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Abstract: We report a hybrid parallel central and graphics processing units (CPU-GPU)
implementation of a coarse-grained model for replica exchange Monte Carlo (REMC) simulations
of protein assemblies. We describe the design, optimization, validation, and benchmarking of
our algorithms, particularly the parallelization strategy, which is specific to the requirements of
GPU hardware. Performance evaluation of our hybrid implementation shows scaled speedup
as compared to a single-core CPU; reference simulations of small 100 residue proteins have a
modest speedup of 4, while large simulations with thousands of residues are up to 1400 times
faster. Importantly, the combination of coarse-grained models with highly parallel GPU hardware
vastly increases the length- and time-scales accessible for protein simulation, making it possible
to simulate much larger systems of interacting proteins than have previously been attempted.
As a first step toward the simulation of the assembly of an entire viral capsid, we have
demonstrated that the chosen coarse-grained model, together with REMC sampling, is capable
of identifying the correctly bound structure, for a pair of fragments from the human hepatitis B
virus capsid. Our parallel solution can easily be generalized to other interaction functions and
other types of macromolecules and has implications for the parallelization of similar N-body
problems that require random access lookups.

1. Introduction

The formation of multiprotein complexes, either transient
or permanent, is integral to many biological processes. Some
examples are antibody-antigen and protease-inhibitor
complexes, protein complexes involved in cellular signal
transduction processes, structural proteins that maintain the
shape of a biological cell, and the very large multiprotein
complexes represented by the proteasome, the nuclear pore
complex and viral capsids. Identification of the site and
strength of interaction (binding) between proteins involved
in common cellular functions is integral to a comprehension
of how they work cooperatively. This can improve our grasp
of disease mechanisms and provide the basis for new
therapeutic approaches. Consequently, the prediction of

protein binding sites has been identified as one of the 10
most sought-after solutions in protein bioinformatics.1 This
problem is closely related to the well-known NP-hard
“protein folding problem” of predicting the three-dimensional
structure of a protein from its primary sequence.

In the absence of sufficient experimental data on the atomic
structure of protein complexes, molecular dynamics (MD)
or Monte Carlo (MC) simulations of protein complex
components can assist in determining both their mode of
interaction and the location of the interaction site(s).2

Molecular simulations generate an ensemble of configura-
tions, from which both structural and thermodynamic data
can be extracted. The configurations representing bound
protein complexes enable identification of both the docking
sites and the relative orientation of the proteins, while the
binding affinity of a complex can be estimated from the
proportion of bound samples occurring in the ensemble.
However, all-atom simulations of multiprotein complexes are
highly computationally expensive and are therefore limited
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in scale by the available computing resources. Simulations
are typically restricted to simple biological systems (e.g.,
small binary protein complexes without solvent) and to
nanosecond time scales. Accurate coarse-grained models
have helped to extend molecular simulations to more
biologically relevant length- and time-scales.3-11 These
reduced molecular models aggregate single atoms into large
spherical beads to significantly decrease the computational
cost of a simulation. There is considerable potential for
further accelerating molecular simulations by combining
coarse-grained models with the computational power of
massively parallel graphics processing units (GPUs).

Modern GPUs have floating-point computational capabili-
ties far in excess of current central processing units (CPUs).
Essentially, GPUs fall into the category of single program
multiple data (SPMD) compute devices; organizing data into
homogeneous streams of elements and executing a function,
or kernel, on all elements of a stream simultaneously. Current
high-end GPUs also have high memory bandwidth compared
to CPUs. For example, the nVIDIA GTX280 has 240
fragment or stream processors and a theoretical memory
bandwidth of 141 GB/s. As a consequence, these compact
devices are capable of rapid high-throughput numeric opera-
tions and can be employed effectively by nongraphical
memory-bound algorithms of high arithmetic intensity, such
as the N-body problem inherent in molecular simulations.
For coarse-grained potentials, evaluation of the total interac-
tion potential between all beads, N, in a protein molecule is
an O(N2) operation and the chief performance bottleneck, a
common feature of N-body simulations in general. The
independence of each pairwise interaction means that the
calculation of all such potentials suits the SPMD GPU
architecture, promising good speedups over CPU-only
implementations.

The difficult task of porting algorithms to the GPU
architecture, while maintaining effective use of the CPU, has
been made easier with the development of general application
programming interfaces. In 2007, nVIDIA released the
compute unified device architecture (CUDA) API, which
allows the general programmer direct access to the nVIDIA
GPU hardware. CUDA allows for operations not supported
by graphics APIs, such as local data communication between
kernels and scatter and gather operations. However, CUDA
GPU programming is not trivial. Programmers must be
mindful of the GPU memory hierarchy, which requires
explicit management to minimize access latency and effective
packing of data to enable a coalesced memory access
pattern.12 In addition, maximizing GPU performance often
requires latency hiding through exploitation of the multi-
threading capabilities of the CPU cores,13 adding the
difficulties of conventional multithreaded asynchronous
programming to the GPU-specific programming techniques.

However, despite these difficulties, there are increasing
reports of successful CUDA implementations of N-body
algorithms achieving good speedups over CPU implementa-
tions.14-16 Specifically, GPU-based calculations of the
expensive long-range electrostatics and other nonbonded
forces necessary for molecular mechanics simulations are
typically 10-100 times faster than heavily optimized CPU-

based implementations.17-19 Friedrichs et al. showed speed-
ups over a single CPU implementation of up to 700 times
for large all-atom protein MD running entirely on the GPU.16

However, such great speedups are not always achievable. A
recent implementation of an acceleration engine for the
solvent-solvent interaction evaluation of MD simulations
shows speed-ups of up to a factor of 54 for the solvent-solvent
interaction component but only 6-9 for the simulations as
a whole.20

Here we report our hybrid CPU-GPU parallel implemen-
tation of a coarse-grained model and an energy function for
simulation of multiprotein complexes recently developed by
Kim and Hummer11 together with a replica exchange Monte
Carlo (REMC) simulation protocol to enhance sampling. We
leave the original model and simulation methods unchanged;
our primary focus is on development of a general, highly
scalable parallel implementation, with the ultimate goal of
increasing the size of tractable simulations to the point where
far more biologically relevant simulations can be attempted.

Previous implementations of related N-body dynamics on a
GPU, such as the GRAPE implementation,15 translate the
potential evaluation into a convenient map-reduce problem.14-16

However, in our case this approach is not feasible, as the
Kim-Hummer coarse-graining model requires very frequent
random-access lookups in evaluation of the interaction
potential, and the memory resource limitations of the GPU
prevent the use of standard optimal GPU memory-access
models for this problem.21,22 Therefore, in order to optimize
the parallel performance of our implementation, we assess-
ed the performance impact of storing the structural data and
the potential lookup table in the various different types of
memory available on a GPU to establish the optimal
configuration. We validate our final CPU-GPU implementa-
tion against the original, demonstrating that our simulations
reproduce the reference results of Kim and Hummer,11 while
showing a factor of 4 speedup for small systems. Further
benchmarking analysis demonstrates that our implementation
of this model achieves excellent speedups of over 1400 for
large simulations. We demonstrate that the potential is
capable of identifying the correct bound structure for a pair
of protein fragments from the human hepatitis B (HBV) virus
capsid, although there are also minor populations of incor-
rectly bound structures. This paves the way for larger scale
simulation studies of capsid assembly mechanisms.

The parallelization approach developed in this work is
generally applicable to N-body problems that require similar
random access lookups. This often occurs where the aspects
of the interaction between bodies are dependent on their type
or state. One instance is the commonly used energy functions
in all-atom MD simulations, in which the interactions depend
on the type of each atom.23

2. Methods

In this section, we present details of the coarse-grained
protein-protein simulation method and some high-level
considerations for its parallelization, validation, profiling, and
benchmarking.

2.1. The Kim-Hummer Coarse-Grained Model. In
common with many current coarse-grained models, the
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Kim-Hummer model (hereafter referred to as the model)
represents a protein molecule as a chain of beads corre-
sponding to specific amino acid residue types. Coarse-grain
representations are generated from a protein’s atomic struc-
ture by centering a bead on the CR atom in each amino acid
residue, with the radius of the bead being the van der Waals
radius of the specific residue.

In the simplest version of the model, proteins are treated
as rigid bodies, with the interaction potential, Utot, comprising
only the pairwise sum of short-range amino-acid-dependent
Lennard-Jones potentials, uij(r), and long-range electrostatic
Debye-Hückel interactions, uij

el(r):

where r is the distance between residues i and j, and 0 e fi

e 1 is the weighting factor for residue i. The weighting factor
scales the contribution of a particular residue, allowing
residues on the surface of the molecule to contribute more
than residues buried within the protein.24 In the simplest case,
all interactions are weighted equally (fi ) 1 for all i). Since
we use rigid bodies to represent proteins, these weights
remain constant for each residue throughout a simulation.

Based on known contact potentials, εij, between residues,
short-range interactions are either attractive (εij < 0) or
repulsive (εij > 0) and are defined as

where σij is the distance between residues i and j, determined
from the average of the respective van der Waals diameters
of each residue,11 and rij

0 ) 21/6σij is the lowest energy
separation.

The long-range electrostatic potential between residues is
defined as

where qi is the charge of residue i, D is the dielectric constant
of the solvent, and � is the Debye screening length. Kim
and Hummer use D ) 80 as the dielectric constant of water
and�=10Å,correspondingtophysiologicalsaltconcentrations.

Note that our implementation currently does not allow for
the flexible linker peptides connecting rigid-protein domains
in the original model. However, these can be included
relatively cheaply, with the contribution of the appropriate
stretching, bending, and torsion-angle potentials for the
flexible linkers calculated in O(N) time complexity on the
CPU.

2.2. Methods for REMC Simulations. In our implemen-
tation, we use the REMC) protocol reported for the original
model.11 MC methods employ a sequence of random
geometric mutations (moves) of the system (usually rotations
or translations) to explore and sample configurational space
in a desired ensemble. In our case, the Metropolis MC

algorithm25,26 is most suitable. In Metropolis sampling, the
energy of the system is evaluated after each move, and
mutations are accepted or rejected in such a way that
configurations are sampled with probabilities given by the
Boltzmann distribution (i.e., the probability of configuration
X, P(X) ∝ exp(-E(X)/kBT), with kB being the Boltzmann
constant).

In each MC mutation, a randomly selected protein is either
translated (by 0.5 Å) or rotated (by 0.2 radians about a
protein’s centroid) along a random axis within a periodic
bounding box. Varying the volume of the box alters the
concentration at which the simulation is performed. For these
simulations, a value of less than 2kBT ) -1.186 kcal/mol
for the interaction energy is used to determine that the
proteins are in a bound state,2 although the results are not
very sensitive to this value.11 To determine the binding
affinity of a complex, the fraction bound y (the proportion
of bound samples out of the total number of samples) is
determined as a function of the protein concentration [A] )
1/V, and the dissociation constant Kd is evaluated from the
relation:11

The sampling properties of MC simulation are further
improved by using replica exchange, in which concurrent
simulations are run at different temperatures.27 Such a REMC
search maintains � independent replicas of the system, with
each replica run at a different temperature value (T1, T2, ...,
T�). During replica exchange, configurations are swapped
between replicas at neighboring temperature values with a
probability proportional to their energy and temperature
differences. Specifically for a pair of replicas at temperatures
T1 and T2, with current coordinates X1 and X2, respectively,
configurations are swapped using the criterion ∆ ) exp[(�1

- �2)(U(X1) - U(X2))], with �1 ) 1/kBT1, �2 ) 1/kBT2, and
U(X) the potential energy. Analogous to standard Metropolis
MC, moves are always accepted if ∆ > 1, otherwise they
are accepted if F < ∆, with F random numbers on the interval
[0,1). This process runs until sufficient samples have been
generated for the calculated fraction bound metric, y, to
converge, typically requiring between 108 and 109 MC
mutations per replica.

2.3. General Parallelization Approach. In our approach
to parallelization of the Kim-Hummer model, we aim to
exploit the various levels of concurrency inherent in the
REMC algorithm, from fine-grained parallelism in the costly
potential evaluation to relatively coarse-grained parallelism
in the multiple replicas.

As we only had access to an implementation of the model
within the CHARMM package,28 we began with develop-
ment of a serial implementation with full simulation func-
tionality to provide a reference point from which to perform
validation, profiling, and benchmarking of the subsequent
parallel GPU implementation. We note that our CPU
implementation shows slightly faster run times than the
CHARMM version.

At a high level, a parallel version of the O(R) REMC
algorithm (where R is the number of replicas) is relatively

Utot ) ∑
ij

fi fj(uij(r) + uij
el(r)) (1)

uij(r) ) {4|εij|[(σij/r)12 - (σij/r)6], (εij < 0)

4εij[(σij/r)12 - (σij/r)6] + 2εij, (εij > 0, r < rij
0)

-4εij[(σij/r)12 - (σij/r)6], (εij > 0, r g rij
0)
(2)

uij
el )

qiqj exp(-r
� )

4πDr
(3)

y ) [A]
[A] + Kd

(4)
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straightforward to implement, and the many concurrent
independent replicas make this algorithm highly suitable for
parallel execution across many CPU cores. From a multi-
threading perspective, replicas encapsulate parallel work
units; each replica performs a self-contained MC simulation.
The Markov chain nature of these simulations means that
an individual simulation cannot be split across threads, as
each step of the MC simulation is dependent on the previous
step. We therefore employ a multiple producer-consumer
model, with R replica MC simulation threads and one replica
exchange thread. Control is initially passed to the MC
threads, with the replica exchange thread waiting until the
MC threads complete their allotted iterations. At this point,
control is passed to the replica exchange thread, and replica
exchange is performed. This process is repeated for the
specified number of MC steps. This high-level approach
scales well to multiple CPU cores, with or without a GPU.

At a lower level, the O(N2) potential evaluation is by far
the most costly operation and is therefore exported to GPU.
Although it is considered best to associate thread contexts
one-to-one with GPU runtime contexts,22 our model also
allows for sharing of one or more GPU’s between multiple
threads. Such concurrent potential evaluation by multiple
replica threads can be handled in two ways: either by sharing
the GPU between threads though multiple contexts or by
using CUDA steams to perform asynchronous computation
on the GPU. Asynchronous calls maximize resource utiliza-
tion of both the GPU and CPU but require explicit manage-
ment of the streaming process, whereas the use of pthreads
to run concurrent MC simulations implicitly manages
processing overlap between the GPU and CPU. For asyn-
chronous GPU calls, each replica is assigned to a stream,
and the application is configured to overlap MC mutations
and acceptance/rejection sampling with interaction potential
calculations. This allows for maximum resource utilization
in the application, ensuring that the GPU is busy at all times,
thereby maximizing the simulation throughput. For purposes
of comparison, we implemented both approaches.

2.4. Simulations. 2.4.1. Benchmarking. For benchmark-
ing purposes, 20 replicas were simulated for 1000 MC steps
each, for system sizes ranging from 100 to 7668 residues.
(Note that a typical simulation of 20 replicas will realistically
run for 107 steps per replica, 10 000 times longer than this
benchmark.) The two smallest benchmark cases are the UIM/
Ub (100 residues) and Cc/CcP (402 residues) systems also
used for validation. For the larger systems, we simulate the
interactions of viral capsid proteins from the human hepatitis
B virus (HBV, PDB ID 2G33), where each protein dimer
comprises 284 residues. We simulate systems consisting of
2 (568 residues) up to 27 (7668 residues) dimers. This system
was chosen with the eventual application of virus assembly
in mind, although for benchmarking, we are only concerned
with the performance aspects.

All benchmarking simulations were run using an nVIDIA
GTX280 (Asus ENGTX280) running at a stock clock speed
of 600 MHz paired with a Intel Core 2 Duo 3 GHz E8400
CPU and 4GB of DDR2-800 MHz RAM.

2.4.2. Validation. Our implementation was validated in
two stages. First, the single point interaction energies

produced by both our single CPU and the GPU implementa-
tions were validated against those from the original model
implementation for 10 reference structures (Youngchan Kim,
personal communication). We note that the serial CHARMM
implementation gives identical results to the original model.
Second, to verify the MC simulation implementation, we
reproduce the binding affinity for simulations of two protein
complexes originally used in the development of the model,11

namely: (i) the binding of ubiquitin to the UIM1 domain of
the Vps27 protein (abbreviated to UIM/Ub, PDB ID 1Q0W)
29and (ii) the binding of yeast cytochrome c to cytochrome
c peroxidase (Cc/CcP, PDB ID 2PCC),30 both at 300K. We
reproduce the simulation protocol of the original study, using
replica exchange with 20 replicas at various temperatures
between 250 and 600 K, exchanged every 1000 MC steps.
Calculation of the equilibrium binding affinity of each
complex allows for direct comparison with the original
results. Simulations were run for 107 steps per replica, with
a total of 2 × 108 simulation steps for each of 6 concentra-
tions between 100 and 1000 µM. The GROMACS utility
g_cluster31 was used to cluster bound configurations via the
linkage algorithm using root-mean-squared deviations (rmsd)
as a metric, with a cutoff of 0.1 nm.

2.4.3. Initial Application. As a first step toward the
simulation of the assembly of an entire viral capsid, we
simulate the interaction of two identical fragments from the
human HBV capsid. Each unit comprises 4 chains, or a total
of 582 residues, with the structure taken from PDB ID 2G34
(substructure of one fragment). Sampling is done by REMC
with 10 replicas at temperatures between 300 and 416 K
(temperatures follow a geometric progression), exchanged
every 1000 MC steps. Average acceptance ratios are between
16 and 97% for the MC mutations. Simulations were run
for 10 million steps per replica for a total of 100 million
simulations steps. This produced ∼40 000 bound instances
at 300 K which were clustered according to rmsd, as
described above.

3. Software Implementation

Here, we present specifics of the algorithm implementation:
the object-based decomposition, the data bundling and
transfer strategies, and the kernel implementation.

All code was written in C and C++ using the GNU
Scientific Library, the C++ posix thread library, the C++
Standard Template Library and Linux 64-bit operating
system. Versions 2.0-2.3 of the CUDA toolkit were used
for development.

Our application accepts Protein Data Bank (PDB) format
files of atomic protein structures. These files are parsed, and
coarse-grained representations of each protein generated.

3.1. Multithreaded REMC Simulations. Simulations are
initialized with the number of MC steps, the intervals at
which replica exchange is performed, and the sampling
interval. MC mutations were implemented with the aid of
the GSL Mersenne twister pseudorandom number genera-
tor.32 We ensure that the mutation operations preserve the
integrity of molecular structures by performing only rigid-
body rotations or translations. Uniform random selections
of both molecule and mutation type are performed, followed
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either by translation by 0.5 Å or by rotation about a
molecules centroid by 0.2 radians, along a random axis.
Translations are implemented trivially as a vector translation
in 3D with single precision, but rotations, given the ac-
cumulation of error in simulations of such length, require
full double precision. Since the relative error in the displace-
ment of residues from their intended position is approxi-
mately 10-4 after 1 million rotations, the error accumulated
from single-precision rotation would quickly render the data
from simulations unusable. Rotations are thus performed by
generating a quaternion representation along the axis of
rotation and applying it to the residues in the selected protein.
Residue positions are cast to double precision for the rotation
operation and cast back to single precision afterward.

Our implementation of replica exchange is extremely
lightweight, with a negligible contribution to simulation time.
Each replica contains counters for various metrics, such as
the fraction bound and the MC acceptance/rejection ratio,
which are in turn written at the sampling interval to
simulation output files. Because we perform rigid-body
docking, structural information is stored as the rotation and
displacement of each molecule relative to its initial state.

3.2. Data Representation. We employed a hierarchy of
classes to encapsulate the simulation. At the top of the
hierarchy, a replica object encapsulates the data specific to
a replica instance, such as pointers to the specific arrays in
GPU memory, where the replica residue data is stored for
the duration of a simulation. The MC simulations are
encapsulated within each replica. To reduce transfer times,
after any mutation, only the altered molecule is updated on
the GPU before invocation of the GPU kernel.

Each residue bead is represented as a data tuple comprising
the position (relative and absolute) of each residue, the
residue type, the van der Waals radius, and the electrostatic
charge. Proteins consist of a contiguous array of residues,
which ensures that as many residues as possible occur in
the same cache line, consequently improving the rate at
which residues are loaded into cache memory on the CPU
for mutation.

The short-range contact potential, εij, values for the 210
unique residue interaction pairs are stored in a lookup table.
Both the residue array and this look-up table are transferred
once to the GPU, where they persist for the duration of the
simulation. The residue data is stored in the GPU global
memory in arrays of type float4 and float3 to ensure
coalesced reads when kernels access residue data.21 The look-
up table can be stored in several ways: as a noncached global
array, a cached array using constant memory, or a texture
mapped to global memory. We determined the best among
these storage locations via careful profiling of the algorithm,
as discussed above.

3.3. GPU Kernel Implementation. The kernel is the
fragment of code executed by every GPU thread. Our kernel
calculates the pairwise interaction potential (algorithm 1)
which, using the implicit addressing model provided by the
GPU, is applied to residues according to their position in
global memory, as determined by thread and block indexes
and by block dimension. Residue pairs are allocated across
a grid of thread blocks, partitioning the work done by the

GPU into tiles containing subsets of the pairwise interactions.
We use a GPU-optimized parallel reduction33 to compute a
partial sum of the interaction potential for the tile assigned
to each thread block. As the matrix is symmetric, only thread
blocks above the major diagonal contribute to the interaction
potential, and the partial sum is halved for thread blocks on
the diagonal. Partial sums are written back to global memory
on the CPU host, for addition to the total interaction potential,
Utot (eq 1). We found no benefit to performing this ac-
cumulation on the GPU for larger simulations, and this shift
of work to the CPU speeds up the single GPU/multiple
pthread configuration.

Our default implementation stores the data for residues
assigned to a thread block in the shared memory for the
associated symmetric multiprocessor (SM) in a coalesced
manner,asinastronomicalN-bodyCUDAimplementations.14,15

However, as we require more shared memory than previous
implementations, we experience lower occupancy on each
processor because all threads assigned to a processor jointly
access its 16 KB of shared memory. An alternative is the
use of texture or global memory for these residues.

Further, the short-range interaction potential requires
random access retrieval from a lookup table of LJ(typei,
typej), the van der Waals contact potential for a pair of
residues. Unfortunately, this table consists of 210 distinct
values, which may be required in any order, which does not
fit the ideal data model for a GPU.22 Texture memory
tolerates random memory accesses better than other types
of memory on the GPU,21,22 providing us with an alternate
mechanism for implementing the lookup table. However, the
latency hiding effects of multiple threads and caching
afforded by constant memory do not necessarily make this
the best choice. The impact of the type of GPU memory
used for both the residue data and the εij (eq 2) contact
potential lookup table on application performance is dis-
cussed below.

4. Performance Tuning

We followed a staged approach to tuning our application
for optimal performance. First, kernel parameters were
adjusted to ensure that the kernel execution time is as fast
as possible. As the CUDA kernel is an indivisible unit of
work, its optimization is independent of multithreading and
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asynchronous calls. (Note, however, that the most recently
released CUDA-based compute devices can launch different
kernels concurrently.) Once an optimal kernel configuration
was found, multithreading was used to divide work between
CPU cores and overlap CPU and GPU computation. Stream-
ing was undertaken as the last stage of application tuning.

As expected, profiles of a single-threaded CPU imple-
mentation for each of the benchmark cases (Figure 1a)
demonstrate that the O(N2) evaluation of the interaction
potential consumes the vast majority of simulation time;
rotation, translation, and other operations in the MC simula-
tion are relatively inexpensive in comparison. For this reason
there is no real benefit in improving the runtime of these
operations.

For the kernel optimization, the balance of random access
lookup, occupancy, shared memory allocation and the block
size provide a myriad of options. We found best performance
in most cases for a kernel comprising a thread block size of
64 threads, texture memory for constant potential lookups,
and a shared memory model mimicking the GRAPE hard-
ware model.15 We therefore used this configuration to profile
our GPU implementation.

Exporting the interaction potential evaluation to the GPU
leads to a massive reduction in execution time, in the range

of one to three orders of magnitude improvement. Predict-
ably, larger problem sizes benefit most, due to the greater
degree of parallelism in their computation. However, interac-
tion potential calculations still require 90%+ of a simula-
tion’s runtime (see Figure 1). Note that the GPU implemen-
tation requires that data be copied to GPU memory before
and after kernel invocation, which accounts for the increased
“other” operations profile on the GPU as compared to the
CPU.

Instruction-level optimization yielded little improvement
in our kernels due the dependence of the kernel on lookup
table access. Reordering of the pairwise interaction formulas
(eqs 2 and 3, as listed in algorithm 1) results in a few key
optimizations. For one, (σij/r)6 can be calculated once and
stored in a local variable, allowing the powf function to be
called once, as opposed to six times in the original equation
(eq 2). Algorithm 1 also minimizes the divergence in the
calculation by ensuring the branching required to calculate
uij only contains two multiplies and one add operation.
Further, we use the intrinsic GPU functions expf and rsqrtf
to increase instruction throughput. The drawback of this type
of reordering is that more registers are required to store
temporary values, but since it is shared memory rather than
register memory that limits our occupancy, this does not
negatively impact performance.

4.1. Kernel Tuning. The optimal kernel configuration for
a GPU application is dependent on many factors, ranging
from high (thread block size and the GPU grid size) to very
low (use of specific memory types and instruction-level code
optimization) levels.

We load residues within a kernel in the conventional
N-body manner,14 using an array of shared memory within
each thread block to store the residues so that they can be
accessed quickly. However, we require seven 32-bit values
per residue, three more than required for gravitational N-body
simulations, which only store position and mass in shared
memory.14,15 In addition, a patch of shared memory is
required for the parallel sum at the end of each thread block
to produce an overall interaction potential value for all of
the electrostatic interactions of the block. In the gravitational
case, each thread computes and stores the updated velocity
and position of a single body resulting in a much simpler
kernel.

This increased shared memory requirement proves to be
the limiting factor on the kernel performance, as the
occupancy of the SMs on the GPU is limited by the amount
of shared memory available to each thread block. This is
illustrated in Figure 2a. For this configuration, occupancy
on the GPU is constrained to 37.5% in the cases of 64 or
128 threads per block and 25% occupancy in the cases of
32 or 256 threads per block. A thread block of 512 threads
will not execute due to insufficient memory. For smaller
problem sizes, where very few thread blocks are required,
the amount of padding can have a negative impact on the
simulation. For example, 32 threads per block results in the
least padding and thread blocks to execute the kernel, making
it fastest for small problems. Conversely, 256 threads per
block requires the most padding and results in times much
longer than the other configurations. Predictably, performance

Figure 1. (a) Serial CPU and (b) parallel GPU profiles of the
percentage execution time consumed by various operations
(logarithmic scale). The interaction potential calculation ac-
counts for over 97% of the simulation time, approaching
almost 100% for large systems. Analytical estimates for the
expected proportion of time devoted to interaction potential
(Est.) are close to the observed values.
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for larger residues is linked to occupancy in this configu-
ration, as illustrated in Figure 2a. With occupancies of 37.5%,
64 and 128 threads per block perform best, outperforming
32 and 256 threads per block, which can only achieve 25%

occupancy. Thread blocks of 64 threads run the fastest, as
they strike the best balance between occupancy, warps per
block and blocks per SM. This is because, ultimately, the
random access of the contact potentials is a bottleneck on
the GPU, and the fastest configuration is the one that best
hides the cost of serializing this operation. For this reason,
it is important to maximize kernel occupancy.

We experimented with the use of the different GPU
memory typesstexture, global, constant, or sharedsfor
storing the contact potential lookup tables on the GPU. Figure
2b shows the best benchmark performance for each type of
memory. As expected, the poorest performance is experi-
enced using shared memory, which is already limited in
availability. Using shared memory for the lookup table as
well as the residue data results in an even lower occupancy
-6% for 32 and 64 threads and 12.5% for 128 threads, with
a proportional degradation of performance. However, if there
were sufficient shared memory on each SM to fit many
blocks, each containing a constant potential lookup table,
then we would expect performance to improve due to
increased occupancy and faster memory access, even though
this does not accord with the prescribed memory access
model.22 The performance of constant and global memory
is interesting. Since they perform almost identically, it is clear
that the diversity of lookup values prevents the single value
caching afforded by constant memory from having any
impact. This is also the reason why texture performs best;
because of the spacial caching feature of texture memory,
any read from texture memory results in the entire table being
cached on the GPU for 3 SMs. This results in faster lookup
times for all thread blocks running on the SMs which belong
to the texture unit. Both global and constant memory
performance is generally 10-20% slower than its texture
memory lookup equivalent because of this caching effect.

Unexpectedly, some alternative configurations perform
almost as well as the best configuration (using texture
memory for contact potential lookups and shared memory
for prefetching residues for fast access in thread blocks, with
64 threads per block). As shown in Figure 2c, performance
may be improved by increasing the occupancy, using texture
instead of shared memory for the residue data, in part or
entirely. For example, storing only the molecule identifier
and position in shared memory and the rest of the residue
data in texture memory results in a negligible drop in kernel
performance. In this case, the higher access latency of texture
memory is offset by the benefit of higher occupancy
(50-75%). A possible advantage of this configuration is that
large simulations (which we are aiming at) of up to 131 072
residues can be performed using a thread block size of 512
(previously prohibited because of shared memory constraints
allowing a maximum simulation size of only 65 536 resi-
dues). In the case of constant memory, this strategy improves
the performance of all configurations, but not to the extent
that they are faster than the original configuration. As another
example, using constant memory for lookups performs
surprisingly well if all residue data is moved to texture
memory (Figure 2b, red line). With a block size of 128
threads per block, this increases the SMs occupancy to 75%,

Figure 2. (a) Kernel execution time with varying number of
threads per block, using texture memory for the contact
potential lookups. Configurations of 32, 64, 128, and 256
threads per block execute in times indicative of their percent-
age occupancy. (b) Relative performance of alternate memory
locations for storing the residue data. Each entry in the key
lists the location for contact potential lookups storage, the
number of threads per block, the storage location for the
residue data (molecule identifier and position vs rest of data),
with kernel occupancy values in brackets, e.g., Tex, 64,
shared/shared refers to texture memory for contact potential
lookups, 64 threads per block, and shared memory for all
residue data (shared/shared). (c) Relative performance of
various GPU memory locations (global, constant or shared)
for storing the potential lookup table.
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almost matching our fastest kernel and affording the best
latency hiding of any configuration.

Generally we observe that block sizes of 32 threads per
block perform best for simulations of fewer than 1000
residues, and for larger simulations a block size of 64 threads
is optimal. As a result, we incorporated a simple autotuning
feature to achieve better kernel occupancy, simply selecting
a dynamic block size on-the-fly, based on prior kernel
performance. We limit autotuning to block sizes of 32, 64,
128, 256, and 512 threads to satisfy the reduction algorithm.33

We find that the relative differences between our kernels is
minor, provided that a sensible kernel configuration is
selected (Figure 2b and c).

5. Results and Discussion

5.1. Accuracy of the GPU Implementation. Of particular
importance for a successful CUDA implementation of an
algorithm is the accuracy of the mathematical functions
employed by the GPU kernel. A limitation of the GTX280
architecture is that a double precision arithmetic is performed
at one-eighth of the speed of a single precision (30 double
vs 240 single precision units). Although the latest nVIDIA
architectures have better double precision perfromance, single
precision is still significantly faster. On the Fermi GF100,
double precision is performed at half the rate of single
precision with 256 FMAs per clock vs 512 single precision
FMAs.34 Therefore the use of single precision arithmetic is
still required to achieve the best performance on GPU
architectures.

However, care must be taken to ensure that the use of
single precision arithmetic does not result in an unacceptable
reduction in computational accuracy. We find a mean relative
error of 0.00146 for interaction potential calculations in our
GPU implementation and CHARMM, almost identical to the
mean relative error between our CPU implementation and
CHARMM (0.00143). The largest differences occur in the
calculation of the van der Waals component of the interaction
potential. The mean relative error between our double
precision CPU and single precision GPU implementations
is 3.8 × 10-7 (Table 1). In cases where the GPU values
differ most from the CPU, use of the powf function in
calculating (σij/r)6 proved to be the cause, due to its
maximum ULP error of 8.21 A benefit of our GPU kernel is

that pairwise summation is implemented implicitly in the
reduction used to calculate the total interaction potential from
each pairwise potential. This results in the error rate due to
round-off errors growing at a low rate proportional to O
(ε√log n), as compared to O(n) for a simple summation.

5.2. Performance of the GPU Implementation. We
benchmarked simulation times for various options ranging
from a thread on the CPU to multiple threads in combination
with asynchronous calls to the GPU kernel. Multithreading
across CPU cores results in performance improvement
proportional to the number of cores (Figure 3 a) on a dual
core machine, two threads perform twice as fast as a single
thread, illustrating the high scalability of parallel MC
simulations. The benefits of the GPU implementation are
clear. Even a straightforward, single-threaded, single GPU

Table 1. Conformation Energiesa

Conf. CHARMM CPU GPU η

1 -0.294085 -0.293705 -0.293705 2.03 × 10-7

2 -1.056417 -1.056291 -1.056291 2.26 × 10-7

3 -10.278304 -10.277435 -10.277431 4.64 × 10-7

4 -7.584171 -7.580382 -7.580391 1.20 × 10-6

5 -0.000079 -0.000079 -0.000079 3.67 × 10-7

6 -5.564564 -5.562238 -5.562239 2.57 × 10-7

7 -5.452568 -5.480216 -5.480217 2.61 × 10-7

8 -10.670303 -10.711964 -10.711967 2.67 × 10-7

9 -9.904111 -9.900359 -9.900359 0.00
10 -8.518124 -8.527744 -8.527749 5.59 × 10-7

a Comparison of Utot values (kcal/mol) for 10 reference
conformations in the CHARMM implementation (equivalent to the
original implementation)11 and our serial CPU and GPU
implementations. Relative errors (η) are on the order of 10-7, with
an average GPU error of 3.8 × 10-7.

Figure 3. (a) Simulation times for various configurations of
GPU and CPU. The GPU simulations generally outperform
the CPU simulations by two orders of magnitude from as little
as 500 residues. Asynchronous GPU usage proves to be
fastest in all cases, provided the GPU is not shared between
contexts. The overhead of context switching is evident in the
constant difference of 10 s between the multithreaded and
serial asynchronous benchmarks. (b) Speedup of the GPU
implementation over our serial implementation. The use of
CUDA streams results in the best speedup of our implemen-
tation, with the serial asynchronous GPU solution performing
up to 1400 times faster than the serial CPU solution for larger
benchmarks. A clear crossover point occurs for the synchro-
nous multithreaded benchmarks at approximately 3000 resi-
dues; for larger simulations, the cost of context switches is
amortized by the thread level parallelism of the simulation.
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configuration shows a remarkable peak speedup of 600 times
that of the serial CPU solution (Figure 3b, red line). For large
problems (>3000 residues), sharing the GPU among multiple
CPU threads provides an even better performance of up to
800 times that of the CPU (Figure 3b, green line). This is
because multiple threads ensure that the GPU is better
utilized, even though the card has to perform costly CUDA
context switching between threads. It is clear that the benefits
of using a GPU are only fully realized when simulating large
enough problems. For example, our smallest benchmark
shows a speedup factor of 8 for a single thread and actually
performs 30% slower for two threads.

However, the best performance was obtained not with
multithreading but with asynchronous calls to the GPU with
CUDA streams. For streaming with one thread of execution,
we found that any configuration of 2, 4, 5, or 10 streams
performed equally well. Specifically, a configuration com-
prising a single thread with asynchronous GPU calls (Figure
3b, purple line) performs best across all benchmarks, over
1400 times for systems larger than 4000 residues. The
relatively poor performance of multithreaded confirgurations
is partly attributable to the cost of context switches between
threads, a fact highlighted by the constant 10 s performance
difference between the streaming and multithreaded bench-
marks for all system sizes (Figure 3a). Indeed, for smaller
simulations, where the relative penalty of performing a
context switch between threads is greater, a single-thread
configuration (Figure 3b, red and purple lines) always
outperforms the equivalent multithreaded code. For multi-
threaded asynchronous configurations (Figure 3b, maroon
line), the cost of context switching is largely hidden by the
overlap in GPU and CPU computation. Remaining differ-
ences in performance are governed by the kernel efficiency
of a particular implementation. For example, the “kinks” in
the speedup curves are due the scheduling of kernels on the
GPU, occurring for various block dimensions at differing
simulation sizes. Although seemingly large in Figure 3b, the
speedup graph merely exaggerates the effect of the variations
in Figure 2b.

We conclude that the GPU is fully utilized if streams are
used for relatively small problem sizes. However, if streams
are unavailiable, a configuration with as many CPU threads
as cores is likely to provide optimal performance. Macro-
molecular simulations performed using this system run
successfully on a cluster of 1.0 T C870 (G80) cards, where
asynchronous CUDA calls are not supported and each card
only possesses 128 CUDA cores, with half the amount of
shared memory per SM of the GTX280.

5.2.1. Comparison with other CUDA Implementations.
The performance of our GPU kernel is consistent with that
achieved by Friedrichs et al.16 for similar molecular potential
evaluations on the same GTX280 architecture (Figure 4).
The potential evaluation components of our REMC MC
simulations and their CUDA implementation of MD map
similarly to the GPU. However, there are some key differ-
ences in the MC algorithm that makes it more computation-
ally expensive and accounts for the better performance of
the MD code. Our kernel is required to perform a log2 n
reduction of the n2 pairwise potential to a single energy value

(which is used to either accept or reject the MC move).
Reduction requires synchronization before each of its log2 n
iterations and performs one arithmetic operation to two loads
and one store, which impacts negatively on the kernel
performance relative to the MD code. Reduction operations
are memory bound with low algorithmic intensity and
therefore have relatively poor gigaFLOP performance on the
GPU architecture.33 Conversely, the MD kernel includes an
O(n) integration step after the pairwise accumulation, the
higher the algorithmic intensity, separability of these force
calculations and lack of synchronization is better suited to
the GPU architecture and results in slightly better GFLOP
performance for this kernel.

Indeed, it has been noted that, while MD simulation
techniques can be fully implemented on the GPU with
relative ease, this does not hold for MC methods.35 Many
particle MC simulations are difficult to parallelize, both on
conventional parallel architectures and on SIMD hardware,
because the random acceptance moves cause unpredictable
branching and the requirement for global synchronization.36

We do not implement the MC mutation in the kernel but
leave it to the CPU, for reasons of higher double precision
accuracy in the geometric transformations. This also enables
concurrent execution on both GPU and CPU for multiple
replicas, achieving higher overall performance for multiple
replicas as opposed to single replica performance.

In addition, the LJ potential employed coarse-grained
model (eq 2) is more complex that that used by Friedrichs
et al. It is either attractive or repulsive and thus dependent
not only on the distance between residues but also on the
sign of the contact potential. This additional branching
conditional makes the LJ computation more costly to
compute on a GPU. We also do not employ a cut-off radius
for nonbonded interactions, as is the case for the MD code
(on the GPU, a branch in which no computation occurs is
effectively free), our kernel always has to calculate the LJ

Figure 4. Calculation of the interaction potential using a
heterogeneous GPU-CPU calculation achieves peak perfor-
mance of 160 GFLOPS. A comparable MD simulation by
Friedrichs et al. achieves peak performance of 212 GFLOPS.
Branching and reduction operations required to generate our
potential result in lower overall throughput than the MD
simulations, where integration of each atom’s velocity and
position ports more amenably to the GPU architecture.
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force. These differences explain why, though our perfor-
mance follows a similar profile to the MD code, we do not
achieve their same maximum performance level (160 vs 212
GFLOPS, Figure 4). However, measures of FLOPS do not
provide a reasonable metric by which to evaluate the real-
world utility of an implementation. The overall performance
of the simulation is critical, not merely the performance of
the most parallel component. The comparatively lower
performance of our potential evaluation kernel on the GPU
is offset by streaming and multiple replicas in the REMC
algorithm. We keep the branching and synchronization off
the GPU as much as possible, sacrificing single stream
performance for overall throughput. That this is an effective
strategy for MC algorithms is clearly shown by the number
of MC iterations per day achieved by our system (Figure
5). On a dual core machine with one GTX280 card, our GPU-
accelerated code can perform almost 1 billion iterations per
day for a simulations of 2 molecules totalling 100 residues.
(In general, an unbound simulation requires on the order of
1 million to over 10 million iterations per replica before it
reaches equilibrium, depending on the complexity and
number of structures and on at least as many iterations more
to perform sufficient sampling.) The largest simulations of
7668 residues are capable of up to 9 million iterations per
day, whereas the CPU, fully utilizing both cores, manages
only 12 000.

5.3. Validation and Initial Applications. To validate the
correctness of the entire system (the energy function
implementation, the MC algorithms for moving the proteins,
and the replica exchange protocol), we have tested the code
on two systems studied before: the binding of yeast cyto-
chrome c to the cytochrome c peroxidase complex (Cc/CcP,
Figure 6) and ubiquitin to the UIM1 domain of the Vps27
protein (UIM/Ub, Figure 7).29 Binding curves from the
present implementation closely match those from the previ-
ous CHARMM code; a clear validation of the correctness
of our GPU implementation.

For the UIM/Ub system, we have simulated a “full-length”
version of ubiquitin (residues 1-76) in addition to the
truncated ubiquitin (residues 1-72 with flexible C-terminus

removed) reported originally by Kim and Hummer.11 The
results for this system are interesting. The original study used
a truncated form of ubiquitin because the C-terminus has a
flexible tail. This resulted in a dominant population of bound
complexes with native-like structures, with a population
exceeding 40%. In addition, however, approximately 20%
of the bound population comprised structures occuping the
native binding pocket in the ubiquitin but with an inverted
orientation of the UIM1 helix. In our study, we find a similar
result. A cluster analysis of the bound conformations of the
truncated ubiquitin simuilations with a 1 Å rmsd cut-off gives
a 1.0:4.0 ratio of incorrect:correct helix orientations. For the
full length version of ubiquitin, however, there is a slight
increase in overall binding affinity (Figure 7), suggesting
additional favorable interactions between the UIM1 and the
flexible C-terminus of ubiquitin. Furthermore, we find that

Figure 5. One a dual core machine with one GT280 card,
our hybrid CPU-GPU implementation performs almost 1
billion MC iterations per day, outperforming the CPU by 2
orders of magnitude for as little as 500 residues.

Figure 6. Binding affinity for Cc/CcP. Titration curves ob-
tained with simulations using the GPU implementation are
compared with the binding curve from the original reference
implementation.11

Figure 7. Binding affinity for UIM1/Ub. Binding data are given
for a “full length” version of ubiquitin (residues 1-76) as well
as the truncated ubiquitin (residues 1-72) in which the flexible
C-terminus was removed, as in the original publication.11

“Simulation” refers to the present implementation, “CHARMM”
refers to the CHARMM implementation, and “Reference”
refers to the original publication. The small discrepancy from
the reference implementation is probably due to the use of
spherical boundaries in that case, in contrast to the other
implementations which use periodic boundaries.
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inclusion of the C-terminus slightly improves the specificity
of binding. The ratio of incorrect:correct bound orientations
improves to 1.0:6.2, indicating that the C-terminal interac-
tions also preferentially stabilize the correctly bound con-
formation. Plots of the distribution of rmsd to the correct
binding site for the both full length and the truncated
ubiquitin make the shift in population clear (Figure 8). Since
our study still somewhat unrealistically treats the C-terminus
as rigid even when it is included, it will be interesting in the
future to examine whether allowing flexibility in the tail
further favors the correctly bound state.

One of our goals for the application of this code was to
study the assembly mechanism of virus capsids from their
constituent proteins. To test the feasibility of such a study,
we have carried out trial simulations of a pair of protein
fragments (each corresponding to the four protein chains
from the PDB entry 2G33). The results for our trial
simulations of two fragments from the HBV capsid are very
encouraging. The bound conformations were initially clus-
tered using the same method as for the UIM/Ubq complex;
some of the clusters were then combined once the symmetry
of the complex (i.e., AB:CD is equivalent to CD:AB) was
accounted for, resulting in five clusters overall. In Figure 9
we have plotted the distance root-mean-square (DRMS) of
structures from each cluster against their energy. We find
that by far the largest cluster is that representing the correctly
bound conformation, with a DRMS of around 4 Å from the
experimental structure, comparable to that obtained for other
complexes with this potential.11 The correctly bound struc-
tures also have the lowest potential energy. A number of
subsidiary, higher energy, bound clusters was also identified,
indicative of mild frustration on the binding energy landscape.

6. Conclusions

We report a successful parallel CPU-GPU CUDA imple-
mentation of the Kim-Hummer coarse-grained model for
replica exchange Monte Carlo (REMC) protein simulations.
Our software is designed for new hybrid high-performance
computing architectures combining multicore with GPU
accelerators. This type of relatively low-cost parallel archi-
tecture has great relevance for researchers in developing
countries, where High Performance Computing centers are
generally not available.

Our hybrid parallel implementation employs multithread-
ing for the Monte Carlo (MC) replicas and asynchronous
calls to the potential evaluation kernel on the GPU. We did
not explore CPU optimization further than multithreading,
as the real performance gains are to be found in optimizing
the GPU code. The simulation runtime is wholly dependent
on the interaction potential calculations, which accounts for
upward of 98% of the runtime. For the GPU kernel
implementation, we found that the random access contact
potential lookups are the chief performance bottleneck, as
they prohibit defined optimal GPU memory usage patterns.

In general, best performance of our GPU kernel was
achieved through adherence to the three chief tabled “CUDA
best practices”: maximizing parallel execution and optimizing
memory and instruction usage,22 although our solution
illustrates that, for algorithms that do not fit the perfect GPU
programming model, counterintuitive configurations may
perform surprisingly well. Careful assessment of the perfor-
mance of various memory locations for storing contact
potential lookup table was key to achieving optimal perfor-

Figure 8. The distribution of rmsd to the correct binding site
for the UIM1/Ub system in the full length version of ubiquitin
(blue line) as well as the truncated ubiquitin (red line) in which
the flexible C-terminus was removed, as in the original
publication.11 The small but significant population shift from
the incorrectly (b) toward the correctly (a) bound conformation
is clear for the full-length version of ubiquitin.

Figure 9. Bound structures of two viral capsid fragments. The
DRMS from the bound structure is plotted against the potential
energy for two fragments from the HBV virus capsid. Colors
identify the different clusters of bound conformations. Popula-
tion relative to the total bound conformations appears in
brackets in the key. Conformations representative of clusters
1 and 2 are shown above the graph, together with a five-unit
fragment of the HBV native structure.
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mance of our code on the nVIDIA GTX280 GPU architec-
ture, which we finally achieved by bypassing the use of
shared memory entirely in favor of texture memory.

Although the optimal balance between occupancy, memory
usage, and type of memory used we identified is specific to
the GTX280 hardware, in general nVIDIA’s adherence to
their architecture ensures that the optimizations performed
on our code are applicable to past and future hardware.21

With respect to the general applicability of our code, we note
that we found that different memory resource configurations
do not cause extreme changes to the overall simulation
runtime and to our implementation autotunes to achiev a
block size for optimal kernel occupancy. Tuning of memory
usage and problem decomposition remains relevant for the
older GPU cards, which are likely to be around for a while.
The new nVIDIA Fermi architecture has altered the resources
on the GPU. There are four times as many cores per SM,
and L2 cache has been introduced, along with coherent
caching, making the GPU caching model more like the CPU
caching model.34 As the CUDA model has not changed for
the Fermi architecture, performance of our code is likely to
improve because of the increase in the number of cores. Our
simulations require a high degree of accuracy for rotational
transformations, which involves square roots and sine and
cosine functions. These functions still do not meet the
Institute of Electrical and Electronics Engineers (IEEE) 754
compliance on GF100 nVIDIA GPUs. Therefore, it is still
necessary to perform the MC mutations on the CPU with
the new generation of GPU hardware. The adoption of
OpenCL for general GPU programming means that the same
code, when ported to OpenCL, can be compiled to run on
both nVIDIA and ATI devices. The generalization of
OpenCL removes vendor concepts, such as texture memory,
as the effects of texture memory are afforded by the true
caching abilities of new hardware. Porting of our code to
OpenCL is likely to be straightforward. The CUDA Driver
API and OpenCL are very similar, with a high cor-
respondence between functions and most differences relating
to syntax.37 Critically, the model and manner in which a GPU
must be used and the topics discussed here in macro-tuning
our kernels are relevant for both Cuda and OpenCL. We
found very good performance of our accelerated parallel
implementation, achieving over 1400 times speedup over a
serial solution for simulations of systems larger than 4000
residues. On a dual-core machine with one GTX280 card,
our GPU-accelerated code is capable of up to 9 million MC
iterations per day with our largest benchmark simulation of
7668 residues, whereas the CPU, fully utilizing both cores,
manages only 12 000. This allows for more thorough testing
of the Kim-Hummer coarse-grained model. We find that
inclusion of the ubiquitin C-terminus tail increases both the
binding affinity and the specificity of binding for the UIM/
Ub system, even with a rigid model. We also report
successful preliminary simulations using the Kim-Hummer
potential of the binding of two HBV capsid components,
where by far the largest cluster is that representing the
correctly bound conformation.

Simulations of massive protein structures are now within
reach. We intend to use our system for a novel complete

simulation of the assembly of viral proteins into a viral
capsid, a task previously prohibited by the excessive
computation time required. Investigation of this process will
give new insights into molecular self-assembly and may yield
insights useful in the development of therapeutic drugs.

Finally, we note that, although we have only considered
a specific model for protein-protein interactions, our imple-
mentation could easily be generalized to other types of
interaction functions, as well as to other types of coarse-
grained macromolecules (e.g., DNA). Finally, the effective
parallelization approach developed in this work is generally
applicable to N-body problems that require similar random
access to lookup tables, where aspects of the interaction
between bodies are dependent on their type or state.
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