃ (p) = f ◦ ω−1 (p), ω−1 (p) = p + δ (p) fD (p).

Fig. 10. A cliff amplified with an erosion operator over the terrain con-
struction tree. Vertical cut planes show the geology tree G composed of
warped high-frequency noise blended with three less resistant strata prim-
itives. This operator allows us to represent precise stratification, creating
overhangs and fine detail without resorting to thousands of primitives.

The term δ (p) is a turbulence-based displacement whose influence
is weighted by the control field fD (p). Note that such localizing
field functions have broader applicability.

In general, warping nodes are complementary to sculpting and
landform generation (described in Section 6). As proposed by
Gamito and Musgrave (2001) they can be used to augment terrain
with coarse features, such as large overhangs or broad relief.

In order to account for widespread stratification of a scene with-
out resorting to a huge number of primitives, we define an efficient
erosion node over a controllable regionD that draws on the geol-
ogy model G. Recall that the resistance function ρ of G generates
values in the unit interval [0, 1] to reflect the durability of bedrock
strata.

Our erosion node subtracts from the field function of a sub-tree
f based on ρ, to produce

f̃ (p) = f (p) − fD (1 − ρ (p)).

The cliff in Figure 10 as well as the strata of the floating islands in
Figure 20 were created using this operator.

One notable limitation of such erosion nodes is that they rely on
noise function evaluation in the geology tree, which can be difficult
to configure and control. In the next section, we present more so-
phisticated approaches for building construction trees to amplify
3D detail and control the location of landforms.

A hierarchical implicit construction tree typically holds thou-
sands of primitives, each of which in theory requires a costly field
function evaluation involving cubic functions and turbulence. The
workaround is to impose a bounding volume hierarchy, which en-
ables ≈1 million queries per second even with construction trees
composed of several thousand primitives.

6 LANDFORM GENERATION

3D landforms are the result of complex erosion processes involving
the shape of the terrain, its geology, and the action of environmen-
tal erosive agents. Simulating those phenomena would be compu-
tationally intensive and prevent interactive control. We thus avoid
physically based simulation and instead, our phenomenological
approach augments a 2 1

2 D input terrain with 3D landforms by us-
ing controllable and efficient procedural techniques.

Generally, our landforms generation algorithms proceed in
two phases (Figure 12). First, given an input 2 1

2 D terrain H and
user-defined geology G, we compute the intensity of the erosion
over the terrain (as factors for stress and resistance) by taking
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Fig. 11. An example of sea cliffs produced by our system. Starting from an input synthetic 2 1
2 D heightfield and geology with horizontal strata, we incre-

mentally applied three steps of sea erosion. Sea action was limited to an 8-meter range either side of average sea level, leading to strong overhangs at the
base of the cliff. Less durable rock area was specified in the geology model, which automatically generated the arch and sea cave. The effects inset shows
the repartition of volumetric features on the terrain from a top view perspective.

Fig. 12. An overview of our landforms generation pipeline.

into account terrain shape, geological structure, and environment
conditions. Second, we generate a construction tree T̃ for the
different features. Erosion processes spawn sphere primitives
with a negative energy that are blended with the terrain. In
contrast, hoodoo and goblin generation accretes spheres and cone
primitives in an additive growth process.

Our method is capable of generating a vast array of landforms,
such as sea cliffs produced by coastal erosion, overhangs caused by
river stream erosion, or caves carved by water flowing into porous
rock.

6.1 Shallow Procedural Erosion

Shallow procedural erosion encompasses erosion processes that
impact the terrain to a limited depth. Following the general tem-
plate for landform generation, we proceed in two steps: we first
perform Poisson-Sphere sampling in the erosion region to gener-
ate a set of points {pk }. Then, at every point pk , we locate sphere
primitives with a negative energy derived from the erosion inten-
sity at that location e (pk ). The user may specify the bounds on the
erosion region through bounding volumes or an altitude range.

The effect intensity e at a point is de-
termined by the geology G, the shape of
the terrainH , and the erosion action. More
precisely, we define a parameterized func-
tion e : [0, 1]2 → [0, 1] that computes ero-
sion according to the resistance of the rock ρ and the effect stress
σ (such as sea elevation range, shown in Figure 12). In our imple-
mentation, e is a bi-linear interpolation of these quantities:

e (ρ,σ ) = σ (1 − ρ) (1 − β ) + σβ .

This obeys the constraint that e (ρ, 0) = 0, namely, that there
can be no erosion effect without the rock being under stress. The

parameter β controls the erosion intensity for the case where
erosion is at a maximum and the material is highly resistant, i.e.,
e (1, 1) = β . This accords with the intuition that erosion will be
stronger for less durable rock under high stress, whereas areas
with little stress will not be eroded at all.

The energy of sphere primitives is proportional to e (ρ (pk ),
σ (pk )). Note that we discard samples with energy below a user-
defined threshold, since the associated primitives would have neg-
ligible influence.

Sea cliffs and arches. Formation of these features is dominated by
the erosive action of the sea on coastal geology (refer to Figure 11).
Sample points pk are generated on the initial terrain around sea
level (Figure 14). The stress of sea waves is approximated by com-
bining a falloff distance from sea level w with local coastal acces-
sibility α , as defined by Miller (1994):

σ (p) = w (p) α (p).

River Canyons and Gorges. The erosive action of strong rivers
in narrow confines often creates scenic overhangs. One option
for computing water impact is to run a fluid simulation on the
3D terrain and record the energy with which particles impact the
canyon walls. This is a computationally costly prospect, so we ap-
proximate this flow impact by computing the stream power of the
heightfield H (Cordonnier et al. 2016). Let A(p) denote the up-
stream area of a point p and s (p) the average slope; then

σ (p) = A1/2 (p) s (p).

Our implementation uses the multiple flow model of Freeman
(1991) to calculate drainage area in a manner that accounts for
possibly divergent flow. Note that we apply a depression-filling
algorithm (Barnes et al. 2014) beforehand to circumvent the possi-
bility of local sinks inH . We finally identify the river-bed region as
the points on the terrain whose σ is greater than a user-prescribed
threshold. We also use a small convolution to extend the influence
of the river bed to the banks, to account for the impact of flooding.

The erosion effect is again computed as e (ρ (p),σ (p)). Figure 15
shows a comparison between an original 2 1

2 D terrain and the re-
sult of our amplification process.

6.2 Deep Procedural Erosion

Karst topography leads to caves and sinkholes through the dissolu-
tion of soluble rock, such as limestone and gypsum. Below ground
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Fig. 13. Four steps in the generation of a cave system using a modified Invasion-Percolation algorithm. Starting from three sinks in the 2 1
2 D heightfield,

invasion percolation progressively carves the subsurface of the terrain by following the least resistant layers of bedrock. Poisson Sphere sampling allows
the creation of multiple tunnels.

Fig. 14. Sea erosion impact e combines geology resistance ρ , sea erosion
stress σ , and accessibility (not illustrated). Sphere primitives are seeded
over the surface with a negative energy derived from e (ρ (p), σ (pz )).

Fig. 15. A comparison between raw data (with a resolution of 1m per pixel)
of The Mystery Canyon in the Zion National Park, Utah, and the outcome
of our amplification process. Volumetric features occupy 20% of the scene’s
surface area.

they encompass complex drainage systems and networks with un-
derground rivers and caves. On the surface, they are characterized
by sinkholes and resurgence points.

We propose an original method for generating karsts, taking our
inspiration from invasion percolation simulation (Wilkinson and
Willemsen 1983). This is a simplified physical model that simu-
lates the pore-by-pore advancement of a fluid in a porous mate-
rial when the flow is slow enough that viscosity effects can be ne-
glected. Starting from a set of initial seed points, the algorithm
updates a queue Q of candidates ordered by decreasing material
resistance, and progressively advances in the direction of the least

Fig. 16. Overview of our modified invasion percolation algorithm: after
selecting the candidate point with least resistance ρ , the terrain is carved
by generating a negative sphere primitive and new candidate points are
added to the queue.

resistant material, adding new candidates to the queue as the fluid
percolates into the material.

First, the queue of candidate points Q is initialized with the
sinkholes of the input terrain. In our implementation, they can be
found automatically by computing the sinks, also referred to as
the pits (Barnes et al. 2014), of the drainage area, i.e., the cells in
the grid for which all neighbors have a higher elevation. The user
may also freely add additional resurgence points or sinks in order
to adjust the scene.

While the queue Q has candidate points whose resistance is be-
low a user-defined threshold, we perform the following steps (Fig-
ure 16): (1) Find the point pk in Q with the least resistance ρ (pk )
and remove it from Q. (2) Locally carve the bedrock by blending
the terrain with primitives with negative energy. (3) Propagate per-
colation by finding new points in the lower hemisphere at pk and
add them to Q. These steps are repeated until Q is empty.

In the original invasion percolation algorithm, step (1) is deter-
ministic, always de-queuing the point with the least resistance. In
our implementation, we slightly perturb the resistance by a ran-
dom factor, whose range ε is controlled by the user. We set ε ≈ 0.1
to allow for more randomness in the selection of candidates, and,
consequently, in the shape of the generated networks. The second
step carves the terrain only if the rock is sufficiently soft, specif-
ically where ρ (pk ) < ρ0, with ρ0 as a user-defined threshold. We
modify the energy of the primitive according to the erosion effect,
taking into account the stress and rock resistance e (ρ,σ ) (see Sec-
tion 6.1). The third step generates new erosion directions. Since
we approximate water infiltrating porous stone, we sample a set
of random directions on an inverted hemisphere to account for
the fact that water flows downward. New samples are added to
the queue Q only if their Poisson sphere does not intersect other
candidates in the queue.

Our experiments demonstrate that tunnels extend organically
and consistently with the geology of the terrain. Figure 13 illus-
trates this phenomenon: we used a set of parallel horizontal strata
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Fig. 17. This example showcases a complex topography with sinkholes, tunnels, and caves formed by our invasion percolation algorithm. The portion of
terrain extends over 5.2 × 5.2km and the underground network of tunnels covers 2% of the surface. 165,773 sphere primitives were generated to create the
caves.

Fig. 18. Examples of hoodoos generated with different symbols and pro-
duction rules.

with some turbulence to produce layered and connected tunnel
structures. Figure 17 shows an example where sinks were com-
puted automatically on the plateau, leading to a complex set of
tunnels emerging on the cliff.

6.3 Hoodoos and Goblins

Hoodoos are tall spires of rock that protrude from the base of arid
basins and broken land. Their height varies from a few meters to
more than 40 meters and their formation is the result of both frost
wedging and rain.

A well-known location for hoodoos is the Bryce Canyon
National Park, but they can be found elsewhere as well. Creating
such features using a physically based approach would require an
unreasonable number of erosion iterations. Therefore, we propose
a procedural approach based on an open grammar method,
inspired by the grammars introduced in plant modeling (Měch
and Prusinkiewicz 1996). The two-step algorithm is as follows: (1)
We compute the probabilistic location of hoodoos according to
drainage area, average slope, and a prescribed user-mask. (2) We
generate vertical hoodoo shapes with an open grammar, whose
parameters are driven by the geology. The rules are based on the
bedrock resistance function ρ: less durable bedrock will produce
shapes differently to more durable bedrock.

Figure 18 shows different types of hoodoos produced by our
grammar rules.

The probability of hoodoo growth is computed according to
the drainage area A and the local slope s . Hoodoos are most
likely to appear on talus or cliffs, which are characterized by a
medium slope and low drainage area. We compute the probability
of hoodoo growth by combining these criteria and then perform
Poisson-disk sampling to generate starting positions, which will
be fed as axioms to the grammar.

Hoodoos are created by assembling multiple terminal symbols
using an open parameterized grammar method (see Figure 21). Our

Fig. 19. A more complex scene constructed with multiple hoodoo blocks.

production rules are driven by the underlying geology, which im-
pacts not only the probability but also the parameters of terminal
symbols. We adapt the symbol size to the bedrock resistance ρ (p).
All the production rules start from an axiom A. We also add rota-
tions to symbols to add variety to the generated shapes. Figure 19
shows a generated scene composed of multiple Hoodoo blocks.

7 POLYGONIZATION

At their core our terrains are implicit surfaces generated by
evaluating an implicit 3D construction tree T . Although im-
plicit surface visualization can be achieved both directly using
ray tracing, typically with interval arithmetic (Mitchell 1990)
or Lipschitz (Hart 1996; Kalra and Barr 1989) techniques, and
indirectly by first extracting a mesh (Wyvill et al. 1986; Lorensen
and Cline 1987), doing so efficiently for highly detailed terrains
is challenging. Fortunately, in the case of an amplified terrain the
volumetric carving and sculpting elements are bounded in extent
and generally located on or below the input 2 1

2 D terrain. This
allows potential field queries f (p) used for ray tracing and mesh
extraction to be restricted to a spatial band, thereby reducing the
number of field function evaluations.

In our case, construction trees consist of thousands of complex
skeletal primitives (Table 1), each requiring multiple cubic function
evaluations. This makes ray tracing techniques less convenient
than polygonization in the context of interactive editing, which
is one advantage of our method. Therefore, we focus on polygo-
nization techniques in this section. Note that while we frame a
subsequent presentation of our acceleration in terms of mesh ex-
traction, the benefits also apply to ray casting where empty space
skipping can be exploited (Kruger and Westermann 2003). Our goal
is to extract a C0 surface from our implicit construction tree, and
take advantage of the localized aspect of volumetric features.

It is useful to define a measure for the proportion of the domain
occupied by 3D features. Let n(p) denote the number of primitives
whose vertical projection onto the ground plane encompasses the
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Fig. 20. The floating islands were created by combining implicitized heightfields; an erosion operator was then added to the construction tree to produce a
precise stratification, and we finally carved some tunnels and caves into the bedrock of one island by applying the Invasion-Percolation algorithm. Individual
islands are between 300m and 600m wide and were placed manually in the scene, for a total of 6mb in memory.

Fig. 21. Simplified production rules used in our open parameterized gram-
mar to generate hoodoos and goblins. We represent non-terminal symbols
with capital letters and their corresponding terminals in lowercase; A de-
notes the axiom of the grammar.

point p ∈ R2. If the elevation has not been carved or sculpted and
is determined solely by a heightfield primitive, then n(p) = 1, oth-
erwise n(p) > 1. The ratio of 3D coverage with respect to the do-
main is then defined asa = Ã/A, where Ã denotes the area where
n(p) > 1 and A is the domain area. As Table 1 indicates for more
extensive scenes (such as in Figures 11 and 17), this proportion
tends to be small.

The original Marching Cubes algorithm extracts a meshM from
an implicit function f for values f (p) = T . In our case, this would
entail, given an input box B and a 3D virtual grid G, querying the
field function at every vertex pi jk to extract the correct triangle
configuration for cells in the grid. Fortunately, we can optimize
surface extraction by leveraging the characteristics of the implicit
3D construction tree in two ways:

(1) Surface Bounds. We establish relatively tight bounds on the
range of possible elevations and only process cubes, and
hence query the field function f (p), within this range.

(2) Direct Elevation Extraction. In regions unaffected by carving
or sculpting (where n(p) = 1) we derive vertex positions
directly from the elevation function and avoid costly
bisection search for f (p) = T .

Surface Bounds. We prune the grid G to reduce the set of grid
cells that require processing. Let [ai j ,bi j ] denote an inclusive in-
teger range representing the lower and upper elevation bounds for
a given 2D vertex pi j in the grid. To obtain these bounds, we per-
form the following steps (see Figure 22):

(1) The construction tree is queried to return elevation bounds
z̄ = [ai j ,bi j ] for each vertex pi j . This requires the defini-
tion of an R2 → Z2 bounds function z̄i j = B (pi j ) that, for

Fig. 22. A side-view summary of our polygonization algorithm: (1) We
compute altitude bounds z̄ for each grid vertex by querying the construc-
tion tree; (2) these bounds are dilated to ensure continuity in the output
mesh, leading to extended bounds z̃ , thereby (3) defining a minimal zone
for cube traversal.

a given position, walks the tree to evaluate bounds on prim-
itives and combine them using internal operators. For vol-
umetric primitives, such as points and spheres, minimum
and maximum altitude is based on the associated bounding
box. For a heightfield primitive h a unique elevation h(pi j )
is returned leading to equal upper and lower bounds after
conversion in grid space: ai j = bi j . Next, binary operators
such as carving or blending return the union of the bounds
of their children z1 and z2: z̄i j = ∪(z̄1, z̄2).

(2) To ensureC0 continuity in the final mesh, we perform a di-
latation of z̄ in the one-ring neighborhood of each pi j , lead-
ing to extended integer bounds z̃. Let Vi j denote the one-
ring neighborhood of pi j , then the dilated bound is z̃i j =

∪(x,y )∈Vi j
z̄xy . Intuitively, the dilated bound at a grid vertex

represents the largest elevation range shared between itself
and its neighbors.

The algorithm traverses (and selects triangle configurations
for) the reduced subset of cells within the bounds specified by z̃.
This leads to a speedup up to 12, depending on the proportion of
volumetric features in the scene. Results and timings are reported
in Table 1.

Direct Elevation Extraction. The intersection of a grid cell edge
and the terrain surface is typically computed using bisection or
Newton-Rhapson root finding, with repeated calls to the field func-
tion f . In 2 1

2 D regions, there is no need for such iterative ap-
proaches since the elevation can be directly computed as h(pi j ).
Therefore, we approximate vertices using linear interpolation,
which provides sufficient accuracy and results in a speedup rang-
ing from 1.5 to 2.5.

Table 1 reports statistics for our visualization method. In par-
ticular, this shows the considerable reduction in computationally
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Fig. 23. Varied landforms generated using our implicit model on small terrains (500 × 500m2): a coastal cliff with three sea erosion steps applied (left), a
large arch forming a bridge (center-left), a canyon where river erosion has sculpted deep overhangs (center-right), and goblins placed along the banks of a
river (right).

Table 1. Statistics for Different Amplified Terrains

Memory Meshing
Scene Size a #N Generation #E Ours Arches Grid resolution t t0 #C #C0

Sea (11) 6.0 × 6.0 0.01 50 693 5.5 156 3.0 300 2, 0002 × 33 13.3 91.5 9 210
Karst (17) 5.2 × 5.2 0.02 165 773 6.2 43 9.9 140 1, 5202 × 447 14.2 188.4 14 1, 000

Canyon (15) 1.1 × 1.1 0.20 137 043 6.8 0 9.3 110 1, 0002 × 546 32.6 159.0 30 569
Hoodoo (19) 0.35 × 0.35 0.05 55 619 2.1 0 5.5 10.2 6502 × 245 2.9 15.8 4 111
Benagil (25) 0.4 × 0.4 0.35 13 264 - 551 1.3 2.1 5502 × 87 2.7 3.9 8 20

Size [km2], percentage of 2 1
2 D to 3D surface area a, number of nodes in the construction tree #N , generation time [s], editing click count done by the user #E, memory

footprint of the construction tree excluding the base heightfield [Mb], memory consumption [Mb] using the model of Peytavie et al. (2009), meshing grid resolution, optimized
and standard polygonization time t [s] and t0 [s], number of calls to f with our optimized #C and with the standard algorithm #C0, in millions. Benagil was entirely authored
by an experienced user using skeletal brushes in less than 10 minutes and therefore has no generation time.

demanding field function calls (#C vs. #C0) and consequent accel-
eration by up to a factor of 12 (t vs. t0).

Our optimized version profits from the localization of volumet-
ric features. Thus the more widespread the volumetric features are
the less comparatively efficient our approach becomes. This can be
observed in the Benagil scene (Figure 25), where the ratio a is atyp-
ically high and the speedup is only 1.8. Thus, our improved version
is most efficient in the context of realistic terrains with localized
volumetric features.

8 RESULTS AND DISCUSSION

We implemented our system in C++. Experiments were performed
on a desktop computer equipped with Intel® Core i7, clocked at
4GHz with 16GB of RAM, and an NVidia GTX 970 graphics card.
The output of our system was streamed into Vue Xstream® to pro-
duce photorealistic landscapes (Figures 1, 11, 15, 17, 20, 24, 25).

Our method is capable of generating a variety of landscapes am-
plified with local 3D features. Figures 11 and 8 show coastal cliffs
procedurally eroded by sea, as well as complex features such as
arches and caves created by interactive editing. Figures 17 and 13
depict procedural invasion-percolation simulation leading to the
evolution of caves and tunnels deep below the surface. Figures 19
and 21 show hoodoos created with an open shape grammar based
on the geology G. Finally, Figure 20 demonstrates the capability of
our framework in creating and authoring fantastical scenes.

8.1 Validation

Validation is a challenging issue for procedural methods. Real ter-
rain data, with overhangs, cliffs, arches, and karsts, are not readily
available, making comparison difficult. Instead, we have included
photographic images of real phenomena as a basis of comparison.

Fig. 24. A comparison between real (left) and synthetic karsts (right). From
an initial 2 1

2 D heightfield, we simulate water infiltrating soft strata and
eroding the bedrock. In this example, the initial points for invasion perco-
lation were distributed on the cliff faces and in depressions on the plateau.

Fig. 25. Comparison between a real (left) and synthetic cave (right) in Be-
nagil, Portugal. The scene was made by an experienced user in less than
10 minutes using skeletal brushes (spheres and curves) as sculpting tools.

It is difficult to quantify how closely our results match correspond-
ing effects in nature and so we rely on visual inspection.

Figure 24 shows a side-by-side comparison between a real karst
and a volumetric model, synthesized with our method. The mod-
ified invasion percolation algorithm generates a network of caves
and tunnels that have a similar overall structure and appearance.
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Figure 25 illustrates another example in which the user inter-
actively sculpted a cave, inspired by a photograph of the Benagil
Cave in Portugal. It required 10 minutes for an experienced user
to author the scene from start to finish.

8.2 Control

Our method provides several mechanisms for user control over
landform generation. First, a user can define the regions to be
amplified with erosion effects or landforms, by either directly
painting a control region onto the 2D input terrain or by marking
out a spatial volume. Effects can also be fine-tuned by changing
their generative parameters. In contrast with most simulation-
based methods, these parameters have a direct and intuitive
physical interpretation (e.g., the height and base radius of the
hoodoos or the maximum depth of sea erosion).

Interactive editing is also supported. A user can directly and in-
teractively sculpt the terrain with extruding or intruding skele-
tal primitives, or apply more complex brushes to form procedural
arches and caves (see accompanying video). Table 1 reports the
number of editing clicks #E required to produce the different fig-
ures: Figures 11 and 17 were edited in less than 5 minutes and af-
ter multiple procedural erosion steps (Section 6). The user then
placed sphere primitives to better sculpt the arches and the caves.
Figures 15 and 19 were fully procedural. Figure 25 was entirely au-
thored by an experienced user who interactively hollowed out the
cave and sculpted the arches with point and sphere primitives to
match the reference picture; the scene was completed in approxi-
mately 10 minutes. A key benefit of our framework is that our ter-
rain models offer a single consistent global scene structure. This
means that the user can seamlessly switch between manual au-
thoring and procedural algorithms over as many cycles of iterative
refinement as required. Interactive visualization during editing is
made possible by delimiting the shaping tools and only repolygo-
nizing over modified cells in the grid.

8.3 Performance

Table 1 reports the following statistics for the landscapes portrayed
in our results: the extent of the input terrain (in [km2]), the num-
ber of construction tree nodes produced by 3D augmentation, the
amount of memory required, and the time required to generate the
construction tree (which excludes subsequent polygonization). We
also report the amount of memory needed to model the same ter-
rains using the Arches (Peytavie et al. 2009) model.

Speed. Our amplification methods generate the construction tree
representing complex landforms at a precision of ≈10cm in less
than 7 seconds for terrains that extend over 5km2. Performance
could be improved by using the GPU, but it is beyond the scope
of this article and is left as future work. Note that such procedural
methods are more time-consuming when applied globally as op-
posed to locally during an editing session, where effects are re-
stricted to a smaller domain to ensure interactivity.

Memory. Our hierarchical implicit construction tree is space ef-
ficient in modeling 3D landforms. One important aspect of our ap-
proach is that implicit primitives are only located where required.
Thus, most of our scenes have a low occupancy ratio a compared

to their extent. Exceptions are the Zion Canyon (Figure 15), which
exhibits extensive overhangs resulting from hydraulic erosion, and
the Benagil Cave (Figure 25), which is a small scene dominated by
a sea cave. Our implicit model and the use of skeletal primitives
enables us to represent local volumetric features with minimal in-
formation in memory. To achieve the results depicted in Table 1 we
developed an instancing system that effectively halves the mem-
ory cost of replicating a skeletal primitive.

Control. Our system integrates user-control and authoring
across different stages of the pipeline. Folds, faults, and different
geological strata can be specified easily. The procedural genera-
tion algorithms are parameterized with a limited set of intuitive
parameters. The user can also directly sculpt landforms by merg-
ing the terrain with primitives or even subtrees. Moreover, our sys-
tem efficiently combines procedural generation and authoring in
a unified and coherent framework. This bridges the gap between
editing and procedural generation, and supports iterative cycles of
interactive refinement.

Extensibility. Our hierarchical implicit construction tree embeds
heightfield representations at an extremely reduced cost, and al-
lows us to augment 2 1

2 D terrains with a wide range of 3D land-
forms. This extensibility is depicted in Figure 23, which shows
the outcomes of a variety of processes. These scenes were created
by extending the model with new operators, primitives, and algo-
rithms. We also believe that the model is suited to physical simu-
lation, but testing this is left as future work.

8.4 Comparison with Other Techniques

Our primitive-based implicit model allows the generation of a wide
variety of landforms with a low memory footprint. Such com-
pactness is in contrast to other volumetric terrain models, such
as Arches (Peytavie et al. 2009), which rely on voxels or material
stacks. Table 1 compares the overall memory footprint for several
terrains and demonstrates that our method uses two orders of mag-
nitude less memory than material stacks, at the same precision.
There are two main reasons for this: first, our hierarchical con-
struction tree is a parsimonious vector-based representation that
generates at appropriate locations the specific primitives required
by a landform, and, second, we only rely on 3D primitives where
needed, and resort to more memory-efficient implicitized height-
field representations elsewhere.

9 CONCLUSION

We have introduced a novel method for augmenting 2 1
2 D height-

fields with 3D landforms. Such 3D landforms as sea cliffs, canyons
with overhangs, network of caves and tunnels, hoodoos and gob-
lins, and even floating islands, are essential scenic elements in syn-
thetic environments, animated films, and computer games.

Our compact hierarchical primitive-based implicit representa-
tion captures 3D features at resolutions as fine as 10cm over large
terrains up to 5km2 in extent with a memory footprint of at most
a few megabytes. Structuring the terrain as an implicit hierarchy
also enables significantly accelerated surface extraction. At the
heart of our method is a system that analyzes an input 2 1

2 D terrain
to derive the location and characteristics of volumetric landforms,
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and which automatically generates their shape according to
the relief of the terrain, environmental erosion effects, and the
underlying structure of the geology.

Our system integrates user-control and authoring at different
stages of the pipeline, from definition of the different strata, folds
and faults of the geology, to direct sculpting of features. Crucially,
the transition between editing and simulation is seamless, which
supports iterative cycles of interactive refinement.

We have shown a wide variety of obtainable effects, including
augmenting real 2 1

2 D DEM data with features such as arches and
caves, and synthesizing fantastical floating islands.

In the future, we would like to investigate the implicit model-
ing of finely detailed rock features at scales below 10cm, thereby
bridging the gap between modeling and texturing for terrains. Cur-
rently, details such as cracks in granite or thin seams of limestone
require creating complex geometric primitives or seeding thou-
sands of tiny primitives, with a concomitant increase in both mem-
ory and computation.
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