
DOI: 10.1111/j.1467-8659.2012.03076.x COMPUTER GRAPHICS forum
Volume 00 (2012), number 0 pp. 1–14

Enhanced Texture-Based Terrain Synthesis on Graphics
Hardware

F. P. Tasse, J. Gain and P. Marais

Department of Computer Science, University of Cape Town, South Africa
{ftasse, jgain, patrick}@cs.uct.ac.za

Abstract
Curvilinear features extracted from a 2D user-sketched feature map have been used successfully to constraint a
patch-based texture synthesis of real landscapes. This map-based user interface does not give fine control over the
height profile of the generated terrain. We propose a new texture-based terrain synthesis framework controllable by
a terrain sketching interface. We enhance the realism of the generated landscapes by using a novel patch merging
method that reduces boundary artefacts caused by overlapping terrain patches. A more constrained synthesis
process is used to produce landscapes that better match user requirements. The high computational cost of texture
synthesis is reduced with a parallel implementation on graphics hardware. Our GPU-accelerated solution provides
a significant speedup depending on the size of the example terrain. We show experimentally that our framework
is more successful in generating realistic landscapes than current example-based terrain synthesis methods. We
conclude that texture-based terrain synthesis combined with sketching provides an excellent solution to the user
control and realism challenges of virtual landscape generation.

Keywords: terrain generation, patch-based texture synthesis, terrain sketching, seam removal, patch merging,
GPU

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Colour, shading, shadowing
and texture

1. Introduction

Landscapes form an integral part of many virtual environ-
ments. Virtual terrains are used in video games, films, ad-
vertisements and many other software systems involving
outdoor environments such as flight simulators. Believable
terrains play an important role in ensuring immersion in a
virtual environment. The U.S. Geological Survey provides
freely downloadable models of real landscapes that can be
added to 3D environments if needed [US11]. The usage of
real terrains has the advantage of realism with little effort, but
limits the range of terrains that can be modelled. Thus, artists
often create the terrain manually using 3D modelling tools
or paint a 2D image such that luminosity values represent
height values. As the need for larger, more believable ter-

rains increase, manually modelling becomes more complex
and tedious.

Procedural terrain generation concerns the algorithmic
generation of landscapes, as an alternative to manual cre-
ation. Fractal-based methods for terrain generation randomly
displace the height values of a flat terrain [Man82, Lew87,
GMS09]. However, these methods cannot simulate the ero-
sion effects present in real landscapes, such as drainage pat-
terns. To achieve these effects, landscapes need to undergo
physically based erosion simulations [MKM89, NWD05,
PGGM09]. Such simulations have a high computational cost
and require that the user has a working knowledge of various
erosion models. A new trend in procedural terrain gener-
ation is based on texture synthesis methods able to create

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics
Association and Blackwell Publishing Ltd. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. 1



2 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

landscapes from information extracted from an example ter-
rain [BSS06, Dac06, ZSTR07]. Texturesynthesis generates a
texture that can be regarded as having undergone the same
stochastic process as an example texture. Terrain is com-
monly represented by a greyscale image, referred to as a
heightmap, with elevation values stored as pixel values. This
image representation cannot emulate features such as over-
hangs and caves, but it is the most prevalent format in ter-
rain generation because of its simplicity and efficient use of
storage space. Heightmaps have large-scale curvilinear fea-
tures such as ridges and valleys that are not stochastic, and
thus, cannot easily be reproduced by current texture syn-
thesis methods. Zhou et al. propose a texture-based terrain
synthesis of an example heightmap, constrained by curvi-
linear features [ZSTR07]. Given a user sketch map and a
real landscape, their algorithm creates a new terrain by copy-
ing square blocks of pixels (patches) from the real terrain
such that curvilinear features specified in a user-sketched
map appear in the output. A realistic terrain is produced
that has the same small-scale characteristics as the real ter-
rain. However, the Poisson seam removal, a patch merging
technique used to remove boundary artefacts created by over-
lapped patches, creates artefacts clearly noticeable under 3D
lighting. Furthermore, users can only specify the general
location of valleys and ridges. The 2D sketch map does
not allow intuitive control over the height profile of these
features.

Our proposed system, as illustrated in Figure 1, builds
on this technique. For usability, we use a terrain sketching
interface [GMS09] that enables users to fully control the
generation of new terrain by deforming a default terrain such
that it fits 2 1

2 D drawn silhouette and boundary curves. The
sketching system applies a multi-resolution surface deforma-
tion and wavelet noise to deform terrains and add detail to
the surface. Despite the intuitive control users have over the
generation, the terrains produced by this interface share the
poor realism of fractal-based terrains. We propose combining
the sketching interface and patch-based terrain generation
in a hybrid system that gives wider control to the user and
produces realistic terrains.

Patch-based synthesis has a high computational cost as
it consists of several iterations, where each iteration com-
pares patches from the example terrain to select the best
patch to place in the output. As the size of the example
increases, so does the computation time. Most modern com-
puters now have programmable GPUs that can be used to
accelerate parallelizable algorithms. Unfortunately, texture
synthesis problems are generally order-dependent and thus
do not map well to graphics hardware. However, each it-
eration of a patch-based synthesis performs a patch selec-
tion that involves computing distances between one patch
and several candidate patches independently. This process
is highly parallelizable and we thus accelerate the terrain
generation by implementing this parallel work on graphics
hardware.

Figure 1: Patch-based synthesis framework.

This paper presents the following contributions:

1. Improved patch-based terrain synthesis that enhances the
matching of user constraints and landscape realism.

2. Novel patch merging technique, more suitable to 3D
structures, that removes boundary seams caused by the
overlapping multiple patches.

3. GPU acceleration of patch-based landscape generation
on graphics hardware.

4. User study that investigates terrain realism and success
of patch merging.

2. Related Work

2.1. Texture synthesis

Two common schemes have emerged for synthesizing tex-
tures from an example texture or exemplar: pixel-based and

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis 3

patch-based approaches. Pixel-based methods generate a new
texture pixel-by-pixel from an exemplar, with each pixel de-
termined by a search of neighbourhoods in the exemplar. To
optimize neighbourhood searches, schemes such as tree vec-
tor quantization [WL00], kd-trees [ZG02] or approximate
nearest neighbour searching [LLX*01] are often used to ap-
proximate the best neighbourhood.

Patch-based schemes create a new texture by copy-
ing patches from the exemplar, constrained by overlap.
These methods are more efficient and produce better results
than pixel-based algorithms. However, patch overlaps create
boundary seams. Several patch merging techniques exist to
address this issue including minimum error cuts in Image
Quilting [EF01], optimal cuts along the overlap region with
Graphcut [KSE*03], alpha-blending [LLX*01], Poisson im-
age editing [PGB03] or a combination of these [LZPW04,
ZSTR07]. Most of these techniques are designed for 2D
images, and not for terrains that will be rendered in a 3D en-
vironment. Thus, even patch merging methods that are suc-
cessful for 2D images [ZSTR07] introduce discontinuities in
the gradient that are visible in 3D terrain navigation.

2.2. Texture-based terrain synthesis

Achieving realism and easy user control is extremely difficult
for fractal-based and physically based terrain generation. An
alternative to these techniques is texture-based methods that
build on example-based texture synthesis techniques. Using a
real heightfield as the exemplar significantly improves the re-
alism of the resulting terrain. Dachsbacher [Dac06] applies
pixel-based texture synthesis by non-parametric sampling
[EL99] to terrain generation. Their technique suffers from
terrain artefacts visible during rendering and the high com-
putational cost of the texture synthesis method. Brosz et al.
[BSS06] present a terrain synthesis that extracts small-scale
characteristics from a target terrain that are then applied to
a base terrain using Image Quilting [EF01]. This technique
increases the level of detail of a base terrain but cannot create
a new terrain from scratch. Zhou et al. [ZSTR07] propose a
feature-guided patch-based synthesis from real terrains that
produce realistic results. However, patch merging introduces
artefacts and users cannot intuitively specify height values
for desired features. The framework proposed in this paper
addresses these issues.

3. Existing Texture-Based Terrain Synthesis

We briefly describe Zhou et al. [ZSTR07]’s patch-based al-
gorithm upon which our work is based. The algorithm uses
patches from a real heightmap to form a new terrain that
matches the features specified in a 2D user-sketched feature
map. This approach consists of three key steps.

First, ridges and valleys are extracted from the example
terrain and feature map using the Profile Recognition and

Polygon Breaking Algorithm (PPA) [CSH98]. To extract
ridges, the PPA algorithm marks each terrain point that is
likely to be on a ridge line, based on the point height profile.
Adjacent candidate points are connected by segments, form-
ing a cyclic graph. Polygon breaking repeatedly deletes the
lowest segment in a cycle until the graph is acyclic. Finally,
the branches on the produced tree structure are reduced and
smoothed. The extracted feature tree is a graph where nodes
are end points or branch points connected by curvilinear path
features. Valley extraction uses a similar approach.

Next, curvilinear features extracted from the real land-
scape and sketch map are used to constrain which patches
are selected from the exemplar and their position on the out-
put terrain. The order of patch placement is specified by
a breadth-first traversal of the sketch map feature tree. For
a target patch centred at a feature point of the sketch map, a
best matching patch is selected from the exemplar, based on
the feature branch degree, the amount of deformation needed
to fit the target and how well the patch matches already syn-
thesized regions.

Finally, empty areas in the output are filled with patches
with no strong features, from the already-filled areas. Here,
patch selection is only determined by how well the patch
matches non-empty areas.

During patch placement, the graphcut algorithm finds the
optimal cut that minimizes the seam severity in the overlap
area. Visible optimal seams are then removed with a height
re-adjustment performed by the Poisson seam removal al-
gorithm. Gradient values in the overlap are computed and
gradient values along the optimal seam are set artificially
to zero. A new set of elevation values that fit the modified
gradient field is obtained by solving a Poisson equation. Un-
fortunately, the discontinuities in the gradient field are often
visible during 3D terrain rendering.

Zhou et al. [ZSTR07] produce realistic terrains with this
patch-based texture synthesis technique. We improve on their
algorithm by using a more intuitive user control that allows
low-level manipulation, applying a more efficient way of
breaking polygons during feature extraction, adding more
criteria for better patch matching and using a patch merging
approach more suitable for terrains.

4. Enhanced Patch-Based Terrain Synthesis

We use a terrain sketching interface [GMS09] as the base
for a new hybrid scheme that combines terrain sketching
with patch-based terrain synthesis. The sketching interface
deforms a given terrain to fit 2 1

2 D silhouette and boundary-
sketched curves using multi-resolution surface deformation
and wavelet noise extracted from the silhouette curve. Inte-
grating this interface into our landscape generation frame-
work offers an interactive environment that allows users to
intuitively control the output through constraint curves, 3D

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



4 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

Figure 2: Patch-based texture synthesis. (a) and (b) Valley
lines are extracted from the target and the exemplar. (c)
Patches are selected from the exemplar and placed in the
output. (d) The rest of the output is completed. (The white
segments represent valley lines).

multi-resolution rendering and editing, while producing re-
alistic terrains.

An overview of our hybrid scheme is illustrated in Figure 1.
The user draws silhouette and boundary curves on a flat ter-
rain in the terrain sketching interface, which deforms the flat
terrain to fit the constraint curves. An example heightmap,
or exemplar, and the deformed terrain are then passed into
a patch-based texture synthesis that will generate a new ter-
rain that has the large-scale features of the deformed terrain
and yet exhibits the characteristics of the example height-
field. The new heightfield replaces the deformed terrain in
the sketching interface. This new terrain no longer perfectly
fits the sketched curves, and so it is deformed in a final phase
to match height constraints. The user can edit the synthesized
terrain by drawing another set of curves and the whole pro-
cess restarts. The interface, combined with the texture-based
synthesis, provides the capability to navigate, examine and
edit the terrain as often as necessary.

Texture-based terrain synthesis consists of feature extrac-
tion, patch matching and merging, as shown in Figures 1 and
2 . The rest of this section covers these steps in more detail.

4.1. Feature extraction

Polygon breaking is a step of the PPA feature extraction algo-
rithm [CSH98] that consists of repeatedly deleting segments
in a cyclic graph until all cycles are removed. This step has
a high computational cost, and thus, is not adequate for an
interactive system. Furthermore, the performance drastically
decreases as the size and the feature complexity of the ter-
rain increases. Bangay et al. [BdBG10] propose a feature
extraction scheme that connects all the terrain points into a
graph using a height-based or curvature-based weighting and
computes the minimum spanning tree (MST) of that graph.
Results show that while the original PPA’s cost is polyno-
mial, this new version runs in quasi-linear time with respect
to the number of edges in the graph. Because we are mainly
concerned with the performance and the extraction of large-
scale terrain features, we simply connect candidate terrain

points as in the original PPA algorithm and replace the poly-
gon breaking with a minimum spanning forest algorithm.

4.2. Patch matching

Once features have been extracted, patch matching selects
square patches from the exemplar Texm that match the user
constraints. After experimenting with several patch sizes,
we set the default patch size to 80 × 80 but the user may
modify this value at runtime according to the desired level of
detail and the exemplar resolution. We increase the flexibility
and variability of the output by including mirrored patches
about both x and y axes and rotated patches in increments
of π

4 . Patch matching is executed in two steps: searching for
patches to place in the output Tout that match the feature tree
�tar extracted from the target Ttar and filling the remaining
empty areas in the output Tout with patches that contain a
minimal amount of detail.

4.2.1. Feature patch matching

Feature patch matching selects patches from the exemplar
that match features extracted from the target terrain. For each
node or point in the tree, a set of control points {pi} is deter-
mined, which consist of the point itself and the intersections
of its branches with a circle inscribed in a patch situated at
the point. A breadth-first traversal of the feature tree �tar is
used to guide the order of patch placement.

Patch selection proceeds as follows: for each feature node
p ∈ �tar with a patch �

p
tar centred at p, its control points

{pi} are computed and a cost is assigned to each patch from
the exemplar centred at a feature node in �exm. Candidates
with a different branch degree than p are given a very high
cost added to the overlap area cost co described below, so that
they are unlikely to be selected. If q is a feature in �exm with
the same branch degree as p and �q

exm is the patch centred
at q, then the cost of selecting q is a combination of the
following criteria:

Feature dissimilarity cf

This cost function determines feature similarity between �
p
tar

and �q
exm by comparing the height profile of p in �

p
tar with its

height profile in �q
exm using the normalized sum of squared

differences (SSDs). The height profile of p consists of height
values along the outgoing segments of p. Figure 3 shows a
path feature p with two outgoing segments denoted by S.
A graph illustrates the difference in height values along S.
If p is a path feature, with two outgoing branches, height
values along the segment orthogonal to the path at p are also
compared and their normalized SSD is added to the feature
dissimilarity cost. This differs from the feature dissimilarity
in [ZSTR07] which only compares height profiles perpen-
dicular to a path. Our modified dissimilarity cost improves

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis 5

Figure 3: Feature dissimilarity between the target patch �
p
tar and the candidate patch �q

exm.

matching by penalizing candidates whose height values do
not match the feature elevation values specified by the user.

Angle differences ca

The angles of the outgoing paths of q and p are compared
using the normalized SSD. Angle differences indicate how
similar the structure of p and that of the candidate q are.

Noise variance cn

We improve on previous texture-based landscape gener-
ation by considering the difference in noise variances. The
Gaussian noise variances of the candidate �q

exm and �
p
tar

are computed at multiple levels of resolution and their nor-
malized SSD is added to the candidate cost. A lower noise
variance difference increases the chances that a patch with
similar bumpiness at different resolutions will be selected.

Overlap area co

Placing �exm in the output Tout may overlap with previ-
ously placed patches. The difference in height values in the
overlapping region should be minimized to reduce the sever-
ity of the seam created by the overlap. This difference is easily
computed with the normalized SSD of already synthesized
pixels in �

p
out and their corresponding values in �q

exm.

The total cost c of selecting a specific candidate (q, �q
exm)

as a match for the target (p,�
p
tar ) is computed by combining

the above matching costs:

c(p, q) = αf cf + αaca + αncn + αoco,

where α values normalize a particular criterion and determine
its influence. For our test cases, the following values were
used: αf = 5, αa = 2, αn = 0.001 and αo = 1. The list of
candidates is sorted in increasing order according to their cost
c. If there are no candidates with the same branch degree as p,
co is the only criterion used for sorting. A set of k candidates
with the lowest costs is selected and from that smaller set, the
candidate with the lowest graphcut cost is chosen as the best
match for (p,�

p
tar ). The default number of selected patches

is set to k = 5. Once the best match is found, it is placed in

the output at position p. Figure 2(c) shows a result of feature
patch matching.

4.2.2. Non-feature patch matching

Some areas of the target terrain may not have any features,
and hence the corresponding regions in the output are empty
after feature patch matching. These empty areas are com-
pleted by non-feature patch matching. The unknown region
of the output terrain is filled by iteratively copying patches
with a minimal amount of detail from the exemplar Texm,
which match the already synthesized pixels. Criminisi et al.
[CPT04] show that in exemplar-based filling, the quality of
the output is highly affected by the order of the filling pro-
cess and propose a filling algorithm that prioritizes patches
along structures. We use a similar filling order during the
non-feature patch matching to ensure that terrain features are
preserved and correctly propagated.

The criteria used to find the best match differ from those
used in feature patch matching. The cost associated with
choosing a candidate patch �exm is the combination of only
two of the criteria used in feature patch matching: the noise
variance difference cn and the normalized SSDs on the over-
lap area co. This differs from Zhou et al. [ZSTR07]’s algo-
rithm that performs patch selection based on the overlap area
cost. The noise variance difference encourages the selection
of patches with minimal difference in bumpiness and co en-
sures that �exm matches the previously synthesized pixels in
the patch �

p
out centred at p. The total cost c for selecting

�exm is computed from cn and co as follows:

c(�p
out , �exm) = βncn + βoco,

with βn = 0.0001 and βo = 10.

The candidates are ranked in increasing order according
to their cost, and the first k candidates are selected. Then,
from the k candidates, the candidate with the lowest graphcut
cost is selected as the best match and placed at position p.
Figure 2(d) shows a final output terrain after non-feature
patch matching is performed.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



6 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

Figure 4: Graphcut algorithm steps. (c) �1 and �2 overlap
over a region ov (enclosed by the dotted lines). (d) �1 and �2

are merged along the optimal seam. (e) B is deformed to fit A

along the seam. (f) The horizontal and vertical components
of the gradient field after the graphcut. (g) Each component
of the gradient field is deformed using Shepard Interpolation.
Discontinuities at the seam are removed. (h) A Poisson solver
is used to find a set of height values that fits the modified
gradient field.

4.3. Patch merging

Patch merging removes seams created by overlapping
patches. Let �1 be an old patch and �2 a new patch that
overlaps with �1 over a region ov. We merge �2 and �1 into
a patch � such that the seam across their overlap ov is invis-
ible. This is achieved by a novel combination of three differ-
ent techniques illustrated in Figure 4: Graphcut [KSE*03],
Shepard Interpolation [She68] and a Poisson image editing
[PGB03].

4.3.1. Graphcut

Our patch merging algorithm starts by performing a graphcut,
which determines the optimal seam between �1 and �2.
Graphcut effectively joins the two patches along an optimal
seam that determines which pixels come from the old patch
(sink A) and which pixels come from the new patch (source
B) [KSE*03].

4.3.2. Shepard interpolation

The optimal seam may still be visible and we propose to
remove it by warping the source B to match the sink A along
the cut. Let xi , i = 0, 1, . . . , N , be the set of pixels along the
seam. B ′, the deformation of B, is constrained by B

′
(xi) =

A(xi), i = 0, 1, . . . , N . This constraint removes the seam by
ensuring that B and A have the same values along the cut. We
draw upon the deformation technique based on point features
proposed by Milliron et al. [MJBF02] to compute B

′
. Let

x ∈ B, then the height value at x is displaced by an amount
�(x) computed by summing displacements A(xi) − B(xi),
scaled by distance-based normalized we ights ŵi(x). In other
words, the deformation of B at a point x is

B ′(x) = B(x) + �(x),

�(x) =
N∑

i=0

ŵi(x)(A(xi) − B(xi)), ŵi(x) = wi(x)∑N
j=0 wj (x)

,

where wi(x) is 1 at xi and falls off radially to a distance d∅.
We choose the weighting function wi to be the simple inverse
distance weighting function [She68]:

wi(x) =
⎧⎨
⎩

(
dφ − d(x, xi)

dφd(x, xi)

)α

, if d(x, xi) < dφ,

0, otherwise,

where d(x, xi) denotes the distance between x and xi , dφ

determines the area of influence, and α specifies the smooth-
ness and the shape of the deformation. We set dφ to be 1

4 of
the width after experimenting with different values of dφ .

This type of deformation is often referred to as Shepard
Interpolation. B

′
now has the same values as A on the seam,

and hence, deforming B removes the discontinuity. However,
Shepard Interpolation does not take into account gradient val-
ues and so the gradient field of the merged terrain may have
discontinuities. Although a top-down view of the output will
not show artefacts, 3D rendering immediately reveals that the
terrain is not smooth. A possible approach to removing gra-
dient differences is a bi-directional adjustment of �2 and �1

such that their height values agree along the seam. However,
in our system, the old patch �1 is usually part of the already
synthesized output, while �2 is a patch from the exemplar
that needs to be placed in the output. A bi-directional adjust-
ment may significantly modify the already placed pixels, and
thus, the synthesized terrain features.

Instead of using Shepard Interpolation to obtain the
merged patch �, we remove the seam in its gradient field
G� . G� is partitioned in two: the gradient field GA of A
and the gradient field GB of portion B. Similarly to the
above interpolation that deforms B to fit A along the seam,
GB is deformed to fit GA along the optimal cut so that
G

′
B (xi) = GA(xi), i = 0, 1, . . . , N , where G

′
B is the defor-

mation of GB and xi , i = 0, 1, . . . , N , are pixels along the
seam.

GA and the deformed GB now have the same values along
the seam, and thus, the seam is removed from the modified
field G� . An example of the Shepard Interpolation of a gra-
dient field is presented in Figures 4(f) and (g). Patch merging

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis 7

Figure 5: Comparison of patch merging techniques. (a) No patch merging. (b) Graphcut algorithm. (c) Shepard Interpolation.
(d) Graphcut+Poisson seam removal proposed by Zhou et al. [ZSTR07]. (e) Our method: Graphcut+Shepard Interpolation of
the gradient+Poisson equation.

ends with a new set of elevations � ′ reconstructed from the
modified gradient G� using Poisson image editing.

4.3.3. Poisson image editing

A Poisson solver is used to solve the linear system for the
unknown values of �

′
. The new set of height values �

′
is

pasted into the output heightfield and the result is a smoothly
merged terrain, as shown in Figure 4(h). Figure 5 illustrates
a result of our method compared with Shepard Interpolation
and Poisson seam removal [ZSTR07].

5. GPU Acceleration

Texture-based terrain synthesis has a high computational
cost, and thus is not suited for an interactive terrain sketch-
ing interface. We propose a GPU implementation that sig-
nificantly accelerate the terrain generation time. Previous
texture synthesis methods have been implemented on GPU
[LH05, GN09, XLYD10], but to our knowledge, this is
the first texture-based landscape generation on graphics
hardware.

Implementing texture synthesis algorithms on a GPU is
challenging because textures are generated in sequential or-
der. The value of a new patch is used to determine the value
of the subsequent patches, causing dependencies. Lefebvre
and Hoppe propose a GPU implementation that builds on
a order-independent pixel-based texture synthesis with no
dependencies [LH05]. Other GPU algorithms accelerate tex-
ture synthesis by parallelizing the search for the best match
at each iteration [GN09, XLYD10].

The search for the best matching patch consists of compar-
ing the patch to be synthesized against all possible patches
in the exemplar. These comparisons are based on the cost of
selecting each candidate. Computing these costs is the main
bottleneck of patch-based texture synthesis. Matching costs
are independent from each other, and so can be calculated in
parallel on graphics hardware. We use the NVIDIA CUDA
C API for general-purpose GPU Programming to implement
this parallelism.

Costs calculations in patch matching involve several mem-
ory transactions on the GPU memory. Maximizing memory

throughput is a key factor in fully utilizing graphics hardware.
This is usually achieved by reducing memory transactions to
a minimum and using fast GPU memory such as shared
memory [XLYD10]. However, the largest shared memory
size is 48 KB on high-end GPU devices, which can only
accommodate square patches of size less than 110 × 110,
assuming that heights are represented using a single float.
This means that a patch larger than 110 × 110 cannot be
loaded to shared memory, and thus, using shared memory
will place limitations on the range of allowable patch sizes.
Other memory types include read-only texture memory and
global memory. Global memory is off-chip memory, with
the highest latency for non-coalesced access and better la-
tency for coalesced memory requests. Garcia and Nielsen
[GN09] keep the exemplar texture to texture memory and
store the patch to be synthesized in global memory. Un-
fortunately, threads have to repeatedly perform rotation and
mirroring operation to extract a patch from the exemplar. Fur-
thermore, texture is slower than global memory when pixels
are accessed in a coalesced fashion. We propose a new par-
allel implementation based on the use of coalesced memory
access.

First, we design a faster CPU implementation that reuses
candidate patches throughout the overall synthesis. In an
analysis step, all candidates patches are extracted from the
exemplar, rotated or mirrored, then converted to a linear array
of pixels that is copied into a large array A. When calculating
the cost of selecting a candidate patch, its pixel values are
readily accessible from A. We refer to the single-threaded
CPU solution described in Subsection 4.2 as CPU1 and the
faster solution discussed here as CPU2.

A parallel implementation of CPU2 similarly copies all
candidate patches into an array A in the global memory once,
at the beginning of the synthesis process. No patch trans-
formation or interpolation is performed during cost compu-
tation, which reduces the number of global memory reads
and thus increases memory throughput. Other values used in
patch matching such as control points and noise variances are
copied to global memory. The number of concurrent threads
spawned during cost computations is equal to the number of
possible patches from the exemplar. Each thread determines
the cost of selecting one candidate patch. Best performance
is achieved by global memory transactions on the array A

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



8 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

Figure 6: Candidate patches are placed in a linear array
such that threads can access their corresponding candidate in
a sequentially aligned pattern. The encircled digits represent
a patch pixel value and the arrows indicate where that pixel
value is placed in the linear array.

when thread i accesses the ith element in A [NVI10]. To
achieve this, we do the following: for each position (x, y),
pixel values at (x, y) of each candidate are placed in A suc-
cessively. Figure 6 illustrates this process with two threads
that each copy pixel information from a patch into the ar-
ray A. This step is performed once, before the synthesis.
During patch selection, threads access A directly for pixel
values. Once every thread is terminated, a parallel insertion
sort is used to find k candidates with the least costs. This
process is repeated during each patch selection. This tech-
nique has a reduced number of CPU/GPU transfer since the
target heightmap and patches are loaded onto the GPU once
and subsequent CPU/GPU data transfers consist of copying
the already synthesized pixels into the GPU memory at the
beginning of each patch matching step. However, there are
a large number of memory reads from GPU memory during
cost computation. Even though access to global memory is
coalesced, it is expensive and each concurrent thread still
has to access all pixel values in its corresponding patch. We
propose ways to improve our GPU acceleration technique in
future work.

The limited amount of memory on GPUs places limita-
tions on the maximum size of terrains. The parallel solution
consumes a large amount of memory, because all candidate
patches, including transformed patches, are transferred to
the GPU memory. The maximum supported exemplar size
on an NVIDIA GTX 280 with 1 GB of DDR3 memory is
2049 × 2049 when the patch size is 80 × 80. Table 1 presents
the computation times of feature patch matching and non-
feature patch matching for CPU1, CPU2 and the GPU so-
lution as the exemplar size increases. The parallel solution
performs up to 225 times faster than CPU1 and six times
faster than CPU2. The timing results presented here were
obtained on an Intel Core 2 Quad 2.33 GHz with 3 GB of

Table 1: Patch matching performance (in seconds) as the exemplar
size varies. Terrain size: 1000 × 1000. Patch size: 80 × 80.

Feature patch matching: 271 selected patches

Exemplar size CPU1 CPU2 GPU

513×513 353.15 15.85 6.23
1025×1025 1491.29 56.13 10.23
1537×1537 2835.85 103.21 18.17
2049×2049 5906.7 145.43 26.19

Non-feature patch matching: 288 selected patches

Exemplar size CPU1 CPU2 GPU

513×513 239.13 9.93 6.33
1025×1025 1244.36 32.9 8.15
1537×1537 3098.5 78.23 17.75
2049×2049 5790.61 141.61 32.33

DDR3 memory. The GPU device used was an NVIDIA GTX
280 with 1 GB of DDR3 memory and 240 cores.

6. Experimental User Study

We used a within-subjects design in which every participant
performed the same tasks on the same set of terrains dur-
ing a single session. Two within-subjects experiments were
designed to determine the influence of the terrain synthesis
framework and patch merging technique on the realism of
the generated landscapes. Landscape realism was evaluated
by asking 20 participants if the terrains (stimuli) presented
to them were similar to real life landscapes. For each ex-
periment, Shapiro Wilk tests [SW65] on the collected data
revealed that the sample did not follow a normal distribu-
tion (p-value < 0.001). Thus, the Friedman test [Fri37] was
used to test for statistically significant difference. When the
Friedman test was positive, the Turkey honestly significant
difference test (HSD) was used for post-hoc analysis.

6.1. Experiment 1—Comparing the realism of terrains
from the proposed framework against deformed
terrains [GMS09] and real landscapes

This experiment asked users to compare three types of ter-
rains randomly presented to them. Each participant was asked
to performed three subtasks, each consisting of ranking a set
of three terrains or stimuli. We refer to a real landscape as
a terrain of type Treal , a terrain from our system is of type
Tsys and a terrain deformed in the original sketching interface
[GMS09] is of type Tdef . The hypotheses tested in Experi-
ment 1 are the following:

• A Treal terrain sourced by scanning real landscapes is
superior to Tsys or Tdef procedurally generated terrains.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis 9

• A Tsys terrain created from patches of real terrain appears
more realistic than a Tdef landscape.

For each subtask, a Treal landscape was obtained from a
database of real heightmaps [US11] and the Tdef terrain was
obtained by drawing curves in the sketching interface to de-
form a flat terrain. The Tsys landscape was generated by
our patch-based terrain synthesis framework using the same
curves as the Tdef heightfield and the Treal heightfield as the
exemplar. The terrains were presented in a random order and
participants were asked to rank them in ascending order of
realism. An example of the terrains viewed by users is pre-
sented in Figure 8. The data collected from this experiment
are a list of 60 (20×3) ratings of terrains of type Treal Tsys

and Tdef .

Statistical tests confirm a significant difference between
the three groups (p-value < 0.001). Post-hoc analysis in-
dicates that at a 5% level of significance, real terrains and
landscapes synthesized by our system are more realistic than
deformed terrains (p-value < 0.001). However, there is no
significant evidence that real terrains are superior to land-
scapes generated by our terrain synthesis (p-value = 0.981).
We conclude that the realism of the terrains generated by our
framework is not dissimilar from that of real landscapes.

6.2. Experiment 2—Comparing the frequency of
artefacts in patch-based terrains generated using
Poisson seam removal, Shepard Interpolation and
our proposed merging method

We denote landscapes generated with our proposed merg-
ing technique by the term MNew , terrains synthesized using
Shepard Interpolation as MShepard and those generated with
Poisson seam removal are of type MPoisson. The hypotheses
tested in Experiment 2 are:

• MNew terrains have the least number of artefacts compared
to MShepard and MPoisson terrains.

• MPoisson landscapes have the highest rate and the most
severe artefacts.

During this experiment, 18 terrains were presented to
participants, consisting of six sets of MNew , MShepard and
MPoisson heightmaps. Terrains within a set were generated
using the same input data (the example terrain and the target
terrain) and only differed by the patch merging process used.
Figure 9 shows a set of terrains presented to participants
in this experiment. None were deformed after patch-based
texture synthesis. All 18 terrains were presented in a ran-
dom order and participants were asked to mark regions they
believed that had artefacts and specify the severity of each
artefact as slightly severe, moderately severe or very severe.
Figure 7 shows the means plot of the artefacts frequencies
of MNew , MShepard and MPoisson.

Figure 7: Box plot of Experiment 2. The plot depicts the
minimum, lower quartile, median, upper quartile and the
maximum of artefact frequencies in each group.

Statistical tests indicate a significant difference in the arte-
fact frequencies of the three groups (p-value < 0.001). Post-
hoc analysis reveals that MPoisson terrains have a higher arte-
fact frequency than both MNew and MShepard terrain. How-
ever, there is no significant evidence on the relationship be-
tween MShepard and MNew terrains. Similarly, an analysis
of the artefact severity level shows that there is a signifi-
cant difference in the severity level: MPoisson terrain artefacts
are worse than the artefacts in the other two terrain types.
There is no statistically significant information indicating
that the severity levels of MShepard and MNew terrains are
different.

An analysis of which artefacts the participants most agreed
on reveals that their selection was dependent on the over-
all quality of the terrain. Terrains of type MPoisson whose
artefacts were mostly lines on some areas of the landscape
were more noticeable and participants easily agreed on those.
Artefacts in MShepard terrains on the other hand were spread
on the landscape and participants opinions diverged over
whether these were indeed artefacts or simply characteris-
tics of the terrain topography. Terrains of type MNew had
the least average number of artefacts but whenever an arte-
fact was visible, due to the bad matching, it was clearly
noticeable.

Bad matching occurs when a selected patch differs signif-
icantly from already placed pixels on the overlap region. For
example, a combination of a high overlapping area cost and
low scores in other matching criteria may place a patch with
large height values next to an area with low elevation values.
These situations are very rare but when they do occur, the
large discrepancies in the pixel values cannot be completely
removed by patch merging. A potential solution to this prob-
lem will be to deform already placed regions and the new
patch such that patches with large height values and patches
with low elevations can be brought down or raised up to an
average level.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



10 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

Figure 8: A set of Treal , Tdef and Tsys heightmaps presented to participants in Experiment 1. Twenty users were asked to rank
them in ascending order according to their realism. Eight participants ranked the Treal terrain first, while 10 thought that the
Tsys heightmap was the most realistic.

Figure 9: A set of MNew , MShepard and MPoisson heightmaps presented to participants in Experiment 2. Note how the boundary
artefacts (straight lines) in the MPoisson terrain are easy to pinpoint, while the artefacts in MShepard can be mistaken as part
of the terrain surface. For this set for terrains, the average artefact frequencies recorded by the 20 participants were 3.73 for
MNew , 5.93 for MShepard and 14.44 for MPoisson.

7. Visual Assessment

This section presents a visual assessment of the terrains gen-
erated by our system, as well as a comparison against pre-
vious patch-based terrain synthesis and a discussion of the
limitations of our framework.

7.1. Comparison with Zhou et al. [ZSTR07]

We compare landscapes generated by our framework against
the results of Zhou et al. [ZSTR07], using the same ex-
emplar and target terrains. Figure 10 shows a terrain gen-
erated with our framework, using Mount Jackson as the
exemplar and the “half-life” symbol as the target. The re-
sult is a better match of the target. Our framework is able
to match the hooks of the half-life symbol and the circle
around it so that they are well-defined in the synthesized
heightmaps.

Figure 11 shows a failed case appearing on [ZSTR07]’s
website. The output terrain is generated from patches of Cape
Girardeau (KY, USA). It fails to match the target features
due to poor feature matching. The output of our framework
successfully matches the sketch map and regions where no

features were specified having a lower level of detail. Because
the feature dissimilarity cost takes into account the height
values along the target features as well as the height profiles
along paths perpendicular to those features, our system offers
better feature patch matching.

7.2. Terrain results with user-sketched curves

When combined with the terrain sketching interface, our
framework supports multiple sketched curves and deforma-
tions. Figure 12 shows a terrain deformed by four sets of
constraint curves before a patch-based synthesis is applied to
enhance realism. Instead of a smooth terrain, the final land-
scape is less homogeneous and exhibits erosion effects such
as drainage patterns.

Combining a sketching interface [GMS09] with an
example-based method allows users to benefit from intu-
itive and precise control (adding features such as volcanoes
or removing the side of a mountain) along with higher quality
terrains.

Our framework supports a variety of target terrains and its
enhanced patch matching generates landscapes that match

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis 11

Figure 10: Mount Jackson synthesis result. (a) Target ter-
rain (1000 × 1000). (b) Mount Jackson exemplar (1620 ×
1620). (c) Terrain generated by Zhou et al. algorithm
[ZSTR07]. (d) Landscape generated by our framework in
1 min. (e) A 3D rendering of Zhou et al. output [ZSTR07].
(f) A 3D rendering of our framework’s output.

Figure 11: Cape Giradeau synthesis result. (a) Target ter-
rain (2000 × 2000). (b) Cape Girardeau exemplar (1200 ×
1200). (c) Failed result generated by Zhou et al. algorithm
[ZSTR07]. (d) Landscape generated by our framework in
5.6 min. (e) A 3D rendering of Zhou et al. output [ZSTR07].
(f) A 3D rendering of our framework’s output.

the user constraints as closely as possible. The synthesis
illustrated in Figure 13 is heavily constrained by a concentric
circles that cover a large portion of the target. The generated
mountain range exhibits the same concentric circles in the
form of ridges copied from a real landscape.

Figure 12: Multiple sketched-curves. Both target and exam-
ple terrains are 512 × 512. Generation time: 20 s.

7.3. Limitations

The patch-based terrain synthesis framework presented in
this paper improves on previous texture-based landscape gen-
eration methods and becomes more effective when combined
with a terrain sketching interface. However, the framework
fails to produce a terrain that is both realistic and fits user
constraints in the following three cases:

• The features requested by the user are not present in the
exemplar, and thus, cannot be placed in the output. Areas
in the target with features that are not available in the
example terrain are treated as regions with no dominant
features. If a sketch interface is used for user control,
the interface will deform the generated terrain by the
patch-based synthesis to fit user constraints. If deformed
regions are initially flat, then they will appear smooth
and diminish the realism of the overall landscape.

• The patch size is too small and thus introduces very small
random features in the output or the patch size is too
large and fails to find good matches from the exemplar
that capture the features specified in the target.

• During feature patch matching, similar or identical
patches from the exemplar are placed in the output in
close proximity, making the repetition noticeable if the
features they are matched against are very similar or
identical. This occurs when the target contains a long

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



12 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

Figure 13: Heavily constrained terrain synthesis. (a) Target
terrain (1000 × 1000). (b) Exemplar terrain (512 × 512).
(c) Landscape generated in 46 s. (d) A 3D rendering of the
generated terrain.

line with identical features, as the case in Figure 14.
This can be fixed by keeping track of the most recently
placed patches and ensuring that none of those patches
are placed in the next iteration.

The shortcomings of our framework are fundamentally
related to the input provided by the user. Although little can
be done about real landscapes that do not have a specific

feature (ridge or valley) desired by the user, an automatic
search of the optimal patch size can be used to address the
limitations related to patch size in future extensions of patch-
based synthesis.

8. Conclusion

This paper presents a texture-based terrain synthesis, con-
trolled by drawing 2 1

2 D curves in a sketching interface or
supplying a 2D feature map. Terrain synthesis is a feature-
guided patch-based texture synthesis process that extracts
features from a supplied real landscape and a target terrain.
The target heightfield is a terrain deformed by user-sketched
curves in an interface or a provided feature map. Feature
extraction is followed by a patch matching process. A novel
patch merging technique is proposed to remove boundary
artefacts created by overlapping patches. This paper also
presents a parallel implementation on graphics hardware that
speed-up patch matching by a ratio of 6 to 225 times. Fi-
nally, user experiments show that terrains generated by our
system are as realistic as real landscapes and our patch merg-
ing technique is more successful than the state-of-the-art
Poisson seam removal. Our patch-based terrain synthesis is
useful for many applications including virtual environments,
entertainment and flight simulation systems.

The patch-based synthesis presented in this paper could
be extended by using multiple example terrains to produce
landscapes with a visual appearance combining all the exem-
plars. This will increase the range of possible output terrains.
The quality of user control can be further improved by ex-
tracting new user-controllable curves from the deformations
introduced during non-feature patch matching. This gives
users more control over small deformations on the terrain

Figure 14: Synthesizing a terrain with a group of identical features. Features along the top, left and bottom sides of the
rectangle, representing the terrain valleys, have similar or identical matches from the exemplar. The patch merging deforms
each patch placed in the output according to already filled regions, and thus identical patches that are placed far apart from
each other are difficult to spot. However, these repetitions are more visible in the feature matching step, due to their locality.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis 13

surface. The proposed framework could be further accel-
erated by implementing patch matching on multiple GPU
devices. The use of multiple GPU will also increase the sup-
ported maximum terrain sizes. Finally, automatically select-
ing the optimal patch size in a pre-processing step will not
only reduce parameter manipulation but also improve the
quality of the terrain synthesis.

References

[BdBG10] BANGAY S., dE Bruyn D., GLASS K.: Minimum
spanning trees for valley and ridge characterization in dig-
ital elevation maps. In Proceedings of AFRIGRAPH ’10
(New York, NY, USA, 2010), ACM, pp. 73–82.

[BSS06] BROSZ J., SAMAVATI F. F., SOUSA M. C.: Terrain
synthesis by-example. In Proceedings of GRAPP ’06
(Setúbal, Portugal, 2006).

[CPT04] CRIMINISI A., PEREZ P., TOYAMA K.: Region filling
and object removal by exemplar-based image inpainting.
IEEE Transactions on Image Processing 13, 9 (2004),
1200–1212.

[CSH98] CHANG Y.-C., SONG G.-S., HSU S.-K.: Automatic
extraction of ridge and valley axes using the profile recog-
nition and polygon-breaking algorithm. Computer Geo-
sciences 24 (1998), 83–93.

[Dac06] DACHSBACHER C.: Interactive Terrain Rendering:
Towards Realism With Procedural Models and Graph-
ics Hardware. PhD thesis, University of Erlangen-
Nuremberg, 2006.

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In Proceedings of SIGGRAPH
’01 (New York, NY, USA, 2001), ACM, pp. 341–346.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. In Proceedings of ICCV ’99 (1999),
vol. 2, pp. 1033–1038.

[Fri37] FRIEDMAN M.: The use of ranks to avoid the assump-
tion of normality implicit in the analysis of variance. Jour-
nal of the American Statistical Association 32, 200 (1937),
675–701.

[GMS09] GAIN J., MARAIS P., STRASSER W.: Terrain sketch-
ing. In I3D ’09: Proceedings of the 2009 Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA,
2009), ACM, pp. 31–38.

[GN09] GARCIA V., NIELSEN F.: Searching high-dimensional
neighbours: Cpu-based tailored data-structures ver-
sus gpu-based brute-force method. In Computer Vi-
sion/Computer Graphics Collaboration Techniques, vol.
5496. Springer, Berlin/Heidelberg (2009), pp. 425–436.

[KSE*03] KWATRA V., SCHÖDL A., ESSA I., TURK G., BOBICK

A.: Graphcut textures: Image and video synthesis using
graph cuts. In Proceedings of the ACM SIGGRAPH 2003
Papers (New York, NY, USA, 2003), ACM, pp. 277–286.

[Lew87] LEWIS J. P.: Generalized stochastic subdivision.
ACM Transactions on Graphics 6 (1987), 167–190.

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. In Proceedings of the ACM SIGGRAPH 2005
Papers (New York, NY, USA, 2005), ACM, pp. 777–786.

[LLX*01] LIANG L., LIU C., XU Y.-Q., GUO B., SHUM

H.-Y.: Real-time texture synthesis by patch-based sam-
pling. ACM Transactions on Graphics 20 (2001),
127–150.

[LZPW04] LEVIN A., ZOMET A., PELEG S., WEISS Y.: Seam-
less image stitching in the gradient domain. In Proceed-
ings of EECV ’04 (Berlin Heidelberg, 2004), Springer-
Verlag, pp. 377–389.

[Man82] MANDELBROT B. B.: The Fractal Geometry of Na-
ture (1st edition). W. H. Freeman, New York, USA, 1982.

[MJBF02] MILLIRON T., JENSEN R. J., BARZEL R., FINKELSTEIN

A.: A framework for geometric warps and deformations.
ACM Transactions on Graphics 21 (2002), 20–51.

[MKM89] MUSGRAVE F. K., KOLB C. E., MACE R. S.: The
synthesis and rendering of eroded fractal terrains. SIG-
GRAPH Computer Graphics 23 (1989), 41–50.

[NVI10] NVIDIA CORPORATION: NVIDIA CUDA Com-
pute Unified Device Architecture Programming Guide.
NVIDIA Corporation, Santa Clara, CA, USA, 2010.

[NWD05] NEIDHOLD B., WACKER M., DEUSSEN O.: Interactive
physically based fluid and erosion simulation. In Proceed-
ings of EGWNP ’05 (2005), pp. 25–32.

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image
editing. In Proceedings of the ACM SIGGRAPH 2003 Pa-
pers (New York, NY, USA, 2003), ACM, pp. 313–318.

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MERILLOU

S.: Arches: A framework for modeling complex terrains.
Computer Graphics Forum 28, 2 (2009), 457–467.

[She68] SHEPARD D.: A two-dimensional interpolation func-
tion for irregularly-spaced data. In Proceedings of the 1968
23rd ACM National Conference (New York, NY, USA,
1968), ACM, pp. 517–524.

[SW65] SHAPIRO S., WILK M.: An analysis of variance test
for normality (complete samples). Biometrika 52 (1965),
591–611.

[US11] US GEOLOGICAL SURVEY: http://seamless.usgs.gov/,
Accessed on 23 March 2011.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



14 F. P. Tasse et al./Enhanced Texture-Based Terrain Synthesis

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis us-
ing tree-structured vector quantization. In Proceedings of
SIGGRAPH ’00 (New York, NY, USA, 2000), ACM Press,
pp. 479–488.

[XLYD10] XIAO C., LIU M., YONGWEI N., DONG Z.: Fast
exact nearest patch match for patch-based image editing
and processing. IEEE Transactions on Visualization and
Computer Graphics 17, 99 (2010), 1122–1134.

[ZG02] ZELINKA S., GARLAND M.: Towards real-time texture
synthesis with the jump map. In Proceedings of EGRW
’02 (Aire-la-Ville, Switzerland, 2002), Eurographics As-
sociation, pp. 99–104.

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J. M.: Terrain
synthesis from digital elevation models. IEEE Transac-
tions on Visualization and Computer Graphics 13 (2007),
834–848.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.


