
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Sandbox Symposium 2008, Los Angeles, California, August 9–10, 2008.
© 2008 ACM 978-1-60558-173-6/08/0008 $5.00

A Spatial Awareness Framework for Enhancing Game Agent Behaviour

Simon Perkins∗

University of Cape Town

David Jacka†

University of Cape Town

Patrick Marais‡

University of Cape Town

James Gain§

University of Cape Town

(a) (b) (c) (d)

Figure 1: Starting with the geometry defining a virtual world in 1a, information on connectivity, width and curvature is
extracted in 1b. This information is used by agents to enhance their behaviour within the virtual world. In 1b and 1c the
beige and blue agents use this enhanced behaviour to defeat their red opponents.

Abstract

We describe a framework for providing game agents with
awareness of the intrinsic spatial qualities of the virtual
worlds that they inhabit. We develop a novel data structure
based on a modified medial axis, which establishes a map-
ping between the medial axis and world structures. This
data structure can be used to perform queries about the
width, curvature and connectivity of a space within a virtual
world. Additional information, such as sampled visibility
can also be integrated with this framework. An agent-based
crowd simulation is adapted to make use of the sensory in-
formation provided by this data structure and the success
of using this information within two game scenarios is eval-
uated.

CR Categories: I.2.10 [Artificial Intelligence]: Vision
and Scene Understanding—[Representations, data struc-
tures and transforms, Perceptual reasoning] I.4.8 [Image
Processing and Computer Vision]: Scene Analysis— [I.4.7]:
Image Processing and Computer Vision—Feature Measure-
ment

Keywords: spatial analysis, agents, games

1 Introduction

∗e-mail: sperkins@cs.uct.ac.za
†e-mail: djacka@cs.uct.ac.za
‡e-mail: patrick@cs.uct.ac.za
§e-mail: jgain@cs.uct.ac.za

Artificial Intelligence Agents are actors within a virtual
world, such as a game environment or training simulation.
They are important components in the creation of these
worlds as they contribute to the realism of a virtual experi-
ence.

Humans modify their behaviour based on their environ-
ment. Straight and gently curving corridors of space are ap-
propriate for running, while sharply curving spaces are not.
Wide-open spaces provide good vantage points for trying to
spot other objects, but are bad spaces to hide in. Dimly lit
spaces, however, are good to lurk in.

Since humans strategise their behaviour based on their en-
vironment, designers of AI agents may wish to do the same
to create compelling agent behaviour. It would be appro-
priate to design a bird agent to fly in wide-open spaces, but
hop or walk in narrow, enclosed spaces. A designer trying
to make an agent behave in a “sneaky” manner may wish
the agent to favour dimly lit areas with poor visibility from
other areas. To provide this spatial information to agents,
it is necessary to perform spatial analysis on the virtual en-
vironment.

Pathfinding is a type of spatial analysis that is specifically
designed to assist the navigation of agents within a world.
However, other types of spatial information are extracted
during the creation and preprocessing of a virtual world,
and while such information may not be specifically extracted
with agents in mind, it may still be useful to them. For ex-
ample the visibility between different points in a world al-
lows one to avoid rendering invisible world structures [Teller
and Séquin 1991]. This information may also be useful to an
agent wishing to strategise about the suitability of a vantage
point.

Similarly, the lighting in various areas of a virtual world
is calculated to improve the realism of a rendered image, but
this information may also be useful if agents are designed to
react to lighting information. Some agents may see better in
the dark and should favour dark areas to gain an advantage

15

over opponents with poor vision.
These fields have been well researched, but less work has

been done on providing information about the intrinsic qual-
ities of a space. For example, the way a space curves is
useful to an agent when planning when to accelerate and
decelerate, especially if its turning behaviour is physically
modelled. The width or openess of a space is also a useful
measure for evaluating proximity to world structures and
strategising about wide or narrow spaces.

We present a novel data structure that provides useful
data on higher-order connectivity, curvature and width. We
also describe the process for automatically generating this
structure from a world defined by 2D polyons. The data
from this structure can be combined with data extracted
from other sources, such as visibility and lighting. We imple-
ment simple agents and demonstrate how their effectiveness
can be improved by utilising this data in two different sce-
narios. In the first, racing car agents use data about track
curvature to improve their racing line. In the second, battle
robots use data about path intersections to orientate them-
selves towards areas of high traffic. The agents use almost
no planning capability since the intention of our work is not
to improve agent design, but to assist it.

Our work has been developed in 2D as a preliminary to a
full 3D implementation. It is worth noting that while current
games are largely rendered in 3D, much of the strategy is
based on 2D and 2.5D evaluation of worlds.

This paper is structured as follows: We describe previous
work in Section 2 and discuss background material relevent
to our work in Section 3. Section 4 describes our general
approach to the problem and the creation of our data struc-
ture. Section 5 describes the agents that we use to test our
work. Section 6 describes our testing and results and we
conclude in Section 7.

2 Previous Work

Navigations Graphs are commonly used to enable agents to
navigate within a virtual world by providing perception of
paths within the world. They provide a simplified represen-
tation of the spatial areas that an agent may occupy. This
reduces the time needed to search through positions in order
to plan routes and make decisions. At first designers created
navigation graphs by manually placing waypoints in the vir-
tual world [Lidén 2000]. As virtual worlds increase in size
and complexity, this task became more time-consuming and
a candidate for automation.

The Quake III bot [van Waveren 2001] is an example of
the automation of navigation graph creation. It extracts
a navigation graph from a Binary Space Partition (BSP)
Decomposition of a 3D world. The traversability of the con-
vex BSP leaf nodes are examined and are linked together to
create the graph. The Navigation Mesh [O’Neill 2002] sim-
plifies navigation graph creation by taking advantage of the
fact that 3D games are often set on earthlike terrain with
humanoid agents. Since it is only possible for these agents
to walk on the ground, the navigation mesh is constructed
by connecting the agent-accessible polygons. As noted by
[van der Sterren 2001], such navigation algorithms are use-
ful for calculating the shortest path between two locations,
but they do not assist agents in understanding the terrain
around them.

Pottinger [Pottinger 2000] discusses influence maps which
are created by applying terrain influences to a 2D array to
determine the best position to site a game object. He also
discusses grouping logical areas together for AI use via area
decomposition and the importance of establishing connec-

tivity between such areas for pathfinding purposes. How-
ever, this information is derived from features external to
the terrain and not from the terrain itself. Morgan [Morgan
2003] evaluates a number of algorithms for determining suit-
able locations for a soldier to take a cover within a virtual
world including using Shadow BSP Trees [Chrysanthou and
Slater 1995] to detect regions of concealment. For reasons
of efficiency, he decides to use a sensor grid which evaluates
visibility around an agent at different heights to decide if a
location may be used for cover.

Van der Sterren [van der Sterren 2001] discusses terrain
reasoning by examining the relationship between waypoints
in a navigation graph. The connectivity and visibility be-
tween waypoints is used to make estimates about the effec-
tiveness of a waypoint as a firing position. This effectiveness
is then modified by the actual performance of agents at the
waypoint. Van Der Sterren recognises the need for anno-
tating waypoints with higher-order terrain information such
as visibility and lighting. However, the focus on waypoints
inherently discards intrinsic geometric data that may be use-
ful to agents and introduces resolution issues. For example,
the curvature of a section of space would be difficult to re-
construct from waypoints and resolution issues would com-
plicate the matter further. It also difficult to reason about
higher-order connectivity because waypoints are distributed
throughout the world in order to provide agents with sensory
information. The proliferation of waypoints maybe obscure
the fact that there is a single logical path that all the way-
points in a region may belong to. In contrast our method
focuses on retaining such information since it may be useful
to agent designers.

3 Background

Binary Space Partition (BSP) Trees [Fuchs et al. 1980] are
commonly used in spatial analysis. It is a binary tree that
recursively divides a space using half-planes. They are typi-
cally created from a set of polygons, using the polygon planes
as splitting half-planes. BSP trees are commonly used in
virtual worlds as they are useful in calculating visibility and
performing collision detection.

Voronoi Diagrams [Voronoi 1907] are another useful tool
for spatial analysis. Given a set of points S in a plane, a
Voronoi diagram partitions the plane into convex polygons,
each containing one point p ∈ S and having the property
that every point in the polygon is closer to p than any other
point in S. Voronoi diagrams have various applications but
the one that pertains to our work is their use in generating
a Medial Axis.

In 2D, the medial axis of a shape can be defined as a
set of curves defined as the locus of points have have two
closest points on the boundary of a shape [Cornea and Min
2007]. It can be used for representing the shape of an object,
since it constitutes a set of curves that run roughly down the
centre of an object. Voronoi diagrams are frequently used to
approximate the medial axis [Ogniewicz 1994a]. This process
is used in path planning [Bhattacharya and Gavrilova 2007]
and robotic motion planning [Guibas et al. 1999; Holleman
and Kavraki 2000] to generate a medial axis, from which a
navigation graph is derived.

Amenta et. al [Amenta et al. 1998] use Voronoi Di-
agrams to reconstruct surfaces from unorganised sample
points. They use a process they call “Voronoi filtering” to
choose faces of the Delauney simplices to remove. Of inter-
est here is their use of the medial axis to construct a metric
that relates sampling density to surface curvature, and from
which they can prove the accuracy and topological validity

16

(a) Major Concavity (b) Minor Concavity

Figure 2: Major concavities introduce significant changes
into the width and curvature of a space and therefore war-
rant a skeleton extension into the space. The changes intro-
duced by minor concavities do not.

of their surface reconstructions.

4 Approach

We aim to develop a data structure representing the intrinsic
qualities of a space, such as width, curvature and connectiv-
ity. A medial axis or skeleton is useful for representing these
qualities since in 2D it is a set of curves that run through
centre of a space. From the skeleton, logical paths through
the space can be identified, providing connectivity informa-
tion and allowing the path curvature to be used to identify
the curvature of the surrounding space.

We first perform a BSP decomposition of the world. Since
this structure subdivides the world using half-planes, convex
regions representing the solid areas of a world can conve-
niently be determined and grouped together. The bound-
aries of these grouped regions can then be identified by
traversing the outer boundary of the group. This approach
means that a level designer can conveniently construct world
structures out of separate polygons. It also allows for world
structures with holes.

As we are dealing with geometric representations of vir-
tual worlds, we adapt the popular geometric technique of
extracting a medial axis from a Voronoi diagram [Ogniewicz
1994a]. The boundaries extracted from the BSP process are
sampled and used as input to the voronoi tesselation process.

Medial axis transforms tend to overemphasise boundary
details [Ogniewicz 1994b] and this leads to the creation of
fine vestigial elements that represent complex boundary in-
formation. We do not wish to capture this structural data
directly because it is too fine: we are interested in capturing
the general qualities of a space.

Consider Figure 2a. The major concavity introduces sig-
nificant changes to the width, curvature and connectivity of
the space and should therefore be represented on the skele-
ton. The minor concavity in Figure 2b does not and should
therefore be left off the skeleton. To this end, we prune
sections of the skeleton that extend into minor concavities.

While the curvature of a space can be easily measured
from the curvature of the skeleton, it is not necessarily triv-
ial to arrive at a definition of the width of a space. In
most cases the shortest distance between the skeleton and
world boundary suffices. However, concavities again intro-
duce problems, since the furthest point within a concavity
can be the appropriate point to choose when measuring the
width between the skeleton and the world. To deal with
this issue, we develop a bi-directional mapping between the
skeleton and world that ensures that sections of skeleton are
associated with the correct sections of world boundary.

Figure 3: Voronoi Tesselation created from orange input
points, sampled from the boundary of the gray world struc-
tures. The blue edges and vertices of this tesselation are
linked together in a graph.

4.1 Skeleton Extraction

We create a modified medial axis from a Voronoi tesselation
[Voronoi 1907] of virtual world objects. This medial axis is
then pruned to fit our definiton of the skeleton.

Sampling polygons: We perform a Binary Space Parti-
tion (BSP) [Fuchs et al. 1980] of the polygons describing
the world and extract the convex regions defined by the
BSP tree half-plane intersections. Solid regions represent-
ing a distinct world structure are grouped together and the
counter-clockwise boundaries of this structure are extracted.
This boundary is stored as a closed, parameterised line.

Voronoi Tessellation and Initial Skeleton: Points
are sampled on the the parameterised boundaries and are
used as input points to the Voronoi tesselation process. We
use qhull [Barber et al. 1996] to perform the tesselation. For
each input point, a voronoi facet is generated, consisting of
a number of voronoi vertices. The vertices and the edges
between them are linked together in a graph as shown in
Figure 3. Initially, a voronoi vertex is labelled as “off” the
skeleton if it lies within a world structure, otherwise it is
considered to be on the skeleton. A graph edge is considered
to be on the skeleton if both it’s starting and ending point
are on the skeleton.

Pruning the skeleton: According to our definition of
the skeleton, skeletal sections extending towards minor re-
gions of concavity represent too much detail and should be
pruned. Skeletal sections that extend into major regions of
concavity are orthogonal to sections of the world. We there-
fore test the endpoints to see if the orthonality criterion is
met. This is accomplished by examining the skeletal end-
points, e, that only have one neighbour n on the skeleton.
An endpoint e is considered strong if there exists at least
one adjacent non-skeletal neighbour a such that the angle
between the vectors −→en and −→ea lies in the interval [π

2
−ǫ, π

2
+ǫ]

for some tolerance ǫ. Otherwise the endpoint is considered to
be weak. Weak endpoints are pruned from the skeleton. The
process continues until no endpoints remain or only strongly
supported endpoints remain. Figure 4 shows two examples
of this process.

Skeleton Parameterisation: Prior to creating a map-
ping between world boundaries and the skeleton, parameter-
isation must be performed to facilitate the mapping. To ac-
complish this, we need to parameterise both a world bound-

17

(a) Before (b) After

(c) Before (d) After

Figure 4: Two examples of skeleton pruning: 4a shows a
number of skeletal endpoints with weak supporting neigh-
bours. This results in recursive removal until no endpoints
remain as shown in 4b. In 4c the two endpoints are re-
cursively pruned to the configuration in 4d, where only one
endpoint remains supported by two strong neighbours.

ary and a section of skeleton with the intent of creating a
correspondence between the two. An intuitive way of visual-
ising this is to realise that each world boundary is enclosed
by a part of the skeleton. Parameterising a boundary is sim-
ple since we can extract a closed counter-clockwise sequence
of points from the BSP tree to describe it. However, our
skeleton at this point exists as a graph - a set of vertices
connected by edges - with no implied direction and no way
to choose which path to take at intersecting points.

To parameterise the section of skeleton surrounding a
world boundary, we utilise the Voronoi facets derived from
the tesselation process. By sampling the parameterised
world boundaries, a sequence of points is extracted that is
input to the voronoi tesselation process. The tesselation pro-
duces a facet for each input point and therefore produces a
corresponding sequence of facets that intersect the parame-
terised boundary. Facets that do not have skeleton vertices
can be safely ignored. Once the facet ordering has been es-
tablished, the ordering of the skeleton points lying on the
facets can also be established. This sequence of points is
then parameterised. This relation between the voronoi in-
put points and the skeleton points is shown in Figure 5.

At the end of the parameterisation process a parame-
terised world boundary Pb(tb), and a section of parame-
terised skeleton Ps(ts), that correspond to each other are
produced, with 0.0 ≤ tb, ts ≤ 1.0.

4.2 Mapping Generation

Once a skeleton has been derived from the world structure,
and parameterisations for sections of skeleton and world
boundaries have been established, we create a mapping be-
tween the skeleton and world boundaries. The aim of this
mapping is to establish the best possible correspondence be-
tween points on the skeleton and points on the world bound-
ary in order to accurately represent the width of the space.
Once again, this is accomplished by examining the Voronoi
facets that intersect the world boundaries and have an edge

Figure 5: Skeleton Parameterisation: The orange input
points to the Voronoi tesselation process produce the blue
voronoi facets, which have edges and vertices that lie on
the skeleton and are marked in red. The ordering of the
input points produces a corresponding voronoi facet order-
ing, which allows us to establish an ordering of the skeleton
points surrounding the world structure.

on the skeleton. We use these facets to categorise sections
of world boundary and skeleton into three classes as shown
in Figure 6.

Perpendicular Sections: Consist of one or more con-
secutively ordered Voronoi facets which have edges that all
intersect the world boundary at the same angle. The inter-
secting edges are perpendicular to each other.
Folded Out Sections: Consist of one Voronoi facet that
“fans outward” from the world boundary. The intersecting
edges diverge from each other as they move from the world
boundary towards the skeleton.
Folded In Sections: Consist of one or more consecutively
ordered Voronoi facets which have had weak skeleton end-
points pruned away. These facets “fan in” towards skeleton
endpoints that have been removed.

These sections are used to establish local mappings be-
tween world and skeleton boundaries and form the building
block of the final mapping. Each section is assigned param-
eterised values for the starting and ending skeleton points
(tss and tse) and starting and ending boundary points (tbs

and tbe). Two section lists are maintained, a skeleton or-
dered section list ordered by the tss of each section and a
boundary ordered section list, ordered by tbs.

When performing a mapping from the parameterised
skeleton onto the parameterised boundary for some param-
eterised skeleton value ts, the skeleton ordered section list is
used to look up a section such that tss ≤ t ≤ tse. Linear
interpolation is then performed to derive a corresponding
parameterised value tb for the boundary.

tb =
(ts − tss)(tbs − tbe)

tss − tse

Folded in sections converge on a single skeleton point such
that tss = tse and linear interpolation fails in this case. To
deal with this we simply map tss and tse to tbs−tbe

2
. Map-

ping from the boundary on to the skeleton can be performed
by reversing the process, with no special cases needing to
be dealt with, since sections never converge onto a single
boundary point.

18

Figure 6: Classifying sections: Sections of space between the
world boundary and skeleton are classified into Folded Out,
Folded In and Perpendicular sections, based on the Voronoi
facets found within the space.

5 Agent Implementation

In order to test the spatial awareness framework, we imple-
mented an agent-based crowd simulation system. The sim-
ulation consists of world geometry represented as a set of
polygons and a crowd of autonomous, embodied agents. Us-
ing forward Euler integration, the agents update their state
at each time step based on their perception of the world as
well as constraints imposed on them.

The autonomous agents interact with the world (as well
as other simulated agents) through a set of senses as shown
in Figure 7. These senses take information from the world
(such as world geometry or enemy agent positions), as well
as information about the local agent (such as turn rate or
movement speed), and produce a two dimensional output
according to the sense interface. This output is used by the
agent to steer.

The senses are tailored for a particular type of agent. Ex-
amples include distance to friends, the distance to each
friendly agent in the world, and geom vision x, the amount
of area obscured by world geometry measured along the
agent’s x-axis. The senses may be customised to allow the
agents a greater or lesser knowledge of the world or to allow a
certain type of behaviour. For example, the geom vision x
sense may be used for navigation purposes and the an-
gle to friend sense for tactical decision purposes.

Figure 7: A visual overview how an agent’s brain interacts
with the world.

The input from the senses are grouped into a perception
module and used as input to the agent’s brain. This brain
then alters control values for the agent which are in turn
used to update the agent’s internal state.

An agent’s brain is a collection of fuzzy rules, well docu-
mented in the field of control systems [Zadeh 1996]. These
rules may be visualised as a network of fuzzy logic nodes.
Each rule, of a standard if a then b form, operates on fuzzy
variables which, in contrast to the standard boolean variety,
take on a value in the range [0, 1]. For a full explanation of
fuzzy variable and fuzzy inference, the reader is referred to
standard texts [Klir and Yuan 1996].

A fuzzification step takes the two dimensional input from
the agent’s senses and determines the values of the fuzzy
variables used by the brain. This is done in a number of
different ways, depending on the properties required, usu-
ally involving a scaling step followed by a summation or
maximum operation. Once the fuzzy inference has been
conducted, a defuzzification step is required in order to de-
termine the real values for the agent’s controls as well as
combine rules that act upon the same control. We use the
height method for this defuzzification [Mizumoto 1998] due
its computational efficiency.

6 Results

To demonstrate the usefulness of the spatial awareness
framework, we created two simple games using the crowd
simulation agents designed to play the games at a basic level.
We then created a new group of agents based on the original
agents, but with additional rules making use of extra sen-
sory information provided by the spatial awareness frame-
work. By observing the performance of the modified agents,
we evaluated whether or not the framework has enhanced
their behaviour.

6.1 Racing Car Scenario

The racing car game involves the agents moving around
a simple track as efficiently as possible while avoiding the
walls. We observed that the basic agent, with inter-agent
and wall avoidance behaviour, did not take an optimal line
around corners. This is due to the agent being purely reac-
tive with no knowledge or recollection of the way in which
the track turns.

19

(a) Racetrack 1 (b) Racetrack 2 (c) Racetrack 3 (d) Racetrack 4

(e) Racetrack 5 (f) Robot War 1 (g) Robot War 2 (h) Robot War 3

Figure 8: The virtual worlds used in testing and their skeletons. The first five were used for testing the racetrack scenario,
and the last three for testing the robot war scenario.

We created a sense which provided information on the
curvature of the upcoming section of track by considering
the angle changes along upcoming sections of skeleton. To
accomplish this, the polygonal boundaries of the local map-
ping sections in the skeleton ordered section list were placed
in a quadtree. During the game, the quadtree was used to
look up the local mapping section containing the agent’s po-
sition. A binary search was performed within the mapping
to calculate the skeleton t value corresponding to the agent’s
position. The changes in skeleton curvature after the t value
were then provided to the agent. Using this information, the
agent was able to keep the inside wall of the track in view,
hugging the walls and taking a better line around corners.

We created five racing tracks (See Figure 8a to 8e) to test
the performance of the agents. Eight racing agents took part
in each race, four of which were normal agents and the other
four being enhanced with curvature awareness. The agents’
starting positions were arranged in the traditional staggered,
two column configuration, with the curvature aware agents
placed at the back.

In all of the five tracks, the spatially aware agents overtook
all the normal agents by the second lap. Taking the inside
line on the track shortened the distance they travelled and
gave them a better line making it more difficult for normal
agents to pass.

The four spatially aware agents queried the framework in
realtime. The complexity of this query is O(log N) since it
involves a quadtree lookup followed by a binary search.

6.2 Robot War Scenario

To test the use of the spatial awareness framework in a set-
ting somewhat similar to a first-person shooting game, we
created a robot war simulation. Each agent was able to
shoot in the direction that they are facing with some degree
of randomness in their accuracy. The basic behaviour for
a robot agent is the standard agent-and wall-avoidance, as
well as a “targetting” behaviour in which an agent turns to
face any enemy agent that it sees.

In this scenario, the improved agents were given a sense
of how many skeleton intersection points - locations where
three or more skeleton sections connected - were visible to
them. The rationale for knowledge of these areas being ad-
vantageous is that places where paths intersect are likely to
have a lot of traffic. This sense is therefore a combination of
the intrinsic quality of connectivity provided by the frame-
work and the secondary quality of visibility.

To this end, we generated a strategy map from the spatial
awareness framework. The strategy map is generated by
traversing the skeleton and sampling points on it and to
either side of it. At each point, we compute the number
of visible skeleton intersection points and two sense values,
best vis angle and position goodness. best vis angle
is set to the angle at which the most skeleton intersection
points can be seen in a 30◦ arc. position goodness is set
to the number of intersection points in the 30◦ divided by
the number of visible skeleton intersection points. Thus,
if a point has many intersection skeleton points visible in
a single 30◦ arc, it will have a high position goodness,
representing the advantage of being able to see many areas
of high traffic. The sample points were placed in a kd-tree

20

Contest Smart Agent Normal Agent
Kills Kills

Map 1 Team 5 3
Map 2 Team 5 0
Map 3 Team 5 1
Map 1 Team Reversed 5 0
Map 2 Team Reversed 5 2
Map 3 Team Reversed 5 0
Map 1 1v1 1 0
Map 2 1v1 1 0
Map 3 1v1 1 0
Map 1 1v1 Reversed 1 0
Map 2 1v1 Reversed 1 0
Map 3 1v1 Reversed 1 0

Table 1: The outcomes of the agent contests. The number
of kills for each type of agent are listed for each contest.

[Bentley 1975] to facilitate a fast lookup.
The first sense, best vis angle, was used by adding two

rules to the brain which turn the agent toward the best angle
if there are no enemies currently visible. The second sense,
position goodness was used to direct the agent to stop and
wait for enemies in a location (also known as “camping”) if
it has a high position goodness and is not too close to
other friendly agents (to stop agents grouping together in
one spot). The combination of these two behaviours results
in the agents occasionally camping in a strategically valuable
area while facing in the direction from which an enemy is
most likely to come.

The contests between the agents took place in three vir-
tual worlds (See Figure 8f to 8h). Since we wished to eval-
uate the effect of one environmental variable or sense at a
time, we constructed worlds which did not give an undue
advantage to the normal agents. For example, we broke up
outer circuits on the edge of the world since normal agents
tended to congregate on them and surprise the more spa-
tially aware agents looking inward. While it would be easy
enough to use additional environmental variables to elimi-
nate this advantage, our intention was to assess the utility
of the extra spatial information to agent behaviour, not to
design an optimal agent.

For each world two different contests took place: A team
contest were a group of five “smart” agents competed against
a group of five “normal” agents and a one-on-one con-
test where one “smart” agent competed against one normal
agent. Each contest was then repeated with the starting
positions reversed in order to ensure that the virtual worlds
did not unduly favour one side. The results of these contents
are listed in Table 1.

In each case, the agents with awareness of path intersec-
tion points won the contest. Additionally, the more spatially
aware agents “camped” near positions with a high posi-
tion goodness sense, managing to surprise normal agents
who wandered across areas of high traffic. Since the agents
react to sensory information, they have no higher-level plan-
ning behaviour besides “camping.”

6.3 Complexity of Data Structure Queries

In each scenario, the more spatially aware agents queried the
framework in realtime. To lookup curvature information for
a racing agent, a quadtree lookup was performed followed
by a binary search, yielding an O(log N) complexity. To
lookup up a point sample for the warring agents, a nearest
neighbour search was performed on a kd-tree, which again

produces O(log N) complexity.

7 Conclusion

The spatial awareness framework presented in this paper in-
troduces a new system which allowing agents to query the
geometric qualities of the space that they are operating in,
namely width, curvature and connectivity. To our knowl-
edge, this is the first system which automatically extracts
such qualitative geometric information from the environ-
ment. An agent crowd simulation system was implemented
to test whether awareness of these qualities could improve
the performance of agents within a virtual world.

Even though the agents were primarily designed to react
to sensory information and only implemented the most basic
of planning capabilities, their effectiveness was increased by
providing geometric information. We also showed how the
connectivity information derived from our spatial awareness
framework could be combined with the commonly used vis-
iblity information.

8 Acknowledgements

This research was funded by the National Research Foun-
dation of South Africa under grants GUN2053402 and
GUN66423.

References

Amenta, N., Bern, M., and Kamvysselis, M. 1998. A
new voronoi-based surface reconstruction algorithm. In
SIGGRAPH ’98: Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 415–421.

Barber, C., Dobkin, D., and Huhdanpaa, H. 1996. The
quickhull algorithm for convex hulls. ACM Transactions
on Mathematical Software 22, 4 (Dec), 469–483.

Bentley, J. 1975. Multidimensional binary search trees
used for associative searching. Communications of the
ACM 18 , 509–517.

Bhattacharya, P., and Gavrilova, M. L. 2007. Voronoi
diagram in optimal path planning. In ISVD ’07: Pro-
ceedings of the 4th International Symposium on Voronoi
Diagrams in Science and Engineering, IEEE Computer
Society, Washington, DC, USA, 38–47.

Chrysanthou, Y., and Slater, M. 1995. Shadow volume
bsp trees for computation of shadows in dynamic scenes.
In SI3D ’95: Proceedings of the 1995 symposium on In-
teractive 3D graphics, ACM Press, New York, NY, USA,
45–50.

Cornea, N. D., and Min, P. 2007. Curve-skeleton prop-
erties, applications, and algorithms. IEEE Transactions
on Visualization and Computer Graphics 13, 3, 530–548.
Member-Deborah Silver.

Fuchs, H., Kedem, Z. M., and Naylor, B. F. 1980. On
visible surface generation by a priori tree structures. In
SIGGRAPH ’80: Proceedings of the 7th annual conference
on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 124–133.

Guibas, L., Holleman, C., and Kavraki, L. 1999. A
probabilistic roadmap planner for flexible objects with a
workspace medial axis. In Proceedings of the IEEE Inter-
national Conference on Intelligent Robots.

21

Holleman, C., and Kavraki, L. 2000. A framework for
using the workspace medial axis in prm planners. In Pro-
ceedings of the International Conference on Robotics and
Automation, 1408–1413.

Klir, G. J., and Yuan, B., Eds. 1996. Fuzzy sets, fuzzy
logic, and fuzzy systems: selected papers by Lotfi A. Zadeh.
World Scientific Publishing Co., Inc., River Edge, NJ,
USA.

Lidén, L. 2000. The integration of autonomous and scripted
behaviour through task management. In Artificial Intelli-
gence and Interactive Entertainment, AAAI Spring Sym-
posium.

Mizumoto, M. 1998. Defuzzification. In Handbook of Fuzzy
Computation. IOP Publishing Ltd.

Morgan, D. 2003. Algorithmic approaches to finding cover
in three-dimensional, virtual environments. Masters the-
sis, MOVES Institute.

Ogniewicz, R. 1994. A multiscale mat from voronoi di-
agrams: The skeleton-space and its application to shape
description and decomposition. Aspects of Visual Form
Processing , 430–439.

Ogniewicz, R. 1994. Skeleton-space: a multiscale shape
description combining region and boundary information.
In 1994 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 746–751.

O’Neill, J. 2002. Efficient navigation mesh implementa-
tion. Journal of Game Development .

Pottinger, D. 2000. Terrain analysis in realtime strat-
egy games. In Proceedings of Computer Game Developer
Conference.

Teller, S. J., and Séquin, C. H. 1991. Visibility prepro-
cessing for interactive walkthroughs. Computer Graphics
25, 4, 61–68.

van der Sterren, W. 2001. Terrain reasoning for 3d action
games. Game Programming Gems 2 , 307–316.

van Waveren, J.-P. 2001. The quake iii arena bot. Masters
thesis, Delft University of Technology.

Voronoi, G. 1907. Nouvelles applications des paramètres
continus à la théorie des formes quadratiques. Journal für
die Reine und Angewandte Mathematik 133 , 97–178.

Zadeh, A. 1996. A rationale for fuzzy control. In Fuzzy sets,
fuzzy logic, and fuzzy systems: selected papers by Lotfi A.
Zadeh. World Scientific Publishing Co., Inc., River Edge,
NJ, USA, 123–126.

22

