
Volume 22 (2003), number 1 pp. 35–48 COMPUTER GRAPHICS forum

Creation and Control of Real-time Continuous Level of Detail
on Programmable Graphics Hardware

Richard Southern and James Gain

Collaborative Visual Computing Laboratory, University of Cape Town, Cape Town, South Africa

Abstract
Continuity in level of detail sequences is essential in hiding visual artefacts that occur when switching between
discrete levels of detail. However, construction and implementation of these sequences is prohibitively complex.
We present a new structure, the g-mesh, which greatly simplifies the implementation of continuous level of detail
in large scenes. We also introduce a novel greedy predictive level of detail control system suited to the g-mesh.
Finally we achieve a dramatic improvement in the rendering of morphing sequences by exploiting current graphics
hardware.

ACM CSS: I.3.5 Computational Geometry and Object Modeling—Geometric Transformations, Object Hierar-
chies, I.3.6 Methodology and Techniques—Graphics Data Structures

1. Introduction

Level of detail blending through geometric morphing (or
geomorphing[1]) is effective at hiding visual discontinuities
in level of detail (LOD) sequences (this artefact is often
called “popping”). Geomorphing involves an interpolated
transition between LOD models, designed to ensure that
model transitions are unnoticeable. Although widely
employed in terrain visualization, geomorphing techniques
are typically difficult to apply to true three-dimensional
(3D) objects. Most applications are forced to use models
with low polygon counts or discrete levels of detail, in
order to optimize rendering performance. There are several
reasons for this:

• Performance:The number of vertex interpolations per
frame of a geomorph sequence, if performed in soft-
ware, directly impacts on rendering performance. Un-
fortunately, for real-time applications (such as games)
model quality is considerably less important than inter-
activity. We make use of current graphics hardware to
ensure that there is little or no CPU overhead incurred
when performing interpolations between LOD models.

• Animation: The combination of geomorphing and
animation techniques, such as matrix palette skinning

(sometimes referred to asbones[2]) or wires [3] has
yet to be explored. Our interpolation technique can be
combined with the deformation techniques ofwires
or bones to enable time-dependent animation that is
independent of switches in LOD.

• Continuous LOD Control:Continuous LOD presents
unique challenges when attempting to maintain a
constant frame-rate. Switching between levels of detail
may result in sudden model discontinuities, which is
exactly what geomorphing is designed to avoid. We
present a novel greedy algorithm for dynamic LOD
adjustment based on predicted image degradation, to
produce a reactive frame-rate control mechanism.

• Construction Complexity:The geomorphs described by
Hoppe [1] based on the progressive mesh are difficult
to construct. The relative independence of each vertex
split operation in a progressive mesh must be tested.
This requires the construction of the progressive mesh
and a post-process is necessary to build the geomorph
structure. We address this problem by introducing a new
geomorph structure (theg-mesh) which is constructed
during simplification.

In this paper we present a novel mesh representation, the
geomorph (org-) mesh, which greatly simplifies the gen-

c© The Eurographics Association and Blackwell Publishing Ltd
2003. Published by Blackwell Publishing, 9600 Garsington Road,
Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148,
USA. 35

36 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

eration of continuous levels of detail for arbitrary meshes.
We outline the construction and application of the g-mesh,
and describe how its design allows for considerable acceler-
ation on current graphics hardware. As the g-mesh requires
only one parameter to control the current continuous level
of detail, an overall LOD control system is easy to define.
Using current hardware it is easy to incorporate animation
techniques based on vertex transformations, such as bones
[2] and wires [3].

It is important to consider the limitations of this work:

• View Independence: The method described is only
defined for discrete LOD representations, not a view-
dependent vertex hierarchy. This limits the application
of this technique to dynamic models or objects in a
virtual environment.

• Untextured Surfaces: While the technique has been
applied to textured models, the visual results can be
displeasing. Texture tends to ”slide” across the surface
due to the simultaneous interpolation of multiple texture
coordinates. This problem is generally applicable to all
schemes employing vertex interpolation techniques.

• Memory Overhead: As with most LOD sequences, the
memory overhead is greater than storing just the original
surface. The memory overhead of the g-mesh (as
described in Section 4) also suffers from this limitation.
This issue is further discussed in Appendix 7.

2. Related Work

Surface blending can be defined as any technique that at-
tempts to reduce the visual effect of transitions between dis-
crete multi-resolution models. Surface blending techniques
can be divided into two categories: smooth terrain transi-
tions [4–7] and more general model-based blending methods
[1,8–11].

Funkhouser and Séquin [9] describe a technique that
blends between two independent LOD representations using
alpha blending to “phase out” the old model and “phase
in” the new. However, Ferguson et al. [7] claim that
such blending techniques are visually distracting. Graphics
toolkits such as IRIS Performer [12] and Renderman [13]
provide facilities for surface blending techniques by making
use of hardware alpha blending and interpolation between
level of detail models.

Model blending techniques with terrain models employ
heuristics based on their particular surface connectivity.
Terrain models are typically represented by regularly spaced
height-fields. Transforming these height-fields into a triangle
mesh results in a surface where every vertex (except those at
the edges) has valence six (the valence of a vertex is defined
as the number of faces which include that vertex).

Taylor and Barret [5] exploit the inherent 2D nature
of height fields to construct a quad-tree representation of

the model, and base their Triangulated Irregular Network
(or TIN) on the cells of the quad-tree. Model blending
is achieved by vertex interpolation between levels in each
quad-tree cell.

In order to guarantee spatial and temporal continuity in a
Delaunay triangulated terrain, Cohen-Or and Levanoni [6]
introduce a hierarchical Delaunay representation that allows
for smooth transitions between different triangulations.
Their technique bears a resemblance to the method of
Hoppe [1], in that edges are collapsed iteratively in the re-
triangulated region.

Lindstrom et al. [4] use the regular nature of terrain
meshes to construct a subdivision hierarchy. Simplification
is achieved by triangle fusing, where two adjacent triangles
are merged by removing a shared vertex. Transitions
between different levels of the hierarchy can be smoothly
performed. Lindstrom et al. also define four types of
continuity with respect to continuous level of detail across a
terrain model:

(1) Geometric Continuity: The function z(x, y, t); where
x, y, t ∈ R, is continuous for every vertex in
the mesh. In this case the parameter t refers to a
scalar used to morph the vertices into their new
positions, and could represent distance, time or view
parameters. This implies that every point in the mesh
exhibits C0 positional continuity.

(2) Block Continuity: Neighboring cells of the terrain
model must align so that the mesh does not have
T-vertices and potential gaps. This differs from
geometric continuity in that a terrain model may
consist of unconnected patches whose points may be
duplicated on the surface.

(3) Rendering Continuity: The number of polygons sent
to the graphics pipeline is inherently discrete. How-
ever, Lindstrom et al. state that for this kind of conti-
nuity, “a sufficiently small change in view parameters
results in the number of rendered polygons increasing
or decreasing by at most one” [4].

(4) Polygon Density Continuity: The number of polygons
used to describe an area with respect to the view
parameters is continuous, i.e. the distribution of
polygons over an area is continuous according to the
view point.

Hoppe [1] recommends the progressive mesh as a multi-
resolution hierarchy constructed using the edge collapse
(ecoli , i = 1 . . . n) and the vertex split (vspli ti , i = 1 . . . n)
operations. Here, n defines the number of levels of detail
generated with the technique. These operations allow a
sequence of multi-resolution models Mi , i = 0 . . . n:

M0 ecol1←− M1 ecol2←− . . .
ecoln−1←− Mn−1 ecoln←− Mn

M0 vspli t1−→ M1 vspli t2−→ . . .
vspli tn−1−→ Mn−1 vspli tn−→ Mn

c© The Eurographics Association and Blackwell Publishing Ltd 2003

R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware 37

vertex split (vsplit)

edge collapse (ecol)

local interpolation1 0.5 0

Figure 1: Interpolation of a vertex split / edge collapse
operation. The local interpolation parameter is equivalent
to the function gi (T) defined in Section 4.2.

Hoppe addresses the problem of smooth model transitions
between levels of detail in a progressive mesh structure.
The progressive mesh is structured as a base mesh and a
sequence of refinements necessary to reconstruct the original
model. Progressive mesh refinements are implemented as
vertex splits, which can be animated by interpolating the
new vertex positions over time (see Figure 1). Hoppe defines
a geomorph as a geometric transition between two level
of detail representations, such that multiple independent
geomorphs can be performed simultaneously.

In order to establish which vertex splits can be performed
in parallel, the list of available vertex splits must be traversed
to determine their validity. A vertex split is valid if the
vertices and faces on which it depends are present [1,14].
Southern et al. [14] avoid this step by dividing vertex
split operations into batches during simplification. The
vertex split operations within a batch can all be performed
simultaneously.

Reddy [15] presents an overview of factors upon which
an LOD control system could be based, including the size,
distance or velocity of the model, the viewing direction of
the user, and frame-rate control. Gobbetti and Bouvier [16]
propose a general LOD control mechanism for determining
scene representations in time-critical systems. Their method,
based on quadratic optimization and the visual error mea-
sures of Reddy [15], provides a solution to LOD control in
large scenes consisting of many multiresolution models. Al-
though the authors state that geomorphs can be implemented
within their framework, they do not discuss the overhead of
computing smooth geometric interpolations between frames
of their scene. We show in Section 6 that for large scenes this
computational overhead can prove prohibitively costly.

Grabner [17] describes an interactive view-dependent
framework. He defines a local interpolation parameter αs ∈
[0, 1] (analogous to the local interpolation parameter t
presented in Section 4.2). The number of frames taken to
perform a geomorph operation in this technique is dependent
on screen space error, rather than time.

Removed
Vertex

Retained
Vertex

Figure 2: Batched hierarchy construction. After an edge
collapse operation, the dashed edges are removed from the
priority queue.

Zach [18] presents a predictive system for level-of-detail
management. The parameter τ , which defines the number
of frames which can be used for geomorphing, can be
adjusted to deliver more control over visual and frame-
rate discontinuities, in a similar manner to the Tchange
parameter (defined in Section 5.4).

However, both these techniques [17,18] differ fundamen-
tally from the technique presented here, in that the g-mesh
only performs interpolations as a function of the viewers
position – it is not dependent on a fixed number of frames
or time.

Batched Operations

Southern et al. [14] modify the progressive mesh representa-
tion to form a batched hierarchy of operations. This method
forms the basis of an automatic LOD partitioning, where
each consecutive model in the LOD sequence consists of
roughly half the number of vertices in the preceding model,
depending on the topology of the surface.

Progressive simplification algorithms make use of a
priority queue of potential edge collapse operations, sorted
according to a measurement of their impact on the current
mesh. Typically after a successful operation, all affected
operations in the queue are updated. In constructing a
batched hierarchy, edge collapse operations involving the
edges originating from the retained vertex (indicated by
dashed edges in Figure 2) are removed from this queue.
Once empty, the queue is rebuilt from the current mesh,
and the process repeats. This method forms the basis of a
batching hierarchy, where

M0−

B0

vsplit1
vsplit2

...

vsplitp

→M p−

B1

vsplitp+1
vsplitp+2

...

vsplitp+q

→· · ·→Mn

where p and q represent the number of vsplit operations in
batches B0 and B1, respectively.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

38 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

Although any vsplit operation within B0 can be applied
at any time, every operation within B0 must be completed
before any within B1 can be performed. Note that the batch
sizes increase as the model resolution increases, and the
largest batch is applied to reach the final mesh Mn . The
independence of vsplit operations in each batch increases
the set of possible mesh configurations, as compared with
the standard linear hierarchy. The mesh representations
M0, M p, . . . , Mn are equivalent to the attribute and
connectivity sets defined in Section 4.

3. Continuous Level of Detail

In this paper we present a technique for continuous level of
detail control of surfaces with arbitrary topology. Lindstrom
et al. [4] define four types of continuity appropriate to
continuous LOD terrain techniques (described in Section 2).
Items (3) and (4) depend on viewing parameters, defining
distribution and polygon density within the view frustum.
These concerns do not apply to our technique, which does
not refine models based on the view frustum. We believe
that there are three types of continuity associated with
multiresolution surface models:

• Visual Continuity: This form of continuity is the goal
of all LOD blending techniques — to disguise changes
in model geometry from the user. It is clear from our
experience that geomorphing reduces popping to a point
where discrete LOD switches are entirely unnoticeable
— except possibly as a change in frame-rate. Note
that we only address visual discontinuities caused by
geometric artefacts, and not those caused by texture.

• Geometric Continuity: Block continuity [4] is required
to prevent cracks in terrain models. However, for
an arbitrary model with unconstrained topology, there
are no strict boundaries available to construct these
blocks. Any definition of geometric continuity needs
to encompass these concerns. We define geometric
continuity in terms of the insertion and removal of
vertices in the mesh: a vertex can only be inserted
or removed from the mesh at the position of a vertex
that is already present. If we regard removed vertices
as present in the mesh (sharing their position with
another vertex), this describes C0 positional continuity.
This form of geometric continuity guarantees that for a
small enough change in time or distance parameters, no
popping effect is noticeable.

• Frame-rate Continuity: Slater and Steed [19] state
that any disruption can cause a break in the feeling
of presence. Such disruptions can take the form of
popping between LOD models (visual discontinuities),
or a sudden decrease in frame-rate, resulting in reduced
interactivity or lag [15]. Frame-rate continuity is similar
to rendering and polygon density continuity (described

a0

a1

a2

a3

a4

c0

c2

c1

c3

c4

a0

a1

a2

a3

a4

c0

c2

c1

c3

c4

(a) (b)

Figure 3: The g-mesh structure. A standard discrete LOD
model sequence is shown in (a), while in (b) we present
the g-mesh structure. A g-mesh is a hierarchy of attributes
(ai) (such as vertex positions and color) and connectivity
(ci) (the manner in which the attributes are connected). In
(a) each ci applies only to a specific attribute set ai . Each
connectivity set in (b) links together the two attribute sets
ai and ai+1. A local interpolation parameter (defined in
Section 4.2 as gi (T)) determines how these two attribute sets
are combined.

in Section 2), since it is achieved by constraining the
number of polygons in the scene.

Frame-rate and visual continuity may be irreconcilable
(for instance, when a large amount of geometry becomes
visible in a new frame). In order to guarantee a constant
frame-rate, a predictive LOD scheme must be used (as with
Mason [20]), but this cannot constrain the rate at which
the models change. If transitions are performed too quickly,
popping may result.

We define a volatile scene as one in which situations arise
where frame-rate continuity and visual continuity cannot
be maintained. A region of volatility in such a scene is a
sequence of frames that exhibit volatility. Figure 13(b), used
in our experimental evaluation, has a region of volatility
surrounding frames where the camera points down at a
single dolphin, after which many dolphins are introduced
into the view. In Section 5 we discuss the issue of volatility
and show how the rate of transitions can be controlled to
reduce popping.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware 39

a4a0 a1
a2 a3

c0 c1 c2 c3 c4

r0r0r r1r1r r2r2r r3r3r
Range
Partitions

T Range

T=0 T=1

dneardneard dfardfard

0.00 0.250 0.50 0.750 1.01

Figure 4: An even LOD partition. This demonstrates a LOD control mechanism, where the parameter T determines a model
representation defined by a connectivity set ci . The function gi (T) maps the global interpolation parameter into a local
interpolation parameter (see Section 4.2), which is used to interpolate between attribute sets ai and a(i+1). ri defines the
range partitions of each LOD model in the sequence. In this even LOD partitioning ri , i = 0, . . . , 3 are equal in size. For
T > 1 the least complex model representation is used, made up of cn and an.

4. Defining the g-mesh

We introduce the geomorph mesh (or g-mesh) as a structure
that greatly simplifies defining transitions between LOD
models. While an ordinary LOD sequence only defines a set
of unrelated models, a g-mesh is a sequence of attributes that
share connectivity sets. This allows smooth transitions be-
tween attribute sets, and hence between LOD models. In this
paper we use a superscript to specify individual components
of a set, while a subscript denotes the set number.

A g-mesh is a hierarchical level of detail sequence,
consisting of n + 1 attribute information arrays ai ; i =
0, . . . , n, and n + 1 connectivity information sets ci ; i =
0, . . . , n, each defining the shared connectivity across ai and
ai+1. This differs from a standard LOD sequence, where
connectivity set ci would only refer to attribute set ai (see
Figure 3).

Connectivity set c0 has the same number of polygons as
the full resolution model, while connectivity set cn is the
final, or simplest level of detail, and only refers to attribute
array an . The g-mesh is defined as

g = [{a0, . . . , an}, {c0, . . . , cn}, n].

Each ai is an m-element array of vertex attribute infor-

mation in which each entry a j
i ; j = 1 . . . m, is a vector of

attributes, including position, normal, colour and texture co-
ordinates. The connectivity information set ci contains index
information for drawing the model primitives, such as vertex
indices for triangle strips.

4.1. LOD Partitioning

We define T ∈ [0, 1] as the global interpolation factor
for all transitions. This determines the range over which

model transitions are defined. Interpolation starts from a user
defined near distance, dnear, and ends at the far distance,
dfar. If the model is currently at a distance d from the
viewer, our parameter T is simply

T = d − dnear
dfar − dnear

.

T is used as a global LOD control parameter. T > 1
implies that the object has passed the maximum distance
for LOD transition, and the lowest level of detail is visible.
A value of T < 0 means that the object is at maximum
resolution, or behind the viewer and so must be culled.

In order to determine which level of detail model to use
(the value i of ci) the space between dnear and dfar is
partitioned into n segments, ri , i = 0, . . . , (n − 1), where

n−1∑
i=0

ri = 1.

Figure 4 demonstrates an even partitioning of T , where
r0 = r1 = . . . = r(n−1). This form of partition would give
each level of detail an even “slice” of the interpolation range.

4.2. Model Interpolation

We have shown how the active connectivity set, ci , is
determined by the LOD control parameter T . We now need
a function which determines the current g-mesh attributes,
such that geometric continuity is preserved. For this purpose,
a basic linear interpolation function for each component of
the mesh is sufficient.

We define a function F j (T) which determines the current
position of attribute a j . If Ri is the T value at which the

c© The Eurographics Association and Blackwell Publishing Ltd 2003

40 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

T=0.05, t=0.0

T=0.09, t=0.4

T=0.13, t=0.8

T=0.11, t=0.6

T=0.07, t=0.2

T=0.15, t=1.0

Figure 5: An interpolation sequence. The dolphin is interpolated through its second level of detail partition, in this case between
the range of T = [0.05, 0.15]. Note that the positions of the vertices at the end of each sequence are the starting positions for
the next sequence, implying geometric continuity.

range ri begins, then

Ri =
i∑

k=0

ri .

Next the function gi (T) is a mapping function between
the global transition parameter T and the local transition
parameter for connectivity set i :

gi (T) = T − Ri

R(i+1) − Ri

If T is not within the range
[
Ri , R(i+1)

]
the value for

gi (T) will be outside of the range [0, 1]. Now the value f j
i

of a particular attribute j within an attribute set i is defined
as

f j
i (T)=

{
(1−gi (T))a j

i +gi (T)a j
i+1 if Ri <T � R(i+1),

0 otherwise.

The sum of the functions

F j (T) =
(n−1)∑
i=0

f j
i (T) (1)

is C0 continuous (and hence geometrically continuous) on
the interval T ∈ (0, 1].

According to this notation, interpolations will take place
even if the connectivity information for a particular LOD
ci does not require that attribute. This would result in
unnecessary interpolations in later attribute sets after an
attribute has been collapsed to its final position. In practice,
the need for these redundant interpolations is removed by
using the vertex program with indexed primitives (described
in Section 6). In Figure 5 a single g-mesh interpolation
sequence is shown.

4.3. g-mesh Construction

The g-mesh is constructed during the surface simplification
process, using the batched hierarchy defined in Southern
et al. [14]. The mesh structure is initialized by writing the
unsimplified attribute and connectivity information into the
g-mesh as a0 and c0, respectively. After each individual
batch of independent edge collapse operations has been
completed, a new attribute and connectivity set is written to
the mesh. Once a particular termination criterion has been
satisfied, the final attribute and connectivity sets are written
to the g-mesh, along with the number of levels of detail, n.

Although only a single attribute set and connectivity set
pair are theoretically required at each level of resolution (see
Figure 3), implementation constraints require the indexing

c© The Eurographics Association and Blackwell Publishing Ltd 2003

R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware 41

of the attribute sets at each level of resolution to correspond
with the associated connectivity set. A number of potential
memory configurations of the g-mesh structure are discussed
in Appendix 7.

5. Continuous LOD Control

A continuous LOD algorithm presents a unique challenge
to frame-rate control. Funkhouser and Séquin [9] state that
only by prediction can a constant frame-rate be maintained.
A predictive scheme attempts to maintain the desired frame-
rate by computing the overall scene complexity before
rendering and then adjusting individual model complexities
accordingly. In the case of continuous LOD sequences
an unguided predictive scheme will result in “popping”
whenever there is a sudden and sufficient change in the
complexity of the scene (for instance, when a new object
is inserted). In these cases (called regions of volatility)
frame-rate continuity and visual continuity are mutually
exclusive.

We put forward a greedy global predictive algorithm for
continuous LOD control which depends on a single global
parameter T . This technique does not depend on the g-mesh
structure, and could be used with any view independent LOD
model sequence or structure. The technique presented is
particularly relevant to the g-mesh as the derivation of the
local interpolation parameter t (defined in Section 4.2) from
the global interpolation parameter T is trivial.

The interpolation parameter T provides effective global
control over the LOD of all models in a scene. In scenes
containing several objects, T can be offset to increase or
reduce the complexity of all the models in the scene. We call
this offset bias Tbias (as explained in Figure 6). The change
to Tbias in each frame is called Tchange.

5.1. Determining Tbias

In order to maintain a given frame-rate (or, in this case, poly-
gon count), with the least possible correction, we develop
a novel global LOD control algorithm that determines the
optimal value for the parameter Tbias. We achieve this by
sorting the models in the scene on the distance from their
nearest LOD partition, and incrementing (or decrementing)
the Tchange until the correction is sufficient to balance the
number of polygons in the scene. Thus the goal is to restrict
the number of polygons in the scene to a desired value p,
with a permitted tolerance of ε.

Before rendering each frame, the number of polygons in
the scene q, and required polygon correction k = p − q are
determined. Each object in the scene is assigned a control
structure consisting of {Dprev, Dnext, Pprev, Pnext}.
Dprev and Dnext represent the minimum Tbias necessary
to change to the previous or next connectivity levels,

dneardneard dfardfard

Applied T = –0.25bias

Applied T = –0.5bias

T = 0.5

T = 0.5 – 0.25

T = 0.5 – 0.5

T = 1.0

T = 1.0 – 0.25

T = 1.0 – 0.5

tim
e

Figure 6: Applying a Tbias. By gradually incrementing the
value of the Tbias visual discontinuities caused by changing
the parameter T can be reduced. In this example the frame-
rate is stabilized by improving the overall quality of the
scene. This is achieved by subtracting a value of Tchange =
0.25 from the Tbias in each frame, gradually enhancing the
overall detail.

respectively. Similarly, Pprev and Pnext are the number of
polygons that would be removed from or added to the scene
in changing to the previous or next connectivity level.

The algorithm for global level of detail control is as
follows:

(1) set current Tchange = 0

(2) count the number of polygons in the scene q

(3) build an array of LOD control structures — each
entry is an object in the scene

(4) sort the array on either the Dnext or Dprev, depend-
ing on whether k = p − q is negative or positive
respectively

(5) set i = 0

(a) if k > 0, reduce q by the Pnext of the ith
element of the array, else if k < 0, increase
q by the Pprev of the ith element of the array

(b) if the sign of k has not changed (i.e. the re-
quired polygon count has not yet been reached)
and i is less than the array size then increment
i and goto 5a

(c) add Dnext or subtract Dprev of the ith element
from Tchange, depending on whether p − q is
negative or positive respectively

(6) count the number of polygons in the scene q

(7) if |p − q| > ε, goto 3

(8) Tbias = Tbias + Tchange

c© The Eurographics Association and Blackwell Publishing Ltd 2003

42 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

B

–100 polys

+100 polys

–50 polys –25 polys

+25 polys+50 polys

partition i partition (i +1)

Figure 7: A continuous level of detail control system. Six
objects are scattered across two consecutive LOD partitions.
In this example, the number of polygons in the scene needs
to be reduced by 45. Firstly LOD control structures are
constructed for each object, and then sorted in increasing
order on the value of the parameter Dnext. The ordering of
the objects in the array is now {D, A, E, B, C, F}. Shifting
object D across the LOD partition causes a polygon change
of only 25, but shifting A causes an accumulated change of
75 (25 + 50), which is sufficient to balance the number of
polygons in the scene. The adjustment to Tbias is the Tchange
necessary move the object A across the LOD partition.

The execution of this algorithm is demonstrated in Fig-
ure 7. Note that in Figure 7, the correction overshoots the
desired value by 30 polygons. If there is no change in the
following frame it would be undesirable for the scheme to
“counter-correct” so few polygons, since this would result
in unnecessary oscillations. For this reason we permit a re-
gion of tolerance, ε about the desired polygon count. The
maximum number of polygons which can be introduced or
removed from a single object is the number of faces in the
highest resolution mesh c0 subtracted from the number of
faces in c1, assuming that every object has a unique value for
Dprev and Dnext. We use a tolerance of ε = (|c0| − |c1|).

5.2. Maintaining Visual Continuity

Although the predictive LOD correction scheme described
above ensures frame-rate continuity, it cannot guarantee
visual continuity. However, popping caused by model
interpolation between frames can be reduced by restricting
Tchange, the variation of Tbias, to ensure that visual
differences are minimized. However, surfaces do not
degrade linearly as they geomorph to lower resolution
versions, since interpolated edges become longer as model
resolution decreases.

In order to control Tchange based on the image quality
of the model, it would be necessary to either adjust it

1

0

Vo
lu

m
e

R
at

io

1T

1

0

Vo
lu

m
e

R
at

io

1T

(a) (b)

Figure 8: Shifting the LOD partition. (a) As the surface
is simplified, the volume of the enclosed object shrinks
exponentially. (b) The LOD partitions (depicted by vertical
dashed lines) are adjusted to ensure that the volume
shrinkage is close to linear in T .

dynamically, according to the LOD partition in which the
object lay, or shift the LOD partitions so that Tchange
remained constant. As we would like a global Tbias value
which is applied to all models in the scene, adjusting the
Tchange for each model is not possible. Instead we adjust
the individual partitions of each object.

5.3. LOD Partitioning based on Image Quality

It has been shown [21] that decay in the volume of a
simplified model:

• correlates significantly (−0.75) with decrease in the
measured image quality, based on the L1 norm, and

• correlates significantly (−0.89) with decline in the
quality of the objects silhouette.

Consequently, we use the decline in the volume of the
model to construct LOD partitions which approximate image
quality.

During simplificiation the volume of the object is mea-
sured after each batch has been completed. This volume is
divided by the original volume of the object to yield a nor-
malized volume measurement Vi ; i = 0 . . . n, for each batch
(V0 = 1, as it represents the volume of the unsimplified
model). These volume measurements are used to determine
ri = Vi − Vi+1, i = 0 . . . (n − 1). The effect of shifting
the partitions according to volume is shown in Figure 8, and
an example of a shifted LOD sequence based on volume
degradation can be found in Figure 9.

Generally, this form of partitioning causes an increase in
the extent of partitions as detail decreases, i.e. r0 ≤ r1 ≤
. . . ≤ rn−1. This implies that the largest portion of the
geomorph sequence T ∈ [0, 1] is spent within the lowest
level of detail partition, ensuring smoother transitions when
the model is at its lowest resolution.

Note that objects in the scene may have user defined
partitions ri , i = 0 . . . n − 1. This can be used to weight
certain objects in the scene with more importance (and more
detail) than others, and can effectively guide the focus of the
viewer.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware 43

a4a0 a1
a2 a3

c0 c1 c2 c3 c4c

r0r0r r1r1r r2r2r r3r3r
Range
Partitions

T Range

T=0 T=1

dneardneard dfardfard

0.00 1.010.600.3500.150

Figure 9: A shifted LOD partition based on approximated image degradation. The definitions for ri , i = 0 . . . 3; ai and
ci , i = 0 . . . 4, and T are the same as in Figure 4. The partitions ri are built by using volume degradation to approximate image
degradation.

5.4. Deciding on a minimum Tchange

Several authors [9,15] have noticed that viewers are more
tolerant of lower detail and visual discontinuities if the
model is moving at a high velocity, or the viewers focus is
shifted elsewhere. In these situations, it is permissible to use
a large (or unconstrained) Tchange between frames.

Fixing the value of Tchange can have side effects for
scenes with a great deal of volatility, since the LOD
control system described in Section 5 cannot keep up with
the changes taking place. This kind of volatility often
occurs when a mass of occluded geometry is exposed
(e.g. through a portal). When moving through a scene, we
find visual discontinuities to be unnoticable but frame-rate
discontinuities distracting.

To ensure a controlled frame-rate, Tchange remains
unconstrained when large amounts of new geometry could
be exposed between frames (for example, while the user
is moving through the scene). An unconstrained frame-
rate guarentees frame-rate continuity. While the viewer
is stationary, Tchange is constrained to minimize visual
discontinuities.

Our experiments evaluate a small Tchange parameter
of 0.01, and a large parameter of 0.1 to determine how
well the LOD control mechanism recovers from frame-
rate fluctuations (see Figure 10). A higher maximum
value for Tchange permits more drastic visual changes
in stabilizing the frame-rate. Tchange could be more
accurately determined on a per model basis using visual
experiments such as the just noticeable difference test [22].
Such a visual measurement would more accurately measure
a perceived deviation in model quality, but this is an area for
future research.

6. Implementation

In order to construct the g-mesh file we make use of the
Generic Memoryless Polygonal Framework and batched
hierarchy described in Southern et al. [14]. Each attribute
set ai and connectivity set ci is written to the g-mesh file at
the start and after the completion of each batch. This process
is run until some stopping criteria is met, such as a face or
vertex limitation. We have not experimented with different
error metrics for this technique, but used the hybrid scheme
Ehybrid [14] due to its good preservation of normal and
volume attributes.

The visual platform implementation was written in C++
with the GL Utility Toolkit (glut). A number of extensions
were necessary to ensure optimal frame-rates. In order to
improve the performance of the many mesh interpolations
required during the generation of the desired model, we
make use of the vertex program [23] extension available for
the NVidia GeForce 3. A graphic overview of our vertex
program appears in Figure 11. The SIMD architecture of
vertex programmable hardware permits parallel computation
of vertex interpolations as part of the rendering pipeline. A
code segment for the linear interpolation function is included
in Figure 12.

Each attribute set was stored in a vertex array, and drawn
with indexed primitives. The vertex array range extension
was also used to accelerate memory access of these attribute
sets. The speed up from using this extension was in some
circumstances as much as threefold.

A simplified version of Wires deformation [3] is used to
perform animation. The constant registers store the Wire
parameters and an interpolation parameter (all animation
constants are referred to in Figure 11 as A). This allows the
dolphins’ tails to flap in the experimental scene.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

44 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

(a) non-volatile scene (b) non-volatile scene

(c) volatile scene (d) volatile scene

Figure 10: Controlling the number of polygons in the scene. Each graph depicts the measured number of polygons or frames
per second over 120 frames along a predefined path. (a) and (c) show the polygon counts for uncontrolled non-volatile and
volatile scenes respectively. In (c) the number of polygons in the scene drops suddenly at the point where the camera faces down
(as in Figure 13 (b)). In (b) Tchange = 0.01 is capable of maintaining the frame-rate close to the desired level. It is clear that
in (d) a Tchange = 0.1 is better at handling frame-rate discontinuities than the smaller value. The peak results from there being
insufficient dolphins in the scene to allow for the required number of polygons. Note that this can easily be corrected by simply
introducing a forced delay.

a1 a2

t

M

Interpolating
Componentss

Applying
Modelview
Transform

VeVeV
rte

x
Coo

rd
s

N
o

N
o

N
rm

al

C
ol

or

Texture
C

oordrdr sssds VeVeV
rtrtr e

x
C

oo
rd

s
N

or
m

al

C
ololor

Texture
CoCoC

ordrdr

Animation
TransformssA

v v v v0v0v 1v1v 2v2v 3v3v 4v4 v v v5v5v 6v6v 7v7vInput
Registerss

HPOSS COL0 TEX0Result
Registers

VV
eerr

tt
xx

PP
rroo

gggrr
aa

Figure 11: Our Vertex Program. The two attribute sets a1 and a2 are passed through input registers vi , i = 0 . . . 7. The first
stage combines these attributes with the t parameter, stored in a constant register. After the points in the mesh are determined,
an animation routine can be applied (such as bones or wires). The transformed points are then transformed into homogenous
coordinates and clipped using the modelview matrix M and the world view projection matrix. The results are written to the
output registers HPOS (homogenous position), COL0 (color) and TEX0 (texture coordinates).

c© The Eurographics Association and Blackwell Publishing Ltd 2003

R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware 45

char VPGeomorph [] =

"!!VP1.0\n"

// attributes for attribute sets i, i+1:

// v0,v4 position

// v1,v5 normal

// v2,v6 color

// v3,v7 texture coordinates

// linear interpolation in model space:

"MUL R1, v[0], c[9].y;"

"MAD R1, v[4], c[9].x, R1;"

// and the same for the normals:

"MUL R2, v[1], c[9].y;"

"MAD R2, v[5], c[9].x, R2;"

// and the same for the color:

"MUL R3, v[2], c[9].y;"

"MAD R3, v[6], c[9].x, R3;"

// and the same for the texture

// coordinates:

"MUL R4, v[3], c[9].y;"

"MAD R4, v[7], c[9].x, R4;"

// Transform to clip space:

"DP4 o[HPOS].x, R1, c[0];"

"DP4 o[HPOS].y, R1, c[1];"

"DP4 o[HPOS].z, R1, c[2];"

"DP4 o[HPOS].w, R1, c[3];"

// Transform normal according to

// world matrix:

"DP3 R0.x, R2, c[4];"

"DP3 R0.y, R2, c[5];"

"DP3 R0.z, R2, c[6];"

// Dot normal with light direction in

// world space:

"DP3 o[COL0], R0, c[8];"

// Pass through texture coords:

"MOV o[TEX0], R4;"

"END";

Figure 12: A vertex program for linear attribute inter-
polation. This code segment is based on the basic linear
interpolation in Figure 11. The modelview matrix is stored in
constant registers c[0 - 3], while the world matrix is stored
in registers c[4-6]. The values of t and 1 − t are stored in
c[9].x and c[9].y respectively.

An important concern is the potential memory overhead
for repeated models. As model attribute and connectivity
data must be accessed quickly it is stored in video or AGP
memory. So as not to repeat this data we instantiate only
one data object, and create model instances which store their
own state and point into the data store. On our test platform,
there was little performance improvement in using memory
on the graphics card over AGP memory (although both were
a significant improvement over standard memory).

(a) non-volatile scene

(b) volatile scene

Figure 13: Our test scene consists of a thousand dolphins,
with |c0| = 9936 and |c6| = 200 polygons. The camera
moves through the scene along the described path, always
pointing at the “ X” . In (a), a simple circular path about
the scene is described. In this case, there is usually a small
change in the polygon counts of consecutive frames. In (b),
the camera path travels through the center of the scene, at
which point the camera points straight down. The frames
surrounding and including this point make up our region of
volatility (this is shown more clearly in Figure 10(c)).

Experimental Design and Results

Our test platform is based on the implementation described.
An un-textured dolphin model is utilized in the experiments.
The g-file for the dolphin has 6 levels (n = 6) and
varies from 10000 to 200 faces. The initial scene holds
1000 dolphins, which are translated to be within the model
interpolation region (i.e. between dnear and d f ar). Objects
outside of the view frustum are culled.

Two paths are tested during evaluation. The first
(Figure 13(a)) is a non-volatile scene, as there are relatively
small fluctuations in the number of polygons. Our LOD
control system maintains a steady frame-rate by restricting
the number of polygons to be exactly within the tolerance
ε = 5000. The second (Figure 13(b)) produces a volatile
scene, where frame-rate fluctuations cannot be contained
(see Figure 10), as there are insufficient polygons in the
scene to achieve the required frame-rate.

The use of programmable hardware is essential for
interactive display of the g-mesh. Our experiments with
the non-volatile path (in Figure 13(a)) show a speed up

c© The Eurographics Association and Blackwell Publishing Ltd 2003

46 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

from 71.42 seconds per frame in the case of software
interpolation, to between 12 and 14 frames per second on an
Athlon 500 Mhz processor using an ASUS v8200 GeForce
3. This is attributable to the large number of interpolations
which are required within each frame of the sequence (for
1000 dolphins at the highest level of detail, each frame
would require the interpolation of 10 million attributes).
These computations are significantly faster when performed
using programmable hardware.

Although volume is a good measure of geometric degra-
dation, we find that texture sliding is a major visual distrac-
tion. The large changes that occur when the model is close
to the camera position causes the texture on the surface to
slide considerably. The work of Sander et al. [24] would
significantly reduce this artefact, and could easily be adapted
during model simplification. We leave this as a suitable area
for future work.

7. Conclusion and Future Work

We have defined three types of continuity for level of detail
sequences: visual, geometric and frame-rate continuity. Vi-
sual discontinuity is caused by popping between different
levels of detail, and can be minimized by enforcing geo-
metric continuity. In volatile scenes, visual continuity and
frame-rate continuity may be irreconcilable.

The g-mesh structure offers a comprehensive solution to
the problem of continuous level of detail in highly populated
scenes. We have defined this structure, and described its
construction using a batched hierarchy during simplification.
Every attribute of the resulting mesh has C0 (positional)
continuity, which is important in ensuring visual continuity.

We describe a level of detail control mechanism based on
a global control parameter T . This allows the LOD of a scene
to be accurately controlled using a single value that corrects
the current polygon count. By restraining this correction, and
shifting the level of detail partitions defined for each object,
we are able to place an upper limit on visual discontinuities
caused by abrupt level of detail changes.

We have also shown that programmable hardware is
essential for real-time rendering of large continuous level of
detail scenes, and is also useful when mixing level of detail
interpolations with other forms of animation, such as wires
or bones. We demonstrate that our level of detail control
implementation is capable of ensuring a desired polygon
count.

There are several areas of future work that stem from
this research. Minimizing visual discontinuities based on
volume degradation of the enclosed surface has been shown
to work only with untextured models. We have found that
texture sliding is a significant artefact. Sander et al. [24]
provide a method for minimizing texture deviation, which

Table 1: Decreasing attribute and connectivity set sizes of the
dolphin model.

|c0| = 9936 |a0| = 5001
|c1| = 5418 |a1| = 2501
|c2| = 2926 |a2| = 1342
|c3| = 1578 |a3| = 712

.

.

.
.
.
.

could be used to derive better texture coordinates during
simplification. However a method for determining LOD
partitions based on textured models is an open problem.

We have shown that attributes of the g-mesh are C0 con-
tinuous over the range of interpolation. Higher orders of con-
tinuity could easily be constructed based on these attribute
positions. Although we have great difficulty perceiving vi-
sual discontinuities in un-textured models with C0 conti-
nuity, higher levels of continuity may introduce further im-
provements in reducing popping artefacts.

A derivative of the g-mesh structure could also be useful
in morphing between a sequence of different models with no
distinct one-to-one mapping. This technique would require
models with topological equivalence, and a means of finding
point correspondences between them.

Acknowledgements

The authors would like to thank Edwin Blake and
Patrick Marais for their insightful comments, and Shaun
Nirenstein for his assistance with implementation and
memory management issues. The cranium model is
used with kind permission of the eSkeletons Project
(http://www.eskeleton.org). Special thanks must be extended
to members of the CVC Lab for contributing to our exciting
working environment.

Appendix: Derivation of memory overhead

Although dependent on the genus of the original model, the
experiments performed by Southern et al. [25] indicate that
level of detail sequences generated using a batched hierarchy
[14] typically reduce in size geometrically, and by a factor
≈ 2 (see Table 1).

So the relationship between consecutive attribute and
connectivity sets becomes:

|ai+1| = 1

2
|ai | |ci+1| = 1

2
|ci |, (2)

where ai and ci are the attribute and connectivity sets (as
defined in Section 4) of a mesh in an LOD sequence of n
models, i = 0, . . . , n.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware 47

a0

a1

a2

a3

a4

c0

c2

c1

c3

c4

a0

a1

a2

a3

a4

c0

c2

c1

c3

c4

(a) (b)

Figure 14: Two approaches to g-mesh implementation. In
(a) the g-mesh an inefficient approach requires all attribute
sets in a level of detail to have the same size as the original
model. In (b) each connectivity set ci has two associated
attribute sets ai and a′i which are used to determine the
interpolated model.

For a theoretical g-mesh sequence in which there is no
memory wastage (such as in Figure 3(b)), the memory
overhead would be the sum of all attribute and connectivity
sets of an equivalent level of detail sequence:

D = κ

n∑
i=0

2−n |ai | + ρ

n∑
i=0

2−n |ci |, (3)

where D represents the total memory overhead of the se-
quence, and κ and ρ are constants representing the size of
a single entry in the attribute and connectivity sets respec-
tively. Clearly, as n tends to infinity, the memory overhead
of this LOD sequence is limited to 2 (κ|a0| + ρ|c0|), which
is twice the memory usage of the original model.

In practice, however, a scheme which allows data to be
archived in this format while still being quickly accessible
for a vertex program approach (outlined in Section 6) has
yet to be found.

A naive approach would be to give all attribute sets ai
the same size, i.e. |ai | = |a0| for i = 0, . . . , n (shown in
Figure 14(a)). The memory overhead for this technique is
prohibitive, since it is equivalent to storing n versions of the
model at the same resolution.

As a compromise, we make use of a duplicate (and redun-
dant) attribute set a′i , which corresponds to the connectivity
information stored in ci , but duplicates attribute information
from ai+1 (see Figure 14(b)). With this method, the memory
overhead D becomes

D = κ

n−1∑
i=0

2−n (|ai | + |a′i |
)+ κ|an | + ρ

n∑
i=0

2−n |ci |, (4)

where D, κ and ρ are as defined in Equation 3 above. Note
that |a′i | = |ai |, so as n tends to infinity, the total memory
overhead cannot exceed 4κ|a0| + 2ρ|c0|.

References

1. H. Hoppe. Progressive meshes. In Proceedings of
SIGGRAPH ’96 (Computer Graphics), pp. 99–108.
1996.

2. E. Lindholm. Vertex programs for fixed function
pipeline. In Technical report. NVIDIA, November
2000.

3. K. Singh and E. Fiume. Wires: A geometric deformation
technique. In Proceedings of SIGGRAPH ’98 (Com-
puter Graphics), pp. 405–414. July 1998.

4. P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N.
Faust and G. Turner. Real-time continuous level of
detail rendering of height fields. In Proceedings of
SIGGRAPH ’96 (Computer Graphics), pp. 109–118.
1996.

5. D. C. Taylor and W. A. Barret. An algorithm for
continuous resolution polygonizations of a discrete
surface. In Proceedings of Graphics Interface, pp. 33–
42. 1994.

6. D. Cohen-Or and Y. Levanoni. Temporal continuity of
levels of detail in delaunay triangulated terrain. In R.
Yagel and G. M. Nielson (eds), IEEE Visualization ’96,
pp. 37–42. 1996.

7. R. L. Ferguson, R. Economy, W. A. Kelly and P. P.
Ramos. Continuous terrain level of detail for visual
simulation. In IMAGE V Conference, pp. 144–151. June
1990.

8. G. Turk. Re-tiling polygonal surfaces. In Proceedings of
SIGGRAPH ’92 (Computer Graphics), vol. 26, pp. 55–
64. 1992.

9. T. A. Funkhouser and C. H. Séquin. Adaptive display
algorithm for interactive frame rates during visualisa-
tion of complex virtual environments. In Proceedings of
SIGGRAPH ’93 (Computer Graphics), vol. 27, pp. 247–
254. 1993.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

48 R. Southern and J. Gain / Creation and Control of Real-time Continuous Level of Detail on Programmable Graphics Hardware

10. J. M. Lounsbery. Multiresolution Analysis for Surfaces
of Arbitrary Topological Type, PhD thesis, University
of Washington, 1995.

11. E. J. Stollnitz, T. Derose and D. Salesin. Wavelets
for Computer Graphics. Morgan Kaufmann Publishers,
1996.

12. J. Rohlf and J. Helman. IRIS performer: a high
performance multiprocessing toolkit for real-time 3d
graphics. In Proceedings of SIGGRAPH ’94 (Computer
Graphics), pp. 381–394. 1994.

13. S. Upstill. The Renderman Companion. Addison Wes-
ley, 1990.

14. R. Southern, P. Marais and E. Blake. Generic mem-
oryless polygonal simplification. To Appear in ACM
Afrigraph ’01.

15. M. Reddy. Perceptually Modulated Level of Detail
for Virtual Environments, PhD thesis, University of
Edinburgh, 1997.

16. E. Gobbetti and E. Bouvier. Time-critical multiresolu-
tion scene rendering. In Proceedings of IEEE Visualiza-
tion, IEEE Computer Society Press, San Francisco, CA,
USA, pp. 123–130. October 1999.

17. M. Grabner. Smooth high-quality interactive visualisa-
tion. In Proceedings of the 17th Spring Conference on
Computer Graphics, pp. 139–148. 2001.

18. C. Zach. Integration of geomorphing into level of detail
management for realtime rendering. In Proceedings of

the 18th Spring Conference on Computer Graphics.
April 2002 http://fractal.dam.fmph.uniba.sk/

~sccg/proceeding/-2002/zach.christopher.

L1.ps.gz.

19. M. Slater and A. Steed. A virtual presence counter.
Presence, 9(5):413–434, 2000.

20. A. Mason. Predictive Hierarchical Level of Detail
Optimization, PhD thesis, University of Cape Town,
1999.

21. R. Southern, E. Blake and P. Marais. Evaluation
of memoryless simplification. In Technical Report
CS01-18-00. University of Cape Town, 2001, Avail-
able at http://www.cs.uct.ac.za/Research/CVC/
Techrep/CS01-18-00.pdf.

22. E. Weber. De Tactu (The Sense of Touch), D.J. Murray
(Translator). Published for the Experimental Psychol-
ogy Society. Academic Press, London, 1978.

23. H. M. Erik Lindholm and Mark Kilgard. A user-
programmable vertex engine. In SIGGRAPH’01 (Com-
puter Graphics), pp. 149–158. 2001.

24. P. V. Sander, J. Snyder, S. J. Gortler and H. Hoppe.
Texture mapped progressive meshes. In Proceedings of
SIGGRAPH ’01 (Computer Graphics), pp. 409–416.
2001.

25. R. Southern, E. Blake and P. Marais. Gems: Generic
memoryless polygonal simplification. In Technical Re-
port CS00-10-00. University of Cape Town, 2000.

c© The Eurographics Association and Blackwell Publishing Ltd 2003

