
ONTOLOGY DRIVEN MULTI-AGENT SYSTEMS: AN

ARCHITECTURE FOR SENSOR WEB APPLICATIONS

by

DESHENDRAN MOODLEY

Submitted in fulfillment of the academic requirements for the degree of Doctor of Philosophy in the

School of Computer Science, Faculty of Science and Agriculture, University of KwaZulu-Natal,

Durban, South Africa, December 2009

As the candidate’s supervisor I have approved this dissertation for submission.

Signed: Name: Date:

ABSTRACT

Advances in sensor technology and space science have resulted in the availability of vast quantities of

high quality earth observation data. This data can be used for monitoring the earth and to enhance our

understanding of natural processes. Sensor Web researchers are working on constructing a worldwide

computing infrastructure that enables dynamic sharing and analysis of complex heterogeneous earth ob-

servation data sets. Key challenges that are currently being investigated include data integration; service

discovery, reuse and composition; semantic interoperability; and system dynamism. Two emerging tech-

nologies that have shown promise in dealing with these challenges are ontologies and software agents.

This research investigates how these technologies can be integrated into an Ontology Driven Multi-Agent

System (ODMAS) for the Sensor Web.

The research proposes an ODMAS framework and an implemented middleware platform, i.e. the

Sensor Web Agent Platform (SWAP). SWAP deals with ontology construction, ontology use, and agent

based design, implementation and deployment. It provides a semantic infrastructure, an abstract architec-

ture, an internal agent architecture and a Multi-Agent System (MAS) middleware platform. Distinguish-

ing features include: the incorporation of Bayesian Networks to represent and reason about uncertain

knowledge; ontologies to describe system entities such as agent services, interaction protocols and agent

workflows; and a flexible adapter based MAS platform that facilitates agent development, execution and

deployment. SWAP aims to guide and ease the design, development and deployment of dynamic alerting

and monitoring applications. The efficacy of SWAP is demonstrated by two satellite image processing

applications, viz. wildfire detection and monitoring informal settlement. This approach can provide sig-

nificant benefits to a wide range of Sensor Web users. These include: developers for deploying agents

and agent based applications; end users for accessing, managing and visualising information provided by

real time monitoring applications, and scientists who can use the Sensor Web as a scientific computing

platform to facilitate knowledge sharing and discovery.

An Ontology Driven Multi-Agent Sensor Web has the potential to forever change the way in which

geospatial data and knowledge is accessed and used. This research describes this far reaching vision,

identifies key challenges and provides a first step towards the vision.

ii

PREFACE

The research work described in this dissertation was carried out in the School of Computer Science,

University of KwaZulu-Natal, Durban, from March 2001 to December 2009, under the supervision of

Prof. Jules R. Tapamo and Prof. Johnson D.M. Kinyua

These studies represent original work by the author and have not otherwise been submitted in any form

for any degree or diploma to any tertiary institution. Where use has been made of the work of others it is

duly acknowledged in the text.

iii

DECLARATION 1 - PLAGIARISM

I, Deshendran Moodley, declare that:

1. The research reported in this thesis, except where otherwise indicated, is my original research.

2. This thesis has not been submitted for any degree or examination at any other university.

3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless

specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being

sourced from other researchers. Where other written sources have been quoted, then:

(a) Their words have been re-written but the general information attributed to them has been

referenced

(b) Where their exact words have been used, then their writing has been placed in italics and

inside quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless

specifically acknowledged, and the source being detailed in the thesis and in the References sec-

tions.

Signed:

iv

DECLARATION 2 - PUBLICATIONS

1. MOODLEY, D., AND KINYUA, J. A multi-agent system for electronic job markets. In Proc.
6th International conference on Business Information Systems, Colorado Springs, USA, 4-6 June
2003, published by Dept. of Management Info. Systems, The Poznan University of Economics,
Poznan (2003), pp. 42–48

2. MOODLEY, D. The future of the Internet: The semantic web, web services and a multi-agent
system infrastructure for the Internet. In Proc. South African Computer Lecturers Association
2004, 4-6 July Durban, 2004 (2004)

3. MOODLEY, D., AND KINYUA, J. D. M. Towards a multi-agent infrastructure for distributed In-
ternet applications. In 8th Annual Conference on WWW Applications, Bloemfontein, South Africa,
5-6 September (2006)

4. MOODLEY, D., TERHORST, A., SIMONIS, I., MCFERREN, G., AND VAN DEN BERGH, F. Using
the sensor web to detect and monitor the spread of wild fires. In Second International Symposium
on Geo-information for Disaster Management (Gi4DM) September 25-26, Pre-Conference Sympo-
sium to ISPRS TC-IV and ISRS Symposium on Geospatial Databases for Sustainable Development
September 27-30, at Goa, India (2006)

5. MOODLEY, D., AND SIMONIS, I. A new architecture for the sensor web: the SWAP-framework.
In Semantic Sensor Networks Workshop, A workshop of the 5th International Semantic Web Con-
ference ISWC 2006, November 5-9, Athens, Georgia, USA (2006)

6. TERHORST, A., SIMONIS, I., AND MOODLEY, D. A service-oriented multi-agent systems archi-
tecture for the sensor web. In SAEON Summit, Centurion, South Africa (2006)

7. MOODLEY, D., VAHED, A., SIMONIS, I., MCFERREN, G., AND ZYL, T. V. Enabling a new
era of earth observation research: scientific workflows for the sensor web. Ecological Circuits 1
(2008), 20–23

8. TERHORST, A., MOODLEY, D., SIMONIS, I., FROST, P., MCFERREN, G., ROOS, S., AND

VAN DEN BERGH, F. Geosensor Networks, Lecture Notes in Computer Science, Volume 4540/2008.
Springer-Verlag, 2008, ch. Using the Sensor Web to Detect and Monitor the Spread of Vegetation
Fires in Southern Africa, pp. 239–251

Signed:

v

ACKNOWLEDGEMENTS

Many people have supported me through this endeavour. I am deeply grateful to my wife for her patience,

understanding, support and for allowing the PhD to permeate our lives over the past few years.

I wish to express sincere gratitude to my supervisor Jules Tapamo for his support and guidance, and

to my co-supervisor Johnson Kinyua for his support and guidance through the early stages.

I would like to thank my parents, my family and my dear friends who have supported me. A special

thank you to Anban Pillay for being a dear friend, and for willing to sacrifice many hours for proof

reading.

I wish to also acknowledge and thank: Chetna Parbhoo for designing and implementing the second

case study application as part of her Masters research; Pravi Moodley who assisted with the proof read-

ing; members of the ICT4EO and KSG groups at the Meraka Institute, CSIR, Pretoria, specifically Ingo

Simonis and Tommie Meyer.

I also acknowledge the financial support provided by the National Research Foundation and the

German Academic Exchange Service (DAAD) .

vi

TABLE OF CONTENTS

Preface . iii

Declarations . iv

Acknowledgements . vi

Table of Contents . vii

List of Figures . xii

List of Tables . xviii

List of Abbreviations . xix

Chapter 1 Introduction . 1

1.1 Background . 1

1.2 Problem statement . 3

1.3 Expected impact . 3

1.4 The SWAP framework . 4

1.4.1 Semantic infrastructure . 4

1.4.2 MASII: An Internet Wide Multi Agent System middleware 5

1.4.3 Framework for designing and developing Sensor Web agents and applications . . 5

1.4.4 Application case studies . 6

1.5 Organisation of the thesis . 6

Chapter 2 Literature review . 8

2.1 The Sensor Web . 8

2.1.1 Our vision of the Sensor Web . 10

2.1.2 OGC Sensor Web Enablement . 12

2.1.3 GeoSwift . 13

vii

2.2 Software agents and multiagent systems for Internet Computing 14

2.2.1 Agent operation . 15

2.2.2 MAS infrastructure models and platforms . 18

2.2.3 Challenges for building an Internet Wide MAS (IWMAS) 20

2.3 Ontologies and the Semantic Web . 22

2.3.1 Ontology Representation languages . 25

2.3.2 Ontology development and management . 29

2.3.3 Ontology based systems . 32

2.3.4 Agents and the Semantic Web . 33

2.4 Agents and ontologies on the Sensor Web . 34

2.4.1 Agent based approaches . 34

2.4.2 Ontology based Sensor Web approaches . 36

2.5 Summary . 39

Chapter 3 Design of an Internet Wide Multi-Agent System Infrastructure 40

3.1 Requirements for a single global multi-agent infrastructure 40

3.2 The Multi-Agent Infrastructure for the Internet . 42

3.2.1 An abstract architecture for a IWMAS . 42

3.3 MASII design and operation . 45

3.3.1 Registry Agent (RA) . 46

3.3.2 Adapter agent (AA) . 46

3.3.3 Platform implementation . 47

3.3.4 Application development . 48

3.4 Application deployment . 49

3.5 Discussion . 49

Chapter 4 Design of the Sensor Web Agent Platform . 51

4.1 Our vision of the Sensor Web . 51

4.2 The SWAP Abstract Architecture . 52

4.2.1 Sensor Layer . 52

4.2.2 Knowledge Layer . 54

viii

4.2.3 Application Layer . 54

4.2.4 Incorporating OGC services . 55

4.3 Overview of the SWAP Ontological Infrastructure . 55

4.3.1 Rationale behind the SWAP ontology . 55

4.3.2 Swap rules . 57

4.4 The SWAP conceptual ontologies . 59

4.4.1 Thematic representation and reasoning . 60

4.4.2 Spatial representation and reasoning . 62

4.4.3 Temporal representation and reasoning . 64

4.4.4 Uncertainty representation and reasoning . 67

4.5 The SWAP technical ontologies . 67

4.5.1 Representing data . 67

4.5.2 Representing agents, services and interactions 68

4.5.3 Representing workflows using OWL-S . 70

4.5.4 Incorporating agent services into OWL-S . 73

4.6 Agent Discovery and Invocation . 75

4.6.1 The SWAP Directory Agent . 75

4.6.2 Service Composition . 77

4.7 SWAP Internal Agent Architecture . 78

4.7.1 Internal Agent Architecture Overview . 78

4.7.2 Incorporating GIS development libraries . 78

4.7.3 Mapping between ontology data instances and OpenGIS data objects 80

4.8 Summary . 81

Chapter 5 Incorporating uncertainty into SWAP . 83

5.1 Bayesian Probability . 84

5.1.1 Bayesian Networks . 84

5.2 Bayesian Networks for the Sensor Web . 86

5.2.1 An ontology for Bayesian Networks . 87

5.2.2 Specifying Bayesian Networks . 89

5.2.3 The uncertainty reasoner . 99

ix

5.3 Discussion and Summary . 102

Chapter 6 Implementing SWAP applications . 105

6.1 Case study 1: wildfire detection . 105

6.1.1 Application overview . 105

6.1.2 Representing and reasoning about uncertainty for wildfire detection 108

6.2 SWAP Agent Operation and Implementation . 115

6.2.1 Sensor Agent . 115

6.2.2 The MSG Sensor Agent . 119

6.2.3 Tool Agent . 125

6.2.4 The Contextual Algorithm (CA) Tool Agent . 130

6.2.5 Workflow Agent . 135

6.2.6 The Hotspot Detection Workflow Agent . 138

6.2.7 Modeling Agent . 141

6.2.8 The FireSpreadModeler Agent . 147

6.2.9 Application Agent . 151

6.2.10 The Wildfire Detection Application Agent . 155

6.2.11 User Agent . 157

6.2.12 The Wildfire Detection User Agent . 160

6.3 Deploying the Wildfire Detection Application . 161

6.4 Case study 2: monitoring informal settlements . 163

6.4.1 Application overview . 164

6.4.2 Design . 165

6.4.3 Implementation . 167

6.4.4 Discussion . 174

6.5 Summary . 175

Chapter 7 Discussion and conclusions . 176

7.1 Context of this research . 176

7.1.1 Software agents and multiagent systems . 176

7.1.2 Ontologies . 177

x

7.2 Summary of results . 178

7.2.1 Semantic framework . 180

7.2.2 Framework for designing, deploying and accessing agents and applications . . . 184

7.2.3 Usage . 187

7.3 Comparison with other systems . 189

7.3.1 Agent based Sensor Web approaches . 189

7.3.2 Non-agent based approaches . 190

7.3.3 Other related work . 192

7.4 Limitations and future work . 193

7.4.1 Creating additional SWAP applications . 194

7.4.2 Extending uncertainty and supporting quality of service 194

7.4.3 Agent mobility and security . 195

7.4.4 Automation . 195

7.4.5 Tool support . 195

7.5 Impact of research . 196

Appendix A The SWAP ontologies and rules . 198

A.1 The swap-theme ontology . 198

A.2 The spatial ontology and rules . 199

A.2.1 The swap-space ontology . 199

A.2.2 Spatial rules . 201

A.3 The temporal ontology and rules . 202

A.3.1 The swap-time ontology . 202

A.3.2 Temporal rules . 204

A.4 The swap-uncertainty ontology . 206

A.5 The technical ontologies . 208

A.5.1 The swap-agent ontology . 208

A.5.2 The swap-task ontology . 212

A.5.3 The swap-data ontology . 213

Bibliography . 215

xi

LIST OF FIGURES

Figure 2.1 Sensor Web vs Sensor Networks . 11

Figure 2.2 Interoperability framework for open systems [151] 24

Figure 2.3 Different types of ontologies according to Guarino [86] 30

Figure 3.1 MAS infrastructure, application infrastructure and an individual agent that en-

ables an agent to be a part of the MAS . 43

Figure 3.2 The MASII adapter architecture . 45

Figure 3.3 The MASII system architecture . 46

Figure 3.4 User agent adapter data store . 49

Figure 4.1 Three layered SWAP architecture . 53

Figure 4.2 SWAP ontology levels . 57

Figure 4.3 SWAP ontology structure . 58

Figure 4.4 Representing a data set in SWAP . 58

Figure 4.5 SWAP reasoning engine . 59

Figure 4.6 Thematic properties of a data set . 60

Figure 4.7 The eo-domain ontology . 60

Figure 4.8 SWAP thematic reasoning . 61

Figure 4.9 Part of the swap-space ontology . 62

Figure 4.10 The spatial properties of a data set . 62

Figure 4.11 Spatial relations . 63

xii

Figure 4.12 SWAP spatial reasoner . 64

Figure 4.13 The temporal properties of a data set . 64

Figure 4.14 SWAP temporal reasoner . 66

Figure 4.15 The swap-data ontology . 68

Figure 4.16 Representing units of measure in the SWAP ontology 68

Figure 4.17 Part of the swap-agent ontology . 69

Figure 4.18 Representation of agent actions . 69

Figure 4.19 A representation of an agent message . 70

Figure 4.20 Part of the swap-task ontology . 71

Figure 4.21 A sample composite process, P3, represented in OWL-S 72

Figure 4.22 Mapping OWL-S processes to agent services . 74

Figure 4.23 The SWAP internal agent architecture . 79

Figure 5.1 Classes in the BayesOWL ontology . 88

Figure 5.2 The BayesOWL ontology . 88

Figure 5.3 Classes in the swap-uncertainty ontology . 90

Figure 5.4 The fragment of the swap-uncertainty ontology for representing a Bayesian Network 91

Figure 5.5 The fragment of the swap-uncertainty ontology for representing probability state-

ments . 92

Figure 5.6 Concepts from the swap-theme ontology for representing wind speed and air pres-

sure and hurricanes . 93

Figure 5.7 An ontological representation of an air pressure measurement 94

Figure 5.8 An ontological representation of a wind speed measurement 95

xiii

Figure 5.9 A Bayesian Network to determine the occurrence of an hurricane from air pres-

sure and wind speed observations . 96

Figure 5.10 An ontological representation of a Bayesian Network for detecting hurricanes . . 97

Figure 5.11 Representing discrete range states . 98

Figure 5.12 Example of a prior probability statement . 98

Figure 5.13 Example of a conditional probability statement 98

Figure 5.14 SWAP probability reasoner . 99

Figure 5.15 Example of a posterior probability statement . 101

Figure 5.16 A Hurricane instance inferred using the SWAP probability reasoner 101

Figure 6.1 Extracting wildfires from satellite data . 106

Figure 6.2 Thematic concepts for wildfire detection . 107

Figure 6.3 Architecture of a wildfire detection application 108

Figure 6.4 Representing an MSG brightness temperature measurement 109

Figure 6.5 A Bayesian Network for wildfire detection . 110

Figure 6.6 Representing the MSG thermal BT value variable 111

Figure 6.7 Representing the MSG thermal variance variable 111

Figure 6.8 Representing the is hotspot variable . 112

Figure 6.9 Representing the is wildfire variable . 112

Figure 6.10 Prior Probability statements for the is wildfire var variable 112

Figure 6.11 A conditional probability statement for the is hotspot var variable 114

Figure 6.12 Conditional probability statements for the msg thm variance var variable 114

Figure 6.13 A posterior probability statement for the is wildfire var 115

xiv

Figure 6.14 The DataAdapter interface with three implementation classes, including the Hotspot-

DataAdapter . 118

Figure 6.15 The MSG DataSet instance . 120

Figure 6.16 Spatial properties of the MSG data set . 121

Figure 6.17 Temporal properties of the MSG data set . 122

Figure 6.18 The data request protocol used to query the MSG data set 123

Figure 6.19 A data request message for querying the MSG data set 124

Figure 6.20 A data response message for querying the MSG data set 125

Figure 6.21 The Service instance for the MSG Sensor Agent 126

Figure 6.22 A search request message for data set services that, observe any temperature prop-

erty, in any part of the given location (intersects with) and during the given time

interval . 127

Figure 6.23 A search response message, that contains a single matching service satisfying the

search criteria specified in figure 6.22 . 128

Figure 6.24 Class diagram of the ToolAdapter interface . 131

Figure 6.25 A process data request to invoke the CA Tool Agent 133

Figure 6.26 A process data response from the CA Tool Agent 134

Figure 6.27 Service entries for the CA Tool Agent . 136

Figure 6.28 A search request that matches the CA Tool services 137

Figure 6.29 The OWL-S workflow for hotspot detection . 140

Figure 6.30 Process to Agent Mapping for querying the MSG Sensor Agent 142

Figure 6.31 Process to Agent Mapping for mapping the data response from the MSG Sensor

Agent . 143

Figure 6.32 Process to Agent Mapping for a process request to the CA Tool Agent 144

xv

Figure 6.33 The Process to Agent Mapping for processing results from CA Tool Agent 145

Figure 6.34 Class diagram of the ModelingAdapter interface 148

Figure 6.35 Fire spread modeling request message . 149

Figure 6.36 A fire spread modeling response message . 150

Figure 6.37 Algorithm for processing incoming alerts at the Application Agent 153

Figure 6.38 Algorithm for processing alert requests at the Application Agent 154

Figure 6.39 Algorithm for processing persistent alerts at the Application Agent 154

Figure 6.40 An alert request for wildfires . 156

Figure 6.41 Rules for matching wildfires to alert requests . 157

Figure 6.42 An alert response for wildfires . 158

Figure 6.43 The service description of the Wildfire Detection Application Agent 159

Figure 6.44 Visualising features of interest using the OXFramework client 161

Figure 6.45 Visualising wildfire alerts using the OXFramework client 162

Figure 6.46 The adapter store of the User Agent before installing the wildfire detection adapter 162

Figure 6.47 A screenshot of a User Agent before installing the wildfire detection application

adapter . 162

Figure 6.48 Downloading and installing the adapter and protocol required for the wildfire de-

tection application . 163

Figure 6.49 The adapter store of the User Agent after installing the wildfire detection 164

Figure 6.50 The ISIS architecture [156] . 166

Figure 6.51 The OWL-S workflow used to coordinate agent interactions in the ISIS applica-

tion [156] . 168

Figure 6.52 Alternate ISIS workflow 1 [156] . 170

xvi

Figure 6.53 Alternate ISIS workflow 2 [156] . 171

Figure 6.54 The OXFClient showing the bounding box over Alexandra and the area of interest

within which the informal Settlement results are displayed [156] 172

Figure 6.55 Sattelite image showing informal settlements over Alexandra [156] 173

Figure 6.56 Informal-townships being displayed on the OXFClient [156] 174

xvii

LIST OF TABLES

Table 4.1 SWAP Directory role schema . 76

Table 4.2 The service registration and directory search protocol schemas 77

Table 4.3 Mappings between SWAP ontology structures and OpenGIS Java class structures . 80

Table 5.1 Prior Probabilities and Conditional Probability Tables (CPT) for detecting hurricanes 93

Table 6.1 Prior Probabilities and Conditional Probability Table (CPT) for classifying wildfires 113

Table 6.2 The Sensor Data Provider schema . 116

Table 6.3 The DataRequest Protocol schema . 116

Table 6.4 Tool role schema . 129

Table 6.5 Process Data protocol schema . 129

Table 6.6 The Workflow Role schema . 137

Table 6.7 The WorkflowExecution Protocol schema . 137

Table 6.8 The Prediction Model Role schema . 146

Table 6.9 The PredictionRequest Protocol schema . 146

Table 6.10 The Application role schema . 152

Table 6.11 The Alert protocol schema . 152

Table 6.12 ISIS application components . 165

Table 6.13 ISIS agent abstractions . 165

Table 6.14 Spatial and temporal resolution of Quickbird and SPOT image data [156] 167

xviii

LIST OF ABBREVIATIONS

AA Adapter agent

ABox Assertional Box

ACL Agent Communication Language

AFIS Advanced Fire Information System

AIGA Agent Based Imagery and Geospatial processing Architecture

API Application Programming Interface

ASCML Agent Society Configuration Manager and Launcher

BDI Belief Desire Intention

BN Bayesian Network

BNJ Bayesian Network tools in Java

BT Brightness Temperature

CA Contextual Algorithm

CPT Conditional Probability Table

CWA Closed World Assumption

FD Fire Detection

FIPA Foundation for Intelligent Physical Agents

FS Fire Spread

GEO Group on Earth Observations

GEOSS Global Earth Observation System of Systems

xix

GIS Geographical Information System

GUI Graphical User Interface

HD Hotspot Detector

IrisNet Internet-scale Resource-Intensive Sensor Network Services

IWMAS Internet Wide Multi-Agent System

JPL Jet Propulsion Lab

JTS Java Topology Suite

MAS Multi-Agent System

MASII Multi-Agent System Infrastructure for the Internet

MSG Meteosat Second Generation

O&M Observation and Measurement

OBO Open Biological Ontologies

ODGIS Ontology Driven Geographical Information System

ODIS Ontology Driven Information System

ODMAS Ontology Driven Multi-Agent System

OGC Open Geospatial Consortium

OWL Web Ontology Language

OX-Framework OGC Web Service Access Framework

POC Plant Ontology Consortium

QoS Quality of Service

RA Registry Agent

RCC Regional Connection Calculus

xx

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SAS Sensor Alert Service

SensorML Sensor Model Language

SOS Sensor Observation Service

SPS Sensor Planning Service

SUMO Suggested Upper Merged Ontology

SWAP Sensor Web Agent Platform

SWE Sensor Web Enablement

SWRL Semantic Web Rule Language

TBox Terminological Box

TML Transducer Model Language

URI Uniform Resource Identifier

WNS Web Notification Service

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMX Web Service Modeling eXecution environment

XML Extensible Markup Language

xxi

Chapter 1

INTRODUCTION

1.1 BACKGROUND

Monitoring and understanding our natural environment has become a priority in view of the devastating

effects of climate change. Access to high quality information is critical to minimise the impact of natural

disasters and to make decisions that ensure sustainable human interaction with the natural environment.

Many countries have recognised the importance of sharing earth observation data and monitoring the

earth as a continuous system. Earth observation data such as satellite imagery which was previously

expensive or inaccessible is increasingly available for non commercial purposes at no or low cost. The

Group on Earth Observations (GEO) is an intergovernmental group that was formed in 2005 to build a

Global Earth Observation System of Systems (GEOSS) [83]. GEO aims to provide a global computing

platform for sharing earth observation data and for monitoring the earth as a continuous system.

The Sensor Web [77, 123] provides a more ambitious vision than GEOSS. It involves constructing a

worldwide computing infrastructure that enables sharing, analysis and distribution of earth observation

data. The Sensor Web will be especially beneficial for developing dynamic real time monitoring applica-

tions. In such applications data transformation, data analysis, and information extraction algorithms are

assembled into executable workflows. These workflows are continuously applied to sensor data to ex-

tract and deliver relevant information to decision makers. The algorithms, theories and knowledge used

to compose individual workflows can be captured, shared and reconfigured for reuse in other workflows.

This can ease the development of new applications and facilitates scientific experimentation.

Many challenges must be overcome before a worldwide Sensor Web becomes a reality. A publicly

accessible distributed computing infrastructure is required where heterogeneous sensor services and com-

plex end-user applications can be deployed, automatically discovered and accessed. Since services will

1

2

be developed separately by different organisations, heterogeneity must be overcome for services to in-

teroperate. The geospatial community has specified a set of standard services and common data formats

and encodings [31]. However, semantic interoperability and the management of dynamism are outstand-

ing challenges. Advancements in sensor technology will result in the availability of new and higher

quality data sets. Current theories, algorithms and data models will continuously evolve in line with our

understanding of the natural environment. Monitoring applications should ideally be reconfigured and

redeployed to incorporate the latest data and theories.

The most difficult challenge is context-based information extraction. Users may be overwhelmed

by the scale and complexity of sensor data. Considering the rate at which new data is being generated,

manual querying, integration and interrogation is not sustainable. The technical skill and time required

to extract appropriate information from sensor data may form a barrier to a potentially large end-user

community who could benefit from this data. Users should ideally be presented only with information

that can aid them in their task. Depending on their requirements (context), users may be interested in

different aspects of the data or may require different views of the same data.

Two emerging technologies that have shown promise for overcoming these challenges are ontologies

and software agents. Agent researchers propose the use of software agents as logical abstractions to

model and manage software components in large scale, dynamic and open environments [101, 186,

203, 212]. Software agents are autonomous software components that communicate at the knowledge

level [73, 101]. Autonomy is exhibited in two ways: firstly the agent functions independently without

continuous intervention by its human owner; and secondly an agent represents the interests of and acts on

behalf of its owner. Owners will dictate the underlying technology used to build their agents as well as

the behaviour and goals of their agents. In order to communicate at the knowledge level, the content and

types of messages exchanged between agents must have well defined semantics that are specified within

a pre-agreed knowledge model or ontology. These ontologies explicitly specify the meaning as well as

the relationships that exist between the concepts that are used in agent interactions. Communicating at

the knowledge level allows agents to overcome system and syntactic heterogeneity.

Software agent technology has been around for more than a decade [75, 206] and has been suc-

cessfully used for a variety of applications [102, 157, 160, 205]. However, the promise of widespread

deployment of software agents remain elusive [90, 126]. A key bottleneck is the sharing and distributing

3

of knowledge [90]. This requires a specific user community to first agree on, build and maintain a com-

mon knowledge model. Sensor Web users represent a large global user community that is driven by an

urgent requirement to share earth observation data and services. This community can justify the effort

required to develop and agree on a shared and explicit knowledge model.

1.2 PROBLEM STATEMENT

A worldwide Sensor Web must cater for the continuous deployment and modification of geospatial data,

knowledge, data processing and predictive modeling services by a wide user community that have differ-

ent requirements, skills and backgrounds. These services must be discovered and assembled in different

configurations to extract information, to test theories and ultimately to capture and to advance our knowl-

edge and understanding of the natural environment. It must also support the construction and deployment

of real time end user alerting and monitoring applications that incorporate these services. Applications

must be easily modified to reflect new service offerings in order to provide relevant and accurate infor-

mation to decision makers. Ontologies have shown promise as a technology for sharing and integrating

data in open environments, while software agents provide mechanisms to dynamically discover, invoke

and assimilate these services. Current ontology and agent based approaches either have limited support

for describing services, data and theories, or limited support for building, deploying and reconfiguring

end user applications.

1.3 EXPECTED IMPACT

An Ontology Driven Multi-Agent System (ODMAS) Sensor Web has the potential to forever change the

way in which geospatial data and knowledge is accessed and used. Potential benefits of the approach

include:

• promoting the sharing and reuse of data, knowledge and services

• facilitating human collaboration and scientific experimentation

• reducing information overload and system complexity

• managing both data and system dynamism

4

• increasing automation and machine intelligence

An ODMAS Sensor Web can provide specific benefits to a wide range of users in the earth observa-

tion community. Decision makers can access, manage and visualise information provided by real time

monitoring applications. Earth observation scientists can capture and share earth observation data and

knowledge, and use the Sensor Web as a platform for experimentation, collaboration and knowledge

discovery. Developers can design, develop and deploy consistent agent based Sensor Web services and

end user applications.

This research attempts to investigate practical issues around creating an ODMAS for the Sensor Web

and is intended to provide a first step towards this vision. The ideas presented can also be used to build

ontology driven multi-agent frameworks for other domains.

1.4 THE SWAP FRAMEWORK

The major contribution of this research is a framework that tightly integrates ontologies and agents, i.e.

the Sensor Web Agent Platform (SWAP). SWAP addresses both ontology construction and use as well

agent based design, implementation and deployment. It provides a semantic infrastructure with a set

of ontologies and associated reasoners; an abstract architecture that guides the design of agent based

Sensor Web applications; an internal agent architecture to guide the internal operation of an ontology

driven agent; as well as a flexible multi-agent system (MAS) infrastructure that eases the implementation,

deployment and execution of individual agents.

1.4.1 Semantic infrastructure

The semantic infrastructure aims to bridge the semantic gap between machine and human by providing

a common, but dynamic modeling framework. It delineates conceptual ontologies for modeling and

representing observations and theories about the physical world from technical ontologies for modeling

and representing the software entities (agents) that will host and process these observations and theories.

The conceptual ontologies are based on the three systems of knowledge used for human cognition, i.e.

theme, space and time [132]. An additional system for representing and reasoning about uncertainty is

introduced. These four systems simplify the conceptual modeling of complex real world observations.

5

They provide an holistic approach to capture the different aspects of observations and theories. The

technical ontologies provide support for describing the services offered by different agents and the agent

interactions used to invoke these services. Support is also provided for constructing complex information

processing chains or workflows that may be stored, shared and executed on demand. Since service

descriptions and data models are captured within shared ontologies, they become dynamic entities that

can be accessed, queried and modified at runtime. Selected services can be assembled into different

configurations to form complex executable workflows that may be deployed as new composite services.

This approach facilitates interoperability between agents, and between agents and humans. It also allows

for data models and service offerings to change, and evolve naturally with minimal impact on and without

having to re-engineer the system.

1.4.2 MASII: An Internet Wide Multi Agent System middleware

The Multi-Agent System Infrastructure for the Internet (MASII) provides an agent development, execu-

tion and deployment platform. MASII provides an agent transport layer for agent communication, an

agent execution model and a flexible adapter based framework that facilitates application and service

deployment. MASII delineates between static core infrastructure services that are domain and applica-

tion independent and an application infrastructure that customises and extends these services for specific

applications. The concept of an application adapter that contains application specific components, such

as ontologies, interaction protocols and message handlers, is a key feature that is introduced. The adapter

architecture allows for the continuous change and deployment of application components. Application

adapters can be discovered, downloaded and installed at runtime (see section 3.2). MASII provides the

underlying agent middleware services for SWAP agents. This allows SWAP developers to focus on de-

veloping and deploying application adapters without requiring detailed knowledge of lower level agent

infrastructure services.

1.4.3 Framework for designing and developing Sensor Web agents and applications

The SWAP development framework includes an abstract architecture and internal agent architecture that

guides and eases the design and development of ontology driven agents and applications. The architec-

ture facilitates agent reuse, agent service composition, as well as provenance and information extraction.

6

It specifies three different abstraction layers and six logical agent abstractions for designing and deploy-

ing complex Sensor Web applications. The internal agent architecture guides the implementation of

ontology driven agents. It includes a data mapping API (see section 4.7.1) that allows ontology instance

data received by other agents to be converted into standard geospatial Java objects. This allows an agent

developer to incorporate open source libraries or even remote geospatial web services [31] to perform the

internal agent processing. In this way SWAP attempts to incorporate both the declarative programming

paradigm of the agent and ontology community and the imperative programming approach of the object

oriented and web services community.

1.4.4 Application case studies

The semantic infrastructure together with the abstract architecture, internal agent architecture and MASII

middleware platform provide comprehensive support to facilitate the design, development and use of

ontology driven Sensor Web agents as well as agent based alerting and monitoring applications. The de-

velopment of two satellite image processing applications, i.e. wildfire detection and informal settlement

monitoring, is used to demonstrate the efficacy of the SWAP framework.

These applications show:

• the effectiveness of ontologies to model and represent the different conceptual and system entities

in a practical Sensor Web application

• how to implement and deploy agents and applications that are driven by these ontologies

• how to assemble agent services into processing workflows that may be shared, modified, executed

on demand and incorporated within end user applications

• how ontologies can be used to govern the behaviour of agent services and workflows and to dy-

namically reconfigure an application

• how ontologies can facilitate interoperability between agents and users

1.5 ORGANISATION OF THE THESIS

The thesis is organised as follows: A review of current research on the Sensor Web, agents and ontologies

is presented in Chapter Two. In Chapter Three, the design and implementation of a multi-agent system

7

infrastructure for the Internet is described. Chapter Four describes an Ontology Driven Multi-Agent Sys-

tem for the Sensor Web, the Sensor Web Agent Platform. The support for representing and reasoning

about uncertainty is described in Chapter Five. The development of two satellite image processing ap-

plications is described in Chapter Six. Chapter Seven provides a discussion, outlines areas that require

future work and draws some conclusions.

Chapter 2

LITERATURE REVIEW

A single worldwide Sensor Web will be a large scale open environment where heterogeneous systems

spanning organisational boundaries, must interact and operate effectively within rapidly changing cir-

cumstances, with dramatically increasing quantities of available information, while still maintaining

individual autonomy. Two important research activities are attempting to address the complexity and

challenges of developing and deploying applications in such environments. The first is research on open

multiagent systems and the second is on ontology driven information systems. This chapter describes

the vision of, and current efforts towards a worldwide Sensor Web. It also provides an overview of

software agents and ontologies, their use in current Sensor Web approaches and the limitations of these

approaches.

2.1 THE SENSOR WEB

Advances in sensor hardware and wireless communication technology have resulted in smaller, more

accurate and cheaper sensors that can be easily deployed in most environments. Sensor technology is

not just confined to scalar data measurements of the physical environment such as temperature, pressure

and humidity, but also for audio and visual data [18]. Sensor data can be used for a wide variety of

applications: in the military for surveillance and target tracking [29, 103]; for civilian applications such

as locating and monitoring parking [77, 201], traffic monitoring [123] and visual scene surveillance [17];

for observing natural phenomena such as observing coastlines [41]; weather forecasting [22], measuring

snowpack [56] and monitoring volcano eruptions [47]. The resultant increase in sensor data has triggered

research activity into the development of infrastructure support services to collect, aggregate and process

sensor data for diverse monitoring applications [18, 153, 209].

The concept of a Sensor Web first originated at the Jet Propulsion Lab (JPL) at NASA [55]:

8

9

”... a system of intra-communicating spatially distributed sensor pods that can be deployed

to monitor and explore new environments.”

which they have recently revised [56]:

”... is a type of wireless network of sensors that acts as a single, autonomous macroinstru-

ment. It is a temporally synchronous, spatially amorphous network, creating an embedded,

distributed monitoring presence.”

From this view the Sensor Web is considered to be a network, where sensors cooperate towards

achieving a common goal. It allows for many different isolated Sensor Webs, each separately deployed

and controlled and not necessarily accessible over the Internet.

An alternative view, and the view taken in this research, is of a single worldwide Sensor Web [77],

where sensor data is made accessible via the Internet. Users are able to query vast quantities of data

generated by thousands of widely distributed heterogeneous sensors. A broader definition is given by

Liang et al. [123].

”The Sensor Web is a revolutionary concept towards achieving a collaborative, coherent,

consistent, and consolidated sensor data collection, fusion and distribution system. The

Sensor Web can perform as an extensive monitoring and sensing system that provides timely,

comprehensive, continuous and multi-mode observations.”

The Open Geospatial Consortium (OGC), a global industry consortium representing over three hun-

dred organisations, is attempting to standardise the encoding and exchange of geographical data. The

OGC view the Sensor Web as being a single global infrastructure that supports accessing sensors over

the Internet. They define [31] a sensor network as :

”... a computer network consisting of spatially distributed autonomous devices using sensors

to cooperatively monitor physical or environmental conditions, such as temperature, sound,

vibration, pressure, motion or pollutants, at different locations.”

and then define a Sensor Web as:

10

”... a web accessible sensor networks and archived sensor data that can be discovered and

accessed using standard protocols and application programming interfaces (APIs).”

The Sensor Web is essential for monitoring and understanding our natural environment and to make

decisions based on sound information that ensures sustainable human interaction with the natural envi-

ronment. The importance of sharing earth observation data in order to monitor the earth as a continuous

system is now being recognised and prioritised by many countries. Governments have already committed

to sharing earth observation data. In 2005 the intergovernmental Group on Earth Observations (GEO)

was created to build a Global Earth Observation System of Systems (GEOSS) to facilitate this [83].

2.1.1 Our vision of the Sensor Web

Our view of the Sensor Web follows that of Gibbons et al. [77], of a single worldwide Sensor Web, and

falls between Liang’s and the OGC definition:

The Sensor Web is a worldwide, Internet based computing environment that allows for the

dynamic exchange, integration and analysis of earth observation data produced by multiple,

globally distributed sensor sources to satisfy diverse earth observation monitoring require-

ments.

Most current sensing systems are designed either for domain specific applications or data collection

purposes [125]. While this is significant for military (tactical sensor networks), robotics and other com-

mercial applications, that operate in a closed and tightly controlled environment, it does not facilitate

accessing, integrating and analysing the vast ever increasing amount of non-commercial sensor data that

is currently available. Our view of the Sensor Web is an infrastructure that allows end users to automat-

ically access, extract and use appropriate information from multiple sensor sources over the Internet (an

open environment). The difference between sensors, sensor networks and sensor nodes is illustrated in

figure 2.1. Data and tasking capabilities from sensors and sensor networks are exposed publicly via a

Sensor Web sensor node over the Internet. Sensors within sensor networks can collaborate to produce

data, but the sensor node packages and formats this data so that it is easily discoverable and usable on

the Sensor Web. The Sensor Web also contains non-sensor nodes. These nodes provide other services,

such as data processing, prediction, coordination and discovery services.

11

Figure 2.1: Sensor Web vs Sensor Networks

Three technical challenges for realising this vision are: Firstly, to create a publicly accessible open

distributed computing infrastructure where heterogeneous sensor resources and complex end-user appli-

cations can be deployed, automatically discovered and accessed. The second is the problem of fusing

data from different sensors with different temporal resolutions, spatial resolutions, data models and data

formats. By fusing data from different sensors a higher spatial coverage and temporal resolution is

achieved. The last challenge is to perform context-based information extraction. The technical skill and

time required to extract appropriate information from sensor data provides a barrier to a potentially large

end-user community. Users do not want to deal with the complexity and scale of sensor data, but would

prefer a view of the data that only exposes information that can aid them in their application. Depending

on their needs (context), users would be interested in different aspects of the sensor data. Thus, the same

data could be used for various applications. Since sensor data forms the core of the Sensor Web, the

challenges can also be viewed from a data centric standpoint [25], where essential infrastructure services

for information management are identified.

Many initiatives are underway to build the Sensor Web. Two of these initiatives, both based on web

services [100], are described below.

12

2.1.2 OGC Sensor Web Enablement

The Open Geospatial Consortium (OGC) [8] aims to provide publicly available standard interface speci-

fications for accessing geographical data, and a standard way of encoding and exchanging this data over

the Web. It uses a community driven, consensus based approach to develop standards. This promotes the

uptake of the standards which makes them pragmatic and usable. OGC Web Services are based on a web

services framework [12, 100]. It supports publishing, discovering and accessing geographical resources

over the web. The Sensor Web Enablement (SWE) [31] initiative extends the OGC Web services by

providing additional services for integrating Web-connected sensors and sensor systems.

2.1.2.1 The Sensor Web Enablement (SWE) Framework

SWE [31] currently defines four specialised Web service specifications, and three XML based models

and encodings for observations and sensors respectively. The Sensor Observation Service (SOS) is used

for data access; the Sensor Planning Service (SPS) is used for sensor tasking and feasibility studies; the

Sensor Alert Service (SAS) is used for registering atomic conditions and push based notification; and the

Web Notification Service (WNS) is used as a data transport protocol transformer. The Observation and

Measurement (O&M) and Sensor Model Language (SensorML) are used as data and metadata exchange

protocols. The Transducer Model Language (TML) provides a conceptual model and Extensible Markup

Language (XML) schema for describing transducers and supporting real-time streaming of data to and

from sensor systems.

2.1.2.2 Analysis of the SWE approach

SWE mostly addresses the first two challenges mentioned above. It is based on a web services architec-

ture which allows for publishing and discovering services over the Web. However, the SWE approach

is limited by its support for automatic data analysis, scalability and interoperability. It provides a com-

mon data model and data encoding format for fusing multiple data models and formats but it lacks an

explicit formal conceptual model or ontology [84]. A key assumption is that all users will interpret and

commit to the same meaning of the terms provided in the vocabulary. Even though SensorML can be

used to describe sensors, there is no standard semantics for describing the sensors or the phenomena that

it measures. This limits service discovery, data integration and service interoperability.

13

SWE abstractions for designing services are too broad, which limits service reuse and changeabil-

ity of services. While SWE provides abstractions for distinguishing between service types, these ab-

stractions are too broad. For example, a Sensor Observation Service can be used to offer unprocessed

sensor data, semi processed or derived data as well as complex information extracted from the data. Ser-

vice providers will typically hide complex application logic behind a single OGC service, even if the

functionality could be decomposed into reusable services. This makes it difficult to modify or replace

hardwired data retrieval and analysis mechanisms embedded within the service which limits reuse. As

dependencies on other services are hardwired, applications must be manually upgraded when dependant

services change and newer services appear. This problem is more apparent when the number of services

increase, which questions the scalability of the SWE approach. Users may be aware of individual in-

stances of OGC services, but may not be aware of the potential applications for which these services

can be used. As the design and development of end-user applications are not specifically dealt with in

the SWE framework, applications will be developed in an adhoc manner. In the absence of an explicit

application framework more effort will be required to build, deploy and maintain new applications that

incorporate SWE services.

Despite these drawbacks, the Open Geospatial SWE framework serves as a starting point for a single

worldwide Sensor Web framework. It provides an open, standards based architecture that allows sensor

and data resources to be published, and accessed in a standard way simply by implementing public inter-

face and encoding specifications. Since the OGC consists of leading industry players and organisations

that work with geographical information, and SWE is based on a consensus approach, SWE technologies

and standards have the greatest chance of being adopted by major software vendors and organisations.

SWE is arguably the most important step towards realising the Sensor Web. Applications using SWE

implementations, such as the 52 North implementation [1], have already been deployed [138].

2.1.3 GeoSwift

Liang et. al [123] proposes GeoSWIFT Sensing Services as a distributed geospatial information infras-

tructure for the Sensor Web. The framework consists of a three layered architecture comprising of a

sensor layer, i.e. the actual sensors, a communication layer, i.e. the physical network or data communi-

cations link between the various components and the information layer, that provides interoperability and

integration of data from different sensors. The implementation prototype uses a web services approach

14

for service registration and discovery. The architecture advocates use of OGC standards for integrating

and exposing sensor data. An extension to the traditional web services approach is the introduction of

a sensing server. The sensing server provides the information layer, which is able to integrate and store

data in different formats from different sensors. It abstracts sensor specific data formats and communi-

cation protocols from the user. New sensors can be integrated into the system by extending the sensing

server or deploying a new server. The sensing server provides a number of benefits to users. It hides

sensor specific configurations and data formats, and provides a standard interface through which users

can interact with different sensors. However, as with SWE, it lacks semantics and does not explicitly

provide a mechanism for developing and deploying applications.

2.2 SOFTWARE AGENTS AND MULTIAGENT SYSTEMS FOR INTERNET COM-

PUTING

The Sensor Web is as an open system [93]. It will cross organisational boundaries, and comprise of

systems that are developed separately and independently often by different and unrelated organisations.

Individual computing nodes can be characterised [181, 186] as being: autonomous, i.e. they have their

own goals, dictated by their host organisation, that may conflict with the goals of other nodes; coopera-

tive, i.e. they are prepared to work together for specific tasks; heterogeneous i.e. the nodes in the system

can use different technologies or data representation formats; and dynamic i.e. the individual nodes can

and will fail in the environment and nodes will continuously change their configurations, abruptly leave

the system and new nodes can enter the system. Software developers face serious challenges when using

traditional software development paradigms, such as object oriented programming, to design and imple-

ment applications in these large scale, open environment. Agent researchers attempt to address these

challenges by providing better logical abstractions and interaction mechanisms for software components

in complex, large scale and dynamic environments [101, 186, 203, 212].

There are many perspectives on agents and multiagent systems [146, 186, 192, 198, 205]. This work

is restricted to Internet agents [162, 186, 212], i.e. autonomous software entities that communicate over

the Internet. Since information is a key commodity on the Internet, extensive work on Internet agents

has been carried out as Information agents [54, 108, 109, 110, 111]. An information agent is [110]:

15

”... an autonomous, computational software entity that has access to one or more heteroge-

neous and geographically distributed information sources, and which is able to pro-actively

acquire, mediate, and maintain relevant information on behalf of its users or other agents

preferably just-in-time.”

An earlier narrower definition considers agents as being software components that communicate

using a high level agent communication language [75]. In this work, an (Internet) agent is considered

to be an autonomous software component that communicates at the knowledge level [73, 101] over

the Internet. To communicate at the knowledge level, the content and type of all messages exchanged

between agents must have well defined semantics that are specified in a shared knowledge model or

ontology (see section 2.3) that is accessible to both the receiver and the sender. Autonomy is exhibited

in two ways. The first being the capability of the agent to function independently without continuous

human intervention. The second is that different agents have different owners, either individual human

users or organisations, whose interests the agent represents. Owners dictate the underlying technology

used to build their agents, and the behaviour and goals of their agents (often independently of other

owners). Goals may differ or conflict.

In general, agents can provide the following advantages [186]:

• Speedup and efficiency, due to asynchronous and parallel computation.

• Robustness and reliability, the whole system can undergo a graceful degradation when one or more

agents fail.

• Scalability and flexibility, since it is easy to add new agents to the system.

• Cost effectiveness, assuming that an agent is a low-cost unit compared to the whole system.

• Development and reusability, since it is easier to develop and maintain modular software than

monolithic ones.

2.2.1 Agent operation

In an open Multi-Agent System (MAS) an agent must be able to discover other agents, as well as interpret

and respond to messages received from other agents.

16

2.2.1.1 Agent discovery

In an open MAS agents enter and exit the system dynamically and unpredictably [181]. In a large

scale open MAS [203], it is not possible for agents to be aware of the capabilities of all other agents

in the MAS. The infrastructure must provide mechanisms for agents to advertise their capabilities and

for agents to discover the capabilities of other agents. The agent discovery mechanism used depends

on privacy considerations, on robustness and on scalability and performance [26]. Two mechanisms for

agent location are middle agents [54] or peer-to-peer location methods [120, 148]. Middle agents [54]

maintain a registry of agents that wish to publicise their capabilities. Middle agents can serve as broker

agents [202], directory facilitators [69] or as a blackboard. A broker agent receives a request, forwards

the request to an appropriate agent, and returns the results to the requester. A directory facilitator or

matchmaker acts as a yellow pages. It stores capability advertisements and returns matching advertise-

ments to requestors. The requesting agent then contacts the appropriate agents directly. A middle agent

can also serve as a blackboard on which agents advertise requests and other agents search and fulfill these

requests according to their capabilities. However, the middle agent approach may present a bottleneck

as well as a central point of failure. To alleviate this, decentralised peer-to-peer location methods have

been proposed [120, 148]. Service description languages such as OWL-S (see section 2.3.1.7) provide

a domain independent language in which service agents can specify their capabilities. Agent service

composition has also been investigated, using OWL-S [129] as well as using finite state machines [196].

2.2.1.2 Agent communication

A key aspect of agents for open environments is the ability to communicate at the knowledge level

[73, 101] generally using some high level Agent Communication Language (ACL) [75, 114, 118]. This

removes and allows for disparities in implementation and internal representation of knowledge. Individ-

ual agents can use different representations of internal models of the world and different implementation

technologies. If the communication is independent of these, there is a looser coupling between agents.

ACLs, protocols and conversational policies [81] are an essential part of a MAS. An ACL specifies the

syntactic structure of messages as well as the semantic interpretation of the messages so that an agent un-

derstands the contents of the message. The semantic interpretation relies on the specification of a shared

ontology (see section 2.3) in which all terms used in the messages are defined. The MAS infrastructure

17

stores shared ontologies, while individual agents can have their own private ontology. For meaningful

conversation to occur, the recipient of a message is only able to interpret the message content if the

recipient has access to the ontology used by the sender.

An interaction protocol [180] specifies patterns of interaction between agents by specifying the se-

quence in which messages can be exchanged for specific purposes. A protocol allows agents to know

how to respond to messages and to have more meaningful and complex interactions. Furthermore a mes-

sage can be interpreted by an agent in the context of an overall conversation and not a single isolated

message. The Foundation for Intelligent Physical Agents (FIPA) ACL [68] is the most widely known

agent communication language. It provides formal semantics for seven distinct domain independent

communicative acts (based on speech act theory [175]), which are used in eleven standard agent interac-

tion protocols. It is assumed that all agents are aware of these protocols. Thus a receiving agent is able to

unambiguously interpret the intentions of the sending agent. However, it is unlikely that the protocols in

a large scale and open MAS will be static. Other approaches attempt to allow agents to communicate us-

ing protocols of which they had no prior knowledge, e.g. using message templates [158] and ontologies

[51].

2.2.1.3 Internal agent architecture

Agents require some internal mechanism to initiate actions in the system. These mechanisms may be

deliberate, reactive or hybrid. Deliberate agents maintain an internal model of the world, which is usually

based on symbolic logic. The model is used for planning and to initiate actions to achieve their goals. The

most popular deliberative agent architecture is the Belief Desire Intention (BDI) architecture [33, 166].

Beliefs reflect the agent’s world model, while desires specify their purpose or end state. An agent’s goals

are a non conflicting subset of the desires. An agent’s intentions is its commitment to undertake a series

of actions that are planned in order to achieve its goals. Given the recent emergence of inference rules

in the Semantic Web, rule based agents are starting to appear [115, 142]. Alternative agent architectures

[198, 205] include reactive architectures such as Brooke’s subsumption architecture [36] and hybrid

architectures such as InteRRaP [141].

18

2.2.2 MAS infrastructure models and platforms

An Internet Wide MAS (IWMAS) must be a large-scale open agent system where tens of thousands of

agents must find and interact with each other for various applications [203]. The numbers and availability

of agents, including the communication languages, ontologies and types of applications may vary over

time.

From a technical viewpoint, a MAS infrastructure is a domain independent set of services, conven-

tions and knowledge that allows agents to discover and communicate with each other [188]. A more

encompassing definition of a MAS infrastructure is given by Gasser [74] in terms of MAS technology,

its application and use, as well as MAS scientific and educational activities. Two MAS infrastructure ar-

chitectures, the FIPA abstract agent architecture and Sycara’s abstraction hierarchy are described below.

2.2.2.1 FIPA abstract agent architecture

The most widely known open MAS architecture is the FIPA architecture. The Foundation for Intelligent

and Physical Agents 1 (FIPA) is a standards body, consisting of organisations from both academia and

industry that aims to standardise MAS infrastructure services, so that heterogenous agents can communi-

cate and interoperate effectively. FIPA provides an abstract architecture [66] that specifies the minimum

components of a heterogenous intentional agent system: a message transport for agents to transmit mes-

sages to each other, an agent directory and a service directory for agents and services to register them-

selves and to be discovered by other agents; and a standard agent communication language, FIPA ACL

[68] with formal semantics, so that the intentions of the sending agent can be unambiguously interpreted

by the receiving agent.

JADE The JADE [6] agent toolkit is a robust implementation of the FIPA abstract architecture. This

Java based open source agent platform is well documented and is probably the most widely used agent

platform. It rigidly follows the FIPA standards and is one of the reference architectures for FIPA. JADE

has limited support for Semantic Web technologies. There are extensions in this regard. AgentOWL

[119] provides support for OWL ontologies using JADE agents. Another extension [142] provides sup-

port for inference rules (see section 2.3.1.6).

1http://www.fipa.org

19

AgentScape, another MAS infrastructure, attempts to deal with scalability issues in an Internet scale

Multi-Agent System. Bordini [30] provides a broader review of agent programming languages, IDEs

and platforms.

2.2.2.2 Sycara’s abstraction hierarchy

Sycara provides an in-depth study of the practical functional requirements of a MAS infrastructure and

proposes a layered abstract hierarchy of nine services that a MAS infrastructure should offer [188]. These

are an operating environment, communication infrastructure, ACL infrastructure, multi-agent manage-

ment services, security, agent name to location mapping (ANS), mapping capabilities to agents and MAS

interoperation. An individual agent requires modules to use each of these services. Sycara’s infrastruc-

ture model provides underlying technical services that enable agents to discover and communicate with

each other. However, it does not include explicit support for governing agent interactions. Omicini et

al [149] pointed out that the role of infrastructure is not only to model and shape the agent environment

from an individual agent’s point of view (subjective view) but also from a MAS designer’s point of view

(objective view). The infrastructure should provide runtime abstractions to model MAS applications. It

must describe and enforce interaction constraints, coordination laws and social norms and allow MAS

designers to design and embed elements of control using these abstractions in the infrastructure. This

reduces the gap between, design, engineering and operation. It not only allows designers to better ob-

serve and understand the runtime behaviour of the system but also facilitates incremental changes to

applications using these abstractions.

Sycara’s model does not explicitly distinguish between the environment, the MAS infrastructure and

individual agents. Weyns et al. [200] propose an abstract model of a MAS infrastructure that treats the

environment as a first class abstraction and that clearly distinguishes environment responsibilities from

agents responsibilities. Valckenaers et al. [195] provide different environment configurations for three

classes of applications: simulation applications, applications that interact with the physical world and

applications that operate within a virtual world.

The need for abstractions to assist in designing MAS applications is clear. However, the environment

may be also incorporated into the infrastructure. The environment provides a set of trusted services

that can be made available to multiple agents. This functionality may be incorporated into the services

provided by the infrastructure together with the necessary abstractions.

20

2.2.3 Challenges for building an Internet Wide MAS (IWMAS)

While there is an active software agent research community there is no evidence of the imminent widespread

use of MAS technology as was promised a decade ago [90]. Several challenges must be overcome before

the vision of an IWMAS is realised. Mass deployment of agent applications has been hindered by: the

complexity of agent platforms; to some extent the overhead of complying with standards, e.g. Founda-

tion for Intelligent and Physical Agents (FIPA), and the lack of industry strength design and development

methodologies and supporting integrated development environments and toolkits. Current MAS models

seem to focus more on individual aspects of agents systems or proving a specific methodology than on

practical application development and deployment in open environments. While these activities are im-

portant, failure to design and field an Internet scale MAS infrastructure hinders widespread MAS usage.

Gasser [74] put this clearly by stating:

” ... widespread use of MAS won’t occur until a critical mass of fielded systems, services and

components exists . . . ” and ”. . . until we have a stable, operational, widely accessible, and

low-apparent cost MAS infrastructure populated with a critical mass of MAS services and

systems that provide value to prospective users; MAS is likely to languish as a technology

with potential, not kinetic, energy.”

This is further emphasised by Sycara [188] and by Luck et al. [126] in their review of Agent Tech-

nology. They suggest that even though there are many fielded systems, these are largely designed by one

design team, in one corporate environment and with agents sharing high level goals within a single appli-

cation domain, i.e. a more closed than open system. Furthermore, most approaches are based on a static

infrastructure. Agent researchers have attempted to separate the dynamic parts of the infrastructure and

call this the agent environment [195, 200], but our view is that in a true IWMAS, the infrastructure itself

should be designed for change and be allowed to evolve in line with its usage. Currently, to our knowl-

edge, there is no MAS platform designed specifically to provide a global infrastructure for designing,

developing and deploying applications across multiple application domains on the Internet.

In the context of this work, two specific aspects of an IWMAS that must be addressed, viz. support

for deployment, and an explicit tightly integrated semantic infrastructure.

21

2.2.3.1 Deployment

Due to the limited number of fielded open multi-application MASs the issue of deployment has been ne-

glected. In an IWMAS where different design teams will continuously modify existing agents and deploy

new agents, it is crucial to provide guidelines for agent and application deployment. These guidelines

will ensure that a properly developed distributed application can be packaged into a reusable, maintain-

able, and configurable piece of software. Deployment in an IWMAS is a considerable challenge. New

applications should reuse and integrate with existing agent functionality where possible, but should not

negatively alter the behaviour of existing applications. An application must also be easily reconfigurable

to cater for the dynamism of the agents that are incorporated into the application. There is a lack of tools

for the launching and dynamic reconfiguration of complex agent based applications [34]. To deal with

this, Brauback et. al [34] propose high level abstractions for applications in the form of MAS societies.

Each society has a specialised configuration manager and launcher agent, an ASCML (Agent Society

Configuration Manager and Launcher) agent, which is responsible for controlling and managing agents

that belong to that society. The use of a configuration management agent has also been proposed in a

deprecated FIPA specification [67].

2.2.3.2 Lack of an explicit semantic infrastructure

A bottleneck in agent based systems is sharing and distributing knowledge [90]. Agent researchers have

neglected the ontological infrastructure [146].

In an IWMAS shared ontologies facilitate agent discovery and selection, and give meaning to agent

interactions. However, the development and management of these ontologies is not addressed in most

MAS platforms and systems, and is delegated to the application developer. The FIPA ontology agent

specification [65] specifies the requirements of an ontology management agent, but the design is incom-

plete and has very few implementations. As pointed out by leading agent researchers, it is essential that

agents build on the successes of the Semantic Web community [38, 99, 100, 126, 181, 197] which has

a more limited scope and focus than the agent community. The Semantic Web community has made

significant advances in standardising knowledge representation and reasoning, and providing tools that

support these technologies. It is crucial that technologies such as OWL and rules be integrated with

agents based systems, so that agent based systems can leverage the continuous advances in the Semantic

Web community.

22

2.3 ONTOLOGIES AND THE SEMANTIC WEB

A commonly cited definition of an ontology is by Thomas Gruber [84]. Gruber investigated the use of

ontologies for communication in knowledge based systems where agents communicate using statements

in a formal knowledge representation language. Gruber distinguished between the representation lan-

guage format, agent communication protocol and the specification of the content of shared knowledge,

with the first two being independent of the content being communicated. Gruber defines an ontology as:

”... an explicit specification of a conceptualisation.”

The aim of this explicit specification is for sharing this conceptualisation in order for agents to have

a basis for communication, i.e. a common conceptualisation for knowledge sharing among distributed

programs. The reason for this explicit formalisation is to prevent ambiguity when interpreting messages

from agents.

Guarino [86] later pointed out that different entities may have different conceptualisations about the

same reality and defines an ontology as:

”... being constituted by a specific vocabulary used to describe a certain reality, plus a set of

explicit assumptions regarding the intended meaning of the vocabulary words.”

In the simplest case an ontology describes a hierarchy of concepts related by subsumption relationships.

In more sophisticated cases, suitable axioms are added in order to express other relationships between

concepts or to constrain their intended interpretation, i.e. to remove ambiguity. However, even if two

systems adopt the same vocabulary, this does not guarantee that they commit to the same conceptualisa-

tion. If each system has its own conceptualisation then a necessary condition to make agreement possible

is that the models of the relevant conceptualisations overlap.

Other simpler definitions exist, such as: an ontology is a formal definition of a body of knowledge

[89] or a definition by Welty [199] who defines ontology as being about meaning more specifically about

making meaning as clear as possible. However these definitions are broad and can cause controversy

when deciding what is, and what is not, an ontology. Our definition incorporates the purpose of ontolo-

gies.

23

An ontology is an explicit description of a conceptualisation (body of knowledge) that is used

for sharing information pertaining to a body of knowledge. The meaning of the elements in

the conceptualisation must be clear and unambiguous, to enable both software agents and

human users to consistently and correctly interpret all information that follows the concep-

tualisation and to generate and share their own information using the conceptualisation.

Gruber provides five design principles [84] (also summarised in [80]) for the development of ontolo-

gies:

Clarity: communicate effectively the intended meaning of defined terms. Definitions should be objec-

tive, complete and documented with natural language.

Coherence: sanction inferences that are consistent with the definitions. If a sentence inferred from the

axioms contradicts a definition then the ontology is incoherent.

Extendibility: enable the definition of new terms for special uses based on the existing vocabulary and

that avoids the revision of the existing vocabulary.

Minimal encoding bias: be specified at the knowledge level without depending on a particular symbol

level encoding.

Minimal ontological commitment: specify the weakest theory and define only those terms that are es-

sential to the communication of knowledge consistent with the theory.

In addition, in keeping with our definition, it is also essential that ontologies are:

Accessible to human users: be designed to specify concepts in a way, that these specifications are un-

derstandable by a human user familiar with the domain it specifies and accessible or downloadable

by these users.

Accessible to software programs: written in a representation language that allows computer programs

to interpret and reason about information that is structured using the ontology and generate new

information that follows the structure of the ontology.

The primary purpose of ontologies is to achieve semantic interoperability. Ontologies provide an

explicit description of the data exposed in the information system. This allows for information to be

24

SOCIAL WORLD - beliefs, expectations, commitments, contracts, law, cul-
ture, ...
PRAGMATICS - intentions, communication, conversations, negotiations, ...
SEMANTICS - meanings, propositions, validity, truth, signification, denota-
tions, ...
SYNTACTICS - formal structure, language, logic, data, records, deduction,
software, file, ...

Figure 2.2: Interoperability framework for open systems [151]

automatically discovered and integrated by machines. Semantic interoperability supports high level,

hence easier to use, context sensitive information requests over heterogenous information sources, hiding

system, syntax and structural heterogeneity [152, 179]. Ontologies have been used widely to overcome

semantic interoperability and information sharing in a distributed computing environment [84, 80, 106,

145, 194]. However, in an open real world system, where owners are globally distributed and have

different and often conflicting goals and social and cultural backgrounds, other types of heterogeneity

may exist. While ontologies can be used to overcome semantic heterogeneity, there are still other types

of heterogeneity that exist in an open system. A more encompassing model that better reflects the types

of heterogeneity found in an open real world system is shown in figure 2.2 [151].

The Semantic Web [44, 52, 91] initiative proposed by Tim Berners Lee [27] is one of the main

drivers of ontology research. It aims to mark up the content in the billions of web page on the Web so

that machines are better able to dynamically process and ”understand” the data that they merely display

at present. The use of shared ontologies to add semantics to the content of web pages is central to the

vision. In this way software agents (programs) can use these ontologies to recognise, interpret and reason

about the content. The real power of the Semantic Web will be realised when people create many agents

that collect Web content from diverse sources, process the information and exchange the results with

other programs. The effectiveness of such software agents will increase exponentially as more machine-

readable Web content and automated services (including other agents) become available. The Semantic

Web promotes this synergy: even agents that were not expressly designed to work together can transfer

data among themselves when the data comes with semantics.

Progress has been made towards the Semantic Web. This includes the emergence of standard ontol-

ogy representation languages including tools to create and manage ontologies.

25

2.3.1 Ontology Representation languages

Ontology languages [80] vary in their expressivity, but typically provide various constructs for repre-

senting concepts and relations between these concepts. The following discussion is based on languages

used within the Semantic Web community. A discussion of other ontology languages can be found in

[80]. Standard ontology languages for the Semantic Web community, such as the Resource Description

Framework (RDF) [112], RDF schema (RDFS) [35] and the Web Ontology Language (OWL) [131] are

now established with stable tools for creating and managing ontologies.

2.3.1.1 RDF and RDFS

The Resource Description Framework (RDF) [112] is a key knowledge representation framework for

the Semantic Web. The underlying structure of any expression in RDF is a collection of triples, each

consisting of a subject, a predicate and an object. The predicate asserts a relation between the subject

and the object. A RDF statement is a graph with the nodes being the subjects and objects. The meaning of

a RDF graph is the conjunction of all the statements corresponding to all the triples it contains. Each node

(objects and subjects) and predicate is uniquely identified by a Uniform Resource Identifier (URI). RDF

graphs are usually serialised and stored in Extensible Markup Language (XML). While RDF provides a

representation framework, RDF schema (RDFS) [35] provides the vocabulary for specifying ontologies

or schemas to structure the information captured in RDF. RDFS uses a standard vocabulary for denoting

classes (rdfs:Class), properties (rdf:Property) and the domain (rdfs:domain) and the range (rdfs:range)

of these properties. Relations such as subclass (rdfs:subClassOf) are also required to represent class

hierarchies.

2.3.1.2 OWL

The Web Ontology Language (OWL) [131] is the recommended standard ontology language for the Se-

mantic Web. OWL was designed to address the limitations of RDF and RDFS. OWL builds on RDF

and RDFS by incorporating additional vocabulary for describing properties and classes including: re-

lations between classes (e.g. disjointness), cardinality (e.g. ”exactly one”), equality, richer typing of

properties, characteristics of properties (e.g. symmetry), and enumerated classes [131]. In OWL, a

class is represented by owl:Class which is a specialisation of rdfs:Class, rdf:Property is partitioned into

26

owl:ObjectProperty and owl:DatatypeProperty to differentiate properties that apply to objects and to

literal antetypes respectively. OWL has three sub-languages with increasing level of expressivity, OWL

Lite, OWL DL and OWL Full [131]. The tradeoff is between expressibility and efficient reasoning [197].

In general, the more features that we have in a language, the more difficult it is to reason with the lan-

guage. OWL-Lite is the least expressive. It provides sufficient support for defining most ontologies,

but excludes enumerated classes and disjoint statements and only allows for restricted cardinality (0 or

1). OWL Lite is the easiest to reason with as it has a lower formal complexity than OWL DL. OWL

Lite should be used where high expressivity is not required, especially for simple class hierarchies or

taxonomies. OWL DL extends OWL Lite and has a well defined semantics based on Description Logics

[24]. It supports all the OWL language primitives and provides maximum expressiveness while retaining

completeness (all conclusions are guaranteed to be computable) and decidability (all computations will

finish in finite time). In order to retain decidability OWL-DL restricts how OWL primitives can be used.

OWL DL constrains mixing OWL with RDFS primitives and it requires strict disjointness of classes,

properties, individuals and data values, e.g. an entity in OWL-DL can not be used both as a class and an

instance. OWL Full also uses all the OWL language primitives, but has the fewest restrictions. It allows

arbitrary combination of OWL primitives with RDF and RDFS which means that every RDFS ontology

is a an OWL-Full ontology. However, this level of expressivity is at the expense of decidability.

2.3.1.3 Open world assumption

One of the key features of Semantic Web languages that distinguish them from other declarative lan-

guages such as SQL and Prolog, is the adoption of the Open World Assumption. This assumes that

knowledge is always incomplete. Thus, if a statement can not be proved to be true using current knowl-

edge it can not be concluded that it is false. In such a case it is concluded that the truth of the statement

is unknown. This is in contrast to SQL and Prolog which adopt the Closed World Assumption (CWA)

where complete knowledge is assumed. Under the CWA if a statement can not be proved to be true then

it is false. Following the open world assumption in the Semantic Web is very important as incomplete

information is common and fragments of knowledge are often distributed within multiple ontologies

across the Web.

27

2.3.1.4 Reasoning with OWL

Description Logics (DL) [24] are a subset of first order predicate logics and provide the underlying formal

framework for OWL and RDF. A knowledge base in a description logic consists of two parts traditionally

referred to as the Terminological Box (TBox) and the Assertional Box (ABox). The TBox consists of

several assertions about concepts and roles (the ontology). The ABox consists of specific facts about

objects (instances), including statements about an object belonging to a particular concept or a particular

pair of objects belonging to a particular role. A reasoner is used to produce additional inferences by

applying the rules of the language to statements in both the TBox and the ABox. Most reasoners, e.g.

Pellet [182] and Racer [87] incorporate variations and optimisations of tableaux algorithms to perform

inferencing.

2.3.1.5 Limitations of OWL

Although OWL can be used for structuring and classifying knowledge it has many limitations. There is

weak support for antetypes. More specifically there is no support for custom antetypes [154, 155], e.g.

for creating a custom data type atLeast18 (a value of 18 or more) for restricting a class Adult, to be all

Persons with an age value of atLeast18. Furthermore, OWL does not support the use of variables, n-ary

predicates [144], sequences such as lists, [59] or metamodeling [140], i.e using classes and properties

as individuals. Many of these limitations have been recognised and are being addressed in OWL 2 [79].

Within the context of the Sensor Web, OWL lacks support for representing and reasoning about time,

space and uncertainty [177] which are essential for representing geospatial information. OWL also lacks

representational support for describing the system entities, i.e. the agents, services and processes, that

will form a part of an agent based Sensor Web.

2.3.1.6 Extending OWL with rules

While OWL is good for structuring and classifying knowledge, an agent must still encode knowledge

that enables it to process available information and respond to requests and new information correctly.

While ontologies provide the ”what” (semantics), i.e. knowing what is being meant by certain concepts,

rules can be used to provide the ”how” (pragmatics), i.e. how to process and respond to information

[181]. Rules have been recognised as being an important part of the Semantic Web [42, 70, 82, 97].

28

The simplest type of rule is an inference rule [32, 171], which takes the form of:

if antecedent then consequent

or

ascendant − > consequent.

From a given set of facts in a knowledge base an inference engine uses a set of inference rules to draw

additional logical conclusions, which result in new facts being added to the knowledge base. A mapping

between ontology and rule languages is important for many aspects of the Semantic Web [70, 82]. The

implication and conjunctive operators and the support for variables alleviate many of the limitations of

OWL. Rules allow for instance reasoning, conjunctive queries and composition relations of properties,

e.g. the relation between the brother, parent and uncle can be represented as the conjunctive rule:

brotherOf(Z, X) and parentOf(X, Y)− > uncleOf(Z, Y).

Rules can also be used for representing policies and for describing services by specifying relations

between service inputs and outputs. The Semantic Web Rule Language (SWRL) [97, 98] has been

proposed to integrate rules and OWL. Practical software applications [78, 40] that integrate rules and

ontologies are also being developed.

2.3.1.7 Service representation

Semantic web services are an integral part of the Semantic Web [92]. The vision of Semantic Web

Services [38, 44] research is to advertise web services so that they can be automatically discovered

and invoked by computer programs. In order for this to occur, services must be able to describe the

information that they provide and how this information can be retrieved. A number of languages are

being developed to extend OWL to describe services.

OWL-S [129] is an ontology language for describing services on the Semantic Web. It provides a

standard vocabulary that extends OWL for creating service descriptions. The current trend in service

description languages is the representation of services as processes. OWL-S models each independent

29

service as an atomic process and provides flow constructs for assembling atomic processes into composite

processes. It also provides a dynamic execution environment for web services.

The Web Service Modeling Ontology (WSMO) [107, 214] provides a framework for the description

and the automatic discovery of Semantic Web Services. WSMO distinguishes between ontologies, web

services, goals and mediators. Goals specify objectives which could potentially be achieved by executing

the appropriate web services, while mediators are used to overcome interoperability problems. WSMO

provides a formal specification of concepts for describing web services and is based on the Web Service

Modeling Language (WSML), a formal language based on Descriptional Logics and Logic Program-

ming. WSMO has its own execution environment the Web Service Modeling Execution Environment

(WSMX). While WSMO takes a more holistic view of describing and discovering services, integrating

WSMO into OWL based systems may be challenging.

Other service description initiatives include WSDL-S [122] and FLOW [85].

2.3.2 Ontology development and management

In an open Internet wide system it is naive to assume the existence of a common global ontology. In

reality there will be a multitude of ontologies developed by different groups, for different purposes,

representing different views and subject to continuous change.

2.3.2.1 Categories of ontologies

An approach to ease ontology development and management is to distinguish between categories of

ontologies. As shown in figure 2.3, ontologies can be split into three broad categories or levels. Upper or

reference ontologies provide very general concepts or real world notions that are referenced by all root

terms in other ontologies. This may include concepts for representing space and time or general concepts

such as Object, Money, Animal, Person and Event. The upper ontologies form a common and consistent

high level model that grounds all other ontologies in the system. Several upper ontologies exist, e.g.

Suggested Upper Merged Ontology (SUMO) [10] and DOLCE [72].

Domain and domain task ontologies specify terms, relationships between terms and generic tasks and

activities that are relevant in a particular domain. Domain ontologies reuse or specialise concepts from

30

Figure 2.3: Different types of ontologies according to Guarino [86]

the upper ontologies. Thus, domain experts can focus on modeling the specifics of their domain rather

than formulating high level models of space and time. The integration of different domain ontologies

that extend the same upper ontologies or high level model is also possible [145]. Large scale domain

ontologies have already been developed which are being used within several scientific communities to

share, integrate and analyse the vast quantities of data that is available in these communities. These

include the Open Biological Ontologies (OBO) [7, 183], the Plant Ontology Consortium (POC) [4], the

NASA SWEET ontologies [168] a set of earth observation ontologies and SNOMED [5] that provides a

medical ontology.

Application ontologies take an application specific view of the world and re-use and extend terms

from one or more domain and domain task ontologies to realise the knowledge for a specific application.

An application ontology generally can not be reused for other applications. Domain ontologies however

are application independent and can be re-used for a variety of applications. This classification pro-

motes the re-use of existing domain ontologies and provides a starting point for building new application

ontologies.

Representing tasks is crucial in any application. Tasks can be specific to an application or can be

generic and reused across multiple applications. Tasks can also be viewed as processes as described in

section 2.3.1.7.

2.3.2.2 Ontology merging and mapping

An application may require access to multiple independently created ontologies. These ontologies may

have been independently developed and in the worst case may not even use the same upper ontologies.

31

Mapping between concepts and aligning relationships from these ontologies can prove to be difficult.

Much work has been carried out on ontology merging and mapping. A good survey of mapping tech-

niques is given by Kalfoglou and Schorlemmer [104] who review over thirty works in this area while

Choi et al [48] review and provide a comparison of several ontology mapping tools.

2.3.2.3 Ontology acquisition

A number of methodologies exist for developing ontologies. A description and comparison of different

methodologies, such as the KACKTUS and METHONTOLOGY approaches is given by Gomez-Perez

et. al. [80]. Ontology learning involves the automatic acquisition of ontology content. Shamsfard

and Barforoush [178] compare seven ontology learning systems mostly generated from text corpora. A

more recent review by Zhou [215] provides a framework for ontology learning and describes some open

challenges in the field. Most approaches usually require background knowledge, such as text corpora,

but there are attempts to locate and use fragments of existing online ontologies to construct new ones

such as the system proposed by Alani [19].

2.3.2.4 Tools and development libraries

There are many tools for developing ontologies [80]. Protege [9] is an open source Java based ontology

editor maintained by the Stanford Center for Biomedical Informatics Research. It is well established,

with a large user community with 68% of Semantic Web users using Protege as their ontology editor

[43]. Protege has many useful plugins for visualising, merging and acquiring ontologies. SWOOP [105]

is also a Java based open source ontology editor. It originated from the Mindswap group at the University

of Maryland. Protege is ideal for research and experimentation as it provides many different plugins that

provide a much wider range of functionality than SWOOP. From our experience we found the Protege

user interface better suited for users who are new to ontologies. SWOOP is more suitable for experienced

users as it is lightweight, is more responsive and more robust when working with multiple ontologies.

Commercial tools that target industry users are also available, e.g. Topbraid Composer [13]. Traditional

user interfaces are limited for visualising the contents of OWL knowledge bases. The Ontoviz and

Graphviz plugins for Protege provide support for visualising OWL ontologies. A description of ontology

visualisation approaches is provided in [76]. Many APIs have appeared which allow developers to access

32

and manipulate OWL knowledge bases programmatically. These include the Protege API [9], the JENA

API [3] and the WonderWeb API [14]. All provide some form of support for reasoning (see sections

2.3.1.4 and 2.3.1.6). An SQL type query language, SPARQL can be used for performing queries on RDF

data [164]. Most editors and OWL APIs incorporate support for SPARQL.

2.3.3 Ontology based systems

Ontologies can be used at development time to guide the conceptual modeling and specification of the

system or at runtime where it forms an operational component of the system [86]. At development time,

existing application ontologies could be reused and adapted to develop the domain model as well as to

model the tasks required for a particular application [15]. Alternatively, if no appropriate application

ontology exists, then domain and upper ontologies can be reused and extended to create the appropriate

application ontology. In both scenarios the ontologies assist the developer to model the concepts and

tasks required for an application.

At runtime ontologies can be used in a number of ways in an information system. In an ontology

aware system, a part of the system is aware of and poses queries to a knowledge base to achieve a degree

of automated reasoning. A more ambitious vision is that of an Ontology Driven Information System

(ODIS) [86, 193] where ontologies play a more integral role in the system. The vision proposed by

David Gunning [174] for ontologies follows the trend of programmers working at increasing levels of

abstraction over time:

”Years ago, people had to write software in machine language. Now they are at least writing

much higher-level statements in Java and other programs like it. With ontologies, we would

like to get to the point where programmers are selecting the concepts that they want to think

about, and let that drive the software ...”

In an ODIS, ontologies are not only used to model concepts and tasks from the real world, but also

to model the system entities, such as the processes, services and agents. In this way the ontologies

form a runtime component, which specifies the model and controls the operation of system entities.

Developers can reconfigure aspects of the system at runtime by manipulating the appropriate ontologies.

Some attempts were made towards developing an ODIS [64, 116]. These approaches revolve around

33

generating Java classes from ontology classes. Other approaches such as Ontology Driven Architectures

investigate the benefits of using ontologies to manage middleware [147, 163]. This is illustrated using

two case studies for managing application server components as well as for the management of web

services [163].

2.3.4 Agents and the Semantic Web

Software agent technology has been around for more than a decade [75, 206] and has been successfully

used in a variety of applications [102, 157, 160, 205]. However, as indicated by leading agent researchers

[90, 126], the promise of widespread deployment of software agents over the Internet [102] has remained

elusive. One of the bottlenecks in agent based systems is sharing and distributing knowledge [90]. Agent

researchers have largely neglected the ontological infrastructure [146]. This is the focus of the Semantic

Web community [44, 52, 91] which has produced standard languages such as OWL, as well as techniques

and tools for developing, managing and aligning ontologies. OWL ontologies are increasingly being

incorporated within agent based systems [119, 184, 197, 216].

Semantic web services form an integral part of the Semantic Web [92]. Semantic Web Services take

a bottom up approach by adding semantics to web service descriptions to aid service discovery, reuse and

composition. Agent based systems have a more ambitious, top down vision of creating autonomous and

potentially intelligent software components that can react to system dynamism, knowledge dynamism

and data dynamism that is inherently a part of the Web. There are still many challenges to engineer,

select, co-ordinate and integrate individual web services to provide higher level services. As many of

these issues have previously been investigated within the agent community, many researchers [38, 99,

100, 126, 181, 197] feel that agents have an important role to play in the Semantic Web.

Agents can be incorporated into a Semantic Web Services architecture. For example, clients and

services can act as software agents with goals [38]:

• All agents can access and interpret Web-published ontologies and can communicate using mes-

sages whose content is represented, or can be interpreted, in terms of published ontologies

• Service providers publish semantic descriptions of their service capabilities and interaction proto-

cols, which prospective service consumers can interpret when selecting appropriate services and

when formulating their interactions with those services

34

• Requestor agents wishing to delegate internal objectives to external agents can reformulate those

objectives as well-formed requests to service providers by using those providers’ semantically

described service interfaces as guides

2.4 AGENTS AND ONTOLOGIES ON THE SENSOR WEB

In this section a number of existing agent and ontology based Sensor Web systems are described.

2.4.1 Agent based approaches

Agent technology has been used widely for specific aspects of environmental information systems, such

as data management, decision support or simulation [21, 176]. Below we describe four distributed agent

based systems that provide architectures for managing and analysing data from multiple sensor data

sources.

IrisNet The Internet-scale Resource-Intensive Sensor Network Services (IrisNet) [41, 77] is a dis-

tributed software architecture that provides high level sensor services to users. It proposes a two tier

architecture comprising of Sensing Agents (SA) that pre-process and filter raw data from one or more

sensor feeds, and Organising Agents (OA) that collect and store data from multiple SAs to provide spe-

cific application services, e.g. to identify free parking spots in a parking space application. A key feature

is that SAs are dynamically programmable which allows an SA to be dynamically reconfigured to filter

its data for different applications. An OA can send different pre-processing steps, called senslets, to an

SA which executes these steps on its raw data stream and returns the results. The architecture addresses

issues related to storing and processing large scale distributed data. IrisNet also supports data reduction

by extracting higher level features (OA) from raw data from different sensors (SA).

Abacus Abacus [22] is a multi-agent system that has been used for managing radar data and providing

decision support base on this data. Abacus has a three layered architecture. The Contribution Layer

contains agents that wrap physical sensors, and provide some pre-processing such as error correction

and noise removal. The Management and Processing Layer contain a community of agents with similar

processing functionality. Agents are responsible for processing data for a given spatial location or spatial

35

sector. Different constraints or rules can be specified for different sectors and local alarms are triggered

according to these. A coordinating agent or abacus agent assembles results from the processing agents to

provide a joint data view, and processes local alarms from the processing layer to trigger global alarms.

The Distribution Layer, provides user interfaces for data visualisation, and disseminates warnings via

email or the web. User interfaces are also available for entering decision rules to generate alarms for the

processing and the abacus agents. This architectural model was also used in an application to monitor

and evaluate air quality data [23].

AIGA The Agent Based Imagery and GeoSpatial Processing Architecture (AIGA) [143] is a multi-

agent infrastructure that supports image processing, geospatial data processing as well as text mining.

The architecture focuses on performance and scalability issues related to using mobile agents for im-

age processing, geospatial processing and text mining applications, especially the agent mobility and

scalable discovery aspects. The architecture differentiates between data agents, processing agents and

co-ordination agents that provide directory services. Agents communicate with each other through a

shared communication space. The system provides a user interface for end-users to compose workflows

of agents to provide different application functionality. These workflows are represented in an RDF

based language and can be stored in the system and re-used at a later time. The AIGA architecture was

used to implement a prototype application for cloud detection.

Biswas and Phoha approach The agent based approach by Biswas et al. [28, 29] also proposes a three

layered logical architecture for developing sensor applications. The data layer consists of sensor nodes

that provide data from physical sensors. The application layer fuses and interprets data from multiple

sensor nodes. A service layer acts as an integration layer between the data layer and the application layer.

It provides middleware services that includes discovery, mobility and data management. Agents are used

in the application and the service layer and the CCL language is used to command and query sensors.

Agents in the service layer integrate data from one or more sensors from the data layer and provide data

to application agents in the application layer.

2.4.1.1 Analysis of agent based approaches

All agent based approaches described above propose some form of layered architecture [39] that provide

abstractions to separate sensor agents from data analysis and filtering agents and to ease the modeling

36

of agent based applications. In Abacus, different agents in the processing layer are responsible for

different spatial sectors and detect and report alert conditions to a higher layer for distribution to users;

IrisNet uses organising agents to collect and analyse data from sensor agents to answer specific classes

of queries; and the Biswas and Phoha approach uses agents in the service layer to integrate data from

sensors in the data layer to provide data to application agents in the application layer. These approaches

address aspects of distributed processing such as mobility, data filtering and scalability. However, none

provide a comprehensive ontological infrastructure that guides the creation of geospatial application

ontologies, and allow for representing agents and their interaction protocols. This limits agent discovery,

agent interoperability, agent composition and the potential for dynamic re-use and integration of data.

While these approaches are promising for a single or a group of organisations building distributed agent

based applications, more support is required for creating and managing the ontologies that will facilitate

semantic interoperability on the Sensor Web.

2.4.2 Ontology based Sensor Web approaches

A worldwide Sensor Web will produce myriads of data encoded in different data formats and described

using different terminologies. Real time and highly distributed aggregation, fusion and summarisation

of the data is necessary to handle the data volumes and the distributed nature of the data generation [25].

Ontologies are being widely investigated within the geospatial community to standardise, dynamically

integrate and query complex earth observation data [16]. The need for semantics in the geospatial domain

is highlighted by Egenhofer [60] in his vision of the Semantic Geospatial Web. There are ongoing

efforts to markup, query and visualise geospatial data [173] as well as the services that provide this data

[113, 127].

Ontologies can provide many potential benefits to the Sensor Web:

• Facilitate the discovery of data for different purposes and in different contexts. Concepts can have

different names and can be referred to at different levels of granularity. Semantics can be used

to describe the real world entity and property being measured and not just the current usage and

context. In this way data can be reused for different applications and even for future applications

that may not seem intuitive in the current context. Semantic matching produces superior results to

syntactic or keyword matching [60, 127].

37

• Facilitate integration of data. Data integration is often carried out manually and can be tedious and

time consuming. Semantics can facilitate data integration by highlighting commonalities between

data or automating aspects of data integration, e.g. the automatic conversion between related

units of measure, identifying similar observations, e.g. brightness temperature and blackbody

temperature measurements. However, data integration is a tricky process with the quality of the

resultant merged data being difficult to determine.

• Facilitate the analysis of data. Ontologies can be used to represent data processing services and to

assemble these processes into executable workflows [113, 133, 201]. Raw data can be automati-

cally processed, transformed or filtered by plugging the data into predefined processing units.

• Model and simulate earth system processes, such as watershed run-off, ocean heat transport or

atmospheric circulation [170]

Agarwal [16] summarises recent advances in ontology research in the geospatial community. Despite

these advances there are still many outstanding challenges. The added temporal and spatial dimension

associated with geospatial data requires additional representation support for modeling and formalising

this domain [16, 25]. Sensor data also has an inherent level of uncertainty [25]. The Web Ontology Lan-

guage (OWL) lacks support for representing time, space and uncertainty [177] as well as for representing

system entities such as agents, services and processes. Furthermore, given the different theoretical posi-

tions for modeling geospatial entities that exist within the geospatial community, a single ontology that

incorporates all standpoints may be difficult [16].

One intuitive approach to model geospatial entities is to follow the human cognition system. Hu-

mans store knowledge in three separate cognitive systems within the mind [132]. The what system of

knowledge operates by recognition, comparing evidence with a gradually accumulating store of known

objects. The where system operates primarily by direct perception of scenes within the environment,

picking up invariants from the rich flow of sensory information. The when system operates through the

detection of change over time in both stored object and place knowledge, as well as sensory informa-

tion. In addition, categorisation plays a key role in geographical cognition. Taxonomic and partonomic

hierarchies facilitate the recognition of objects from sensory perception of the environment by providing

schema for generic types of objects. Thus, an object is classified when it is encountered. This allows

humans to reason at an abstract level, without worrying about the detail. This schema is constantly

38

revised to represent the latest view of the world. A recent effort in the Semantic Web community has

proposed ontologies that provide separate representations for space, time and theme [161] and also show

how Semantic Web applications can be built using these ontologies [88]. However, the approach does

not address the representation of uncertainty nor representing and composing system entities.

The ontologies within the Semantic Web for Earth and Environmental Terminology (SWEET) [168]

provides an upper-level ontology for Earth system science. The SWEET ontologies are represented in

OWL and include several thousand terms, spanning a broad extent of Earth system science and related

concepts. SWEET also provides for the representation of time, space and theme. OntoSensor is an OWL

based ontology for representing sensors[172]. It includes definitions of concepts and properties from

SensorML and ISO 19115 2, and references the IEEE SUMO upper ontology.

The SOUPA [45] ontology was designed for pervasive context-aware systems. It is represented in

OWL and provides support for representing geospatial data. It uses DAML-Time [94] for representing

temporal concepts and OpenCyc Spatial Ontologies [169] and Regional Connection Calculus (RCC)

[165] for representing space. The SOUPA ontologies are used within the COBRA architecture [46].

Fonseca et al [64] describes how ontologies can be used as an integral part of a geographical infor-

mation system in terms of an ontology driven geographical information system (ODGIS). The system

explicitly caters for image classification. In ODGIS, image classification is carried out iteratively at dif-

ferent levels, starting with general associations and proceeding up to a final classification that is more

precise and detailed. Ontologies are not only used for domain modeling but in the actual development

of the system as well, where concepts from the ontology are translated into Java classes that are used by

developers to construct software components.

Lui and Zhao [125, 201] propose a semantic services framework to support a sensor infrastructure.

They aim to create a system that is usable by ordinary users and to support multiple applications simulta-

neously. They note that in previous systems there is little reuse of the application software components,

and that the system architectures are often closed with event semantics being hard-wired into an appli-

cation. They propose a hierarchical architecture for sensor infrastructures, consisting of sensors, field

servers, and gateway servers. At the bottom level are sensors and sensor systems, which forward data

to the field servers in the next level. Field servers gather data from various sensor nodes and converts

2http://www.iso.org

39

and aggregates sensor data into a format that is open and directly usable. It is also capable of processing

sensor data in response to specific user tasks. Users interact with a sensor infrastructure through gate-

way servers through which user requests and sensor information flow. This approach proposes a way

in which event streams can be constructed from real-time sensor data. These streams can be connected

to processing units that filter and process the data to produce new event streams. The representation of

information uncertainty and quality of service are identified as key issues that are still to be addressed.

2.5 SUMMARY

While the ontology based systems have shown some success in modeling geospatial data, none provide a

comprehensive framework for representing all aspects of geospatial data (space, time, theme and uncer-

tainty) and the system entities (agents, services and processes) that will serve and process this data. The

agent based approaches provides better abstractions for modeling and managing system entities. How-

ever, current multi-agents system infrastructures are inflexible and static and do not address ongoing

application deployment and reconfiguration. Furthermore, most agent based architectures assume that

ontologies already exist, and provide little support for creating and managing ontologies.

Chapter 3

DESIGN OF AN INTERNET WIDE MULTI-AGENT

SYSTEM INFRASTRUCTURE

As highlighted in the previous chapter (see section 2.2.3), most existing Multi-Agent Systems (MAS)

have a static or inflexible infrastructure. Furthermore, existing MAS platforms provide limited support

for application deployment and reconfiguration. In this chapter the requirements for a flexible Internet

Wide Multi-Agent System (IWMAS) infrastructure are first outlined. A new IWMAS infrastructure and

a corresponding middleware platform, the Multi-Agent System Infrastructure for the Internet (MASII),

is then described 1.

MASII is based on an infrastructure model that delineates between static core infrastructure ser-

vices which are application independent, and an application infrastructure that customises and extends

these services for specific applications. The MASII platform provides an agent transport layer for agent

communication, an agent execution model and a flexible adapter based framework that facilitates the

development and deployment of applications and services. MASII is used in the Sensor Web Agent Plat-

form (SWAP) (described in the next chapter) for agent development, execution and deployment. MASII

allows SWAP developers to develop and deploy agent based services and applications without requiring

detailed knowledge of the lower level agent infrastructure services.

3.1 REQUIREMENTS FOR A SINGLE GLOBAL MULTI-AGENT INFRASTRUC-

TURE

An IWMAS application typically combines the functionality of the services offered by one or more

Service Agents, and presents this functionality to end users via a set of user interfaces hosted at a User
1Parts of this chapter were previously published in [134, 135, 136].

40

41

Agent. Applications may require a single service offered by a single Service Agent or multiple services

offered by multiple Service Agents and involving complex agent interactions. Four different application

components can be identified in an IWMAS application:

• shared ontologies that specify the data model and tasks required for the application and that form

the basis for meaningful inter agent communication.

• external behaviours, i.e. the interaction protocols and messages that allow for consistent inter-agent

communication as well as any specialised service registration and querying mechanisms.

• specialised application user interfaces that are hosted at a User Agent and that provides IWMAS

users access to the application.

• internal policies and procedures that govern the internal operation of each agent that participates in

the application. This includes any additional data models, data stores and code (application logic)

required for the internal processing of an agent.

An IWMAS should provide the flexibility for using different implementation techniques and tech-

nologies for different applications. New applications may reuse existing application components while

others may require different application components to that which currently exist. In addition to tradi-

tional MAS infrastructure requirements as identified in [74, 187, 203] (see section 2.2.2) the following

requirements are imposed for an IWMAS:

• Flexibility: The system must concurrently support a wide range of distributed applications in dis-

parate application domains, e.g. the medical domain, the earth observation domain and electronic

commerce applications. The system must provide support for developing basic single agent ap-

plications, e.g. a weather information application, but also allow for the development of more

complex applications that require multiple agents that offer disparate services, e.g. informal settle-

ment detection from satellite imagery. Application developers should be allowed to use different

application components to satisfy different requirements imposed by different application classes.

Where possible, components of a specific application class should be reusable in other application

classes.

42

• Seamless deployment and integration of new applications: New applications and upgrades to exist-

ing applications must be easily deployed and made available at runtime to users, without impacting

on other applications.

• Low cost of entry to participate in the system: An end user or developer must be able to easily

participate in the IWMAS without requiring in-depth knowledge of agents.

Different application classes will have common requirements, i.e. functionality that is required across

multiple application classes, and custom requirements that are specific to a single application class. It

is then necessary to differentiate between infrastructure responsibilities that provide for the common

requirements and application responsibilities that provide for the custom requirements of an application

class. An infrastructure that makes this distinction and attempts to address IWMAS requirements is

described next.

3.2 THE MULTI-AGENT INFRASTRUCTURE FOR THE INTERNET

The Multi-Agent Infrastructure for the Internet (MASII) aims to provide an agent programming and

execution environment for developing, deploying and maintaining agent based applications over the

Internet.

3.2.1 An abstract architecture for a IWMAS

The infrastructure design extends Sycara’s abstract MAS architecture [187]. Sycara’s abstraction hi-

erarchy splits the infrastructure services into two parts. The infrastructure part provides infrastructural

services and the individual agent part allows an agent to interact with the infrastructure services. Sycara’s

abstraction hierarchy is expanded to introduce a third part, the application infrastructure part shaded in

grey in figure 3.1. The application infrastructure allows each application class in the MAS to use core

infrastructure functionality but also allows this functionality to be extended and customised for different

application classes. This allows for different applications classes to have different application infrastruc-

tures.

43

Figure 3.1: MAS infrastructure, application infrastructure and an individual agent that enables an agent
to be a part of the MAS

Capability to agent mapping The core infrastructure provides a basic service registration and dis-

covery mechanism. However, in practise, customised service description languages may be required for

different application classes. Developers have the flexibility to select from existing registration and dis-

covery mechanisms and may even deploy new ones if the existing ones are not satisfactory. Ideally, as

the various discovery mechanisms evolve and mature in the system, a single discovery mechanism that

is used by the majority of application classes will emerge.

Security The core infrastructure provides security services such as certificate authorities and secure

messaging. It is responsible for preserving the integrity of the infrastructure. Additional higher-level

security features such as access control and application level authentication can be provided in the appli-

cation infrastructure.

Performance Services The core infrastructure provides performance services such as network re-

sponse time and availability. The quality of service and performance of an agent, with regard to the

service it provides, varies between application classes. Specialised quality of service measurements such

44

as credibility and reputation can be provided in the application infrastructure.

Multi-agent management services The core infrastructure provides a basic set of management ser-

vices. Additional management services such as additional logging services, agent configuration, launch-

ing and installation options can be provided in the application infrastructure.

Agent Communication Language (ACL) The core infrastructure provides an ACL for agents to com-

municate and function within the infrastructure. It specifies an ontology language and an infrastructure

ontology. Concepts such as agent, service, message and interaction protocol are defined in the infrastruc-

ture ontology. Custom ontologies and interaction protocols can be provided in the application infrastruc-

ture. To facilitate interoperability between application classes, developers will be encouraged to reuse

existing ontologies and protocols for new application classes.

MAS and application interoperation The application interoperation layer facilitates interoperation

between different application classes. Applications within the same application class use a common

application infrastructure. Although this enables interoperability between applications from the same

class, this does not guarantee interoperation between application classes. This is especially apparent

when there are major disparities between ontologies or their associated conceptual models. Interoper-

ation then requires the creation of mappings between these ontologies (see section 2.3.2.2). The level

of interoperability that can be achieved may vary. This will depend on the nature and the level of the

disparities and the extent to which mappings can be used to overcome these. The application interoper-

ation layer maintains an application ontology that defines concepts that can be used across application

classes. As more application classes are deployed into the system, concepts which are used across multi-

ple applications will emerge. These concepts can be incorporated into the application ontology for reuse

in future application classes. The application ontology will evolve through the lifespan of the MAS and

will facilitate interoperation between application classes. The MAS interoperation layer is retained in the

core infrastructure to allow developers that use other MAS platforms to interoperate with this platform.

45

Figure 3.2: The MASII adapter architecture

3.3 MASII DESIGN AND OPERATION

A MASII application has four components (see section 3.1). These are: ontologies; agent interaction

protocols with the corresponding message handlers; user interfaces for end users to access the application

and optionally to manage services; and internal code for each agent’s internal processing.

MASII agents use an adapter architecture. A basic agent incorporates a transport layer which allows

it to discover and communicate with other agents. An agent extends its functionality by downloading

and installing adapters. An agent service requires a user and a service adapter. The service adapter

contains the application components required by a Service Agent to offer the service, and the user adapter

allows another agent to access and use the service. Adapters are deployed on an Adapter Agent and can

be retrieved and installed by any agent. Specialised user adapters containing end user interfaces are

required by User Agents. As shown in figure 3.2 agents extend their functionality by downloading,

installing and maintaining a local repository of adapters, to offer either services (Service Agents) or end

user applications (User Agents).

Figure 3.3 shows the different types of agents in the MASII infrastructure. The infrastructure consists

46

Figure 3.3: The MASII system architecture

of Registry Agents, Adapter Agents, User Agents and Service Agents.

3.3.1 Registry Agent (RA)

The RA provides middle agent (see section 2.2.1.1) functionality in the MAS. Service agents register

their capabilities with the RA so that User Agents can discover and use their service offerings.

3.3.2 Adapter agent (AA)

The AA maintains an application catalogue that contains an entry for each application in the MAS. Each

entry specifies the name and description of the application and the registry agent(s) to use to discover

the services required in the application. The application description may include information about its

functionality and the quality of service (QoS) properties. A User Agent periodically downloads the

application catalogue from the AA and is thus aware of new application offerings in the MAS. The AA

is responsible for storing the adapters, the protocols and the ontologies for each application. Agents

download the required application components in order to use or provide services for an application.

47

When an application is ready for deployment, a user adapter together with the corresponding proto-

cols and ontologies are uploaded to the AA and the application catalogue is updated. When a situation

arises where the User Agent is required to offer an application for the first time, it makes a request to the

AA for the required application components. The User Agent matches the requirements with existing

application components in its local repository and downloads and installs the missing components. In

this way the User Agent can dynamically acquire new capabilities and adapt to changes in the MAS. The

service adapters may also be provided for downloading on the AA. Service Agents may then download,

install and even replicate service offerings.

3.3.3 Platform implementation

A prototype platform was implemented in Java. The platform provides a generic agent that is able

to send and receive messages to other agents. The current mechanism uses CORBA [185] (IIOP) for

asynchronous message passing. The transport layer and message queue mechanism are hidden from the

developer and no knowledge of CORBA is required. The transport layer is exchangeable and HTTP and

email (POP, SMTP) protocols can be used as alternative transport protocols.

At an implementation level, the platform distinguishes between agents, services and protocols. An

agent executes within an agent environment. The environment allows it to pass messages to other agents.

It contains a message queue to receive and handle messages from other agents. The environment also

allows for the dynamic loading of services and protocols. For each service offered by a Service Agent a

service initialiser is executed to perform any initialisation tasks e.g. connecting to a knowledge base or

initialising required data structures. A graphical user interface (GUI) is also initialised for each service

for configuring and monitoring the service. For a User Agent to access a service, the User Agent executes

a users side initialiser for the service and loads the user interfaces for the service. The implementation

of a new service involves implementing a service initialiser and service GUI for a Service Agent to host

the service and an initialiser and GUI for a User Agent to use the service. The service initialiser, user

interfaces and data stores are packaged together into service and user adapters for Service Agents and

User Agents respectively as illustrated in figure 3.2.

A protocol defines a conversation between agents. At an implementation level a protocol involves

implementing message handlers at the Service Agent and the User Agent. Message handlers at the User

48

Agent handle incoming messages from the Service Agent. Message handlers at the Service Agent handle

incoming messages from the User Agent. A protocol configuration file specifies the message handler

(class) to use to process each incoming message. A User Agent can be extended to use a new service by

installing the user side adapter and protocol handlers. Similarly a Service Agent can be extended to offer

a new service by installing the service side adapter and protocol handlers.

The protocols, ontologies and adapters for each application are maintained on the Adapter Agent

within Java archive (JAR) files. Agents are able to retrieve the required components for an application

and install and activate these at runtime.

3.3.4 Application development

Three main activities are required for developing MASII applications.

3.3.4.1 Agent design

This involves identifying the roles, responsibilities and activities of each agent in the system. For each

activity the interaction protocols between agents to perform the activity, are identified. This approach is

based on the GAIA [213] methodology for designing agent based applications.

3.3.4.2 Ontology development

Once the agents, services and interactions have been identified, these are captured within ontologies.

The ontologies describe the agents, the services they host and the content of the messages that the agents

exchange during their interactions.

3.3.4.3 Adapter implementation

For each agent service, the developer implements a service adapter which contains the necessary message

handlers and application logic for the service. A corresponding user adapter is also implemented which

allows another agent to invoke the service. Typically this is deployed on a User Agent with appropriate

user interfaces for end users to interact with the service. The user adapter together with the protocols and

ontologies are then uploaded to the Adapter Agent where it can be downloaded and installed by User

Agents.

49

Figure 3.4: User agent adapter data store

3.4 APPLICATION DEPLOYMENT

In order for a end user to access applications, the user installs and executes a MASII User Agent. At

this stage the User Agent has no application adapters and the end user has no knowledge of the appli-

cations that exist in the system. The User Agent can initially only access infrastructure services, i.e.

the Deployment service, the Deployment protocol and the Service Catalogue protocol. The Deployment

adapter and protocol enables the User Agent to download and activate selected user adapters from the

Adapter Agent at runtime. All supported services and protocols are stored locally in an adapter folder

within the User Agent’s working directory. Figure 3.4 shows the adapter folder of a basic User Agent.

Additional adapters can be retrieved from the Adapter Agent and installed locally. Downloaded adapters

are persistent and are activated each time the User Agent starts.

3.5 DISCUSSION

Most MAS infrastructures are static. All agents use the same ontology, ACL and matchmaking mech-

anism. In such systems the protocols, ontologies and infrastructure services are burdened a priori with

a requirement to cater for all current and future applications. These mechanisms are usually based on

the requirements and knowledge of current applications or follow a specific agent methodology. This

restricts the innovation of new infrastructure mechanisms and new types of applications. An IWMAS

requires a more flexible infrastructure that supports the wide spread development of different classes of

applications across multiple domains. Developers should be free to select from existing infrastructure

services, extend these or deploy new ones if current ones do not satisfy the requirements for their appli-

cations. This flexibility will encourage IWMAS usage and allow parts of the infrastructure to evolve in

line with the current requirements and usage.

50

In designing this IWMAS the aim was to build a flexible MAS middleware platform that provides

explicit support for runtime application deployment. MASII is based on an infrastructure model that de-

lineates between static core infrastructure services which are application independent, and an application

infrastructure that customises and extends these services for specific applications. The platform provides

an agent transport layer for agent communication, an agent execution model and a flexible adapter based

framework that facilitates the development and deployment of applications and services. MASII pro-

vides the underlying agent middleware services for developing agent based services and applications.

MASII allows application developers to develop and deploy agent based services and applications with-

out requiring detailed knowledge of the lower level agent infrastructure services.

The adapter architecture allows for the runtime deployment of new applications and dynamic up-

grading of application components of existing applications. End users are immediately aware of and

can access new applications. User Agents extend their capability by retrieving and installing applica-

tion adapters from Adapter Agents. These adapters contain the application components, i.e. ontologies,

protocols, application logic and user interfaces, required for an application. Service adapters may also

be deployed in a similar manner. Different Service Agents can offer the same service by retrieving and

installing the service adapter. Service replication increases fault tolerance and allows for load balancing.

Upgrades to existing user and service adapters can be dynamically deployed through the system. This

eases post deployment maintenance of applications.

An important aspect of maintenance not currently supported is the versioning of application compo-

nents. In a real world system different versions of application components may exist. The functionality

of the Adapter Agent can be extended to store and manage different versions of application components.

The application catalogue can be used to capture the dependencies between applications and application

components.

This chapter describes a flexible, adapter based IWMAS infrastructure and middleware platform that

explicitly addresses runtime application deployment. However, an application framework is required to

develop specific classes of applications. The next chapter describes the Sensor Web Agent Platform, an

application framework for designing and developing complex earth observation applications.

Chapter 4

DESIGN OF THE SENSOR WEB AGENT PLATFORM

This chapter describes an Ontology Driven MAS for the Sensor Web, the Sensor Web Agent Platform

(SWAP). SWAP builds on the middleware services provided by MASII to provide an application infras-

tructure for developing complex earth observation applications. The vision and technical challenges for

creating a single worldwide Sensor Web is first reiterated and an application framework that attempts to

address these challenges is then described 1.

4.1 OUR VISION OF THE SENSOR WEB

Our vision of the Sensor Web is to create a worldwide computing platform that allows end users to

dynamically access multiple sensor sources, and extract and use appropriate information from these

sources. Three broad technical challenges are apparent:

1. Creating a publicly accessible, open distributed computing infrastructure where heterogeneous

sensor data services, data processing services and complex end-user applications can be deployed,

dynamically discovered and accessed.

2. Integrating data from different sensors that have different temporal resolutions, spatial resolutions,

data models and data formats. A higher spatial coverage and temporal resolution is achieved by

integrating data from different sensors.

3. Performing context-based information extraction. The technical skill and time required to extract

appropriate information from sensor data forms a barrier to a potentially large end-user community

who could benefit from this data. Depending on their needs (context), users may require different
1Parts of this chapter were previously published in [137, 138, 139].

51

52

aspects of the sensor data. The same data may be used for different applications. Users must not

be overwhelmed by the complexity and scale of sensor data. They should be presented with just

the information that they require for their task. Constructing and maintaining customized real-time

monitoring applications, especially remote sensing applications, is tedious and requires personnel

with advanced remote sensing and programming skills.

The Sensor Web Agent Platform (SWAP) aims to alleviate these challenges. SWAP builds on the

core infrastructure services provided by MASII (see section 3.2). It provides an application framework

that consists of an abstract architecture, an ontological infrastructure and an internal agent architecture

for designing and developing Sensor Web applications.

4.2 THE SWAP ABSTRACT ARCHITECTURE

The SWAP abstract architecture (figure 4.1) is a layered architecture [39] that provides logical agent

abstractions for designing and deploying Sensor Web applications.

It consists of three layers. Sensor Agents in the Sensor Layer encapsulate individual sensors, sensor

systems and archived observations. They expose sensor data in a uniform way and deal with any sensor-

dependant processing. Tool, Modeling and Workflow Agents in the second layer, the Knowledge Layer,

retrieve and process data from Sensor Agents. Tool Agents provide data processing services such as

feature extraction. Modeling Agents store real-world models and can provide projections and analysis of

data. Workflow Agents retrieve data from Sensor Agents, passes this data through a combination of Tool

and Modeling Agents, and aggregates the results. The results are stored by Workflow Agents and used by

Application Agents in the third layer, the Application Layer. Application Agents combine higher level

features provided by Workflow agents and provides different alerting and monitoring functionality to

different end users. User Agents allows end users to access the functionality from multiple Application

Agents. Users can register for and receive alerts from different Application Agents via their User Agent.

4.2.1 Sensor Layer

Sensor Agents represent either data access or sensor control services or a combination of both. Sensor

Agents access physical or virtual sensors directly or via intermediary services such as an Open Geospa-

tial Consortium (OGC) Sensor Observation Service or a Web Coverage Service. Sensor Agents handle

53

Figure 4.1: Three layered SWAP architecture

54

all sensor specific operations internally. This includes error correction, calibration and decoding pro-

prietary data formats. This allows other agents to access data from different sensors without requiring

knowledge of individual sensor calibration and data encoding formats. All Sensor Agents exposes sensor

data or sensor operations via a uniform interface using uniform data formats. Descriptions of the service

interfaces and the sensor data they provide are specified in the SWAP ontologies (described in section

4.3).

4.2.2 Knowledge Layer

The Knowledge Layer provides for the orchestration of complex processing chains that incorporate re-

usable modeling and processing components. Services offered by agents in the Knowledge Layer at-

tempt to be sensor independent. Interactions with Sensor Agents are based on a common understanding

of exchange formats and concepts that are specified in the SWAP ontologies. Tool Agents provide well

defined and deterministic processing services, such as data transformation, data analysis or feature ex-

traction. Tool Agents always produce a meaningful result if valid data is provided as input. Modeling

Agents represent non-deterministic prediction models that may never complete or may provide multiple

outcomes for a single request. Modeling Agents provide complex processing capacities that may be long

running, may require additional input during processing, or may even fail to produce a usable result.

Workflow agents capture and store expert knowledge in the system in the form of predefined process-

ing chains or workflows. Workflows combine Tool and Modeling agents in specific sequences to solve

specific problems. Typically, a Workflow Agent retrieves (raw) data from Sensor Agents and invokes

a number of Tool and Modeling agents to run predefined processing steps on the data. After each step

the processed data is passed back to the Workflow Agent and passed on to the next Tool or Modeling

Agent in the workflow. After all processing steps have been completed the results are stored and can be

retrieved by Application Agents in the Application Layer.

4.2.3 Application Layer

The Application Layer exposes Sensor Web applications to end users. It filters and aggregates data from

the two lower layers to provide end user alerting and monitoring applications. Two types of agents are

provided at the Application Layer, viz. User Agents and Application Agents. An Application Agent

55

uses the results provided by one or more Workflow Agents to provide specific monitoring applications.

A User Agent is installed and maintained by each end user. It allows a user to access the applications

offered by different Application Agents. Users can select the combination of applications that they

require. The User Agent can be configured to provide custom or integrated views of alerts received from

these applications. The User Agent also informs users about new applications and services in the system.

It can be continuously reconfigured to reflect the changing requirements of the user.

4.2.4 Incorporating OGC services

Open Geospatial Consortium (OGC) web services can be incorporated at each layer of the architecture.

At the Sensor Layer, Sensor Agents can retrieve sensor data from existing Sensor Observation Services.

At the Knowledge Layer, Tool Agents can redirect requests to Web Processing Services (WPS). At the

Application Layer an Application Agent can use a Web Notification Service to transmit alerts using

different transport protocols and data formats, e.g. SMS or pager.

4.3 OVERVIEW OF THE SWAP ONTOLOGICAL INFRASTRUCTURE

The aim of the SWAP ontological infrastructure is to provide consistent semantics to facilitate the discov-

ery, reuse and integration of Sensor Web data and processing services. Ontologies, unlike other formal

modeling languages, must be understood and managed by non computer science end-users while suf-

ficiently formal to be interpreted by machines. Ontologies enable human users with limited technical

expertise to explore and find relevant sensor data, services and applications that can aid them in their

current task. They also provide sufficient technical detail for software agents to automatically interpret

and process data. Additionally, ontologies should provide descriptions of agent services and interaction

protocols. This is especially important to manage system dynamism on the Sensor Web where agents

may change their service offerings or new agents may appear offering new services.

4.3.1 Rationale behind the SWAP ontology

Designing an ontology infrastructure that balances the requirements of both software agents as well as

non technical human users is challenging. Ontologies can be split into two levels, a conceptual level

56

and a technical level. The conceptual level ontologies supports the creation of conceptual descriptions

of agent service offerings without the technical detail for invoking the services. This promotes concep-

tual interoperability between heterogeneous sensor resources, and dynamic extraction and integration of

higher level features from sensor data. By providing good conceptual descriptions, scenarios for re-use

can be inferred. However, agents still need to communicate and exchange data. This is supported at the

technical level where specific data and agent message structures are specified. Technical ontologies must

support data structures ranging from a single value at a specific time and space to multi-dimensional

structures that hold values for specific spatial areas taken during specific time interval or at multiple

time instants. Support must also be provided to represent the structure and types of messages exchanged

between SWAP agents and to represent agent workflows for coordinating interactions between multiple

agents. In this way heterogeneous agents can interpret and use data from other agents in its internal

processing and know at which stage of its internal processing to incorporate this data.

The conceptual ontologies are based on the human cognitive system. As discussed earlier, in section

2.4.2, humans store knowledge in three separate cognitive systems [132]. The what system of knowledge

operates by recognition, comparing evidence with a gradually accumulating store of known objects. The

where system operates primarily by direct perception of scenes within the environment, picking up in-

variants from the rich flow of sensory information. The when system operates through the detection of

change over time in both stored object and place knowledge, as well as sensory information. In addi-

tion, categorisation plays a key role in geographical cognition. Taxonomic and partonomic hierarchies

facilitate the recognition of objects from sensory perception of the environment by providing schema

for generic types of objects. Thus, when an object is encountered it is classified. This allows humans

to reason at an abstract level, without worrying about the detail. This schema is constantly revised to

represent the latest view of the world.

The SWAP upper ontologies are split between conceptual and technical level ontologies (see fig-

ure 4.2). At the conceptual level, there are four ontologies: swap-theme contains thematic concepts;

swap-space contains spatial concepts; swap-time contains temporal concepts; and swap-uncertainty is

an extension that allows for the representation of uncertainty. There are three ontologies at the technical

level: swap-data contains concepts for representing different data types and data structures; swap-task

provides concepts for representing atomic and composite processes; and swap-agent ontology contains

descriptions for basic agent operations such as agent types, interaction protocols and agent actions. These

57

Figure 4.2: SWAP ontology levels

ontologies form the SWAP upper level ontologies. Domain ontologies for specific application domains

are built by extending the swap-theme ontology. The eo-domain ontology extends the swap-theme ontol-

ogy by adding concepts for building applications in the earth observation domain (figure 4.3). It currently

links to concepts from the SWEET ontologies [167], an existing set of earth science ontologies.

Application ontologies specify concepts that are used for a specific application, e.g. wildfire detec-

tion. A fire-detection ontology will provide concepts required to model the wildfire application. The

ontology reuses concepts from the domain and upper ontologies or extend these ontologies as required.

The SWAP ontologies provide a uniform representation of sensor data. The DataSet concept in the

swap-data ontology (figure 4.4) describes a sensor data set. A data set may have zero or more thematic,

spatial, temporal and uncertainty properties. The structure used to hold and access the data value(s) is

described by the datatype property.

4.3.2 Swap rules

Ontologies provide for a common interpretation of data and enable meaningful communication between

agents. However, knowledge that enables agents to process current information and to respond to re-

quests correctly must be provided. Rules can be used to encode this knowledge. Whereas ontologies

provide the ”what”, i.e. knowing what is being meant by certain concepts, rules provide the ”how”, i.e.

how to process and respond to information [181]. SWAP uses inference rules [32, 171] in this regard.

Inference rules take the form of

58

Figure 4.3: SWAP ontology structure

Figure 4.4: Representing a data set in SWAP

59

Figure 4.5: SWAP reasoning engine

if antecedent then consequent

An inference rule allows for drawing a logical conclusion (consequent) if some premise (antecedent)

holds. Inference rules can be run in the forward direction (if the stated antecedent holds, then the con-

sequent can be inferred) or the backward direction (to infer a particular consequent, check that the an-

tecedent holds). An inference engine executes these rules either as forward rules (forward chaining), as

backward rules (backward chaining) or an hybrid of the two. From a given set of facts in a knowledge

base, an inference engine can use a set of inference rules to draw additional logical conclusions, which

result in new facts being added to the knowledge base.

SWAP uses the Java based Jena platform 2 for representing and executing rules. Jena provides a

rule-based OWL reasoner that represents the OWL descriptional logics as a set of rules. These rules can

be extended to specify additional domain or application specific rules. In this way, Jena bridges the gap

between ontologies and rule-based systems. Jena also supports procedural attachments, i.e. rules may

refer to external functions. Procedural attachments are represented as builtin Java classes in Jena. For

example Jena provides the builtins equals, lessThan and greaterThan that take in two parameters

(either numbers or dates) and perform the appropriate comparison, e.g. lessThan(2, 5) returns true and

greatherThan(6, 10) returns false.

The SWAP agent reasoning engine consists of a thematic, spatial, temporal and uncertainty reasoner

as shown in figure 4.5. SWAP agents use these reasoners to interpret the contents of incoming messages

and to process and respond to these messages.

4.4 THE SWAP CONCEPTUAL ONTOLOGIES

In this section the four SWAP conceptual representation and reasoning systems are described.
2http://jena.sourceforge.net

60

Figure 4.6: Thematic properties of a data set

Figure 4.7: The eo-domain ontology

4.4.1 Thematic representation and reasoning

The swap-theme ontology contains two high level concepts, observedEntity and observedProperty, to

represent observable entities and the observable properties of these entities respectively. There are

two thematic properties of a DataSet, observesEntity describes the entity being observed, while ob-

servesProperty describes the property of this entity that is being measured. Thus the observesEntity

property has observedEntity as its range, while the observesProperty has observedProperty as its range

as shown in figure 4.6.

The eo-domain ontology (figure 4.7) links observable properties from the NASA SWEET [167]

property ontology by making these properties a subclass of observedProperty such as BrightnessTem-

perature3 and DryBulbTemperature4. Geographical entities from the SWEET earthrealm and SWEET

phenomena ontologies are also linked by making these entities a subclass of observedEntity, e.g. Air,

Ocean, PlanetarySurface and Wind.

3brightness temperature is the measure of the intensity of radiation thermally emitted by an object, given in units of tem-
perature (wikipedia)

4dry-bulb temperature is the temperature of air measured by a thermometer freely exposed to the air but shielded from
radiation and moisture (wikipedia)

61

Figure 4.8: SWAP thematic reasoning

Consider a data set produced by the Meteosat Second Generation (MSG) satellite that contains mea-

surements of brightness temperature of the earth’s surface. An instance of the concept PlanetarySurface

from the SWEET earthrealm ontology, earthsurface, is the ObservedEntity. An instance of the concept

BrightnessTemperature from the SWEET property ontology, msg-brightness-temperature, is the Ob-

servedProperty. A data set representing the dry bulb temperature measured by a specific weather station

in South Africa can be similarly described. The ObservedEntity is saweatherstation1-air an instance of

Air. An instance of DryBulbTemperature, saws-DryBulbTemperature, is the ObservedProperty.

An agent delegates thematic reasoning to the thematic reasoner (figure 4.8) to reason over the the-

matic properties of geographical data. An OWL reasoner preloads the ontology schema and applies

the schema to instance data in the local knowledge base. The schema consists of the eo-domain, the

swap-theme as well as the entire SWEET ontology, not just those concepts referenced in the eo-domain

ontology. This allows the inference engine to detect relations with SWEET concepts not explicitly ref-

erenced in the eo-domain ontology, e.g. BrightnessTemperature and DryBulbTemperature are both sub-

classes of Temperature. Additional thematic entailments produced by the reasoner are added to the local

knowledge base. Currently, only a standard OWL reasoner with no additional thematic rules are used

for inferencing. As the default Jena OWL reasoner is not intended for inferencing over large ontologies,

such as the SWEET ontologies, the Pellet OWL reasoner 5 is used to speed up the inferencing process.

5http://pellet.owldl.com

62

Figure 4.9: Part of the swap-space ontology

Figure 4.10: The spatial properties of a data set

4.4.2 Spatial representation and reasoning

The swap-space ontology provides concepts for representing the spatial aspects of data. A part of the

swap-space ontology is shown in figure 4.10. The complete ontology is provided in Appendix A.2.1. A

data set can have zero or more spatial properties (see figure 4.4). Spatial entities include spatial refer-

ence systems, spatial projection, spatial resolution and location (figure 4.9). Locations can be common

descriptions such as a point coordinate or a bounding box, or well defined spatial geometries such as a

point, line or polygon.

A SpatialThing is defined as an entity that has a Location and the spatial reasoner is used to

determine how two SpatialThings are spatially related. The OGC Simple SQL features spatial opera-

tors [49, 61, 150] define eight binary relations between two SpatialThings. The six relations touches,

crosses, overlaps, disjoint and within and equals are shown between two spatial objects A and B in

figure 4.11. In this notation all spatial objects have access to a boolean method for each spatial relation.

Each method takes in another spatial object and checks whether the associated relation holds between the

63

Figure 4.11: Spatial relations

two objects. For example, if A and B are spatial objects, then A.Touches(B) returns true if A touches

B. Two further relations contains and intersects are provided for convenience. These are defined as: A

contains B if and only if B is within A (equation 4.1) and A intersects B if and only if A is not disjoint

with B (equation 4.2).

A.Contains(B) ⇔ B.Within(A) (4.1)

A.Intersects(B) ⇔ ! A.Disjoint(B) (4.2)

The spatial reasoner is used to determine which of the eight binary relations hold between two spatial

things. Note that two spatial things can be related by more than one of these relations. The schema and the

components of the spatial reasoner are shown in figure 4.12. It uses the Jena rule-based OWL reasoner.

As OWL does not provide native support for spatial representation, additional rules are incorporated to

determine the spatial relations between spatial things. Spatial relations are expressed as subproperties

of hasSpatialRelation. For example, suppose that x and y are spatial things, then the reasoner might

determine that x intersects y where intersects is a subproperty of hasSpatialRelation representing

the intersect relation. A set of Jena rules were formulated to infer relations between SpatialThings.

The rules use special builtins that were created for each of the eight relations. For example, the rule used

to determine whether two SpatialThings intersect is:

(?x spc:intersects ?y) <-

(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)

(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)

spatiallyIntersects(?xExt,?yExt).

64

Figure 4.12: SWAP spatial reasoner

Figure 4.13: The temporal properties of a data set

where spc is the swap-space namespace and spatiallyIntersects is a builtin class that determines

whether the given spatial objects intersect. The builtins use the JTS topology suite [53] to determine

if a specific relation holds between two spatial things. It first converts the spatial things into JTS geom-

etry objects and then calls the appropriate method on the geometry objects to perform the check. The

spatial inference rules are provided in appendix A.2.2.

4.4.3 Temporal representation and reasoning

The swap-time ontology (see Appendix A.3.1) is used to specify temporal entities and relations. It

is based on and incorporates the OWL-Time [95, 96] ontology. OWL-Time is based on Allen’s [20]

representation of intervals and considers a temporal entity to be either a temporal instant or a temporal

interval. An instant represents a specific point in time while an interval represents a time extent with a

begin and an end time. A data set can have different temporal properties as shown in figure 4.13.

65

A TemporalThing is either an InstantThing or an IntervalThing. A data set can be viewed as

an IntervalThing if it specifies a begin and an end time instant, which allows for other InstantThings

or IntervalThings to be temporally related to it. For example if x is an InstantThing and d is a

DataSet with a begin and end time, then the binary relation x inside d can either hold or not hold.

OWLTime supports the binary relations before and after between time instants and the relation inside

between a time interval and an instant. The following binary relations are supported between time inter-

vals:

intervalEquals, intervalBefore, intervalMeets, intervalOverlaps, intervalStarts,

intervalDuring, intervalF inishes

and their reverse interval relations:

intervalAfter, intervalMetBy, intervalOverlappedBy, intervalStartedBy,

intervalContainsand intervalF inishedBy.

A duration of an interval can also be represented using a durationDescription. An interval can have

many duration descriptions, e.g. 1 day 2 hours, or 26 hours, or 1560 minutes, but only one duration. The

durationOf property is used to specify durations of temporal entities. The inCalendarClockDataType

property which has a range of xsd:dateTime is used to represent time instant values, while the

durationDescriptionDataType property which has a range of xsd:duration is used to represent time

durations.

The swap-time ontology extends the OWLTime ontology to allow for representing other temporal

entities not supported by OWLTime such as:

• Time resolution which represents a uniform gap between observations in a dataset. Currently this

is a static value, e.g. 15 minutes describes a gap of 15 minutes between observations. Irregular

gaps between observations are currently not supported.

• A temporal relation follows that, given a time resolution for a data set, is used to predict the time of

the next observation. For example, suppose that a data set has a temporal resolution of 15 minutes.

Given the time of an observation, e.g. 12:15, the follows property relates the time of the next

observation with the time of the current one. In this case the next observation will be at 12:30, and

the follows relation relates these times as: follows(12 : 30, 12 : 15)

66

Figure 4.14: SWAP temporal reasoner

Since OWL and Jena do not support reasoning about time, a temporal reasoner (figure 4.14) was

developed. The reasoner uses the Jena OWL rule based reasoner but also incorporates a set of additional

temporal rules. The temporal rules, which are based on the COBRA temporal reasoner [46], specify the

temporal relations in OWLTime. As the standard builtin comparison procedures provided by Jena, such

as equals, lessThan and greaterThan, support time values, no additional builtins were required. The

reasoner applies these rules to the instance data found in the local knowledge base to determine which

temporal relations hold between temporal entities. A temporal entity is considered to be any individual

of type IntervalThing or InstantThing.

For example, the two rules for determining whether a time instant is inside a time interval are:

(?x tme:inside ?y) <-

(?x rdf:type tme:InstantThing),

(?y rdf:type tme:IntervalThing),

(?y tme:begins ?beginsY), (?y tme:ends ?endsY),

(?beginsY tme:before ?x), (?x tme:before ?endsY).

(?x tme:before ?y) <-

(?x rdf:type tme:InstantThing),

(?x tme:inCalendarClockDataType ?timeX),

(?y rdf:type tme:InstantThing),

(?y tme:inCalendarClockDataType ?timeY),

lessThan(?timeX,?timeY).

where tme is the name space of the OWLTime ontology. The first rule stipulates that a time Instant x

67

is within a time interval y if the starting time of y is before x, and x is before the ending time of y. The

second rule uses the lessThan builtin to determine whether the time value of a time instant x is before

the time value of another time instant y. The temporal inference rules are provided in appendix A.3.2.

4.4.4 Uncertainty representation and reasoning

The swap-uncertainty ontology and the uncertainty reasoner is used to represent and reason about uncer-

tain knowledge. It takes a Bayesian approach to represent the uncertainty associated with observations

as and the causal theories that are applied to observations. The uncertainty ontology and reasoner are

described in chapter 5.

4.5 THE SWAP TECHNICAL ONTOLOGIES

The SWAP technical ontologies for representing data, agents and tasks are described in this section. The

ontologies are provided in Appendix A.5.

4.5.1 Representing data

The swap-data ontology specifies data structures that allow agents to dynamically exchange and process

data (figure 4.15). It contains descriptions to exchange simple numerical values (SingleNumericV alue),

numerical intervals (NumericInterval) and image files containing coverage data (ImageF ileV alue)

with the corresponding file format (ImageF ileFormat). Most data values have associated units of mea-

sure. The swap-data ontology specifies a general concept of Units and different types of units (figure

4.16). ThematicUnits are specified in domain ontologies, TemporalUnits are specified in swap-time

and SpatialUnits are specified in swap-space.

Since OWL does not provide support for representing list structures, the linked list structure from

the ObjectList ontology used in OWL-S 6 is used to represent lists. A list contains a first value that

specifies the first data element and a rest value that specifies another list containing the other elements in

the list. A special list instance, nil, represents the empty list. A list that has a rest value of nil represents

the last element of a list.
6http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl

68

Figure 4.15: The swap-data ontology

Figure 4.16: Representing units of measure in the SWAP ontology

4.5.2 Representing agents, services and interactions

The swap-agent ontology contains concepts to specify agents, the services they host, together with the

interaction protocols required to invoke these services.

Figure 4.17 shows a fragment of the swap-agent ontology. An Agent provides one or more Services.

A Service has a ServiceDescription that describes various properties of the Service, e.g. a description for

a data service would be the details of its DataSet (figure 4.4). An agent action usually results in an ex-

change of messages between agents. Currently, only simple request-response interactions are supported.

A message is either a type of RequestAction or a ResponseAction, e.g. a QueryAction message is a

type of RequestAction. An instance of the action is contained in the body of the message. The request

and response actions are specified in the swap-agent ontology (figure 4.18).

The Protocol specifies the type of request and response message required for a specific interaction.

For example, the DataRequest protocol that is used for retrieving data from a Sensor Agent, specifies

QueryAction and InformDataAction as the request and response messages respectively. For an agent to

enact a DataRequest interaction it sends an instance of QueryAction to the Sensor Agent which responds

with an instance of InformDataAction. A specific protocol is defined as a subclass of Protocol with

69

Figure 4.17: Part of the swap-agent ontology

Figure 4.18: Representation of agent actions

restrictions on the message types that can be contained in the hasRequest and hasResponse properties.

For the DataRequest protocol the request and response actions are restricted to a QueryAction and a

InformDataAction respectively.

The swap-agent ontology also specifies the structure of an agent message (figure 4.19). A Message

has: a content or body which is an instance of an Action (figure 4.18); an optional file attachment; a

type which is the Uniform Resource Identifier (URI) of the Action; a sender; and a receiver which is the

Agent that sent the message and the Agent to which the message was sent. Each message belongs to a

conversation which is uniquely identified by a conversationId. Since message passing is asynchronous

and an agent could have many outstanding request messages at any given time, the conversationId is

used to map response messages to corresponding request messages.

70

Figure 4.19: A representation of an agent message

4.5.3 Representing workflows using OWL-S

The swap-task ontology provides support for representing agent workflows. It is based on the Web

Ontology Language for Services (OWL-S) [129, 191]. OWL-S is an extension of OWL that provides

primitives for representing executable processes. A process in OWL-S specifies the way in which a client

may interact with a service. An atomic process is a description of a service that expects a single message

and returns a single message in response. A process can function in two ways. Firstly, it can generate

and return some new information based on the world state and information that it is given. Information

production is described by the inputs and outputs of the process. Secondly, it can produce a change in

the world. This transition is described by the preconditions and effects of the process. A process (figure

4.20) can have zero or more inputs, which represent the information required to perform the process.

It can also have zero or more outputs, i.e. the information that is produced by the process. There can

be zero or more preconditions, all of which must hold for the process to be successfully invoked. The

process can have zero or more effects which are communicated as results to the requestor. Outputs and

effects can depend on conditions that hold true of the world state at the time the process is executed.

OWL-S uses the Semantic Web Rule Language (SWRL) [98] for representing variables. SWRL

variables are used to represent the Input and output parameters of a process where each parameter has a

type and a value. For object parameters, the type specifies an OWL class, as the URI of the class, and

the value must contain an instance of the OWL class. XML data type parameters can also be used by

specifying the URI of an XML data type and a corresponding literal value.

71

Figure 4.20: Part of the swap-task ontology

A composite process represents a composition of atomic processes. Each message the client sends

advances it through the composite process. A composite process is used to represent workflows that

combine interactions between multiple agents. The state (inputs, outputs, preconditions and results) af-

ter each processing step can be saved and used later in subsequent processing steps. A CompositeProcess

must have a composedOf property which specifies the control structure (ControlConstruct). Each Con-

trolConstruct is associated with a components property that indicates the nested control constructs from

which it is composed and their ordering. To illustrate the OWL-S process representation, consider the

composite process, P3, shown in figure 4.21. It is composed of two atomic processes p1 and p2. P3

has two input parameters, p3 − input1 and p3 − input2, and a single output parameter, p3 − output1.

P3 is composed of two processing steps P1 and P2 which are performed in a simple sequence control

construct, i.e. perform P1, then perform P2. P1 has a single input, p1 − input1 and a single output

p1−output1, while P2 has two inputs, p2−input1 and p2−input2, and one output, p2−output1. Sup-

pose, the input parameters for P3 are populated and P3 is invoked. As specified in the control construct

(see figure 4.21), the value for p3− input1, is used to populate p1− input1, and P1 is then invoked, to

produce p1−output1 and this value is used to populate p2−input1. The value of p3−input2 is used to

populate the second input for p2, i.e. p2− input2, and P2 is invoked. P2 produces output p2−output1.

p2 − output1 is used to populate the only output for p3, i.e. p3 − output1 and the composite process

P3 completes. Input and output parameters can be simple XSD literals, e.g. XSD : Integer or OWL

object types.

Besides the Sequence control construct described above, OWL-S also provides support for the follow-

ing control constructs: Split, Split + Join, Choice, Any-Order, Condition, If-Then-Else, Iterate, Repeat-

While, and Repeat-Until. The OWL-S Editor plugin [62] in Protege provides a graphical environment

for constructing and visualising OWL-S processes and was used to construct the process in figure 4.21.

72

Figure 4.21: A sample composite process, P3, represented in OWL-S

73

4.5.4 Incorporating agent services into OWL-S

While OWL-S supports the composition and execution of web services, it does not support agent com-

position and invocation. An agent-to-process-mapping was created, that extends OWL-S, and allows for

representing executable agent workflows as OWL-S processes.

An OWL-S atomic process is used to represents an invocation of a specific agent service. The process

to agent message mapping, shown in figure 4.22, uses the values of the input parameters to construct

an agent request message and populates output parameter values with values extracted from the agent

response message. It consists of an input mapping that binds input parameter values to variables in a

request message template and an output mapping that binds values from a response message to variables

contained in a response message template.

When an atomic process is executed, a copy of the Request Message Template is created. Static

property values are copied as is, while properties with input variables are replaced with the values of

the corresponding input parameters. This message is then sent to the appropriate agent which responds

with a response message. The Response Message Template specifies which property values are to be

extracted from the response message. When the response message is received, the template is searched

for variable properties, i.e. properties that contain output variables. The process output parameters are

then populated with the corresponding property values extracted from the response message. In this way

values of input parameter values are used to construct a valid request message to invoke an agent service.

Relevant values from the response message are extracted and used to populate the output parameters of

the process.

One feature of this approach, as shown in figure 4.22, is the differentiation between static and vari-

able values in the message templates. The request message template allows for specifying invocation

parameters that may change for each invocation and that must be supplied as inputs to the process. The

remaining invocation parameters take on default or static values that are specified in the template and

remain constant for each invocation. For an agent that requires multiple invocation parameters, prede-

fined or default values can be provided for certain parameters. Only the variable parameter values must

be provided as inputs to the process. One current limitation of this approach is that only input variables

can contain literals values. Output variables are restricted to object values.

74

Figure 4.22: Mapping OWL-S processes to agent services

75

The Mindswap OWL-S API 7 is used for the execution of OWL-S workflows. The API was extended

to allow for execution of agent services using the agent-to-process-mapping described above.

4.6 AGENT DISCOVERY AND INVOCATION

The ontology infrastructure provides a common semantic framework for agents to interpret and reason

about sensor data. However, agents must be able to discover and be able to send appropriate request

messages to invoke these services. Agents that offer services must be able to receive, process and respond

to these requests.

4.6.1 The SWAP Directory Agent

The SWAP Directory Agent provides a searchable repository of Service instances that describe the

services offered by agents in the system. SWAP agents register their services with the SWAP Directory

Agent so that their services can be discovered and used by other agents.

4.6.1.1 External Representation

The SWAP Directory role is described in table 4.1 and the SWAPServiceRegistration and SWAPDirecto-

rySearch protocols for registering and searching for a service are shown in table 4.2.

An agent registers its Service via a RegisterServiceAction message. A RegisterServiceAction instance

has a provides property containing a Service instance (figure 4.17). The Service instance has a service de-

scription describing the service being offered, the details of the agent offering the service, and a protocol

that provides request and response message templates (figure 4.22) for invoking the service and inter-

preting the response from the service. Different agents offer different types of services and accordingly

have different ServiceDescriptions. Sensor Agents that offer access to data sets provide a description

of their data set. Tool Agents that offer data processing services, Modeling Agents that offer prediction

services and Workflow Agents that provide coordination services provide descriptions of their input and

output parameters. Application Agents provide a description of the phenomena for which they are able

to provide alerts. Services are searched by type, i.e. DataSet, Tool, Modeling, Workflow and Application,

7http://www.mindswap.org/2004/owl-s/api

76

Table 4.1: SWAP Directory role schema

Role Schema: SWAP Directory
Description Hosts a service repository containing service entries for all agents that

offer a service in the system. Answers search requests for services. Al-
lows agents to register a new service or to update a service entry for an
existing service.

Protocols and
Activities

SWAPServiceRegistration, SWAPDirectorySearch

Permissions Delete, add, modify registry (local)
Responsibilities

• Maintain service registry

• Respond to service query requests

and by specifying constraining values for properties specific to the service description for this service

type. The SWAP Directory Agent responds with a InformResultAction with the results of the registration,

i.e. whether the registration was successful or not.

Other agents are able to search the SWAP directory to discover these services. A search request for

agent services is done via a SearchDirectoryAction message. A SearchDirectoryAction instance specifies

the search criteria. It has a single property hasServiceDescriptionValue that specifies a ServiceDescrip-

tion instance. Consider Sensor Agents that offer DataSets. DataSets can be restricted by specifying

combinations of thematic, temporal and spatial properties. Suppose that ds is a DataSet, st is some

SpatialThing, ti is a time Instant and p is some thematic ObservedProperty, then, ds intersects st, ds int-

Contains ti, ds observesProperty p are examples of spatial, temporal and thematic constraints on DataSet

services. A SearchDirectoryAction with value ds for hasServiceDescriptionValue will request all DataSet

Service instances with descriptions that satisfy these constraints. Matching services are sent back via an

InformServicesAction with the matching services specified by the hasService property.

4.6.1.2 Internal Operation

The SWAP Directory Agent handles two types of requests, service registrations and service search re-

quests. Service registrations are processed by adding the service instance contained in the RegisterSer-

viceAction to the local knowledge base or updating the entry if it already exists. The result of this

operation is sent to the sender via an InformResultAction message.

77

Table 4.2: The service registration and directory search protocol schemas

Protocol SWAPServiceRegistration
Initiator Any agent
Participants SWAP Directory Agent, any SWAP agent that offers a SWAP service
Message Types RegisterServiceAction, InformResultAction
Inputs Service instance
Outputs Result of Registration
Description An agent registers the service it provides by sending a RegisterService-

Action to the SWAP Directory Provider, which responds with an Inform-
ResultAction specifying whether the registration was successfull.

Protocol SWAPDirectorySearch
Initiator Any agent
Participants Directory Agent, initiating agent
Message Types SearchDirectoryAction, InformServicesAction
Inputs Service criteria
Outputs Zero or more services that match the input criteria
Description An agent can search the service repository, by specifying thematic, spa-

tial and temporal criteria. The SWAP Directory provider responds with
services that match the criteria.

Search request messages, i.e. SearchDirectoryAction messages, are more complex to handle. Three

separate queries for Service instances, using the SWAP reasoning engine, are performed on the local

knowledge base (KB). Thematic constraints are identified and extracted from the search request and a

thematic query is performed on the KB using the thematic reasoner. Spatial constraints are then identified

and extracted from the search request and a spatial query is performed on the KB using the spatial

reasoner. Finally the temporal constraints are identified and extracted from the search request and a

temporal query is performed on the KB using the temporal reasoner. Those Service instances that appear

in the results of all three queries form the final results of the search request. An InformServicesAction

message containing these Service instances is composed and sent to the requesting agent.

4.6.2 Service Composition

Composing agent workflows consists of selecting one or more agent services and determining the se-

quence in which they must be executed. A composite OWL-S process, as described in section 4.5.3, is

then constructed. An atomic process is created for each service instance (see figure 4.22). The usesProto-

col property of a Service instance contains the request and response message templates that are required

for creating the atomic processes. Since the automatic workflow composition is not supported workflows

are composed manually. Workflow Agents are responsible for hosting and executing workflows.

78

4.7 SWAP INTERNAL AGENT ARCHITECTURE

This section describes an internal agent architecture that enables agents to receive, process and respond

to incoming requests and information. The approach attempts to bridge the gap between the declarative

programming approach used for programming ontology and agent systems and the imperative approach

used in object oriented development. It uses a data mapping API to allow agent developers to incorporate

and integrate existing programming libraries, sensor data stores and GUI components available to the

geoinformatics community.

4.7.1 Internal Agent Architecture Overview

The internal architecture of an agent is shown in figure 4.23. An agent uses the shared ontologies and

shared rules to interpret and reason about incoming messages. Custom rules and ontologies, which

encode additional knowledge required for its internal operation, may also be specified. This allows for

different agents to respond differently to request messages as determined by their custom ontologies and

custom rules. The agent execution engine provides the runtime environment for an agent. It implements

a communication infrastructure that provides a transport layer for message passing, message handlers

to handle different messages and a message queue that redirects incoming messages to the appropriate

message handlers. These message handlers use the reasoning engine to interpret, reason about and

respond to these messages.

4.7.2 Incorporating GIS development libraries

Various initiatives are underway in the geoinformatics community to provide opensource development

libraries to serve, access, process and visualise sensor data. The SWAP architecture attempts to leverage

and reuse these libraries where possible. Some of the GIS Java based development libraries that are used

within SWAP are described below.

52 North - OXFramework: 52 North’s 8 OGC Web Service Access Framework (OX-Framework) [37]

supports access to different kinds of OGC Web Services, and the visualisation and processing of queried

8http://52north.org

79

Figure 4.23: The SWAP internal agent architecture

data. It offers developers a customisable and extendable library of cooperating classes with the emphasis

on reusability. It facilitates access to sensor data sources, such as SWE services and spatial databases,

and provides Java-Swing based graphical components for building client applications for retrieving and

visualising geographical data.

OpenGIS and GeoAPI: OpenGIS is a set of interface and encoding specifications produced by the

Open Geospatial Consortium (OGC) 9 that supports transparent access to heterogeneous geodata and

geoprocessing resources in a networked environment. It enables developers to write interoperating com-

ponents that provide these capabilities. An OpenGIS compliant software product is a software product

that follows the OpenGIS specifications and is able to interoperate with other OpenGIS implementations.

The GeoAPI 10 project provides interface-only APIs derived from OGC and International Standards Or-

ganisation (ISO) standards. GeoAPI is implementation independent and is freely available as a set of

Java interfaces from Sourceforge11.

Java Topology Suite (JTS): The JTS Topology Suite12 is an open source Java implementation of the

OGC Simple Features Specification for SQL [150]. It is OpenGIS compliant and implements the two

dimensional spatial algorithms required to calculate the spatial relations described in 4.4.2.
9http://www.opengeospatial.org

10http://docs.codehaus.org/display/GEO/Home
11http://geoapi.sourceforge.net
12http://www.vividsolutions.com/JTS/

80

Table 4.3: Mappings between SWAP ontology structures and OpenGIS Java class structures

Ontology Concept/Representation Library Interface/class
swap-time TemporalThing GeoAPI ITime
swap-time InstantThing GeoAPI TimePosition
swap-time IntervalThing GeoAPI TimePeriod
swap-space Geometry JTS Geometry
swap-space BoundingBox GeoAPI IBoundingBox
swap-space PointCoordinate JTS Coordinate
swap-space List of PointCoordinates JTS CoordinateList
swap-space List of SingleValues with spatial extent OXFramework Collection<OXFFeature>
swap-data ImageFileValue core Java File

4.7.3 Mapping between ontology data instances and OpenGIS data objects

SWAP provides a data mapping API that allows agent developers to incorporate functionality from ex-

isting Java based GIS libraries. The data mapping API, shown in figure 4.23, transforms spatial and

temporal ontology data instances into corresponding OpenGIS data structures. For example, the Geom-

etry class in the JTS Java libraries naturally maps to the Geometry concept defined in the swap-space

ontology. The mappings that are currently provided are shown in table 4.3. For each mapping, the ontol-

ogy concept, the corresponding Java representation class and the library to which the classes belong are

shown.

The data mapping API is used within an agent to convert incoming ontology instance data to OpenGIS

Java data objects. These objects can then be processed using the functionality provided within OpenGIS

Java libraries. Once the processing is completed, the data mapping API is used to convert the results into

ontology instances that can be exchanged with other agents.

Integration with SWE services The OXFramework provides client side APIs for accessing spatial

databases and OGC SWE services. The data mapping API can be used to convert agent data requests

to OXFramework objects. The appropriate OXFramework client side APIs can be used to access and

request data from a relational database or a SWE service. The returned data can be converted into SWAP

ontology instances. In this way SWAP agents can access and incorporate data from OGC SWE services

and spatial databases.

User interface support The OXFramework also provides Java-Swing components to visualise sensor

data in client applications. These components can now be incorporated within SWAP User Agents for

81

data visualisation.

Integration with other Java development libraries: Since the GeoAPI and OpenGIS interfaces are

standard, any OpenGIS compliant libraries can be incorporated in SWAP by using the data mapping API.

For example, the open source GeoTools 13 Java library is used to read GeoTiff files.

4.8 SUMMARY

This chapter described the design and operation of the Sensor Web Agent Platform. The abstract ar-

chitecture, described in section 4.2, guides the design of agent based Sensor Web applications. The

architecture provides three abstraction layers and six abstract agent types that allows for a clear separa-

tion of concerns. Sensor specific functionality is restricted to Sensor Agents in the Sensor Layer. Data

processing, data analysis steps and prediction models are applied to sensor data by agents in the Knowl-

edge Layer. Results from the Knowledge Layer form the basis for alerts that are delivered to end users

via alerting applications offered by Application Agents at the Application Layer.

The SWAP ontology infrastructure is described in sections 4.4 and 4.5. The conceptual ontologies

(section 4.4) separate the representation of real world entities into four aspects or dimensions, i.e. spatial,

temporal, thematic and uncertainty. The approach is based on the human cognitive system. It aims to ease

the development, management and sharing of conceptual models for complex real world observations.

Having four separate representation and reasoning systems also increases the flexibility and speed of the

reasoning process. Since the reasoners operate independently, each reasoner can be customised, extended

or exchanged without affecting the others. The different reasoners currently use different inferencing

engines: the thematic reasoner uses a Pellet reasoner; the temporal and spatial reasoners use a Jena

rule-based engine; and the uncertainty reasoner (discussed in the next chapter) uses a Bayesian inference

engine. The technical ontologies (section 4.5) are used to specify data structures which are used by agents

to access and interpret incoming data. The technical ontologies provide support for describing agents, the

services they host, and the interaction protocols for invoking these services. Agents register their services

with a SWAP Directory Agent (section 4.6). Services are discovered by querying the SWAP Directory

Agent. Agent services can be assembled into executable agent workflows. Section 4.5.4 describes how

OWL-S is extended and used for representing executable workflows.
13http://geotools.codehaus.org/

82

The internal agent architecture, described in section 4.7, facilitates the development of individual

ontology driven agents. A key feature is the data mapping API which allows for converting between

ontology instance data and OpenGIS Java objects. This allows agent developers to incorporate open

source OpenGIS libraries or even remote OGC services to perform the internal processing of an agent.

The next chapter describes how Bayesian Networks are used to represent and reasoning about uncer-

tain knowledge.

Chapter 5

INCORPORATING UNCERTAINTY INTO SWAP

Most geographical data contain some degree of uncertainty. This results from inaccuracies inherent in

sensor readings or from inaccuracies of theories or algorithms used to produce the data. Representation

and reasoning about uncertainty is required at all layers of the SWAP architecture. At the Sensor Layer,

sensors measure entities in the real world. This is prone to a number of errors and inaccuracies including

unpredictable changes in the physical environment, inaccuracies in spatial representation systems and

degradation of sensors over time. In the Knowledge Layer, the results of individual Tool and Modeling

agents also have an element of uncertainty. The accuracy of the results produced by Tool agents are

influenced by the algorithms and configuration parameters being used as well as specific characteristics of

the data, such as the spatial and temporal resolution. Modeling agents provide predictions that inherently

have an element of uncertainty. Workflows combine results of Tool and Modeling agents to extract

complex information that is used to produce alerts in the Application Layer. The uncertainty associated

with component Sensor, Tool, Modeling and Sensor agents contribute to uncertainty in the results of the

workflow. The nature and availability of sensor data, the accuracy and completeness of the theory that

underpins the choice, and the sequence of the processing steps may contribute an additional element of

uncertainty. The information produced by workflows are frequently approximations or best guesses.

This chapter describes the SWAP uncertainty ontology and reasoner. SWAP takes a Bayesian prob-

ability approach to represent and reason about uncertainty on the Sensor Web [159, 171]. Bayesian

probability is well suited for dealing with uncertainty on the Sensor Web: where no complete theory is

available; or where it exists it might be too tedious or complex to incorporate all the required observa-

tions; or where all the necessary observation data is not available [171].

83

84

5.1 BAYESIAN PROBABILITY

The classical ”frequentist” approach to probability is based on measuring the relative frequency of dif-

ferent outcomes based on previous random observations of some event, e.g. the chance of having an

outcome of heads when tossing a coin. When the number of random observations of a certain event is

very large, the relative frequency of the observations is a near exact estimate of the probability distri-

bution of the event. Since frequencies can be measured, this frequentist interpretation of probability is

deemed to be an objective measure for dealing with random phenomena.

However, many events have no historical precedent, may occur infrequently or are difficult to ob-

serve. Examples of such events are a tsunami occurring on the east coast of South Africa or the tempera-

ture of the earth’s core being greater than 5700 Kelvin. The Bayesian approach to probability differs from

the classical frequentist approach. The Bayesian probability of an event [171] represents the degree of

belief that the event occurred given the occurrence of other events. Events that are easily observable often

cause or influence the occurrence of other events which may not be as easily observable. Beliefs are gov-

erned by a probability distribution that can be updated by making use of the observed data. The personal

belief of the occurrence of an event starts with a given distribution and is known as the prior distribu-

tion. Bayesian Networks capture dependency relations as well as the degree of the dependency between

events within conditional probability distributions. By recording the occurrence of certain events, which

are readily observable, a Bayesian Network can be used to determine the probability of the occurrence of

other events which are directly or indirectly affected by these events. In Bayesian networks these casual

relationships are applied to observational data in order to obtain a posterior probability distribution by

updating the prior belief.

5.1.1 Bayesian Networks

A Bayesian Network is represented as a directed acyclic graph. The nodes of the graph represent random

event variables. Influence or dependency relations between variables are represented by directed arcs

between the nodes. The direct parents of a node are considered to be all nodes that have a direct influence

on this node. The children of a node are considered to be all nodes on which this node has a direct

influence.

85

Assume that all event variables A, B, C . . . are finite and discrete, i.e. each variable has a finite

number of states. An event e is represented by assigning a state to a variable. Boolean variables take on

one of two states, either True or False, i.e. indicating whether the event occurred. Suppose that A and

B are the only variables in a domain. If A has two states and B has three states then five possible atomic

events, E = {a1, a2, b1, b2, b3}, can be represented in this domain.

5.1.1.1 Prior probability

The prior (or unconditional) probability of an event is considered to be the probability that an event

occurs given no other information about the occurrence of other events in the domain. For an event

e the prior probability of the event is written as P (e). For example, the prior probability that event

a1 (event variable A taking on its first state) will occur is P (a1). A prior probability distribution is

specified for all independent variables, i.e. variable that have no parents or direct influences. If event

variables A and B (from the example above) are independent, then the prior probability distribution

of A is P(A) = {P (a1), P (a2)} and for B is P(B) = {P (b1), P (b2), P (b3)}. The joint probability

distribution, P(A, B,C, . . .), specifies all the combinations of all values on a set of random variables,

i.e. it represents a complete set of the probabilities of all possible states of the domain. In this example

P(A, B) is a 6x2 table, where each row represents one possible state of the domain. In this example, the

domain can be in one of six states at any given time.

5.1.1.2 Conditional probability

Once some evidence has been observed about the states of certain variables that influence other previ-

ously random variables, prior probabilities are no longer appropriate. Instead, conditional (or posterior)

probabilities are used. Suppose that the state of B has an influence on the state of A then the condi-

tional probability of a1 given that B is in state b1 is written as P (a1|b1). Conditional probabilities can be

defined in terms of unconditional probabilities:

P (a1|b1) =
P (a1 ∧ b1)

P (b1)
(5.1)

where P (b1) > 0

86

This equation can also be written as P (a1 ∧ b1) = P (a1|b1)P (b1) or because of the communicativity

of conjunction as P (a1 ∧ b1) = P (b1 ∧ a1) = P (b1|a1)P (a1). Equating the two right hand sides gives:

P (a1|b1)P (b1) = P (b1|a1)P (a1). Then dividing both sides by P (a1) results in:

P (b1|a1) =
P (a1|b1)P (b1)

P (a1)
(5.2)

Equation 5.2 is known as Bayes’ theorem.

An entry in the joint probability distribution is one particular assignments to each variable Xi in the

Bayesian Network or P (X1 = x1 ∧ . . . ∧Xn = xn). This can also be written as P (x1, . . . , xn) and the

value is calculated by

P (x1, . . . , xn) =
n∏

i=1

(P (xi|parents(Xi)) (5.3)

where parents(Xi) is the values of the variables that are direct parents of Xi.

5.2 BAYESIAN NETWORKS FOR THE SENSOR WEB

The occurrence of natural phenomena are sometimes difficult to detect. Certain phenomena exhibit

consistent symptoms that are more easily detected. These symptoms can serve as an indicator for the

occurrence of the phenomena. The analysis of observations from multiple sensors may be required to

determine the existence of the symptoms of specific phenomena. A Bayesian Network can be used to

determine the probability of the occurrence of a phenomena given one or more observable symptoms. In

such a Bayesian Network two types of discrete random variables are required:

Observable event variables represents the occurrence of a symptom of a phenomena and is a qualitative

measure for an observation. The variable must specify the entity, the characteristic of the entity

being observed, as well as the property that contains the numerical value for the observation. The

states are predefined numerical ranges, corresponding to qualitative descriptions. For example,

wind speed is often used as an indication of the extent of a storm: from 6 to 49 km/hr is a breeze;

50 to 89 km/hr is a gale; 90 to 117 km/hr is a storm and speeds greater than 118 km/hr is indicative

of a hurricane 1. Observation instance data can be used to populate observable event variables..

Inferred event variables represents the occurrence of a phenomena, e.g. a hurricane. A phenomena

is represented as a subclass of Phenomenon in the swap-theme ontology. When a phenomena is
1Using the Beaufort scale from http://en.wikipedia.org/wiki/Beaufort scale

87

detected, an instance of the appropriate Phenomena class is created. These events are inferred

from observable events or other inferred events. Even though these variables are intended for

representing the occurrence of a phenomena, they can be used to represent any event that is not

easily or directly measurable.

An occurrence of an observable event is determined by evaluating measurements of some observed

property of an observed entity, e.g. the speed of the wind above a certain threshold results in the occur-

rence of a ”strong wind” event. These observable events are used to infer the probability of the occurrence

of other events, e.g. a very strong wind is a symptom of a hurricane event. Thus, by analysing one or

more measurements certain phenomena can be detected, e.g. a wind speed above 118 km/hr and an air

pressure lower than 97.7 kPa can be considered to be symptoms of a hurricane event 2.

The proposed Bayesian Network model assumes that all variables are discrete and represent events

that occur at the same time and space. The current model does not cater for the influence of past or future

events, or the influence of events occurring at different locations. An investigation can be conducted into

how the model can be extended in this regard, but is out of the scope of this work.

5.2.1 An ontology for Bayesian Networks

The approach builds on the ontology from the BayesOWL [57, 58] approach. BayesOWL proposes five

classes (see figure 5.1) to represent a Bayesian Network (BN) within an ontology, i.e. ProbObj, which

could either be a CondProb or a PriorProb, Variable and State. It also provides four properties, i.e.

hasClass, hasProbValue, hasVariable and hasCondition. The structure of the BayesOWL ontology is

shown in figure 5.2. A ProbObj has a probability value (hasProbValue) of some variable (hasVariable)

being true. A Variable represents whether an instance is a member (rdf:type) of the specified class

(hasClass). A variable can be in one of two states, either True or False, i.e. whether the instance is a

member of the class or not.

The swap-uncertainty ontology, shown in figure 5.3, extends the BayesOWL ontology. The structure

of the ontology is shown in figures 5.4 and 5.5. The complete ontology is given in Appendix A.4. The

following extensions were made to the BayesOWL ontology:

2http://hypertextbook.com/facts/StephanieStern.shtml

88

Figure 5.1: Classes in the BayesOWL ontology

Figure 5.2: The BayesOWL ontology

89

• Specialising the State class to allow for user defined DiscreteStates rather than just Boolean states

(True, False). The DiscreteRangeState could be a numeric interval for numerical data type prop-

erties or a SingleNumericState for single numeric values.

• BayesOWL caters only for instance classification. The ProbObj class in BayesOWL only provides

the properties hasProbValue and hasVariable. This implicitly assumes a state of True. To cater for

other states, the hasState property is added to ProbObj. In this way the state is made explicit and

other discrete states can be represented.

• BayesOWL supports only boolean states. The CondObj class has a single property, hasCondi-

tion, with range Variable, which implicitly represents a state of True. A new class, Condition,

is introduced with properties hasVariable and hasState to allow for multiple states of influenc-

ing variables. Thus, a conditional probability may have one or more conditions representing the

different states of an influencing variable.

• The BayesOWL Variable class uses the hasClass property to represent whether an instance is

an instance (rdf:type) of a specific class. A new property hasProperty is introduced so that the

Variable class can represent other properties, besides class type (rdf:type).

• Manually creating each condition and conditional probability statement can be tedious. Another

property, influencedBy, is added to represent the arcs between variable nodes in a BN graph. By

adding this property, the influence relations between variables, and the structure of a BN can be

generated automatically. It is populated with default values which can be modified to reflect the

actual probability values.

5.2.2 Specifying Bayesian Networks

A Bayesian Network (BN) is represented using the swap-uncertainty ontology shown in figure 5.4. Each

node in the BN represents either an observation or an inferred variable. An observation variable rep-

resents the observation value (hasValueProperty) for some observed property (observesProperty) of the

observed entity (observesEntity). An inferred variable represents the occurrence of some phenomena

(hasClass). The influencedBy property specifies the variables that influence the state of this variable.

90

Figure 5.3: Classes in the swap-uncertainty ontology

An example to determine the probability of the occurrence of a hurricane is described below to

illustrate how the swap-uncertainty ontology is used to represent a BN. Figure 5.6 shows a fragment of

the swap-theme ontology that incorporates selected concepts from the SWEET substance, property and

phenomena ontologies to describe the thematic properties of air pressure, wind speed and the hurricane

phenomenon. Figure 5.7 shows an air pressure observation with Air and AtmosphericPressure as the

observed entity and observed property respectively. Figure 5.8 shows a wind speed observation with

Wind and Speed as the observed entity and observed property respectively. Suppose that low air pressure

and high wind speed are symptoms of a hurricane. Then the Bayesian Network graph model to determine

the probability of the occurrence of a hurricane phenomenon is shown in figure 5.9. To facilitate mapping

between the ontology and the graph model, the full URI is used to label the variables. The BN contains

three variables:

• wind speed var represents wind speed observations (figure 5.8)

• air pressure var represents air pressure observations (figure 5.7)

• is hurricane var represents instances of the Hurricane class (figure 5.6)

91

Figure 5.4: The fragment of the swap-uncertainty ontology for representing a Bayesian Network

92

Figure 5.5: The fragment of the swap-uncertainty ontology for representing probability statements

93

Figure 5.6: Concepts from the swap-theme ontology for representing wind speed and air pressure and
hurricanes

Table 5.1: Prior Probabilities and Conditional Probability Tables (CPT) for detecting hurricanes

Variable State Prior Probability

is hurricane
True 0.05
False 0.95

Variable State Conditional Probability
is hurricane var True False

wind speed var gt 0 lt 50 0.02 0.98
gt 49 lt 118 0.65 0.35

gt 117 0.98 0.02
Variable State Conditional Probability

is hurricane var True False

air pressure var lt 91d7 0.7 0.3
gt 97d99 0.15 0.85

gt 91d69 lt 98 0.6 0.4

The directed arcs from is hurricane var to wind speed var and air pressure var capture the influ-

ence of hurricanes on air pressure and wind speed, more specifically that hurricanes cause a lower air

pressure and a higher wind speed. The states of the three variables together with fictitious values for

prior and conditional probabilities are shown in table 5.1.

The BN described above can now be represented using the swap-uncertainty ontology by defining

an instance of the BayesianNetwork class, bn detect hurricane, shown in figure 5.10. The three vari-

ables, air pressure var, is hurricane var and wind speed var are specified as the variables of the BN.

The discrete numeric range states (hasState), parent nodes (isInfluencedBy) and thematic properties are

specified for each variable. For the two observation variables, air pressure var and wind speed var, the

observesEntity, observesProperty and hasValueProperty properties identify the observation instances to

94

Figure 5.7: An ontological representation of an air pressure measurement

95

Figure 5.8: An ontological representation of a wind speed measurement

96

Figure 5.9: A Bayesian Network to determine the occurrence of an hurricane from air pressure and wind
speed observations

which these variables apply, i.e. air pressure (figure 5.8) and wind speed (figure 5.7) observations. For

the inferred variable, is hurricane var, the hasClass property references the URI of the Hurricane class.

When an hurricane is detected the location and time from the relevant observation instances are used to

create an instance of the Hurricane class. The states for air pressure var and wind speed var are nu-

meric intervals with upper and lower limits and are specified using the NumericInterval data type defined

in the swap-data ontology (figure 5.11).

The probability statements from table 5.1 must also be specified for each variable. If a variable is not

influenced by another variable, the conditional probability table consists of prior probability statements,

one for each of the states of the variable. The is hurricane var variable has two prior probability state-

ments and are represented as instances of ProbObj (see figure 5.5). A probability statement (ProbObj)

represents the probability value of a given variable assuming a certain state. A prior probability instance

representing a prior probability of 0.95 that is hurricane var assumes state False is shown in figure 5.12.

Another instance of PriorProb is created to define the prior probability of is hurricane var being True.

For wind speed var three conditional probability statements, one for each of the probabilities in ta-

ble 5.1, must be constructed. The first entry, 0.02, specifies that: if there is an hurricane there is a 2%

probability that the wind speed is between 0 and 50 km per hour. The conditional probability statement

shown in figure 5.13 represents this. A Condition instance, cond is hurricane var True, representing

is hurricane var taking on state True, is first specified. An instance of CondProb is then created. It spec-

ifies the wind speed var as the variable (hasVariable), the previously defined cond is hurricane var True

condition as a single condition (hasCondition), and gt 0 lt 50 as the state (hasState) of the variable, and

97

Figure 5.10: An ontological representation of a Bayesian Network for detecting hurricanes

98

Figure 5.11: Representing discrete range states

<swap-uncertainty:PriorProb rdf:about="#pr_prob_is_hurricane_var_False">
<swap-uncertainty:hasProbValue="0.95">
<swap-uncertainty:hasState rdf:resource="&swap-uncertainty;False"/>
<swap-uncertainty:hasVariable rdf:resource="#is_hurricane_var"/>

</swap-uncertainty:PriorProb>

Figure 5.12: Example of a prior probability statement

0.02 as the probability value (hasProbValue). Similarly, appropriate Condition and CondProb instances

are created for the remaining five conditional probabilities for the wind speed var and the six conditional

probabilities for air pressure var listed in table 5.1.

As illustrated in the example above the swap-uncertainty ontology can be used to specify the discrete

random variables, the influence relations and the probability tables of a Bayesian Network (BN). The

uncertainty reasoner is then used to perform inferencing on the BN, and to add the results or posterior

probability statements to the local knowledge base.

<swap-uncertainty:Condition rdf:about="#cond_is_hurricane_var_True">
<swap-uncertainty:hasVariable rdf:resource="#is_hurricane_var"/>
<swap-uncertainty:hasState rdf:resource="&swap-uncertainty;True"/>

</swap-uncertainty:Condition>

<swap-uncertainty:CondProb rdf:about="#cd_prob_wind_speed_var_gt_0_lt_50_0">
<swap-uncertainty:hasVariable rdf:resource="#wind_speed_var"/>
<swap-uncertainty:hasState rdf:resource="#gt_0_lt_50"/>
<swap-uncertainty:hasCondition rdf:resource="#cond_is_hurricane_var_True"/>
<swap-uncertainty:hasProbValue="0.02">

</swap-uncertainty:CondProb>

Figure 5.13: Example of a conditional probability statement

99

Figure 5.14: SWAP probability reasoner

5.2.3 The uncertainty reasoner

SWAP uses the BNJ toolkit for internal representation and inferencing. Bayesian Network tools in Java

(BNJ) [2] is an open source Java toolkit for developing applications that use Bayesian Networks. It

provides a visual Bayesian Network editor and viewer, a graph representation model for representing

and manipulating a BN, a number of inference engines, as well as learning algorithms for constructing a

Bayesian Network from data.

The schema and the components of the uncertainty reasoner are shown in figure 5.14.

Each BN (instances of BayesianNetwork) uses the states of observed variables (observation in-

stances) to make inferences about whether a phenomena has occurred (inferred variables). If a phenom-

ena has occurred then an instance of the corresponding phenomena, which contains the corresponding

location and time of the observations, is created. A schema ontology containing the BN and observation

instances from the local knowledge base are provided to the inference engine. The BN is first extracted

from the schema ontology and used to create a BNJ graph model. The URIs of the variables and their

states are used as the variable and state names in the BNJ graph model to ease the mapping of variables

and states between the ontology and the graph model.

The following steps summarise the operation of the uncertainty reasoner:

• All observation variables are identified and added to a variable list. An instance list is then created

100

for each variable in the variable list. The instance list contains all instances that match the ob-

servesProperty and observesEntity of the variable. If any general spatial and temporal constraints

are specified for this BN then only those instances that satisfy these constraints are added to the

instance list.

• Observation lists that comprise of observation instances for all variables that are made over the

same time and location are then created. For each observation instance for a variable, iterate

through all other variables and find observation instances for those variables that have matching

location and time.

• For each observation list, determine and set the state of each observation variable that has a corre-

sponding observation in the list using the hasValueProperty property from the variable to extract

the observation value and corresponding state of the variable. The state of each observation vari-

able is supplied as evidence values to these variables in the BNJ graph

• The BNJ inference engine is then applied to the graph.

• Posterior probabilities are extracted for the inferred variables and corresponding posterior proba-

bility statements are added to the local knowledge base, or could be stored separately in a tempo-

rary knowledge base.

• Using a predefined probability threshold, e.g. > 0.5, these statements are used to create new

instances of the phenomena class to which these variables refer.

Consider the example BN to determine the occurrence of hurricanes described above. The air

pressure (air pressure1) and wind speed (wind speed1) instances shown in figures 5.7 and 5.8) are

used to populate the states of the observation variables, air pressure var and wind speed var to lt 91d7

and gt 117 respectively. The BNJ inference engine calculates a posterior probability of 0.8575 that

is hurricane var is True. The result is used to generate and add the posterior probability statement

shown in figure 5.15 to the local knowledge base. Since there is a 85.75% probability (above the prede-

fined 50% classification threshold) that there is a hurricane the system creates an instance of Hurricane

as shown in figure 5.16.

101

<swap-uncertainty:PostProb rdf:about=
"#pp__is_hurricane_var_2009-03-27T08:00:00cape_town">

<swap-uncertainty:hasProbValue rdf:datatype="&xsd;double">
0.8575</swap-uncertainty:hasProbValue>

<swap-uncertainty:hasState rdf:resource="&swap-uncertainty;True"/>
<swap-uncertainty:hasVariable rdf:resource=

"http://www.example.com/hurricance.owl#is_hurricane_var"/>
<swap-uncertainty:inferredFromObservation rdf:resource="#air_pressure1"/>
<swap-uncertainty:inferredFromObservation rdf:resource="#wind_speed1"/>

</swap-uncertainty:PostProb>

Figure 5.15: Example of a posterior probability statement

Figure 5.16: A Hurricane instance inferred using the SWAP probability reasoner

102

5.3 DISCUSSION AND SUMMARY

Representing and managing uncertain knowledge is an important aspect of the Sensor Web [25]. This

chapter describes a practical approach to capture and use uncertain knowledge on the Sensor Web.

The swap-uncertainty ontology, described in section 5.2.1, allows for capturing and storing a com-

plete Bayesian Network (BN) in an ontology. The variables of the BN correspond to either measurement

observations (observable event variables) or phenomena (inferred event variables). These phenomena

can be inferred by analysing measurements of the symptoms of the phenomena. The ontology allows

for specifying and capturing multiple Bayesian Networks. BN variables are associated with observa-

tions and phenomena described in the swap-theme ontology. This is illustrated in section 5.2.2 using an

example to detect hurricane phenomena. The uncertainty reasoner, described in section 5.2.3, provides

functionality for: retrieving a BN from the knowledge base; dynamically populating the BN with avail-

able observations; determining the probability of inferred events or phenomena; and creating and adding

inferred phenomena instances to the knowledge base.

Some of the benefits of the approach are:

Capturing, storing and sharing uncertain knowledge Scientists can capture and store uncertain

knowledge or theories within one or more Bayesian Networks. Uncertainty resulting from weak the-

ories, sensor inaccuracies as well as location specific anomalies can be incorporated in the BN. The

thematic aspects of events are described using concepts from the SWAP ontologies and facilitate con-

sistent Modeling of observed and inferred event variables. Theories reflecting causal relations between

events and the degree of these relations are captured in the Conditional Probability Table (CPT). A BN

can be published, shared and interpreted by agents as well as human users.

The CPTs of the event variables as well as the influence relations are stored in the knowledge base

and can be easily updated in line with the continuous evolution of the beliefs and understanding of

scientists. Multiple BNs can be stored for the same phenomena that reflect different theories held by

different scientists. BNs can be easily changed to accommodate new observations as new sensors come

online. Once the observable event variables are reconfigured, the reasoner is able to dynamically feed the

new observations to the BN without additional changes. Similarly a BN can be accessed by other users

103

and reconfigured by changing the CPT and structure accordingly. This can facilitate experimentation to

better reflect local or alternative conditions.

Dynamic application of knowledge Bayesian Networks are dynamically incorporated into SWAP. As

observations become available, they can be dynamically processed by the appropriate Bayesian Networks

to detect phenomena events. Inferred phenomena instances including the details of the BN and the

observation instances which resulted in its creation are recorded and disseminated in the system. When an

inferred phenomena instance is encountered, the theory (BN) and the specific observations that resulted

in its creation can be determined. The details of the creator or author of a BN may also be captured in the

ontology. This provide a complete audit trail of the origin of phenomena instances, including the details

of the domain expert who constructed the BN. This can assist in determining the quality and reliability

of phenomena events and in taking decisions based on these events.

All BNs are specified uniformly and variables representing observations and phenomena are de-

scribed using concepts from the swap-theme ontologies. The thematic reasoner can be used to detect

related observations. This includes observations which measure the same or a similar observed entities

and properties over different locations or using different sensors. A BN can be used to detect the same

phenomena at other locations. If observations from the required sensors are not available for the loca-

tion, related observations from other sensors can be identified and used. However, BNs may be sensor or

location specific and not easily reusable. These related BNs may still be of benefit to scientists who can

identify and correct the location and sensor differences. This facilitates the sharing of knowledge and

experience between scientists.

Uncertain knowledge is not just a feature of the Sensor Web but also features more broadly within

the Semantic Web [177]. As OWL does not provide support for representing uncertainty, approaches

such as OntoBayes [207, 208] and BayesOWL [57, 58] propose extensions to OWL for incorporating

Bayesian Networks. Our approach extends BayesOWL to incorporate observable measurement data and

also places the variables and results of a BN within a comprehensive ontology infrastructure. This not

only allows for evidence values to be dynamically populated, but also for posterior probabilities to be

dynamically analysed, integrated and shared within the system.

This chapter described how Bayesian probability and Bayesian Networks can be used to represent

and reason about uncertainty on the Sensor Web. In the next chapter the implementation of two prototype

104

applications are described to illustrate the practical operation and use of the Sensor Web Agent Platform.

Chapter 6

IMPLEMENTING SWAP APPLICATIONS

This chapter describes how Sensor Web applications are developed and deployed on SWAP. The SWAP

abstract architecture provides abstractions to guide the design of SWAP applications, while the ontolog-

ical infrastructure provides a framework for defining agent interfaces and agent interactions in terms of

message types and conversation protocols. Individual SWAP agents are implemented and executed using

the MASII platform described in chapter 3.

Two application case studies are described. The first application for wildfire detection incorporates a

single Sensor and Tool Agent. It is used as a running example to illustrate the operation of the different

SWAP agents and various features of the framework such as the incorporation of uncertainty and the

deployment of end user applications. The second application for monitoring informal settlements is a

more complex application, which incorporates multiple data sets (Sensor Agents) and multiple process-

ing steps (Tool Agents) as well as a supervised machine learning algorithm for feature classification.

6.1 CASE STUDY 1: WILDFIRE DETECTION

6.1.1 Application overview

The Advanced Fire Information System (AFIS) [63, 71] is a near real-time satellite-based fire monitor-

ing system in Africa. Satellite image data measured by the Severi sensor on the MSG satellite provide

brightness temperature measurements over specific spatial locations over the earth. These measurements

are an indication of the temperature of the earth’s surface over these locations. Abnormally high temper-

ature values are used as a basis for detecting wildfires. The design of the wildfire detection application

is based on the approach taken in the AFIS system.

105

106

Figure 6.1: Extracting wildfires from satellite data

Each of the SWAP architectural layers provides different levels of abstractions to extract meaningful

information from sensor data. Data transformations are required at each layer to detect wildfires. These

transformations are shown in figure 6.1. Brightness temperature images at the Sensor Layer are used to

extract thermal hotspots at the Knowledge Layer. These thermal hotspots are used to detect wildfires at

the Application Layer.

A part of the wildfire ontology is shown in figure 6.2. The following classes are used to represent the

concepts required for wildfire detection shown in (figure 6.1).

• MSGThermalValue instances represent individual values from the MSG brightness temperature

(BT) images. It has an instance of BrightnessTemperature (referenced from the SWEET ontology)

as its observed property and an instance of PlanetarySurface as its ObservedEntity.

• MSGThermalHotspot instances are MSGThermalValue instances that have abnormally high BT

values. Hotspot instances that are also instances of MSGThermalValue are defined as MSGTher-

malHotspots.

• Wildfire instances are those MSGThermalHotspot instances that are deemed to be wildfires.

Agents are required at each layer to provide the required data and data transformations (see figure

107

Figure 6.2: Thematic concepts for wildfire detection

6.3). At the Sensor Layer, the MSG Sensor agent offers brightness temperature data every fifteen min-

utes. The data is offered as georeferenced 1 GeoTiff images. At the Knowledge Layer three agents are

deployed, a Contextual Algorithm (CA) Tool Agent, a Fire Spread (FS) Modeling Agent and a Hotspot

Detector (HD) Workflow Agent. The CA Tool Agent takes as input georeferenced raster data, such as a

GeoTiff file, detects pixels with spatial anomalies, and outputs the pixel values with their real world coor-

dinates. In this instance the output is pixels with abnormally high values relative to neighbouring pixels.

The HD Workflow Agent performs a composite process or workflow to detect temperature hotspots. It

retrieves brightness temperature data from the MSG Sensor Agent and passes this data to the CA Tool

Agent, which outputs abnormally high values in the data, i.e. the temperature hotspots. The FS Model-

ing Agent takes in a current wildfire and predicts the probability of the spread of the wildfire towards a

specified location. In the Application Layer two agents are deployed, a Fire Detection (FD) Application

Agent and a Fire Detection (FD) User Agent. The FD Application Agent receives and stores the tem-

perature hotspots from the HD Workflow Agent and uses these hotspots to indicate possible wildfires.

It also retrieves wildfire spread predictions for current wildfires from the FS Modeling Agent. The FD

1a pixel in the image can be mapped to a real world location

108

Figure 6.3: Architecture of a wildfire detection application

User Agent registers alerts with the FD Application Agents, by providing a filter of features or areas

of interest. The FD Application Agent responds with wildfire alerts and spread predictions whenever

wildfires occur within these areas.

A description of how each of these concepts are used within the different agents is given later in

section 6.2. The next section describes the use of a Bayesian Network to capture and reason about the

causal relations between wildfires and MSG brightness temperature measurements.

6.1.2 Representing and reasoning about uncertainty for wildfire detection

Each pixel value in the MSG satellite image data represents Brightness Temperature (BT) values captured

by the MSG Severi sensor. An instance of an MSGThermalValue is shown in figure 6.4. It has six

properties:

• hasNumericValue represents the actual BT value at this location

• hasSpatialVariance represents the deviation of the pixel’s value with that of its neighbours as a

percentage calculated by (val − (mean + std dev))/(mean std dev)), where val is the pixel

value, mean is the mean value of the neighbouring pixels and std dev is the standard deviation of

the value from its neighbours

109

Figure 6.4: Representing an MSG brightness temperature measurement

• inCalendarClockDataType represents the observation time

• fromDataSet describes the data set to which this measurement belongs, in this case the msg-data-

set

• hasUnit represents the unit of measure

• locatedAt represents the spatial coordinates of the location

Two key conditions must be satisfied for a BT value to be classified as a thermal hotspot (MSGTher-

malHotspot):

• The BT value (hasNumericValue) must be over 315K.

• The BT value measured at this pixel must be significantly higher than values of neighbouring

pixels (hasSpatialVariance).

The values of the hasSpatialVariance and hasNumericValue properties of an MSGThermalValue in-

stance therefore determine whether the MSGThermalValue is also a MSGThermalHotspot. The occur-

rence of a thermal hotspot is an indication of the possibility of a wildfire occurring at that location.

Therefore, some hotspots may be classified as wildfires.

A Bayesian Network (BN) (see section 5.2.1), shown in figure 6.5, was created to determine the

probability of an occurrence of a wildfire. The BN consists of four variables, i.e. MSG thm btval var,

110

Figure 6.5: A Bayesian Network for wildfire detection

MSG thm variance var, is hotspot var and is wildfire var. The first two represent the variance and the

value of a MSG brightness temperature respectively. The latter two represent whether there is a hotspot

and whether the hotspot is a wildfire. The directed arcs between variables represent cause and effect

relations between events in the real world. Therefore a wildfire causes a thermal hotspot, a thermal

hotspot in turn causes a high BT value and a high spatial variance of a MSGThermalValue relative to its

neighbours.

Figure 6.6 shows the definition of the msg thm btval var variable, which represents the BT value

of an MSGThermalValue. Since the hasNumericValue property of an MSGThermalValue instance repre-

sents a BT value, hasClass is set to MSGThermalValue and hasProperty is set to hasNumericValue. By

interogating the hasClass and hasProperty properties, BT values can be extracted from MSGThermal-

Value instances and used to determine the state of the variable. The variable has three states: less than

315, greater than 315 and less than 318, and greater than 318. The states are defined as discrete ranges.

One of the states, gt 315 lt 318, is shown in figure 6.6. The isInfluencedBy property indicates that this

variable is influenced by the is hotspot var variable.

Figure 6.7 shows the definition of the msg thm variance var variable, which represents the spatial

variance of this BT value relative to its neighbours. The hasSpatialVariance property of an MSGTher-

malValue instance represents the variance. It has three states, i.e. less than 1, greater than 1 and less than

5, and greater than 5. This variable is also influenced by the is hotspot var variable.

Figure 6.8 shows the is hotspot var variable, which indicates whether an MSGThermalValue is a

hotspot. The rdf:type property, a native OWL construct that specifies the class type, is used to determine

whether an instance is a MSGThermalHotspot. It is influenced by the is wildfire var variable. Figure 6.9

111

<swap-probability:Variable rdf:about="#msg_thm_btval_var">
<swap-probability:hasClass rdf:datatype="&xsd;anyURI">

http://masii.cs.ukzn.ac.za/swap/wildfire.owl#MSGThermalValue
</swap-probability:hasClass>
<swap-probability:hasProperty rdf:datatype="&xsd;anyURI">

http://masii.cs.ukzn.ac.za/swap/swap-data.owl#hasNumericValue
</swap-probability:hasProperty>
<swap-probability:hasState rdf:resource="#lt_315"/>
<swap-probability:hasState rdf:resource="#gt_315_lt_318"/>
<swap-probability:hasState rdf:resource="#gt_318"/>
<swap-probability:isInfluencedBy rdf:resource="#is_hotspot_var"/>

</swap-probability:Variable>

<swap-probability:DiscreteRangeState rdf:about="#gt_315_lt_318">
<swap-data:hasLowerLimit rdf:datatype="&xsd;double">

315
</swap-data:hasLowerLimit>
<swap-data:hasUpperLimit rdf:datatype="&xsd;double">

318
</swap-data:hasUpperLimit>

</swap-probability:DiscreteRangeState>

Figure 6.6: Representing the MSG thermal BT value variable

<swap-probability:Variable rdf:about="#msg_thm_variance_var">
<swap-probability:hasClass rdf:datatype="&xsd;string">

http://masii.cs.ukzn.ac.za/swap/wildfire.owl#MSGThermalValue
</swap-probability:hasClass>
<swap-probability:hasProperty rdf:datatype="&xsd;string">

http://masii.cs.ukzn.ac.za/swap/swap-data.owl#hasSpatialVariation
</swap-probability:hasProperty>
<swap-probability:hasState rdf:resource="#gt_1_lt_5"/>
<swap-probability:hasState rdf:resource="#gt_5"/>
<swap-probability:hasState rdf:resource="#lt_1"/>
<swap-probability:isInfluencedBy rdf:resource="#is_hotspot_var"/>

</swap-probability:Variable>

Figure 6.7: Representing the MSG thermal variance variable

112

<swap-probability:Variable rdf:about="#is_hotspot_var">
<swap-probability:hasClass rdf:datatype="&xsd;anyURI">

http://masii.cs.ukzn.ac.za/swap/wildfire.owl#MSGThermalValue
</swap-probability:hasClass>
<swap-probability:hasProperty rdf:datatype="&xsd;anyURI">

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
</swap-probability:hasProperty>
<swap-probability:hasState rdf:resource="&swap-probability;False"/>
<swap-probability:hasState rdf:resource="&swap-probability;True"/>
<swap-probability:isInfluencedBy rdf:resource="#is_wildfire_var"/>

</swap-probability:Variable>

Figure 6.8: Representing the is hotspot variable

<swap-probability:Variable rdf:about="#is_wildfire_var">
<swap-probability:hasClass rdf:datatype="&xsd;anyURI">

http://masii.cs.ukzn.ac.za/swap/eo-domain.owl#Wildfire
</swap-probability:hasClass>
<swap-probability:hasProperty rdf:datatype="&xsd;anyURI">

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
</swap-probability:hasProperty>
<swap-probability:hasState rdf:resource="&swap-probability;False"/>
<swap-probability:hasState rdf:resource="&swap-probability;True"/>

</swap-probability:Variable>

Figure 6.9: Representing the is wildfire variable

shows the is wildfire var variable, which indicates whether a MSGThermalHotspot is a Wildfire. It is not

influenced by another variable.

The prior and conditional probabilities for the four variables are shown in table 6.1. Since the

is wildfire var is not influenced by other variables, prior probabilities for each of its two states are spec-

ified (see figure 6.10).

The is hotspot var variable requires four conditional probability statements, one for each of the

conditional probabilities in table 6.1. The first value represents the probability that is hotspot var is

<swap-probability:PriorProb rdf:about="#pr_prob_is_wildfire_var_True">
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.05
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="&swap-probability;True"/>
<swap-probability:hasVariable rdf:resource="#is_wildfire_var"/>

</swap-probability:PriorProb>

<swap-probability:PriorProb rdf:about="#pr_prob_is_wildfire_var_False">
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.95
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="&swap-probability;False"/>
<swap-probability:hasVariable rdf:resource="#is_wildfire_var"/>

</swap-probability:PriorProb>

Figure 6.10: Prior Probability statements for the is wildfire var variable

113

Table 6.1: Prior Probabilities and Conditional Probability Table (CPT) for classifying wildfires

Variable State Prior Probability

is wildfire var
True 0.05
False 0.95

Variable State Conditional Probability
is wildfire var True False

is hotspot var True 0.9990 0.0200
False 0.0010 0.9800

Variable State Conditional Probability
is hotspot var True False

msg thm variance var lt 1 0.0050 0.8000
gt 1 lt 5 0.2450 0.1999

gt 5 0.7500 0.0001
Variable State Conditional Probability

is hotspot var True False

msg thm btval var lt 315 0.0000 0.6700
gt 315 lt 318 0.2000 0.3200

gt 318 0.8000 0.0100

True given that is wildfire var is True. As shown in figure 6.11, a condition instance, for the condition

is wildfire var is True, is first defined. Then two CondProb instances are created. The first is for the

probability that is hotspot var is True when is wildfire var is True, and the second is for the probability

that it is False when is wildfire var is True. Similarly, a Condition instance for is wildfire var taking on

the False state, and two other CondProb instances are defined.

Similarly, the msg thm variance var variable requires six conditional probability statements (see

table 6.1). The first probability value represents the probability that msg thm variance var is lt 315

given that is hotspot var is True. As shown in figure 6.12 a condition instance representing the condition

that is hotspot var is True is first defined. Then three CondProb instances are created, representing the

three conditional probabilities for each of its three states when is hotspot var is True. Similarly, another

Condition instance for is hotspot var taking on state False is defined and the other three CondProb

instances are defined.

The six conditional probability statements for the msg thm btval var are defined in a similar manner.

The uncertainty reasoner (see section 5.2.3) can then be applied to MSG thermal values. It generates

posterior probability statements similar to the one shown in figure 6.13. When the posterior probability

of a wildfire occurring is over a predefined threshold (e.g. over 0.5) then an instance of Wildfire is created.

114

<swap-probability:Condition rdf:about="#cond_is_wildfire_var_True">
<swap-probability:hasState rdf:resource="&swap-probability;True"/>
<swap-probability:hasVariable rdf:resource="#is_wildfire_var"/>

</swap-probability:Condition>

<swap-probability:CondProb rdf:about="#cd_prob_is_hotspot_var_True_0">
<swap-probability:hasCondition rdf:resource="#cond_is_wildfire_var_True"/>
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.999
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="&swap-probability;True"/>
<swap-probability:hasVariable rdf:resource="#is_hotspot_var"/>

</swap-probability:CondProb>

<swap-probability:CondProb rdf:about="#cd_prob_is_hotspot_var_False_0">
<swap-probability:hasCondition rdf:resource="#cond_is_wildfire_var_True"/>
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.001
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="&swap-probability;False"/>
<swap-probability:hasVariable rdf:resource="#is_hotspot_var"/>

</swap-probability:CondProb>

Figure 6.11: A conditional probability statement for the is hotspot var variable

<swap-probability:Condition rdf:about="#cond_is_hotspot_var_True">
<swap-probability:hasState rdf:resource="&swap-probability;True"/>
<swap-probability:hasVariable rdf:resource="#is_hotspot_var"/>

</swap-probability:Condition>

<swap-probability:CondProb rdf:about=
"#cd_prob_MSG_ThmHspt_Variance_Var_lt_1_0">

<swap-probability:hasCondition rdf:resource="#cond_is_hotspot_var_True"/>
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.005
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="#lt_1"/>
<swap-probability:hasVariable rdf:resource="#MSG_thmhtspt_variance_var"/>

</swap-probability:CondProb>

<swap-probability:CondProb rdf:about=
"#cd_prob_MSG_Thm_Htspt_val_var_gt_315_lt_318_0">

<swap-probability:hasCondition rdf:resource="#cond_is_hotspot_var_True"/>
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.2
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="#gt_315_lt_318"/>
<swap-probability:hasVariable rdf:resource="#MSG_thmhtspt_btval_var"/>

</swap-probability:CondProb>

<swap-probability:CondProb rdf:about=
"#cd_prob_MSG_Thm_Htspt_val_var_gt_318_0">

<swap-probability:hasCondition rdf:resource="#cond_is_hotspot_var_True"/>
<swap-probability:hasProbValue rdf:datatype="&xsd;double">

0.8
</swap-probability:hasProbValue>
<swap-probability:hasState rdf:resource="#gt_318"/>
<swap-probability:hasVariable rdf:resource="#MSG_thmhtspt_btval_var"/>

</swap-probability:CondProb>

Figure 6.12: Conditional probability statements for the msg thm variance var variable

115

<swap-uncertainty:PostProb rdf:about=
"#pp_positiondata1-121005020000_is_wildfire_var">

<swap-uncertainty:hasProbValue rdf:datatype="&xsd;double">
0.7575</swap-uncertainty:hasProbValue>

<swap-uncertainty:hasState rdf:resource="&swap-uncertainty;True"/>
<swap-uncertainty:hasVariable rdf:resource=

"http://masii.cs.ukzn.ac.za/swap/wildfire.owl#is_wildfire_var"/>
<swap-uncertainty:inferredFromObservation rdf:resource="#positiondata1-121005020000"/>

</swap-uncertainty:PostProb>

Figure 6.13: A posterior probability statement for the is wildfire var

6.2 SWAP AGENT OPERATION AND IMPLEMENTATION

In this section the operation of the six different SWAP agent types is discussed. The external representa-

tion of each agent, i.e. the interaction protocol used to communicate with the agent, as well as the internal

operation are described. An implementation of each agent within the context of the wildfire detection

application is also described.

6.2.1 Sensor Agent

Sensor Agents, described in section 4.2.1, are responsible for serving semantically marked up sensor

data in a sensor independent format.

6.2.1.1 External representation

Sensor Agents host the Sensor Data service and accept QueryAction request messages (representing a

query for sensor data) and respond with InformDataAction messages containing data that matches the

query. The role is described in table 6.2 and the DataRequest protocol is described in table 6.2.

6.2.1.2 Internal operation

The Sensor Agent binds to a data source, e.g. a set of local image files, a database or an OGC Sensor

Observation Service (SOS). A Java interface, the DataAdapter interface (figure 6.14), provides a standard

interface to bind to and access different sensor data sources. It provides a generic way in which to access

different data sets independently of the type or structure of the data source. The data source could

be a spatial database, such as PostGIS or Oracle, an OGC Sensor Observation Service (SOS) or even

116

Table 6.2: The Sensor Data Provider schema

Role Schema: Sensor Data Provider
Description Hosts a sensor data repository or data set. Primarily answers queries for

data from its data set. Registers and provides a Service instance that
describes its data set and interaction protocols.

Protocols and
Activities

DataRequest, CapabilityRequest, SWAPServiceRegistration

Permissions Update capabilities in registry
Responsibilities

• Register capabilities with Directory Agent

• Answer query for capabilities

• Answer query for data

• Maintain its data set

Table 6.3: The DataRequest Protocol schema

Protocol DataRequest
Initiator Any agent e.g. workflow agent
Participants Sensor Agent, initiating agent
Message Types QueryAction, InformDataAction
Inputs Data Query Criteria
Outputs Sensor Data corresponding to query criteria
Description An agent can request sensor data from the Sensor Agent based on crite-

ria specified in a data query. The Sensor Agent responds with the data
that satisfies the query criteria.

117

an image file store on a local hard disk drive. The interface provides two methods for data access,

i.e. the queryCoverageData and the queryFeatureData methods to retrieve coverage and feature data

respectively.

Three implementation classes of this interface are shown in figure 6.14. The first, the Brightnesstem-

peratureDataAdapter, provides access to an image store containing raw MSG brightness temperature

images. The WeatherDataAdapter class provides access to a Weather SOS that serves weather data gen-

erated by the South African Weather Service 2, while the HotspotDataAdapter class provides data from

a prototype AFIS Fire Detection SOS 3. The BrightnesstemperatureDataAdapter provides coverage data

while the other two adapters provide feature data. The input and output parameters of the query methods

are standard GeoAPI data structures using the OXFramework implementation. The queryCoverageData

method takes in a string representing the phenomena or observable, e.g. msg-brightness-temperature,

the spatial extent in the form of an IBoundingBox, and the time as an ITime object. It returns a Java File

object, which represents a GeoTiff file on the local file system. The queryFeatureData method takes as

parameters the required observable as a String, a set of spatial coordinates as a Java Set of Coordinate

objects and the time represented as an ITime object. It returns a Java Collection of features represented

as OXFFeature objects. If the data adapter supports only one data set, such as the Brightnesstempera-

tureDataAdapter which only contains msg-brightness-temperature data, then the observable (String) pa-

rameter is not necessary. If the adapter supports more than one data set, such as the WeatherDataAdapter

which supports dry-bulb temperature, wind speed and wind direction, then the observable parameter

specifies the local name of the observedProperty. For example, if saws-drybulb-temperature is the local

name of the requested observedProperty, then the queryFeatureData method of the WeatherDataAdapter

returns dry-bulb temperature observations.

The Sensor Agent uses the data mapping API (see section 4.7.3) to convert between ontology repre-

sentations of time, space and the corresponding GeoAPI data structures. Coverage data is returned as a

georeferenced image file (in the GeoTiff format) and feature data is returned as a collection of OpenGIS

features. The DataAdapter interface hides the implementation details of the data access methods. In this

way the data source and implementation details to query and access data is hidden. Furthermore, the

implementation class for the data adapter is specified as a runtime parameter for the agent and is only

loaded and bound at runtime. In this way it is possible to change the sensor data source by specifying
2http://ict4eo.meraka.csir.co.za:8080/WeatherSOSSA/sos
3http://ict4eo.meraka.csir.co.za:8080/AFIS SOS/sos

118

Figure 6.14: The DataAdapter interface with three implementation classes, including the Hotspot-
DataAdapter

119

any valid implementation class of the DataAdapter.

6.2.1.3 Capability description

A Sensor Agent’s service description describes the spatial, temporal and thematic aspects of its DataSet

(see figure 4.4). DataSet descriptions can be searched by specifying combinations of thematic, spatial

and temporal constraints as described in section 4.6.1.1.

6.2.2 The MSG Sensor Agent

The MSG Sensor Agent is an instance of a Sensor Agent. It serves data from the MSG data set which

is described by the DataSet instance, msg-data-set, shown in figure 6.15. The spatial property values

are shown in figure 6.16 and the temporal property values are shown in figure 6.17. The msg-data-

request protocol shown in figure 6.18 is used to query the MSG data set. It contains input and output

message templates for constructing data request messages, and interpreting response messages contain-

ing the requested data. A sample QueryAction message to request brightness temperature data from the

MSG data set is shown in figure 6.19. The request is for data observed at a specific time instant, i.e. on

1 December 2006 at 06:15 and over a specific rectangular region on the earth’s surface, i.e. between

−17.229 and−34.448 degrees longitude and between 17 and 33 degrees latitude. The response message

containing the requested data is shown in figure 6.20. The message also contains a GeoTiff file attach-

ment. This illustrates how the MSG sensor agent provides MSG brightness temperature data to other

agents.

6.2.2.1 Discovering the MSG Sensor Agent

The MSG Sensor Agent registers an entry for its sensor data set service with the SWAP Directory Agent.

The Service instance, msg-data-service, is shown in figure 6.21.

For the prototype application, the data set hosted by the MSG Sensor Agent contained data with a

spatial resolution of 6.8 km2, observed over South Africa (figure 6.16), between 1 Dec 06 : 00 : 00 to

1 Dec 06 : 22 : 00 and with a temporal resolution of 15 minutes (figure 6.17). The protocol msg-data-

protocol provides details for using the service. The request action instance, bt-query-sensor-agent-input

120

Figure 6.15: The MSG DataSet instance

mapping, is a message template used to construct a request message to invoke the MSG data set ser-

vice. The template contains fixed and variable property values. The fixed values must be copied as

is, while the variable values are constrained by the service description. In the above example the fixed

properties are observesProperty and observesEntity with values msg− brightness− temperature

and earths − surface, while the locatedAt property must be a location inside South Africa, and the

hasInstant must be a time instant between 1 Dec 06 : 00 : 00 to 1 Dec 06 : 22 : 00 (see figure 6.19).

The response message template, bt-query-sensor-agent-output-mapping, works in a similar way and pro-

vides a template of the expected response message from this agent. Expected values are represented as

variables, which are populated by the agent in the response message (see figure 6.20).

The MSG Sensor Agent can be discovered by searching the SWAP Directory Agent for DataSet

services. A SearchDirectoryAction instance, request-dataset-services, is shown in figure 6.22. The has-

ServiceDescriptionValue property take on an instance of DataSet, temp-dataset, so that only services with

DataSet descriptions are searched. The properties of temp-dataset specify three criteria for DataSets: a

temporal constraint, intContains req-time-interval, i.e. only DataSets that contain some data observed

during the time interval req-time-interval; a spatial constraint, intersects test-feature, i.e. only DataSets

that contain some measurements over the spatial location occupied by test-feature; and a thematic con-

straint observesProperty temperature, i.e. only data DataSets that measures some type of Temperature.

All data sets that have some type of Temperature as the value of its observesProperty will match. The

121

Figure 6.16: Spatial properties of the MSG data set

122

Figure 6.17: Temporal properties of the MSG data set

123

Figure 6.18: The data request protocol used to query the MSG data set

124

Figure 6.19: A data request message for querying the MSG data set

125

Figure 6.20: A data response message for querying the MSG data set

MSG data set offered by the MSG Sensor Agent in the wildfire detection application has an instance of

BrightnessTemperature as its observesProperty, and since BrightnessTemperature is a type of Tempera-

ture, the MSG data set will match this query. There could also be other possible matches. Suppose that

a Weather Agent existed in the system that served a DataSet for air temperature, i.e. has an instance of

DryBulbTemperature as its observesProperty. Since DryBulbTemperature is also a type of Temperature,

this data set will also match. In this case, since the MSG data service satisfies all three constraints,

it is sent back to the requesting agent in an InformServicesAction as shown in figure 6.23. The service

instance, msg-data-service, is specified using the hasService property and contains all the information re-

quired to locate (msg-sensor-agent) and invoke (bt-query-sensor-agent-input-mapping) the MSG Sensor

Agent and to interpret its response (bt-query-sensor-agent-output-mapping).

6.2.3 Tool Agent

Tool Agents take in data and perform predefined processes on the data. A process has at least one input,

the data to process, and at least one output, i.e. the processed data or the results of the processing.

126

Figure 6.21: The Service instance for the MSG Sensor Agent

127

Figure 6.22: A search request message for data set services that, observe any temperature property, in
any part of the given location (intersects with) and during the given time interval

128

Figure 6.23: A search response message, that contains a single matching service satisfying the search
criteria specified in figure 6.22

129

Table 6.4: Tool role schema

Role Schema: Tool Provider
Description Provides a tool which performs some processing on the supplied data.

Registers and provides a description of its process.
Protocols and
Activities

DataProcessing, DescribeCapabilities, SWAPServiceRegistration

Permissions Update capabilities in registry
Responsibilities

• Register and maintain capabilities with Directory Agent

• Perform processing requests and respond with the corresponding
results

Table 6.5: Process Data protocol schema

Protocol Data Processing
Initiator Any agent e.g. workflow agent
Participants Tool Agent, initiating agent
Inputs Process inputs
Outputs Process outputs
Message Types ProcessDataAction, InformResultAction
Description An agent can request for the Tool Agent to perform some process given

valid inputs. The Tool Agent responds with the outputs or results.

6.2.3.1 External representation

The Tool Agent encapsulates an executable process in the system. The process is executed by specifying

values for the inputs of the process. After execution, the process produces values for its outputs. The pro-

cess is invoked by sending the ToolAgent a ProcessDataAction message containing a ProcessDataAction

instance. The ProcessDataAction instance has a hasInput property that is used to specify the inputs for

the process. Once the process has completed, an InformResultAction instance is sent to the requesting

agent. The InformResultAction instance has a hasOutput property that is used to specify the outputs of

the process. The values of both the hasInput and hasOutput properties are represented as SWRL local

variables (see section 4.5.4). SWRL variables have a type, i.e. the URI of the object or XML datatype,

and a value which is either a literal or the URI of the object if it is an object type. The variable name is

used to specify the name of the input or output parameter, and the variable value is used for specifying the

corresponding value of the parameter. The Tool Provider role and DataProcessing protocol are shown in

tables 6.4 and 6.5 respectively.

130

6.2.3.2 Internal operation

Internally, the Tool Agent accesses its process implementation via a Java interface, the ToolAdapter in-

terface (figure 6.24), which provides standard methods for interacting with a process. Specific processes

are implemented as ToolAdapter classes. The ToolAdapter interface specifies a process as having one or

more inputs and one or more outputs. It provides standard methods for setting the inputs of the process,

executing the process and retrieving the results of the process. A ToolAdapter implementation class uses

two map data structures to store the names and corresponding values of input and output parameters. The

input map stores input parameters, while the output map stores output parameters. The setInput method

is used to set the values of input parameters, and returns an error if an incorrect input parameter is set. The

getOutputs method retrieves the expected outputs of this process and the checkV alidOutput method

checks whether the given output parameter name is a valid output. The process method is executed

after all inputs have been set, and the getOutput method is used to retrieve the value of each output

parameter by supplying the parameter name. As with the DataAdapter used in the sensor agent, GeoAPI

data structures are used for representing time, coverage and feature data values. This interface provides

a standard internal representation for implementing and executing any process, which has one or more

inputs and one or more outputs.

6.2.3.3 Capability description

Each Tool Agent registers a Service instance with the SWAP Directory Agent that describes its function-

ality. The service description contained in the isDescribedBy property is an instance of the Tool class.

It has two properties hasInputType and hasOutputType that specify the inputs and outputs of specific

Tool services. Other agents are able to search for Tool service descriptions that have specific inputs and

outputs.

6.2.4 The Contextual Algorithm (CA) Tool Agent

The CA Tool Agent was developed for the wildfire detection application to detect abnormally high values

or hotspots from brightness temperature raster data from the MSG Sensor Agent. The design of the CA

Tool Agent is such that it is not tightly bound to brightness temperature data. It can be used in any

131

Figure 6.24: Class diagram of the ToolAdapter interface

132

application that requires abnormally high value (hotspots) or abnormally low values (lowspots) to be

detected from raster data.

Internally an implementation of the ToolAdapter interface is used to carry out the processing of the

agent. The ContextualAlgorithmTool class, shown in figure 6.24, is an implementation of the ToolAdapter

interface. It accepts eight inputs, which include a geo-referenced image file representing a coverage

(image-input-local) and the observation time of the coverage (time-instance-input-local), and has one

output, a Java collection of OXFFeatures (feature-output-local). These features represent specific filtered

pixel values from the image, the real-world coordinates of the pixels, the observation time and other

properties that describe this feature (see figure 6.26).

The ContextualAlgorithmTool implements a general contextual algorithm based on the contextual

algorithm used in the AFIS application [71]. It takes as input a georeferenced image and performs a con-

textual search through the data to detect abnormally high or abnormally low values. The search involves

comparing each pixel value with surrounding pixel values to detect abnormally high or abnormally low

pixels in a given neighbourhood. The search algorithm is defined as:

anomoly Features = detectAnomolies(img, anom, thresh, avg val) (6.1)

where img is a georeferenced image file containing floating point values, anom is the anomaly to detect

in img, either Lowspot to detect abnormal lows, or Hotspot to detect abnormal highs, thresh is the

minimum or maximum threshold i.e. only check those values that are higher or lower than the threshold,

and avg val is the average expected value of a pixel.

For detecting abnormally high values, the algorithm first scans the image, img, for a high pixel

value, h, such that h > thresh. It then checks that a significant number of the surrounding pixels in

a square window (e.g. 21x21 pixels) are less than the average expected value, avg val. The mean, m,

and standard deviation, s, of all pixel values in the window are then calculated. If h > m + s, then h is

flagged as an abnormally high value. This process is repeated for all h, i.e. all pixels that are greater than

thresh. Abnormally low values are detected in a similar manner, except that all greater than comparison

operations would be replaced by less than operators.

For wildfire detection, the contextual algorithm is used to detect temperature hotspots with anom =

Hotspot, thresh = 315 kelvin and avg val = 312 kelvin. In this case each pixel value is checked for

high values (h > 315). Then an expanding window with h at the centre, starting at 3x3 pixels and ending

133

Figure 6.25: A process data request to invoke the CA Tool Agent

at 21x21 pixels, is created. If 33% of the pixels in the window are greater than 312 then the statistical

check is done. The mean (m) and standard deviation (s) of the pixels in the window are calculated. If

h > m + s then the window is expanded. If h > 315 and h > m + s in the 21x21 window then h is a

temperature hotspot, i.e. a potential wildfire.

A ProcessDataAction instance, ca-process-request, is shown in figure 6.25. The image-input-local

parameter contains: an instance of ImageFileValue (msg-bt-image); type of anomaly to detect, in this

case hotspots represented by the Hotspot class; the threshold value contained in threshold-input-local;

and the normal value contained in normal-value-input. Other ancillary data such as the observation time

(time-instant-input-local), the procedure used to obtain these measurements (procedure-input-local) and

the description of the dataset to which this data belongs (dataset-input-local) is also supplied and used

to provide ancillary properties for the output features.

The CA Tool Agent responds with a InformResultAction message containing an InformResultAction

instance (figure 6.26). The contextual algorithm has a single output, feature-output-local which is a

list containing instances of SingleValues representing either Hotspot or Lowspot features. A sample

hotspot feature, positiondata1-1174198022281, is shown in figure 6.26. The hasNumericValue property

contains the temperature of this hotspot which is 315.65 kelvin for this particular hotspot. Other ancillary

properties of this feature, such as the data set to which it belongs, are obtained from the input parameters

134

Figure 6.26: A process data response from the CA Tool Agent

135

and provided as additional details for this feature.

6.2.4.1 Discovering the CA Tool Agent

The CA Tool Agent registers two service descriptions with the Directory Agent, one for calculating

hotspots and the other for calculating lowspots as shown in figure 6.27. Both services take image data as

input and output SpatialAnomalies that are either Hotspots or LowSpots.

These services can be discovered by searching for Tool Services that take as input an ImageFileValue

and output either a SpatialAnomaly or more specifically a Hotspot or a Lowspot. An example search

request is shown in figure 6.28. The search request specifies only Tool services that have an input of

type ImageFileValue and an output of type SpatialAnomaly. Since the service descriptions of both CA

Tool services, ca-tool-lowspot-service and ca-tool-hotspot service (figure 6.27) match, both services are

returned.

6.2.5 Workflow Agent

The Workflow Agent coordinates activities between different agents to form processing chains or work-

flows. Internally, the workflow agent represents its interactions with other agents as an OWL-S compos-

ite process, consisting of atomic processes for each separate agent interaction. Externally the Workflow

Agent is represented and invoked as a process, in a similar manner to the Tool Agent.

6.2.5.1 External representation

A workflow is represented as a process with input and output parameters. The invocation of the workflow

is similar to that of the Tool Agent described above. An ExecuteWorkflowAction message containing a

ExecuteWorkflowAction instance is used to invoke the Workflow Agent. The ExecuteWorkflowAction

instance has a hasInput property that is used to specify values for all inputs for the workflow and initiates

the execution of the workflow. Once the workflow has completed, an InformResultAction instance is

sent to the requesting agent. The InformResultAction instance has a hasOutput property that is used to

specify the outputs of the workflow. The workflow provider role and the workflow execution protocol

are described in table 6.6 and table 6.7 respectively.

136

Figure 6.27: Service entries for the CA Tool Agent

137

Figure 6.28: A search request that matches the CA Tool services

Table 6.6: The Workflow Role schema

Role Schema: Workflow Provider
Description Stores and executes a workflow. Registers and provides a description of

its workflow.
Protocols and
Activities

WorkflowExecution, DescribeCapabilities, SWAPServiceRegistration

Permissions Update capabilities in registry
Responsibilities

• Register capabilities with Directory Agent

• Perform workflow

• Maintain workflow

Table 6.7: The WorkflowExecution Protocol schema

Protocol WorkflowExecution
Initiator Any agent but typically an Application Agent
Participants Workflow Agent, initiating agent
Inputs Workflow inputs
Outputs Workflow outputs
Message Types ExecuteWorkflowAction, InformResultAction
Description An agent can request a workflow to be executed by the Workflow Agent

based on the supplied inputs.

138

6.2.5.2 Internal operation

Internally, OWL-S composite processes are used for representing executable workflows. A composite

process consists of two or more atomic processes, each with its own input and output parameters. The

Maryland MindSwap OWL-S Java API 4 is used for executing OWL-S processes. The ProcessExecution-

Impl class in the OWL-S API was extended to include a new method, executeAgentAction to implement

the AgentToProcessMapping (described in section 4.5.4) which allows each atomic process to be mapped

to an interaction with an agent. The AgentToProcessMapping is used to assemble an agent request mes-

sage from the input parameters of a process, send the request message to the appropriate agent, receive

the response message and extract the process output values from the response message. As opposed to

other SWAP agents that use the Jena ontology API for accessing its ontology and knowledge base, the

Workflow Agent uses the Mindswap API for accessing its ontology and knowledge base. Each atomic

process instance has a hasAgentMapping property that contains a ProcessAgentMapping instance for this

process. The ProcessAgentMapping contains input and output agent action message templates. The tem-

plates contain variable names for those values that need to be replaced by values from OWL-S variables.

It also contains a providedBy property which specifies the details of the specific agent that will perform

this process.

6.2.5.3 Capability Description

The Workflow Agent registers a Service instance with the SWAP Directory Agent that describes its func-

tionality. The service description contained in the isDescribedBy property is an instance of the Workflow

class. It is similar to the Tool description and has two properties hasInputType and hasOutputType that

specify the inputs and outputs of specific Workflow services. Other agents are able to search for Workflow

service descriptions that have specific inputs and outputs.

6.2.6 The Hotspot Detection Workflow Agent

The hotspot detection composite process or workflow used in the wildfire detection application is shown

in figure 6.29. The process has two inputs, i.e. the spatial extent and the time at which to detect hotspots,

4http://www.mindswap.org

139

and consists of two processing steps or atomic processes. The get-msg-bt-process atomic process re-

trieves brightness temperature data from the MSG Sensor Agent and the calc-hotspots-process atomic

process calculates hotspot features from this data.

The workflow is executed when the agent receives an ExecuteWorkflowAction containing the hotspot-

spatial-ext-input and the hotspot-time-ins-input input parameters. The workflow execution engine works

as follows. The executeAtomic action calls the executeAgentAction method. The message is sent to

the agent specified by the hasAgentName property of the Agent instance in the providedBy property

of the mapping template. The ProcessAgentMapping for the MSG Sensor Agent is shown in figures

6.30 and 6.31. Figure 6.30 illustrates the atomic process get-msg-bt-process for retrieving data from

the MSG Sensor Agent and shows how this process is mapped to a QueryAction message which is

sent to the MSG Sensor Agent. The process has two input parameters, i.e. brightnesstemp-spatial-ext-

input and brightnesstemp-time-ins-input. The bt-query-sensor-agent-input-mapping, the input mapping

of this process, is a well formed QueryAction message that can be sent to the MSG Sensor Agent.

It has one static property value (msg-data-set) which is fixed for all queries and two variable prop-

erty values (brightnesstemp-spatial-ext-input and brightnesstemp-time-ins-input). Note that these are

named the same as the input parameters of the get-msg-bt-process process. When the input parameters

of the process are populated, these values are used to populate the variable properties to form a valid

QueryAction message. Figure 6.31 shows the output mapping which is used to extract values from the

InformDataAction response message from the MSG Sensor Agent. The bt-query-sensor-agent-output-

mapping depicts an expected response from the MSG Sensor Agent. The hasData property contains a

value bt-query-data-mapping which has a variable property value bt-image-data in the hasValueStruc-

ture property. bt-image-data is also the output parameter of the get-msg-bt-process process. Thus, when

the InformDataAction response message is received, it is parsed and the value of the hasValueStructure

property is used to populate the bt-image-data output parameter.

Figures 6.32 and 6.33 shows the calc-hotspots-process and its associated input and output mappings.

The ca-input-mapping depicts a template of an appropriate ProcessDataAction instance that can be used

to invoke the CA Tool Agent. It has eight local variable values for its hasInput property. All input

values are fixed except for image-input-local that specifies the image data and time-instant-input-local

that specifies the observation time. The remaining six input parameters take on appropriate default values

for calculating hotspots as shown in figure 6.25. The value of each local variable contains the URI of

140

Figure 6.29: The OWL-S workflow for hotspot detection

141

the appropriate input parameter of the calc-hotspots-process and is used to link each variable value to

the appropriate input parameter. In this case image-input-local has the URI of image-input while time-

instant-input-local has the URI of time-instant-input. When the calc-hotspots-process is executed, the

values supplied in image-input and time-instant-input are used to replace the value in image-input-local

and time-instant-input respectively to form a ProcessDataAction message that is sent to the CA Tool

Agent. The CA Tool Agent responds with a InformResultAction message containing the hotspots found

in the supplied image data. The ca-output-mapping instance shown in 6.33 is an expected response

message from the CA Tool Agent. The hasOutput property contains a variable property value features-

output-local which has the URI of the features-output output parameter of the calc-hotspots-process.

When the InformResultAction response message is received, it is parsed and the value of the features-

output-local local variable is used to populate the features-output output parameter. This value is then

used to populate the hotspot-features-output parameter, the only output parameter of the workflow, and

the workflow completes. The agent composes an InformResultAction message with the hotspot-features-

output output parameter and sends this to the invoking agent.

6.2.6.1 Discovering the Hotspot Detection Workflow Agent

The HDWA can be discovered in a similar manner to the discovery of the CA Tool Agent described in

section 6.2.4.1. Its output is Hotspots (as for the ca-tool-hotspot-service) and the inputs are a time instant

and a spatial extent.

6.2.7 Modeling Agent

The Modeling Agent maintains a prediction model and uses this model to service requests for predictions.

6.2.7.1 External Representation

The Modeling Agent is also represented as an executable process in the system and is invoked in a

similar manner to the Tool Agent (see section 6.2.3). SWRL variables are used to represent input and

output parameters for the prediction model. The agent is invoked by a RequestPredictionAction message,

containing a RequestPredictionAction instance. The input parameters are specified as SWRL variables

via the hasInput property and are used to specify the phenomenon to be modelled and optional spatial

142

Figure 6.30: Process to Agent Mapping for querying the MSG Sensor Agent

143

Figure 6.31: Process to Agent Mapping for mapping the data response from the MSG Sensor Agent

144

Figure 6.32: Process to Agent Mapping for a process request to the CA Tool Agent

145

Figure 6.33: The Process to Agent Mapping for processing results from CA Tool Agent

146

Table 6.8: The Prediction Model Role schema

Role Schema: Prediction Model
Description Hosts a fire spread model and is able to predict, with an associated prob-

ability, the spread of the fire. Registers and provides a description of its
capabilities with the Directory Agent.

Protocols and
Activities

PredictionRequest, DescribeCapabilities, SWAPServiceRegistration

Permissions Update capabilities in registry
Responsibilities

• Register capabilities with Directory Agent

• Answer queries for capabilities

• Respond to queries for fire spread predication

• Maintain connections to appropriate data sources to update model

Table 6.9: The PredictionRequest Protocol schema

Protocol Prediction Request
Initiator Any agent but typically an Application Agent, or Workflow Agent
Participants Modeling Agent, initiating agent
Inputs Prediction inputs and criteria
Outputs A prediction
Message Types RequestPredictionAction, InformPredictionAction
Description An agent can request for the Modeling Agent to make predictions about

future events based on its internal model and supplied input data. The
Modeling Agent responds with this prediction.

and temporal constraints, e.g. a future time and the location of interest. The agent responds with an In-

formPredictionAction message that contains the prediction values for this phenomenon, specified via the

hasOutput property. The prediction model role and prediction request protocol that is used for requesting

predictions are described in table 6.8 and table 6.9 respectively.

6.2.7.2 Internal Operation

A Modeling Agent’s prediction model is represented using the Java ModelingAdapter interface shown in

figure 6.34. The ModelingAdapter interface provides standard methods for interacting with a prediction

model. Specific models are implemented as ModelAdapter classes. The ModelAdapter interface is

designed similarly to the ToolAdapter interface described in section 6.2.3.2. It has a setInput method

that is used to set input parameters, a process method that is executed after all inputs have been set,

147

and a getOutput method for retrieving the values of output parameters. As with the DataAdapter and

ToolAdapter interfaces, GeoAPI data structures are used for representing time, coverage and feature data

values.

6.2.7.3 Capability Description

The Modeling Agent registers a Service instance with the SWAP Directory Agent that describes its

functionality. The service description contained in the isDescribedBy property is an instance of the

Modeling service class. It is similar to the Tool and Workflow service descriptions. It has two properties

hasInputType and hasOutputType that specify the inputs and outputs of specific Modeling services. Other

agents are able to search for Modeling service descriptions that have specific inputs and outputs.

6.2.8 The FireSpreadModeler Agent

The FireSpreadModeler Agent is a Modeling Agent used to predict the spread of wildfire. The agent

was developed to illustrate the operation of the Modeling Agent in the system, more specifically how

predictions are requested and communicated to agents. The current prediction model is a dummy model

with mock data. A more realistic model would use current weather conditions such as: wind direction,

wind speed, humidity and air temperature; and terrain characteristics such as slope and vegetation cover

to determine fuel load.

The FireSpreadModeler class, shown in figure 6.34, is an implementation of the ModelingAdapter

interface and is used internally to calculate wildfire spread. It takes as input a current wildfire and

predicts the spread of this wildfire in the next hour, ten hours and one hundred hours. It accepts two

inputs a wildfire feature that represents a current wildfire wildfire-input-local and the region of interest

for predictions location-input-local. An example request message is shown in figure 6.35. It produces

three output predictions, wildfire-1hr-output-local, wildfire-10hr-output-local and wildfire-100hr-output-

local, that represent the wildfire prediction in 1 hour, 10 hours and 100 hours respectively (see figure

6.36).

To make predications the FireSpreadModeler should be able to query observations for current and

future weather conditions at a specific area. The mechanism to retrieve this data is specified within

the FireSpreadModeler class and does not affect the external operation of the agent. Various options

148

Figure 6.34: Class diagram of the ModelingAdapter interface

are available. A Weather Sensor Agent can be deployed in the Sensor Layer which uses the Weather-

DataAdapter shown in figure 6.14 to provide weather data, or it can query a weather Sensor Observation

Service (SOS) directly using the OXFramework SOS client. Terrain and vegetation cover do not change

as rapidly as weather observations. An agent serving terrain and vegetation cover data could be deployed

in the Sensor Layer, or terrain and vegetation models could be provided locally and accessed from within

the FireSpreadModeler class. It is easier to access a SOS or a local data store rather than deploy Sensor

Agents to provide weather, terrain and vegetation cover data. However, by deploying Sensor Agents to

provide this data, the data could be used within other SWAP applications.

6.2.8.1 Discovering the FireSpreadModeler Agent

The agent can be discovered in a similar manner as the CA Tool Agent described in section 6.2.4.1. The

outputs are predicted wildfire features representing the wildfire spread at given times in the future, while

the inputs are a current wildfire feature and a location of interest.

149

Figure 6.35: Fire spread modeling request message

150

Figure 6.36: A fire spread modeling response message

151

6.2.9 Application Agent

The Application Agent provides end user Sensor Web applications in SWAP. End users interact with

applications via their User Agents. The Application Agent provides an agent interface for User Agents to

access and interact with Sensor Web applications. These applications provide higher level functionality

that is abstracted from the complexity of the SWAP architecture and that is described by non technical

higher level concepts that are more familiar to end users. Application Agents are not intended for reuse

and are customised to offer specific end user applications. Currently, the SWAP Application Agent is

designed to detect and store occurrences of phenomena that are of interest to end users. User Agents

make requests to the Application Agent to be alerted whenever these phenomena are detected.

6.2.9.1 External Representation

The application provider role and the alert protocol that is used for requesting and receiving alerts are

described in tables 6.10 and 6.11 respectively. The Alert protocol is used to request and receive alerts

from the Application Agent. Alert requests are sent via RequestAlertAction messages. Various properties

can be used to specify alert conditions. The observesEntity property is used to specify the phenomenon

of interest. Users can specify spatial constraints, such as the region of interest by using any of the eight

spatial relations discussed in section 4.4.2. For example, if raa is an instance of RequestAlertAction and

roi is a SpatialThing with a location specified by the locatedAt property, then an alert request can be raa

intersects roi. Temporal constraints may also be specified, such as whether current, past, or future alerts

are required. The swap-time ontology provides concepts for past, future and present. These values

can be added to the request using the inCalendarClock property, e.g. raa inCalendarClock future

specifies requests for future alerts.

By default alerts are sent back to the agent that sent the RequestAlertAction message. However,

the recipient property can be used to specify another agent to which the alerts should be sent. The

Application Agent responds with InformAlertAction messages. An InformAlertAction instance has a

single property, hasAlert, which has instances of Alerts as its range. An Alert instance represents an

instance of the requested phenomenon with its appropriate properties such as location and observation

time. An alert also has a hasAlertRequest property that contains the RequestAlertAction instance that

triggered this alert.

152

Table 6.10: The Application role schema

Role Schema: Application Provider
Description Maintains an application data store, allows end users to specify alerts

conditions on this data, and alerts users when these conditions are met.
Registers and provides a description of its data and types of alerts that it
supports.

Protocols and
Activities

Alert, DataRequest, WorkflowExecution, DescribeCapabilities,
SWAPServiceRegistration

Permissions Update capabilities in registry
Responsibilities

• Register capabilities with Directory Agent

• Answer requests for capabilities

• Maintain application data store

• Accepts and responds to alert requests on application data

Table 6.11: The Alert protocol schema

Protocol Alert
Initiator Any agent but typically a User Agent
Participants Application Agent, initiating agent
Inputs Alert Criteria
Outputs Alerts corresponding to alert criteria
Message Types RequestAlertAction, InformAlertAction
Description An agent can request alerts from the Application Agent based on criteria

specified in an alert request action. The Application Agent responds
with alerts for phenomena that satisfy the alert criteria.

153

PROCEDURE InformResultHandler
BEGIN

Add statements from current KB to past KB
Delete all statements from current KB
Add workflow results to current KB
Run post workflow rules on current KB
Set CHANGE flag to indicate change to current KB

END

Figure 6.37: Algorithm for processing incoming alerts at the Application Agent

6.2.9.2 Internal Operation

Internally the Application Agent has two key threads of operation, the first is to continuously update its

application data store and the second is to maintain user alert conditions on its data store and to compose

and send alert messages when alert conditions are satisfied.

The Application Agent integrates results from one or more Workflow Agents. Even though the

Application Agent has the ability to directly invoke Tool, Modeling and even Sensor Agents, wherever

possible the coordination of agent interactions and integration of data should be delegated to a Workflow

Agent. The Application Agent retrieves the results of the Workflow Agent and applies a set of post

processing rules which are used to filter and classify the results of the workflow as required for this

application. This data is then integrated into the local knowledge base (KB). The data in the KB is split

into two parts, the current KB and the past KB. The current KB contains the latest set of data received

from the Workflow Agent, while the past KB contains all previous data received from the Workflow

Agent. A CHANGE flag is set whenever the agent receives results from the Workflow Agent to signal to

the alerting thread that the current KB has been modified. The algorithm for processing results from the

Workflow Agent is shown in figure 6.37.

User agents register alert conditions with the Application Agent. Alert requests can be once off alert

requests or persistent (future) alert requests, which are stored in a Persistent Alerts KB. When an alert

request is received it is processed against the current KB. Thereafter, the alert request is either discarded

if it is a once off request, or is stored as a persistent alert. By default all alert requests are assumed to be

once off requests for current data. If a RequestAlertAction has an inCalenderClock property with a value

of future, then the alert request is deemed to be a persistent alert and is added to the Persistent Alerts

KB. A once of alert is processed immediately, while an alert thread runs each time the current KB is

154

PROCEDURE RequestAlertHandler(RequestAlertAction raa)
BEGIN

ProcessAlert(raa)
IF raa is a future alert request THEN

Add raa to Persistent Alerts KB
ENDIF

END

PROCEDURE ProcessAlert(raa)
Create temp KB as a copy of current KB
Add raa to tempKB
Execute matching rules on temp KB
Compose InformAlertAction instance and add matching alerts
Create and send InformAlertAction message to requesting agent

END

Figure 6.38: Algorithm for processing alert requests at the Application Agent

PROCEDURE pAlertThread
BEGIN
WHILE TRUE

WHILE CHANGE flag not set
sleep for t seconds

END WHILE
FOR each raa in Persistent Alerts KB

ProcessAlert(raa)
END FOR
reset CHANGE flag

END WHILE
END

Figure 6.39: Algorithm for processing persistent alerts at the Application Agent

updated to process persistent alerts. A set of matching rules are used to match alert requests with data

in the current KB. When data in the current KB matches these alert conditions an InformAlertAction is

composed and sent to the User Agent. The algorithm for processing alert requests is shown in figure

6.38.

Another thread within the Application Agent processes each RequestAlertAction instance in the Per-

sistent Alert KB against the current KB whenever the CHANGE flag is set. The algorithm for the

persistent alert thread is shown in figure 6.39

155

6.2.9.3 Capability Description

An Application Agent’s service description is an instance of the Application service description. It

contains the phenomenon which it detects as well as the spatial and temporal aspects of the phenomenon.

In this way other Application or User Agents can search the SWAP Directory Agent for Application

Agents that offer alerts for specific phenomena with specific temporal and spatial constraints.

6.2.10 The Wildfire Detection Application Agent

The Wildfire Detection Application Agent (WDAA) is an example of an Application Agent. It maintains

a knowledge base of wildfires and responds to requests for wildfire alerts and spread predictions.

Temperature hotspots are considered to be potential wildfires. The WDAA delegates the detection of

temperature hotspots to the Hotspot Detector Workflow Agent (HDWA). The FDDA sends an Execute-

Workflow message to the HDWA to retrieve the latest temperature hotspots. Temperature hotspots are

received via an InformResultAction, are classified as wildfires and are stored in the current knowledge

base. The classification is carried out using a single logic rule:

(?x rdf:type eod:Hotspot) -> (?x rdf:type eod:Wildfire)

This rule classifies all Hotspots instances as instances of Wildfire. Additional filtering rules could also be

specified, e.g. rules to remove known hotspots that are not wildfires to reduce false alerts.

An alert request is made via a RequestAlertAction message. An example of a RequestAlertAction

instance as shown in figure 6.40. The observesEntity property specifies the phenomena of interest, in

this case wildfire. A spatial constraints is specified by the intersects property that has a location value of

substation-1. This alert request also specifies two optional properties. The recipient property specifies

that all alerts must be sent to user-agent1, and the value of future (inCalendarClock property) specifies

that this is not a once off request, but a persistent request for all current and future wildfires. The WDAA

also handles requests for wildfire spread. Wildfire request alerts that specify a providePredictionsFor-

Location property triggers fire spread requests for the specified location value.

On receiving an alert request, the WDAA matches all wildfires that intersect with the geometry of

substation-1. The two rules shown in figure 6.41 are used to match alert requests to wildfires. The first

156

Figure 6.40: An alert request for wildfires

157

(?wf rdf:type agent:Alert) <-
(?ra rdf:type agent:RequestAlertAction) (?ra ?spc_related ?foi)
(?foi rdf:type spc:SpatialThing)
(?spc_related rdfs:subPropertyOf spc:hasSpatialRelation)
(?wf rdf:type eod:Wildfire) (?foi ?spc_related ?wf).

(?wf agent:hasAlertRequest ?ra) <-
(?ra rdf:type agent:RequestAlertAction) (?ra ?spc_related ?foi)
(?foi rdf:type spc:SpatialThing)
(?spc_related rdfs:subPropertyOf spc:hasSpatialRelation)
(?wf rdf:type eod:Wildfire) (?foi ?spc_related ?wf).

Figure 6.41: Rules for matching wildfires to alert requests

rule matches wildfires to alert requests and classifies these wildfires as Alerts, while the second rule adds

the hasAlertRequest property to each alert to map the alert to the RequestAlertAction that triggered the

alert. The WDAA responds with an InformAlertAction instance that contains the matching wildfires.

An example of an InformAlertAction instance containing two wildfire alerts in the hasAlert property is

shown in figure 6.42. Each alert contains the properties for the wildfire as well as the alert request that

triggered these alerts. In this instance the alerts were triggered by the RequestAlertAction described above

and shown in figure 6.40. Since the providePredictionsForLocation property is set in the request, a fire

spread prediction request together with the specified spatial location is sent to the Fire Spread Modeling

Agent. The Alert instance contains spread prediction values representing the spread predictions (1 hour,

10 hour and 100 hour) for this wildfire in the direction of the requested spatial location. In this way the

WDAA is also able to provide spread predictions for detected wildfires.

6.2.10.1 Discovering the Wildfire Detection Application Agent

The WDAA registers an instance of the Application service description as shown in figure 6.43. The

phenomenon being detected is an instance of the wildfire phenomena. As the wildfire detection process

is based on the MSG data set, the spatial and temporal aspects of the service is similar to the MSG data

set. The spatial extent is the spatial extent of South Africa, the temporal resolution is 15 minutes, and the

detection process uses the Hotspot Detection Workflow Agent.

6.2.11 User Agent

The User Agent (UA) represents the end user in the system and allows end users to interact with SWAP

applications provided by Application Agents.

158

Figure 6.42: An alert response for wildfires

159

Figure 6.43: The service description of the Wildfire Detection Application Agent

160

6.2.11.1 External representation

UAs do not offer a service but are used to access the alerting service provided by Application Agents.

The UA provides a user interface for the end user to specify alert requests and to visualise received alerts.

For each alert request a RequestAlertAction message is composed and sent to the relevant Application

Agent. Application Agents respond with InformAlertAction messages containing alert instances that

satisfy these requests.

6.2.11.2 Internal operation

The User Agent provides graphical user interfaces (GUI) for specifying alert requests and for data visu-

alisation, i.e. to visualise received alerts and how these alerts relate to user defined features. The Java

Swing components from the OXFramework (OXF) client is used for the data visualisation GUI.

All features and alert instances are stored in a local knowledge base. The OXF Client is started within

the agent environment and is passed a reference to the agent’s knowledge base. The OXF client connects

to the local KB and extracts and displays features of interest and alerts from the KB. The data mapping

API is used to transform ontology data instances to OXFramework features. Alerts which are represented

as single values, with a location value, are first converted to a Java Collection of OXFFeatures which is

then displayed in the OXF Client. There is a mechanism to update the GUI when new alerts are received

by the User Agent. When an InformAlertAction message is received, alert instances contained in the

message are inserted into the local KB. The OXF client has a listener registered with the Jena knowledge

base and receives a change event when any changes occur in the knowledge base. Thus, when new alerts

are received and added to the knowledge base, the client is immediately notified and refreshes the alert

layer with the new alerts.

6.2.12 The Wildfire Detection User Agent

The Wildfire Detection User Agent (WDUA) allows an end user to request, receive and visualise alerts

for wildfires. A request for wildfire alerts is made by sending the Wildfire Detection Application Agent

(WDAA) a RequestAlertAction message (shown in figure 6.40) specifying the spatial relation and a fea-

ture of interest. The WDAA responds with an InformAlertAction message containing wildfire instances

161

Figure 6.44: Visualising features of interest using the OXFramework client

that satisfy the request. Figure 6.44 shows the OXF Client with a single feature representing the feature

of interest (substation-1 in this case). A RequestAlertMessage is sent to the WDAA for all wildfires that

intersects with substation-1. Four wildfires are detected in this region and are sent to the User Agent.

These wildfire instances are inserted into the local knowledge base. The OXF Client receives a change

event and refreshes its GUI and displays the wildfire alerts as shown in figure 6.45.

6.3 DEPLOYING THE WILDFIRE DETECTION APPLICATION

The wildfire detection application can be deployed to a User Agent using a MASII adapter as described

in section 3.4.

A basic MASII User Agent is installed on the user’s machine. As shown in figure 6.46, only the

deployment protocol and service adapter required to retrieve and install adapters from the Adapter Agent

is installed on the User Agent. The application catalogue contains a single application, the Wildfire

Detection application (see figure 6.47). Besides an entry in the application catalogue, the User Agent has

no capabilities to access the wildfire detection application.

162

Figure 6.45: Visualising wildfire alerts using the OXFramework client

Figure 6.46: The adapter store of the User Agent before installing the wildfire detection adapter

Figure 6.47: A screenshot of a User Agent before installing the wildfire detection application adapter

163

Figure 6.48: Downloading and installing the adapter and protocol required for the wildfire detection
application

The user selects the wildfire detection application in the application catalogue (see figure 6.47). The

User Agent checks its adapter store for this adapter. Since it is not present, the adapter and the required

protocols, in this case the WildfireDetection adapter and the Alert protocol, are downloaded and installed

locally at the User Agent as shown in figure 6.48.

The adapter folder, after the WildfireDetection adapter and the Alert protocol are installed, is shown in

figure 6.49. The adapter is downloaded as a single Java jar file into the dist folder. This file is extracted

into the WildfireDetection folder which creates a lib folder containing the libraries and an ontologies

folder containing the ontologies for this application.

The adapter is dynamically activated and the User has immediate access to the wildfire detection

application as shown in figures 6.44 and 6.45.

6.4 CASE STUDY 2: MONITORING INFORMAL SETTLEMENTS

This section describes the design and implementation of a second SWAP application, for detecting and

monitoring informal settlements. This application is more complex than the application on wildfire

164

Figure 6.49: The adapter store of the User Agent after installing the wildfire detection

detection. It uses five processing steps (Tool Agents) as opposed to a single processing step (Tool Agent)

in the wildfire detection application. The application also incorporates a supervised machine learning

algorithm to perform classification of informal settlements.

The design and development of the application was undertaken as a Computer Science Masters re-

search project under the author’s supervision [156].

6.4.1 Application overview

The apartheid system was dismantled in South Africa in 1994. This resulted in a mass migration of

mostly black South Africans from rural to urban areas in the hope of seeking employment and to gain ac-

cess to the first world infrastructure that was common to major South African cities. Informal settlements

5 became a common occurrence in urban areas as a low cost accommodation option.

The Informal Settlement Information System (ISIS) aims to detect different types of informal settle-

ments from high resolution satellite imagery. The current prototype detects informal settlements specif-

ically within the Alexandra region in South African from high resolution Quickbird imagery that are

produced every three days. The design allows for the incorporation of SPOT images that have a lower

resolution but that are produced daily. The application is similar to the wildfire detection application in

that both extract information from remotely sensed imagery. However, the wildfire and informal settle-

ment domain and the type of imagery used differ widely.
5Informal settlements are areas where groups of housing units have been constructed on land to which the the occupants

have no legal claim

165

Table 6.12: ISIS application components

Function Component
Data provider Quickbird, SPOT
Segmentation Tiling

Feature Extraction Edge, NDVI, image statistics
Classification Naive Bayes classifier

Table 6.13: ISIS agent abstractions

Component SWAP agent type
Quickbird, SPOT Sensor Agents

Tiling, Edge, NDVI, image statistics Tool Agents
Coordinating image processing steps Workflow Agent

Naive Bayes classifier Application Agent

6.4.2 Design

The first step in the design process was to identify and prototype the required data providers and image

processing components. These components are listed in table 6.12. Corresponding SWAP agents (table

6.13) were then identified to host these components, which resulted in the architecture shown in figure

6.50.

At the Sensor Layer, QuickBird image data is offered by the Quickbird Sensor Agent. At the Knowl-

edge Layer, the ISIS 6 Workflow Agent retrieves the QuickBird data from the Quickbird Sensor Agent

and passes it to a series of Tool Agents that segment and extract appropriate features from the data. The

Dimensions and Tiling Tool Agents break the image into a series of tiles. These tiles are then passed

through the Edge and NDVI Tool Agents, which extract edges and the vegetation index 7 from each tile

respectively. The Edge and NDVI images for each tile are then passed through the Stats Tool Agent,

which extracts aggregate statistics from these images. This includes mean, standard deviation, density,

skewness and kurtosis. The statistics for the NDVI and edges for each tile are then passed to the ISIS

Application Agent (AA) for classification. A BayesNet classifier, from the WEKA [11] toolkit, is used

within the AA to perform classification. The classifier is trained using historical data to detect informal

settlements from Edge and NDVI image statistics. The ISIS AA uses the detected informal settlements

to respond to informal settlements alert queries from ISIS User Agents.

6Informal Settlement Information System
7The Near Difference Vegetation Index (NDVI) assesses the percentage of vegetation in an image

166

Figure 6.50: The ISIS architecture [156]

6.4.2.1 Ontology development

The SWAP technical and conceptual ontologies were extended to create the necessary domain and agent

ontologies. The domain ontologies provide concepts to describe informal settlements and the surround-

ing infrastructure including the road network (tar road or dirt road) the building material from which

homes are constructed (brick or corrugated tin), and the communications facility present (Internet or

telephone lines).

Eight agent ontologies, one for each of the agents listed in table 6.13, were created. The agent

ontologies are based on the ontologies created for the agents in the wildfire detection application. In

most cases only minor modifications were made to the wildfire agent ontologies. Each agent ontology

contains a description of the service offered by the agent and template messages to invoke and interpret

the response of the service. The DataSet, Tool, Workflow and Application service descriptions used in

the wildfire application (see section 6.2) were used to describe the services offered by the Sensor, Tool,

Workflow and Application Agents respectively. Existing protocol and message types were reused. No

new protocol or message types were required. Five DataProcessing protocols (see section 6.2.3) for

167

Table 6.14: Spatial and temporal resolution of Quickbird and SPOT image data [156]

the Tool services, four DataRequest protocols (see section 6.2.1) and one WorkflowExecution protocol

(see section 6.2.5) were created. The request and response message templates were also based on those

specified for the agents in the wildfire detection application. An OWL-S workflow, shown in figure 6.51,

was created to coordinate agent execution at the Knowledge Layer.

6.4.3 Implementation

This phase involved implementing the different agents identified in table 6.13. As no new message types

or interaction protocols were introduced, the existing message handlers were used with minor adjust-

ments. The different agent implementations from the wildfire detection application were also reused

with minor adjustments. The bulk of the implementation phase was spent on developing and testing the

two data adapters and the five tool adapters for the Sensor and Tool Agents respectively. The devel-

oper also spent a considerable time testing and modifying the agent and workflow ontologies in order

to achieve the required individual agent behaviour. Brief descriptions of the operation of the agents are

given below.

6.4.3.1 The Quickbird and SPOT Sensor Agents

The QuickBird Sensor Agent and the SPOT Sensor Agent provide sensor data captured by the QuickBird

and SPOT-5 satellites respectively over the Alexandra area. Both sensors capture two images, a Panchro-

matic image and a Multispectral image. The spatial resolution and revisit time for these image bands are

shown in table 6.14.

168

Figure 6.51: The OWL-S workflow used to coordinate agent interactions in the ISIS application [156]

169

6.4.3.2 The ISIS Tool Agents

The Tiling Tool Agent is used to split the PanBand and Multispectral images acquired from the QuickBird

and SPOT Sensor Agents into tiles. However, the bands of the different images have different spatial

resolutions. The Dimensions Tool Agent is used to determine the correct dimensions (width and height)

for tiles from two image data sets that have different spatial resolutions so that the tiles cover the same

spatial location.

The Edge Tool Agent performs edge detection on a given satellite image. The NDVI Tool Agent

calculates the Near Difference Vegetation Index (NDVI) of an image. This feature extraction technique

assesses the percentage of vegetation in an image. The NIR and Red bands of the Multispectral im-

ages are used to calculate NDVI. The NDVI Tool Agent takes as input the NIR and Red bands of a

Multispectral image, performs the NDVI calculation over the image and outputs an image of the NDVI

signature.

The Stats Tool Agent calculates image statistics. It takes as input an image and outputs the statistics

of the image. The Stats Tool Agent currently calculates the image mean, median, standard deviation,

integrated density, skewness and kurtosis. The ISIS application uses the Stats Tool Agent to calculate the

image statistics of the NDVI and Edge images produced by the NDVI and Edge Tool Agents respectively.

6.4.3.3 ISIS Workflow Agent

The ISIS Workflow Agent coordinates the execution of the image processing workflow shown in figure

6.51. The implementation of the Workflow Agent is similar to that of the Hotspot Detector Workflow

Agent described in section 6.2.6.

To demonstrate the reusability of the ISIS agents, two additional workflows were created using differ-

ent combinations of ISIS Tool and Sensor agents. The workflow in figure 6.52 takes as input a Panchro-

matic image from the QuickBird Sensor Agent, tiles the images into equal sized segments and then

performs edge detection on each tile segment. The workflow in figure 6.53 takes as input a Multispec-

tral image from the QuickBird Sensor Agent, performs NDVI on the image, tiles the image and then

calculates image statistics on each tile segment.

170

Figure 6.52: Alternate ISIS workflow 1 [156]

171

Figure 6.53: Alternate ISIS workflow 2 [156]

172

Figure 6.54: The OXFClient showing the bounding box over Alexandra and the area of interest within
which the informal Settlement results are displayed [156]

6.4.3.4 ISIS Application Agent

The ISIS Application Agent hosts and maintains the ISIS application. It invokes the ISIS Workflow

Agent to retrieve statistical values for Edge and NDVI tile segments. The results are classified to detect

informal settlements. The ISIS Application Agent provides settlement alerts to end-users according to

spatial, temporal and thematic constraints specified by the end user.

6.4.3.5 ISIS User Agent

An end-user interacts with the ISIS Application through the ISIS User Agent. Each ISIS end user has

their own ISIS User Agent. It allows a user to retrieve and visualise informal settlement alerts from the

ISIS Application. Figure 6.54 shows the OXFClient interface at the User Agent. The outer bounding box

represents the Alexandra region and the inner one is an area of interest demarcated by the user. A satellite

image corresponding to the selected area is shown in figure 6.55. Figure 6.56 shows a magnification of

the area of interest. Informal settlements are correctly clustered at the top of the image with some

erroneous values spread through the bottom.

173

Figure 6.55: Sattelite image showing informal settlements over Alexandra [156]

174

Figure 6.56: Informal-townships being displayed on the OXFClient [156]

6.4.4 Discussion

This section described an application for detecting informal settlements that was successfully designed,

implemented and tested on the SWAP framework.

The SWAP abstract architecture provided all the necessary abstractions required to model the ISIS

application. Identifying and mapping application components (table 6.12) to agent types (table 6.13)

was largely intuitive and straight forward. No additional abstractions were necessary. The only difficulty

experienced by the developer was whether to model the WEKA classifier as a Modeling Agent in the

Knowledge Layer or within the Application Agent at the Application Layer. Since the current model is

tightly coupled to the ISIS application with little possibility for reuse, it was decided to incorporate the

classifier within the ISIS Application Agent. However, it may be possible to provide machine learning

algorithms via Tool Agents, and train and deploy specific classification models as Modeling Agents.

This can allow different instances of the same classification model, e.g. the BayesNet classifier, to be

reused across different applications. This requires further investigation on the training and management

of different model instances.

175

Code reuse As no new protocols or message types were introduced, the existing message handlers

proved adequate and were reused. However, new data, tool and application adapters were required.

Possibilities for reuse of agents Each agent at the Sensor and Knowledge Layers has the potential to

be reused. Quickbird and SPOT sensor data can be reused for different applications. To increase the

potential for reuse, the five Tool Agents were designed to be independent of the ISIS application. The

Dimensions Tool Agent can take any pair of images and determine the appropriate tile size for each

image such that the tile segments cover the same location. The Tiling Tool Agent can split any image

into tile segments of the specified size. The NDVI tool agent can calculate NDVI values for the red and

near infrared bands of both image data sets. The Edge Tool agent can perform edge detection on any

image. The Stats Tool Agent can produce statistical values for any image. Thus all Sensor and Tool

Agents have a large potential for reuse in other workflows for other applications.

6.5 SUMMARY

This chapter describes the design and implementation of two SWAP applications. The development and

deployment of the first application for wildfire detection illustrates key aspects of the framework. The un-

certainty ontology and reasoner is used to show how a Bayesian Network can be used to make inferences

about the occurrence of wildfires from thermal satellite data. This application also illustrates the imple-

mentation and the operation of the different SWAP agent types as well as the deployment of end user

applications. The second SWAP application for detecting informal settlements further illustrates how the

framework is used to design and develop Sensor Web applications. It shows that the framework can be

used to develop applications across different earth observation domains with different requirements.

A discussion and analysis of the Sensor Web Agent Platform as an enabling framework for develop-

ing ontology driven agent based applications is provided in the next chapter.

Chapter 7

DISCUSSION AND CONCLUSIONS

7.1 CONTEXT OF THIS RESEARCH

A single worldwide Sensor Web is an open and complex computing environment that must enable the

sharing and reuse of dynamic geospatial data, knowledge, data processing and predictive modeling ser-

vices by a wide user community with different requirements, skills and backgrounds. Services must

be discovered and assembled in different configurations to extract information, to test theories and ulti-

mately to capture and to advance our knowledge and understanding of the natural environment. It must

also support the construction and deployment of real time end user alerting and monitoring applications

that incorporate these services. Applications must be easily modified to reflect new service offerings in

order to provide relevant and accurate information to decision makers. Ontologies have shown promise

as a technology for sharing and integrating data in open environments, while software agents provide

mechanisms to dynamically discover, invoke and assimilate these services. This research demonstrates

how these two technologies can be integrated into an Ontology Driven Multi-Agent Sensor Web.

7.1.1 Software agents and multiagent systems

Software agents are active software components that represent an independent sphere of control with

its own goals and purpose. The Sensor Web will encompass multiple information systems with different

views of the world, that have varying degrees of complexity, that use different technologies with single or

multiple users (heterogeneity) each with its own sphere of control (autonomy), and with each undergoing

continuous change in line with its user(s) or organisation’s requirements and goals (dynamism). Software

agents are more appropriate design abstractions for Sensor Web software components than services as

176

177

they better represent the autonomy, dynamism and heterogeneity of the different information systems on

the Sensor Web.

An agent represents the interests of a particular information system and an interface to access spe-

cific functionality that the information system chooses to offer to other agents (information systems).

In principle, a participating agent may change its service offering or limit or refuse service requests.

Software agents have broad, high level interfaces that reflect the level of the agent’s participation in the

Sensor Web. Interacting and cooperating with other agents is crucial to an agent’s operation. Typically

agents communicate by message passing. The content of the messages have well defined semantics that

are defined in a shared knowledge model. To interpret and react to these message agents must commit to

the shared knowledge model. Communicating at the semantic level facilitates dynamic interoperability,

agent discovery, agent coordination and agent service composition. Agents require some internal mech-

anism to interpret and react to changes in the system. Deliberate agents maintain an internal model of

the world, for Internet agents this is usually based on symbolic logic, which they use for planning and

to initiate actions to achieve their goals (see section 2.2.1.3). Their beliefs usually reflect their world

model and their desires are their purpose or end state. An agent’s goals are a non conflicting subset of the

desires and its intentions is a commitment to undertake a series of planned actions for achieving these

goals. This ability of an agent to automatically react to changes in the system, with minimal human

interaction highlights an important characteristic of agents, that of autonomy.

Agent service descriptions are also specified according to a shared knowledge model. Agents are able

to dynamically discover, invoke and assimilate the responses of agents of which they were not previously

aware or not specifically programmed to interact with. The extent to which this can be achieved depends

on the expressivity, level of detail and the degree of consistency when interpreting the shared knowledge

model.

7.1.2 Ontologies

Ontologies are shared knowledge models that explicitly describe the meaning of and relations between

concepts that are used within an information system. Ontologies facilitate data discovery as well as data

integration. By committing to and publishing its ontology, an agent allows other agents with which it

interacts to interpret and consume messages that it produces. Even though many applications have been

178

developed which demonstrates the power of ontologies for discovering, integrating and making sense of

disparate data sets (see section 2.4.2), ontologies have the potential to play a much larger role in an open

and dynamic distributed information system. A compelling vision is the development of ontology driven

information systems, where software agents are able to autonomously discover, access and assimilate

the services provided by other agents. This vision can be achieved by providing ontologies that not

only capture the meaning of the messages transferred between agents but as well as the descriptions of

the agents themselves. In this way agent services can be dynamically queried, accessed, manipulated

and assembled into complex executable workflows. By explicitly providing descriptions of the services

themselves as well as the data models that drive their operation, the service descriptions and data models

become runtime components that can be accessed, queried and modified. This allows for the dynamism

of data models and service offerings while still allowing services to interoperate. Furthermore, this

allows data models as well as service offerings to change and evolve naturally with minimal impact on

and without having to re-engineer the system.

7.2 SUMMARY OF RESULTS

The main outcome of this research is an Ontology Driven Multi-Agent System (ODMAS) framework

together with a middleware platform, i.e. the Sensor Web Agent Platform (SWAP). SWAP provides a:

a semantic infrastructure which includes a set of ontologies and corresponding reasoners; an abstract

architecture that guides the design of agent based applications, an internal agent architecture to guide

the internal operation of an ontology driven agent; and a development platform which eases the imple-

mentation and deployment of individual agents. Two working case study applications were designed and

implemented on SWAP. In this section we briefly describe the two implemented application and then

summarise the key features of the framework.

The wildfire detection application, described in section 6.1, is a simple Sensor Web application that

illustrates the operation of a complete end to end SWAP application. It provides working implementa-

tions and demonstrates: the roles of each of the SWAP agents; the role of the different SWAP ontologies

in domain modeling, agent service descriptions and agent communication; as well as workflow composi-

tion and dynamic workflow execution. Sensor data more specifically brightness temperature observations

is exposed via a Sensor Agent, the MSG Sensor Agent. A single Tool Agent, the Contextual Algorithm

(CA) Tool Agent detects spatial anomalies (hotspots or lowspots) in image data. The Hotspot Detection

179

Workflow (HDW) Agent incorporates an OWL-S workflow which when executed, retrieves brightness

temperature data from the MSG Sensor Agent and invokes a Tool Agent to extract hotspots from this

data. The HDW Agent is triggered by the Wildfire Detection Application (WDA) Agent which uses

these hotspots as indications of wildfires. Any SWAP User Agent that has downloaded and installed the

wildfire detection application adapter is able to register customised alert requests with the WDA Agent.

Appropriate alerts are then sent to and can be visualised by the SWAP User Agent. An implementation of

a Wildfire Spread Prediction Modeling Agent is also provided which illustrates the operation of a Mod-

eling Agent. Furthermore, the use of the SWAP uncertainty ontologies is demonstrated via a Bayesian

Network that captures the causal relations between brightness temperature readings, hotspots and wild-

fires. In this way the uncertainty associated with a specific wildfire observation can be represented,

shared and used in the system.

The second application, described in section 6.4, detects informal settlements from high resolution

satellite imagery. While this application also involves the extraction of information from remotely sensed

imagery, the two domains, i.e. wildfire and informal settlements, and the imagery used differ widely. Fur-

thermore, this application is more reflective of a real world remote sensing application. It incorporates

data sets from different satellites (Quickbird and SPOT), uses observations from different spectral fre-

quency bands (Panband and Multispectral), uses a complex image processing chain, consisting of five

processing steps for features extraction, and a classification step to classify these features into different

classes of informal settlements. At the Sensor Layer, QuickBird image data is offered by the Quickbird

Sensor Agent. At the Knowledge Layer, the ISIS Workflow Agent retrieves the QuickBird data from the

Quickbird Sensor Agent and passes it to a series of Tool Agents which segment and extract appropriate

features from the data. The Dimensions and Tiling Tool Agents segments the image into a series of tiles.

These tiles are then passed through the Edge and NDVI Tool Agents, which determine the edges and the

vegetation index for each tile respectively. Edge and NDVI images for each tile are then passed through

the Stats Tool Agent, which calculates statistics such as mean, standard deviation, density, skewness and

kurtosis for each image. The statistics for each tile are then passed to the ISIS Application Agent (AA)

for classification. Within the ISIS AA a naive Bayes classifier is used to classify Edge and NDVI image

statistics into different types of informal settlements. The ISIS User Agent is used to query the ISIS AA

and to visualise detected informal settlements. The application also demonstrates how Quickbird image

data can be replaced by SPOT image data, which has a higher temporal resolution (revisit time) but a

180

lower spatial resolution.

7.2.1 Semantic framework

The SWAP semantic framework (see section 4.3) aims to bridge the semantic gap between machine and

human. The SWAP ontology infrastructure delineates conceptual ontologies which provide support for

modeling and representing observations and theories grounded in and about the physical world, from

technical ontologies to model and represent the software entities (agents) that will host and process these

observations within the Sensor Web.

7.2.1.1 Conceptual Ontologies: representing observations and theories

A set of four top level conceptual OWL ontologies and reasoners provide representational support for

capturing the semantics of observations, algorithms and theories that can be applied to these observations.

Their design is based on the human cognitive system, i.e. how humans store and reason about knowledge

[132]. Mennis defines three systems of knowledge, i.e. theme, space and time. SWAP introduces a fourth

system, i.e. uncertainty, to provide a more expressive and holistic approach for modeling observations

and theories which form an integral part of the Sensor Web. Each system consists of an OWL ontology

and an associated reasoner. The four conceptual ontologies allows for reasoning at an abstract level,

without worrying about the technical detail.

In order to fully participate in SWAP all users must commit to the integrated conceptual model encap-

sulated by the four SWAP top level ontologies. There are many different models for space, time, theme

and uncertainty. In order to appeal to a broad user community and gain wider participation, complex the-

ories of space and time were avoided. The aim was to incorporate the simplest and most widely used and

accepted models where possible. The swap-theme ontology provides for the representation of observa-

tions and is based on the OGC’s model of observations and measurements [50]. The eo-domain ontology

(figure 4.7) allows for the incorporation of domain concepts from the NASA SWEET [167] ontologies.

The swap-space ontology defines the spatial operators defined in the OGC Simple SQL features spatial

operators [49, 61, 150]. The swap-time ontology incorporates the temporal model defined in OWLTime

[95, 96] and follows Allen’s [20] widely used representation of intervals. The swap-uncertainty ontol-

ogy incorporates Bayesian probability [171], which is widely used in practical applications to represent

181

degrees of belief, and allows for the incorporation of Bayesian Networks to represent different theories

of cause and effect relations between events in the physical world.

The effectiveness of these ontologies to model and represent typical artifacts in practical Sensor Web

applications was demonstrated by their use in the two case study applications. Several ontologies were

created using these top level conceptual ontologies to:

• represent and query sensor data: demonstrated for three disparate satellite image data sets

(Quickbird, SPOT and MSG) served by three Sensor Agents

• represent and invoke image processing algorithms and prediction models: demonstrated for

six different image processing algorithms offered by Tool Agents and a fire spread prediction

model offered by a Modeling Agent

• represent and query alerts for phenomena demonstrated for wildfire and informal settlement

alerts offered by two Application Agents

• represent theories that encapsulate causal relations between events demonstrated by capturing

a theory for detecting wildfires, i.e. the causal relation between wildfires, temperature hotspots

and brightness temperature observations (see section 6.1.2)

7.2.1.2 Reasoning about knowledge represented in the ontologies

Two independent rule based reasoners, a spatial and a temporal reasoner perform inferences about spatial

and temporal entities specified in the swap-space and swap-time ontologies. A thematic reasoner uses the

SWEET ontologies to reason about thematic concepts. A Bayesian inference engine dynamically pop-

ulates Bayesian Networks with observable events, performs inferencing on these events and determines

and records the occurrence of other events.

7.2.1.3 System modeling, services, workflows, applications

SWAP provides three technical ontologies, i.e. swap-data, swap-agent and swap-task that provide rep-

resentational support to describe the system entities that are required for hosting and transmitting obser-

vations, and for executing the algorithms and theories which have been described above. The swap-data

182

ontology provides descriptions of different data structures that can be exchanged between agents. This

includes coverage (image) and feature data as well as units of measure.

The swap-agent ontology provides support for representing an agent, the service it hosts and the

interaction protocol required to invoke the service. It provides support for representing all six Sensor

Web agent types identified in the SWAP abstract architecture (see figure 4.1). These are data provider

(Sensor) agents, processing or data transformation (Tool) agents, modeling (Modeling) agents and coor-

dination (Workflow) and application (Application) agents. Each agent type has a corresponding service

description with a set of common attributes that capture the conceptual functionality of the service. Sen-

sor Agents provide a description of the observations that they provide, while Tool and Modeling Agents

provide a description of the data processing algorithms and prediction models that they respectively pro-

vide. Service description attributes are grouped into the four different conceptual systems, i.e. spatial,

temporal, thematic and uncertainty, and are specified using concepts from the appropriate top level on-

tology. Service descriptions also contain service invocation information in the form of input and output

mappings. A request and a response message template is used for invoking and interpreting the response

of the service. The request message template specifies all service invocation parameters, which may be

mandatory or optional parameters that have default values. Users populate mandatory parameters and

may also specify optional parameters for finer control of the service. These message templates are used

to dynamically invoke a service and to consume and interpret its results. This mechanism is described

in sections 4.5.2 and 4.5.4 and illustrated using the Hotspot Detection Workflow Agent (section 6.2.6)

which shows the dynamic invocation of a Tool and Sensor Agent using appropriate message templates.

This bridges the gap between service selection and use, i.e. once a suitable service has been identified it

can be dynamically invoked and its results can be dynamically interpreted.

The SWAP service directory contains service descriptions for all agent services offered in the system.

By committing to the SWAP top level ontologies, users are better able to query, navigate and filter the

services on offer. Besides being able to discover the availability of new services in the system, users are

better able to determine the nature of observations contained in data sets and identify algorithms in the

system that can process these observations. Thus they are able to identify appropriate service(s) that best

fits their requirements. In chapter 6 service (or capability) descriptions, for each of the different agents

used in the wildfire detection application, is described. Examples of queries to the SWAP Directory

Agent to discover these services are also shown.

183

The swap-task ontology is based on OWL-S, and provides algorithmic primitives to assemble multi-

ple agents into executable agent workflows. An agent is represented as an atomic processes and OWL-S

algorithmic constructs are used to assemble multiple agents into appropriate sequences of invocations or

composite processes. The main extension to OWL-S is a process to agent mapping that allows OWL-S

processing steps to be transformed into agent invocations at runtime. The mapping specifies request

and response templates that are used to transform each processing step into an appropriate request and

response message used to invoke an agent and to interpret its response (see section 4.5.4).

The technical and conceptual ontologies allow SWAP users to represent complex information pro-

cessing chains or workflows. Users search semantic agent service descriptions and identify appropriate

sensor data sets, algorithms and models to apply to these data sets. Once the appropriate agents are

identified, users use the algorithmic constructs in the swap-task ontology to specify a processing work-

flow that assembles different agent services in an appropriate sequence for execution. Each workflow

represents new functionality in the system and can be made persistent by deploying it on a Workflow

Agent to create a persistent execution environment for the workflow to be executed on demand. As a

workflow is fully specified and executed from its OWL-S specification, the appropriate ontologies (which

contain the workflow) can be shared, downloaded and executed locally. Furthermore, once the workflow

is downloaded it can be easily modified and executed locally by SWAP users. A workflow is repre-

sented as a composite processes, which means that it can be incorporated into other composite processes

(workflows). This allows for reuse of existing workflows within other workflows and for creating and

managing large and complex nested workflows. Currently, workflows are created and modified manually

via an ontology editor. However, given that the semantics of both the conceptual and the technical aspects

of each service are specified in the service description, this provides a sound foundation for automating

workflow composition.

Two executable agent workflow ontologies, that capture the image processing workflows for each of

the case study applications were created:

• Extraction of hotspots workflow This workflow (see section 6.2.6) combines two agents via two

processing steps, and combines a single Sensor Agent with a Tool Agent to extract hotspots from

brightness temperature image data.

184

• Extraction of informal settlements This is a more complex workflow (see section 6.4) that in-

volves multiple invocations of six different agents, one Sensor Agent and five Tool Agents which

tiles and extract features for informal settlement detection from satellite image data. Two data sets

are retrieved from a Sensor Agent and both data sets are processed individually by all five Tool

Agents.

A key feature that is demonstrated is that the entire workflow is encapsulated in the ontology which

can be shared, downloaded and modified to incorporate new agents or to change invocation parameters.

7.2.2 Framework for designing, deploying and accessing agents and applications

The semantic infrastructure, discussed above, together with the SWAP abstract architecture, SWAP in-

ternal agent architecture and supporting middleware platform provide comprehensive support to faciliate

the design, development, deployment and use of ontology driven Sensor Web agents as well as agent

based alerting and monitoring applications.

7.2.2.1 Design

As described and illustrated in the informal settlement application (see section 6.4) developers uses the

abstract architecture to identify the observations, algorithms, theories and models that are required to

generate the required alerts. In parallel, the developer creates appropriate ontologies, by reusing and

extending the top level ontologies, that describe the service offering and operation of each agent and the

observations, algorithms, models, theories and alerts that are required for the application.

The abstract architecture aims to provide different conceptual layers and functional agent abstrac-

tions to ease system modeling. The architecture provides three layers of abstraction, the Sensor Layer,

Knowledge Layer and the Application Layer. Each layer provides appropriate agents that encapsulate

the typical functionality required at that layer, i.e. Sensor Agents or sensor data providers at the Sensor

Layer; Tool, Modeling and Workflow Agents or information processing, data analysis and coordination

functionality at the Knowledge Layer; and Application and User Agents or end user and decision making

functionality at the Application Layer. For example, developers that may only want to deploy a sensor

data provider, can easily identify Sensor Agents at the Sensor Layer as being the appropriate agent ab-

straction for this. By interrogating the appropriate service description for Sensor Agents, i.e. the sensor

185

data service, and typical conceptual attributes they construct an appropriate service description. Terms

from the SWAP ontologies are used or are extended accordingly if appropriate terms are not available.

Data processing and modeling experts work at the Knowledge Layer and deploy new Tool, Modeling

and Workflow Agents. Application developers reuse Tool, Modeling, Workflow and Sensor Agents from

lower levels to expose applications to end users. Developers are thus able to identify which agents fit

their requirements and can focus just on developing those agents at the appropriate layers while reusing

functionality from lower layers and providing additional functionality to developers at higher layers.

The abstract architecture explicitly avoids providing abstractions for MAS middleware services, such as

agent directory services, as done in other architectures. Developers can thus concentrate on identify-

ing and modeling the individual software agents required to achieve the required alerting functionality

separately from identifying which agent middleware services to use.

7.2.2.2 Development and deployment

SWAP uses the MASII agent platform (see chapter 3) for implementing and deploying agents as well as

agent based applications. All SWAP agents developed in the two case study applications were imple-

mented on the MASII platform. A key feature of the MASII platform is the grouping of ontologies and

message handlers into pluggable service adapters, which can be discovered, downloaded and installed at

runtime. This allows SWAP end user applications to be discovered and installed at runtime (see section

6.3).

SWAP attempts to incorporate both the declarative programming paradigm usually used to develop

agents and logic based systems and the imperative programming approach used in object oriented and

web services development. The internal agent architecture (see section 4.7.1) allows the developer to use

existing programming libraries, sensor data stores as well as OGC web services, to provide the underlying

functionality of an agent. Two key features that enable this is a data mapping API that converts ontology

instances into OpenGIS Java objects, as well as the provision of generic Java interfaces to implement the

functionality of the different SWAP agent types.

Three Java interfaces, the DataAdapter, ToolAdapter and ModelingAdapter interface are used to

implement the underlying functionality of the Sensor, Tool and Modeling agents respectively. The im-

plementation of these adapter interfaces form a major part of the development of Sensor, Tool and Mod-

eling Agents. These classes are used internally by these agents to fulfil service requests. External service

186

requests are directed internally to the adapter class. The data mapping API transforms any incoming

ontology data to Java objects and supplies this to the adapter class. After the adapter class completes

its processing, the agent transforms any resultant Java objects to ontology instances which are used to

compose the service response message.

The data mapping API and the adapter interfaces have been designed and demonstrated specifically

to leverage the use of OpenGIS compliant libraries. The current implementation is demonstrated using

52 North’s OXFramework environment but allows for accessing other OpenGIS compliant libraries as

well as to access and incorporate data from existing spatial databases and OGC SWE services. SWAP de-

velopers are able to reuse and leverage existing software libraries and services available in the geospatial

community to provide the underlying functionality of an agent. This not only reduces development time,

but allows for the incorporation of legacy software, spatial databases as well as OGC SWE services into

the system. It is thus possible to separate, but still leverage, the benefits of both the ontology-agent devel-

opment paradigm and the Java development paradigm. Java developers may choose to concentrate only

on implementing instances of the adapter classes, while developers familiar with the agent and ontology

paradigm can concentrate on exposing the functionality of these adapters via appropriate Sensor, Tool

and Modeling Agents. This also allows for developers to gradually transition from the object oriented to

the ontology driven agent paradigm.

The above approach was used to implement all Sensor, Tool and Modeling Agent in the two case

study applications. Ten adapters for the three Sensor Agents, six Tool Agents, and one Modeling Agent

were implemented. An additional adapter for a Sensor Agent that offers weather data by forwarding

requests to an OGC Sensor Observation Service (SOS) was implemented (see section 6.2.1.2) to demon-

strate how an OGC web service can be incorporated and accessed. This approach can also be used to

incorporate OpenGIS compliant visualisation and GIS client development libraries to implement the user

interface and alert visualisation components of the SWAP User Agents. The data mapping API and the

OXFramework Java Swing visualisation libraries are also used to implement the graphical user interface

for visualising wildfire and informal settlement alerts within the two User Agents.

An Application and User Agent were implemented for both the informal settlement and wildfire

applications. A separate visualisation interface and query mechanism is created for each application,

thus allowing different applications to have different querying and visualisation interfaces. Users are

also able to choose which applications to install on their User Agent. The current wildfire and informal

187

settlement user interfaces demonstrate simple alert querying and visualisation. However, as both user

interfaces were implemented using the OXFramework client libraries, these libraries can be used to

provide better visualisation of alerts or to provide mechanisms for users to interact with or manipulate

alerts.

7.2.3 Usage

SWAP can provide significant benefits to a wide range of users. These include end users for accessing,

managing and visualising information provided by real time monitoring applications, developers for

deploying agents and agent based applications and earth observation scientists who can use the Sensor

Web as a scientific computing platform to facilitate knowledge sharing and discovery.

7.2.3.1 Earth observation scientists/ Domain experts

Earth observation scientists and domain experts can use SWAP to publish, share and reuse earth obser-

vation data and knowledge.

Capturing and sharing knowledge The ontology infrastructure provides a high level conceptual

model which facilitates the capturing of geospatial concepts to describe observations, algorithms and

prediction models as well as subjective theories about causal relations between events that occur in the

physical environment. These concepts as well as the relations between concepts are captured by making

unambiguous and logically consistent statements that are grouped into OWL ontologies. By extending

and reusing the same high level conceptual model, ontology fragments created by different users can be

shared, logically verified, and integrated and reused. Users thus have access to a vast globally distributed

knowledge repository that can incorporate different domain models which can still be interpreted using

the top level ontologies.

Using agent services for experimentation and knowledge discovery The ontology infrastructure

provides a model for describing the data sets, data processing algorithms as well as the prediction models

that are offered by agents. This facilitates and guides consistent service descriptions. By interrogating the

top level and domain ontologies, scientists can navigate, query or filter services, place them in context,

as well as identify and incorporate the functionality that they require.

188

An important aspect of an ODMAS is to apply multiple processing and modeling services to spe-

cific data to perform complex information processing chains or workflows. Scientists can use the shared

ontologies to navigate service descriptions and select a number of agents required to fulfill a task. The

algorithmic primitives from the swap-task ontologies are used to specify workflows that assemble the

selected agents into an appropriate sequence for execution. These workflow specifications can be pub-

lished and discovered as a new service offering in the system. The ontology containing the workflow

specification can be retrieved, modified and executed locally. Scientists can thus experiment locally with

removing and replacing individual agent invocations, changing the sequence in which agents are exe-

cuted, and even adjusting invocation parameters. The modified workflow can be immediately executed

and evaluated.

Furthermore, given that service descriptions as well as the algorithmic constructs have formal se-

mantics, there is potential to achieve a degree of automation for agent discovery as well as workflow

construction and modification. This will definitely ease experimentation and testing as well as introduce

the possibility of discovering knowledge that may not be easily be discovered using existing investigation

and experimentation methods.

7.2.3.2 Sensor Web application end users

Sensor Web application end users typically require real time monitoring of the environment. They are

usually interested in the occurrence of phenomena that have impact on human life, both naturally occur-

ring phenomena e.g. wildfire and floods, as well as man made phenomena, e.g. informal settlements.

End users belong to a variety of organisations including government departments and utilities, disaster

management response teams and urban planning departments. End users typically have limited or no

software development skills and may even have limited domain knowledge. Their key requirement is to

receive real time alerts when some phenomena occurs at a specified spatial location. Sensor Web end

users must be able to discover existing alerting functionality, specify custom alerting criteria as well as

receive and visualise alerts. End users interact with the system via User Agents. Application Agents gen-

erate, manage and supply alerts to User Agents for specific monitoring applications to end users. Each

end user manages and configures their own User Agent and uses it to register custom alert subscriptions

with one or more Application Agents. User Agents also store and visualise alerts that are received.

189

7.2.3.3 Sensor Web Developers

As described above, a comprehensive development framework is provided to guide developers through

the design, development and deployment of agent based Sensor Web services and end user applications.

The abstract architecture allows developers to identify the number and types of agents required for a

particular Sensor Web application, the ontologies are used to specify the agent interfaces including the

structure and content of messages transferred between agents, the internal agent architecture and the sup-

porting middleware platform provides a programming toolkit including sample agents for implementing

and deploying individual agents. As all agent interfaces and interactions are explicitly specified within

agent ontologies, these ontologies form an online and dynamic model of the system. Agents can be

reconfigured by modifying the appropriate ontologies. These ontologies can be accessed by new devel-

opers to understand the operation of specific agents in the system.

7.3 COMPARISON WITH OTHER SYSTEMS

The two main features that distinguish SWAP from other Sensor Web approaches are: firstly the agent

based framework for modeling, developing and deploying Sensor Web services; and secondly that appli-

cations are supported by a comprehensive and coherent semantic infrastructure.

7.3.1 Agent based Sensor Web approaches

The definition of an agent in this work is similar to the definition proposed by Sengupta and Sieber [176]

for Geospatial Software Agents. SWAP agents represent autonomous users or organisations, i.e. they

have strong autonomy, and are inherently equipped to handle the unique qualities of geospatial data.

However, SWAP agents do not currently have explicit geospatial locations in the system to facilitate

mobility and optimise discovery of agents. However, the current design lends itself to such an extension.

Most existing agent based approaches focus on distributed processing, data filtering and scalability.

However, the author to date has not found any approach that provides a comprehensive ontological

infrastructure that supports interactions and the design of Sensor Web agents as proposed in this work.

The SWAP three layered architecture was inspired by the layered architectures proposed in [22, 29].

Conceptually Abacus [22] provides abstractions that are very similar to SWAP. The Sensor Layer is sim-

ilar to the Contribution Layer, the Knowledge Layer is similar to the Management and Processing Layer,

190

and the Application Layer is similar to the Distribution Layer. However, Abacus focusses on distributing

processing based on location, where each agent is responsible for different spatial sectors and together

provide coverage of the entire observation region. This approach has benefits for specific applications,

such as radar applications and for distributed real-time processing and monitoring. However, this re-

stricts how processing agents can be reused across different applications and different data sets with

different spatial coverages. In SWAP, processing agents (Modeling and Tool Agents) are demarcated

according to the function that they perform rather than a spatial region of responsibility, which makes it

easy to discover and reuse these agents for different applications. The abstractions provide by Biswas et

al. [28, 29] have many similarities to those provided by SWAP. The concept of Application Agents in an

Application layer is similar to that of SWAP. However, Sensor Agents occur in the middle Service Layer

rather than in the Data Layer as in SWAP. The Service Layer also provides middleware services. Con-

ceptually, the SWAP abstract architecture is separate from the MAS infrastructure and the middleware

services that it provides. It provides functional abstractions solely for designing and developing Sensor

Web services. Middleware services such as discovery, security, communication and scalability reside in

the MAS architecture. SWAP currently does not support mobility, but can be extended to do so.

The idea of composing and storing executable agent workflows for geospatial image analysis is a

key feature in the AIGA architecture [143]. However, AIGA does not focus on the ontology infrastruc-

ture. SWAP provides a more comprehensive ontology infrastructure which, by incorporating OWL-S,

provides richer control structures than that provided in AIGA for workflow compositions such as loops,

conditionals and branching.

IRISNET [41, 77] provides a two tiered architecture that supports distributed data storage and pro-

cessing and provides abstractions for data sources and information extraction. While it provides strong

support for agent mobility and distributed processing, it does not provide a semantic infrastructure.

More recently the SWAMO platform [204] aims to provide an hierarchical architecture for intelligent

agents which caters for planning and negotiating for resources. Their aim is to create an ontology that

includes representation support for system components.

7.3.2 Non-agent based approaches

The Open Geospatial Consortium (OGC) has made great strides in their standardisation efforts. These

include standard data formats and data encodings, standard software development APIs, such as the

191

GeoAPI, as well as standards for geospatial services such as the Web Mapping Service (WMS), Web

Feature Service (WFS), and more recently within the Sensor Web Enablement (SWE) initiative, the

Sensor Observation Service (SOS), and the Sensor Alerting Service (SAS). While SWAP attempts to

address the drawbacks of SWE it also allows for the incorporation of SWE services, OGC data formats

and application APIs.

SWE lacks formal semantics which limits service discovery, service composition and data integra-

tion. Furthermore, the SWE framework provides a limited methodology for application development and

minimal support for application deployment. Service providers hide complex application logic behind

OGC services. For example, in the SWE approach for detecting wildfire [189], a Sensor Observation

Service (SOS) was used to extract hotspots from satellite image data sets and provide hotspot features.

The data retrieval and hotspot detection process is hidden behind the SOS interface. Only by reading the

system documentation would developers discover the algorithm and, if it is not specified in the derived

data, the sensor data set that was used to produce the data. Thus complex application components, e.g.

sensor data providers and data processing algorithms may be hidden behind the SOS interface. This

together with the lack of semantics in service descriptions drastically limits the degree of reuse as well as

the maintenance and changeability of the components that make up a service. New services must be built

from scratch even if they incorporate similar data sources and algorithms used within existing services.

This duplication of efforts will be compounded as the number and complexity of services increases. Fur-

thermore, as a limited methodology is provided for developing SWE end-user applications, services as

well as applications that use these services will be developed on a custom and adhoc basis and often must

be manually upgraded to incorporate new services or changes to existing services.

There have been a number of initiatives to add semantics to OGC data standards and services. The

Geospatial Semantic Web Interoperability Experiment [124] attempted to augment WFS with a semantic

query capability, by defining a set of OWL ontologies. Lutz and Kolas [128] attempt to extend the limi-

tations of OWL by incorporating rules which allow for more richer discovery and querying of distributed

OGC data services. However, most OGC based approaches [124, 127, 128] tend to encode OGC stan-

dards, e.g. the Geographical Markup Language (GML) into OWL or layer semantics over OGC services,

with the focus being on discovering and querying heterogenous distributed sensor data sets. Very little

attention is given to representing the actions, i.e. the information extraction, filtering algorithms and

models for processing this data.

192

Agent models offer a high level of disaggregation and address scale concerns at a conceptual and

functional level [176]. While the importance and benefits of using agents as design abstractions has

been highlighted [176], most OGC based approaches still take a service based approach, with the focus

still on data integration [117] by augmenting OGC data provisioning services with semantic capabili-

ties [124, 128]. While these approaches show the benefits of incorporating ontologies for improving

discovery and querying of distributed and heterogenous sensor data sets, they do not provide seman-

tics for discovering, selecting, invoking and composing other types of geospatial services (besides data

provision) which is required for a geospatial web [117]. Some OGC based initiatives [113, 121] have

specifically addressed the issue of service composition, and as done in this research also use OWL-S for

representing executable workflows or geospatial service chains. More recently Zaharia et al. [211] have

used the WSMO framework for workflow representation.

SWAP provides a comprehensive and coherent semantic framework to allow for representing con-

ceptual aspects of data as well as to represent system entities to address this. None of the OGC based

approaches [113, 121, 124, 127, 128] explicitly delineate space, time, theme and uncertainty. These

approaches also do not provide an explicit methodology for designing and deploying services and appli-

cations. SWAP proposes a next generation ontology driven multi-agent architecture, but also provides a

mechanism to incorporate OGC data standards and services. The ontology infrastructure is more com-

prehensive and bridges the gap between system and conceptual entities. It provides a stronger modeling

and design framework for developing and designing Sensor Web services and applications, and aims to

cater for a wide Sensor Web community comprising of thousands of different organisations and agents.

7.3.3 Other related work

The ontology and reasoning infrastructure is an essential part of the SWAP framework and is one of

the main contributions of this work. The different conceptual ontologies, i.e. swap-theme, swap-space,

swap-time and swap-uncertainty provide a comprehensive framework for representing entities in the real

world. The different technical ontologies, i.e. swap-data, swap-task and swap-agent, provide concepts

for representing software system entities. To the author’s knowledge there is no other implemented

framework that provides such comprehensive representational support.

The SOUPA ontology used in COBRA [45] provides support for representing geospatial data. It

uses DAML-Time [94] for representing temporal concepts and OpenCyc Spatial Ontologies [169] and

193

Regional Connection Calculus (RCC) [165] and also provide independent rule based temporal and spa-

tial reasoners. The decision to use separate rule based reasoners for space and time was based on the

approach used in COBRA. This has two main advantages. Firstly, there is vast performance increase, by

reasoning about and answering queries on a single conceptual dimension, rather than reasoning about all

dimensions at once. Secondly, it eases the complexity of representing real world entities, by considering

the entity separately along each dimension. However, SOUPA is limited in terms of its representational

support. From a technical viewpoint, it does not provide for representing system entities, such as agents

and tasks, and from a conceptual viewpoint, does not deal with uncertainty. It also has limited support

for geospatial thematic representation as it concentrates on pervasive context-aware systems.

A more recent work by Perry et al. [161] also proposes the separation of ontologies for space,

time and theme. However, their model lacks support for representing uncertainty or system entities.

Even though they demonstrate an application case study, the emphasis is on the use of these ontologies,

rather than providing a design and development methodology for building Sensor Web applications [88].

Furthermore, the approach does not incorporate OGC services and standards.

The incorporation of uncertainty is a key feature of the SWAP ontology infrastructure. The approach

builds on BayesOWL[57, 58], which proposes a generic approach using an an OWL ontology to capture

and perform inferencing on a Bayesian Network (BN). The uncertainty system, described in chapter 5),

shows how Bayesian Networks can be incorporated and used in an ODMAS for the Sensor Web. Uncer-

tainty resulting from weak theories, sensor inaccuracies or location specific anomalies can be captured

and incorporated into a BN. The thematic, spatial and temporal aspects of event variables are described

using the relevant SWAP ontologies. The approach distinguishes between observable events which are

dynamically populated using observations captured in the system, and inferenced events, which are pro-

duced after inferencing is performed on the Bayesian Network. Inferred events are transformed into

ontology instances and are specified using the top level ontologies. They can thus be interpreted, placed

into context using the top level ontologies, integrated with other information and incorporated within

individual agents or within end user applications.

7.4 LIMITATIONS AND FUTURE WORK

There are many aspects of the system that could be extended or require further investigation.

194

7.4.1 Creating additional SWAP applications

Two applications that involved information extraction from satellite imagery were modelled and imple-

mented. While the wildfire detection was relatively simple and served to demonstrate the use of the

framework, the informal settlement detection application was more reflective of the complexity of a

real world satellite image processing application. It uses observations from different spectral frequency

bands, incorporates multiple image processing algorithms and a classification algorithm to classify in-

formal settlements. The framework was found to be adequate to model and implement both applications.

These applications shows the adequacy of the framework for developing and deploying dynamic satel-

lite image processing applications. In both applications scenarios for reusing and reconfiguring agent

services were described. However, these applications were developed independently and in parallel.

Agents were not reused across the applications. Additional applications must be implemented, ideally

by independent developers, to provide further measures for reuse and interoperability.

7.4.2 Extending uncertainty and supporting quality of service

The representation and management of uncertain knowledge is an important aspect of the Sensor Web.

The proposed model shows how Bayesian Networks can be incorporated and used to reason about cause

and effect relations. However, the model assumes that all events represented in a Bayesian Network

occur at the same time and space. The extension of the model to capture influences between past, current

and future events and events occurring at different locations requires further investigation.

The model does not provide support representing the reliability or the quality of services. The re-

sponse times of services may differ. The availability of local computational resources, external factors

such as network latency, network bandwidth, and the response of other agents required for it to perform

its function may affect the response time. The reputation of the hosting organisation may be an indicator

of the quality of a service. Services offered by well known organisations such as NASA and ESA may be

more trusted than those offered by less well known organisations. The extension of the model to allow

for describing the quality and reliability of services requires further investigation.

195

7.4.3 Agent mobility and security

SWAP does not support agent mobility [41, 143]. Depending on the availability of network bandwidth

and local computational resources an agent could migrate to a remote agent platform. Agent mobility can

be used to increase agent performance and robustness. Agents can migrate at runtime from computing

nodes with high resource utilisation to nodes with low resource utilisation. The current framework does

not implement a security model. Security features such as authentication and verification is an important

aspect that requires further investigation.

7.4.4 Automation

An ODMAS presents great potential for automating information extraction. When scientists pose queries

to the system, there may not be an existing resource that satisfies the query. An agent could be tasked

to identify potentially related resources, and use optimisation and scheduling techniques to assemble

resources into possible workflows that may satisfy the query. The agent can also be tasked to monitor

for and incorporate new resources as they become available. Efforts to automate service composition

using OWL-S has been investigated [130], even in the geospatial domain [210]. Since workflows are

composed manually these approaches could be investigated and incorporated to obtain some degree of

automation for workflow composition.

Machine learning techniques can be incorporated within agents to construct models from historical

analysis of data and use these as a basis for predicting future events. Such models could be updated when

new data is available. Agents can learn to find aberrant patterns prior to certain phenomena, e.g. detect

unusual patterns of events prior to the occurrence of a flood. This knowledge can be used to discover

new relations between phenomena and to derive improved prediction models.

7.4.5 Tool support

Various tools can be developed to ease user interaction with SWAP. For example, a scientific desktop that

allow scientists to construct and visual workflows. This could include support for service navigation,

workflow construction, manipulation, execution and deployment. While examples of data and agent

services queries were demonstrated this requires further investigation. A query tool could be created to

query sensor data sets or service offerings.

196

7.5 IMPACT OF RESEARCH

This research describes a practical approach for an Ontology Driven Multi-Agent Sensor Web. It inves-

tigates the issues and challenges for designing, developing and deploying ontology driven agent based

services and applications. The incorporation and tight integration of ontologies and agents into the Sen-

sor Web has the potential to provide to forever change the way in which geospatial data and knowledge

is accessed and used. Some key benefits of using such an approach are described below.

Capturing, sharing and integrating data, knowledge and services A set of top level ontologies

guide the development of new ontologies that describe the observations, algorithms, theories and predic-

tion models which form the key service offerings on the Sensor Web. Domain modelers reuse concepts

and relationships from the top level ontologies or introduce new concepts and relationships between these

concepts. As these ontologies extend the same high level conceptual model and consist of unambiguous

and logically consistent statements, ontology fragments, even those created by different users, can be

shared, logically verified and to an extent, integrated and reused. This can facilitate dynamic data inte-

gration as well as dynamic service interoperability. There is also the potential to create a vast globally

distributed and continuously evolving Sensor Web knowledge repository that will provide an invaluable

tool for earth observation practitioners to capture and exchange knowledge. This knowledge repository

can also provide a valuable resource for teaching programs within academic institutions.

Facilitate human collaboration and accelerate scientific discovery Often, innovative models and

processes published in traditional scientific literature are not easily reproducible, for a number of tech-

nical reasons. Publishing complex processes and models online, facilitates immediate reuse by other

scientists within other processes or models. Researchers from different countries and different organisa-

tions are able to pool resources and expertise to work on large scale and more complex research projects.

Resources developed by individual researchers can be validated and tested by others with alternate pa-

rameters or alternate data sets. Resources developed at different partner organisations can be assembled

into workflows to address complex problems, which can themselves be shared, executed with alternate

resources, or incorporated into other workflows.

197

Managing information overload and system complexity Users will be increasingly overwhelmed

by the volumes of available data and multitude of services offered on the Sensor Web. Users may lack

the necessary technical expertise and time to interpret and analyse all types of data. An ODMAS can

assist users with information overload as well as shield users from the complexity of the Sensor Web.

For example, a user could pose a vague query using concepts from the ontology and the system can

attempt to discover relevant agents that may potentially assist to fulfill the query. These agents can be

used without requiring knowledge of the internal workings of the agent. Users can also reuse complex

information extraction workflows without requiring an understanding of the component agents that make

up the workflow. In this way, researchers can perform tasks without requiring expert knowledge of all

data, processes and models stored in the system. By accessing the ontologies, users are better able to

place retrieved data into context and may view the data at different levels of granularity. Additionally, an

ODMAS can provide different layers of abstraction with different types of agents at each layer encapsu-

lating specific functionality that is required at that layer. This allows for consistency and also eases the

design and management of agents and agent based applications.

Managing dynamism and towards automation and intelligence Service offerings and data models

will continuously change. Agent service offerings, interaction protocols and data models are explicitly

specified in the ontologies. These ontologies form a shared and dynamic model that drives the operation

of the system. Many reconfiguration tasks can be performed by modifying the appropriate ontologies.

Ontology fragments created by different users can be logically verified, integrated and reused. As ontol-

ogy statements are machine interpretable, agents could be deployed to discover new relationships or even

new concepts by integrating ontology fragments created by different users. The approach can lead to the

automation of various tasks including: service discovery, service interoperability, workflow composition,

data integration, data analysis, information extraction and scientific experimentation. The incorporation

of machine learning and pattern recognition techniques can assist in this regard.

Appendix A

THE SWAP ONTOLOGIES AND RULES

A.1 THE SWAP-THEME ONTOLOGY

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY swap-data.owl "http://masii.cs.ukzn.ac.za/swap/swap-data.owl">
<!ENTITY swap-theme.owl "http://masii.cs.ukzn.ac.za/swap/swap-theme.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-theme.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->
<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="&swap-data.owl;"/>

</owl:imports>
</owl:Ontology>

<!-- Classes -->
<owl:Class rdf:about="#Observable">
<rdfs:comment xml:lang="en">Something that can be observed, e.g. the speed (property) of the wind (entity)</rdfs:comment>

</owl:Class>

<owl:Class rdf:about="#ObservedEntity"/>
<owl:Class rdf:about="#ObservedProperty"/>
<owl:Class rdf:about="#ThematicUnits">
<rdfs:subClassOf rdf:resource="&swap-data.owl;#Units"/>

</owl:Class>

<owl:Class rdf:about="&swap-data.owl;#Units"/>

<!-- Annotation Properties -->
<owl:AnnotationProperty rdf:about="&rdfs;comment"/>

<!-- Object Properties -->
<owl:ObjectProperty rdf:about="#hasThematicProperties"/>
<owl:ObjectProperty rdf:about="#observesEntity">
<rdfs:domain rdf:resource="#Observable"/>
<rdfs:range rdf:resource="#ObservedEntity"/>
<rdfs:subPropertyOf rdf:resource="#hasThematicProperties"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#observesProperty">
<rdfs:domain rdf:resource="#Observable"/>
<rdfs:range rdf:resource="#ObservedProperty"/>
<rdfs:subPropertyOf rdf:resource="#hasThematicProperties"/>

</owl:ObjectProperty>
</rdf:RDF>

198

199

A.2 THE SPATIAL ONTOLOGY AND RULES

A.2.1 The swap-space ontology

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY ObjectList.owl "http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY swap-data.owl "http://masii.cs.ukzn.ac.za/swap/swap-data.owl">
<!ENTITY swap-space "http://masii.cs.ukzn.ac.za/swap/swap-space.owl#">
<!ENTITY swap-space.owl "http://masii.cs.ukzn.ac.za/swap/swap-space.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-space.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:swap-space="&swap-space;">

<!-- Ontology Information -->
<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="&swap-data.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&ObjectList.owl;"/>

</owl:imports>
</owl:Ontology>

<!-- Classes -->
<owl:Class rdf:about="#Geometry">
<rdfs:subClassOf rdf:resource="#Location"/>

</owl:Class>

<owl:Class rdf:about="#LatLonBoundingBox">
<rdfs:subClassOf rdf:resource="#Location"/>

</owl:Class>

<owl:Class rdf:about="#Line">
<rdfs:subClassOf rdf:resource="#Geometry"/>

</owl:Class>

<owl:Class rdf:about="#Location">
<rdfs:comment xml:lang="en">This has been replaced by SpatialRegion</rdfs:comment>
<rdfs:subClassOf rdf:resource="#SpatialEntity"/>

</owl:Class>

<owl:Class rdf:about="#Point">
<rdfs:subClassOf rdf:resource="#Geometry"/>

</owl:Class>

<owl:Class rdf:about="#PointCoordinate">
<rdfs:subClassOf rdf:resource="#Location"/>

</owl:Class>

<owl:Class rdf:about="#Polygon">
<rdfs:subClassOf rdf:resource="#Geometry"/>

</owl:Class>

<owl:Class rdf:about="#SpatialEntity"/>
<owl:Class rdf:about="#SpatialProjection">
<rdfs:subClassOf rdf:resource="#SpatialEntity"/>

</owl:Class>

<owl:Class rdf:about="#SpatialReferenceSystem">
<rdfs:subClassOf rdf:resource="#SpatialEntity"/>

</owl:Class>

<owl:Class rdf:about="#SpatialResolution">
<rdfs:comment rdf:datatype="&xsd;string">the area to which one pixel corresponds</rdfs:comment>
<rdfs:subClassOf rdf:resource="#SpatialEntity"/>

</owl:Class>

<owl:Class rdf:about="#SpatialThing">
<rdfs:comment rdf:datatype="&xsd;string">something that occupies a spatial region, i.e. has some geometry</rdfs:comment>

</owl:Class>

<owl:Class rdf:about="#SpatialUnits">
<rdfs:subClassOf rdf:resource="&swap-data.owl;#Units"/>

</owl:Class>

<owl:Class rdf:about="&swap-data.owl;#NumericInterval"/>
<owl:Class rdf:about="&swap-data.owl;#SingleValue"/>
<owl:Class rdf:about="&swap-data.owl;#Units"/>
<owl:Class rdf:about="&ObjectList.owl;#List"/>

<!-- Datatypes -->
<rdfs:Datatype rdf:about="&xsd;double"/>

<!-- Annotation Properties -->
<owl:AnnotationProperty rdf:about="&rdfs;comment"/>

200

<!-- Datatype Properties -->
<owl:DatatypeProperty rdf:about="#has2DSpatialSimilarityThreshold">
<rdfs:comment xml:lang="en">consider locations to be similar</rdfs:comment>
<rdfs:subPropertyOf rdf:resource="#hasSpatialConstraints"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasCommonName">
<rdfs:domain rdf:resource="#SpatialThing"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasLatitude">
<rdfs:domain rdf:resource="#PointCoordinate"/>
<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasLongitude">
<rdfs:domain rdf:resource="#PointCoordinate"/>
<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<!-- Object Properties -->
<owl:ObjectProperty rdf:about="#contains">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#crosses">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#disjointWith">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#equals">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasArea">
<rdfs:range rdf:resource="&swap-data.owl;#SingleValue"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasBoundaryCoordinates">
<rdfs:domain rdf:resource="#Polygon"/>
<rdfs:range rdf:resource="&ObjectList.owl;#List"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasCoordinate">
<rdfs:domain rdf:resource="#Point"/>
<rdfs:range rdf:resource="#PointCoordinate"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#hasLatitudeInterval">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#LatLonBoundingBox"/>
<rdfs:range rdf:resource="&swap-data.owl;#NumericInterval"/>

</owl:FunctionalProperty>

<owl:ObjectProperty rdf:about="#hasLineCoordinates">
<rdfs:domain rdf:resource="#Line"/>
<rdfs:range rdf:resource="&ObjectList.owl;#List"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#hasLongitudeInterval">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#LatLonBoundingBox"/>
<rdfs:range rdf:resource="&swap-data.owl;#NumericInterval"/>

</owl:FunctionalProperty>

<owl:ObjectProperty rdf:about="#hasPosition">
<rdfs:range rdf:resource="#PointCoordinate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialConstraints"/>
<owl:ObjectProperty rdf:about="#hasSpatialProperties">
<rdfs:range rdf:resource="#SpatialEntity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialRelation">
<rdfs:domain rdf:resource="#SpatialThing"/>
<rdfs:range rdf:resource="#SpatialThing"/>
<rdfs:subPropertyOf rdf:resource="#hasSpatialProperties"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialResolution">
<rdfs:range rdf:resource="#SpatialResolution"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialThing">
<rdfs:range rdf:resource="#SpatialThing"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#intersects">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#locatedAt">
<rdfs:range rdf:resource="#Location"/>

201

<rdfs:subPropertyOf rdf:resource="#hasSpatialProperties"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#overlapsWith">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#producedByProjection">
<rdfs:range rdf:resource="#SpatialProjection"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#touches">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#usesReferenceSystem">
<rdfs:domain rdf:resource="#Geometry"/>
<rdfs:range rdf:resource="#SpatialReferenceSystem"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#within">
<rdfs:subPropertyOf rdf:resource="#hasSpatialRelation"/>

</owl:ObjectProperty>

<!-- Instances -->
<swap-space:SpatialUnits rdf:about="#kilometer"/>
<swap-space:SpatialUnits rdf:about="#square-kilometer"/>

</rdf:RDF>

A.2.2 Spatial rules

(?x rdf:type spc:SpatialThing)<-(?x spc:locatedAt ?y).

(?x rdf:type spc:SpatialThing) -> (?x spc:contains ?x).
(?x rdf:type spc:SpatialThing) -> (?x spc:equals ?x).
(?x rdf:type spc:SpatialThing) -> (?x spc:intersects ?x).
(?x rdf:type spc:SpatialThing) -> (?x spc:within ?x).

(?x spc:contains ?y) <-
(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)
(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)
spatiallyContains(?xExt,?yExt).

(?x spc:within ?y) <- (?y spc:contains ?x).

(?x spc:crosses ?y) <-
(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)
(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)
spatiallyCrosses(?xExt,?yExt).

(?x spc:disjointWith ?y) <-
(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)
(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)
spatiallyDisjointWith(?xExt,?yExt).

(?x spc:equals ?y) <-
(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)
(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)
spatiallyEquals(?xExt,?yExt).

(?x spc:intersects ?y) <-
(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)
(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)
spatiallyIntersects(?xExt,?yExt).

(?x spc:overlapsWith ?y) <-
(?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing)
(?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt)
spatiallyOverlapsWith(?xExt,?yExt).

202

A.3 THE TEMPORAL ONTOLOGY AND RULES

A.3.1 The swap-time ontology

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY swap-data.owl "http://masii.cs.ukzn.ac.za/swap/swap-data.owl">
<!ENTITY swap-time.owl "http://masii.cs.ukzn.ac.za/swap/swap-time.owl">
<!ENTITY time-entry "http://www.isi.edu/˜pan/damltime/time-entry.owl#">
<!ENTITY time-entry.owl "http://www.isi.edu/˜pan/damltime/time-entry.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-time.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:time-entry="&time-entry;">

<!-- Ontology Information -->
<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="&time-entry.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&swap-data.owl;"/>

</owl:imports>
</owl:Ontology>

<!-- Classes -->
<owl:Class rdf:about="#PreviousRecurringInstantEvent">
<rdfs:subClassOf rdf:resource="&time-entry;InstantEvent"/>

</owl:Class>

<owl:Class rdf:about="#RecurringInstants">
<rdfs:subClassOf rdf:resource="&time-entry;TemporalEntity"/>

</owl:Class>

<owl:Class rdf:about="#TemporalResolution"/>
<owl:Class rdf:about="&swap-data.owl;#Units"/>
<owl:Class rdf:about="&time-entry;Instant"/>
<owl:Class rdf:about="&time-entry;InstantEvent"/>
<owl:Class rdf:about="&time-entry;TemporalEntity"/>
<owl:Class rdf:about="&time-entry;TemporalThing"/>
<owl:Class rdf:about="&time-entry;TemporalUnit">
<rdfs:subClassOf rdf:resource="&swap-data.owl;#Units"/>

</owl:Class>

<!-- Datatypes -->
<rdfs:Datatype rdf:about="&xsd;duration"/>

<!-- Datatype Properties -->
<owl:DatatypeProperty rdf:about="#hasTemporalGap">
<rdfs:domain rdf:resource="#TemporalResolution"/>
<rdfs:range rdf:resource="&xsd;duration"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&time-entry;durationDescriptionDataType"/>

<!-- Object Properties -->
<owl:ObjectProperty rdf:about="#followedBy">
<rdfs:domain rdf:resource="#PreviousRecurringInstantEvent"/>
<rdfs:range rdf:resource="&time-entry;InstantEvent"/>
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>
<owl:inverseOf rdf:resource="#follows"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#follows">
<rdfs:domain rdf:resource="#PreviousRecurringInstantEvent"/>
<rdfs:range rdf:resource="&time-entry;InstantEvent"/>
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>
<owl:inverseOf rdf:resource="#followedBy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInstant"/>
<owl:ObjectProperty rdf:about="#hasTemporalConstraint"/>
<owl:ObjectProperty rdf:about="#hasTemporalProperty"/>
<owl:ObjectProperty rdf:about="#hasTemporalRelation"/>
<owl:ObjectProperty rdf:about="#hasTemporalResolution">
<rdfs:range rdf:resource="#TemporalResolution"/>
<rdfs:subPropertyOf rdf:resource="#hasTemporalProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;after">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;before">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

203

<owl:ObjectProperty rdf:about="&time-entry;durationDescriptionOf"/>
<owl:ObjectProperty rdf:about="&time-entry;inside">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intAfter">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intBefore">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intContains">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intDuring">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intEquals">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intFinishedBy">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intFinishes">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intMeets">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intMetBy">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intOverlappedBy">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intOverlaps">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intStartedBy">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;intStarts">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;nonoverlap">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&time-entry;startsOrDuring">
<rdfs:subPropertyOf rdf:resource="#hasTemporalRelation"/>

</owl:ObjectProperty>

<!-- Instances -->
<time-entry:Instant rdf:about="#future"/>
<time-entry:Instant rdf:about="#past"/>
<time-entry:Instant rdf:about="#present"/>

</rdf:RDF>

204

A.3.2 Temporal rules

(?x tme:begins ?x) <- (?x rdf:type tme:InstantThing).
(?x tme:ends ?x) <- (?x rdf:type tme:InstantThing).

(?x tme:begins ?y) <-
(?x rdf:type tme:InstantThing), (?x tme:inCalendarClockDataType ?timeX),
(?y rdf:type tme:InstantThing), (?y tme:inCalendarClockDataType ?timeY),
equal(?timeX,?timeY).

(?x tme:ends ?y) <-
(?x rdf:type tme:InstantThing), (?x tme:inCalendarClockDataType ?timeX),
(?y rdf:type tme:InstantThing), (?y tme:inCalendarClockDataType ?timeY),
equal(?timeX,?timeY).

(?x rdf:type tme:IntervalThing),
(?x tme:from ?fromTime) -> (?x tme:begins ?fromTime).

(?x rdf:type tme:IntervalThing),
(?x tme:to ?toTime) -> (?x tme:ends ?toTime).

(?x tme:before ?y) <-
(?x rdf:type tme:InstantThing), (?x tme:inCalendarClockDataType ?timeX),
(?y rdf:type tme:InstantThing), (?y tme:inCalendarClockDataType ?timeY),
lessThan(?timeX,?timeY).

(?x tme:intBefore ?y) <-
(?x rdf:type tme:IntervalThing), (?x tme:ends ?endsX),
(?y rdf:type tme:IntervalThing), (?y tme:begins ?beginsY),
(?endsX tme:before ?beginsY).

(?x tme:before ?y) <-
(?x rdf:type tme:InstantThing),
(?y rdf:type tme:IntervalThing), (?y tme:begins ?beginsY),
(?x tme:before ?beginsY).

(?x tme:after ?y) <- (?y tme:before ?x).

(?x tme:inside ?y) <-
(?x rdf:type tme:InstantThing),
(?y rdf:type tme:IntervalThing),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsY tme:before ?x), (?x tme:before ?endsY).

(?x rdf:type tme:ProperIntervalThing) <-
(?x rdf:type tme:IntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?beginsX tme:before ?endsX).

(?x tme:intEquals ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsX tme:inCalendarClockDataType ?bxTime), (?endsX tme:inCalendarClockDataType ?exTime),
(?beginsY tme:inCalendarClockDataType ?byTime), (?endsY tme:inCalendarClockDataType ?eyTime),
equal(?bxTime,?byTime),
equal(?exTime,?eyTime).

(?x tme:intMeets ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:ends ?endsX), (?endsX tme:inCalendarClockDataType ?exTime),
(?y tme:begins ?beginsY), (?beginsY tme:inCalendarClockDataType ?byTime),
equal(?exTime,?byTime).

(?x tme:intMetBy ?y) <- (?y tme:intMeets ?x).

(?x tme:intOverlaps ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsY tme:before ?endsX),
(?beginsX tme:before ?beginsY),
(?endsX tme:before ?endsY).

(?x tme:intOverlappedBy ?y) <- (?y tme:IntOverlaps ?x).

(?x tme:intStarts ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsX tme:inCalendarClockDataType ?bxTime),
(?beginsY tme:inCalendarClockDataType ?byTime),
equal(?bxTime,?byTime),
(?endsX tme:before ?endsY).

(?x tme:intStartedBy ?y) <- (?y tme:intStarts ?x).

(?x tme:intDuring ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsY tme:before ?beginsX),

205

(?endsY tme:after ?endsX).

(?x tme:intContains ?y) <- (?y tme:intDuring ?x).

(?x tme:intFinishes ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?endsX tme:inCalendarClockDataType ?exTime),
(?endsY tme:inCalendarClockDataType ?eyTime),
equal(?exTime,?eyTime),
(?beginsY tme:before ?beginsX).

(?x tme:intFinishedBy ?y) <- (?y tme:intFinishes ?x).

(?x tme:StartsOrDuring ?y) <- (?x tme:intStarts ?y).
(?x tme:StartsOrDuring ?y) <- (?x tme:intduring ?y).

(?x tme:nonoverlap ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:before ?y).

(?x tme:nonoverlap ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:after ?y).

(?x tme:nonoverlap ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:intMeets ?y).

(?x tme:nonoverlap ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:intMetBy ?y).

206

A.4 THE SWAP-UNCERTAINTY ONTOLOGY

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY swap-data.owl "http://masii.cs.ukzn.ac.za/swap/swap-data.owl">
<!ENTITY swap-uncertainty "http://masii.cs.ukzn.ac.za/swap/swap-uncertainty.owl#">
<!ENTITY swap-uncertainty.owl "http://masii.cs.ukzn.ac.za/swap/swap-uncertainty.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-uncertainty.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:swap-uncertainty="&swap-uncertainty;">

<!-- Ontology Information -->
<owl:Ontology rdf:about=""

owl:versionInfo="v1.0">
<owl:imports>
<owl:Ontology rdf:about="&swap-data.owl;"/>

</owl:imports>
</owl:Ontology>

<!-- Classes -->
<owl:Class rdf:about="#BayesianNetwork"/>
<owl:Class rdf:about="#CondProb">
<rdfs:subClassOf rdf:resource="#ProbObj"/>
<owl:disjointWith rdf:resource="#PriorProb"/>

</owl:Class>

<owl:Class rdf:about="#Condition"/>
<owl:Class rdf:about="#DiscreteBooleanState">
<rdfs:subClassOf rdf:resource="#DiscreteState"/>

</owl:Class>

<owl:Class rdf:about="#DiscreteRangeState">
<rdfs:subClassOf rdf:resource="#DiscreteState"/>
<rdfs:subClassOf rdf:resource="http://masii.cs.ukzn.ac.za/swap/swap-data.owl#NumericInterval"/>

</owl:Class>

<owl:Class rdf:about="#DiscreteState">
<rdfs:subClassOf rdf:resource="#State"/>

</owl:Class>

<owl:Class rdf:about="#InferredVariable">
<rdfs:subClassOf rdf:resource="#Variable"/>

</owl:Class>

<owl:Class rdf:about="#ObservationVariable">
<rdfs:subClassOf rdf:resource="#Variable"/>

</owl:Class>

<owl:Class rdf:about="#PostProb">
<rdfs:subClassOf rdf:resource="#ProbObj"/>

</owl:Class>

<owl:Class rdf:about="#PriorProb">
<rdfs:subClassOf rdf:resource="#ProbObj"/>
<owl:disjointWith rdf:resource="#CondProb"/>

</owl:Class>

<owl:Class rdf:about="#ProbObj"/>
<owl:Class rdf:about="#SingleNumericState">
<rdfs:subClassOf rdf:resource="#DiscreteState"/>
<rdfs:subClassOf rdf:resource="http://masii.cs.ukzn.ac.za/swap/swap-data.owl#SingleValue"/>

</owl:Class>

<owl:Class rdf:about="#State"/>
<owl:Class rdf:about="#Variable"/>
<owl:Class rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-data.owl#NumericInterval"/>
<owl:Class rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-data.owl#SingleValue"/>

<!-- Datatypes -->
<rdfs:Datatype rdf:about="http://www.cs.umbc.edu/˜zding1/owl/dt.xsd#between0and1"/>
<rdfs:Datatype rdf:about="&xsd;anyURI"/>

<!-- Annotation Properties -->
<owl:AnnotationProperty rdf:about="&owl;versionInfo"/>

<!-- Datatype Properties -->
<owl:DatatypeProperty rdf:about="#hasClass">
<rdfs:domain rdf:resource="#InferredVariable"/>
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasProbValue">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#ProbObj"/>
<rdfs:range rdf:resource="http://www.cs.umbc.edu/˜zding1/owl/dt.xsd#between0and1"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasProperty"/>
<owl:DatatypeProperty rdf:about="#hasValueProperty">
<rdfs:domain rdf:resource="#ObservationVariable"/>

207

</owl:DatatypeProperty>

<!-- Object Properties -->
<owl:ObjectProperty rdf:about="#hasCondition">
<rdfs:domain rdf:resource="#CondProb"/>
<rdfs:range rdf:resource="#Condition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInstanceValue">
<rdfs:domain rdf:resource="#PostProb"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPosteriorProb">
<rdfs:range rdf:resource="#PostProb"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasState">
<rdfs:domain rdf:resource="#Condition"/>
<rdfs:domain rdf:resource="#ProbObj"/>
<rdfs:domain rdf:resource="#Variable"/>
<rdfs:range rdf:resource="#State"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasVariable">
<rdfs:domain rdf:resource="#BayesianNetwork"/>
<rdfs:domain rdf:resource="#Condition"/>
<rdfs:domain rdf:resource="#ProbObj"/>
<rdfs:range rdf:resource="#Variable"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isInfluencedBy">
<rdfs:domain rdf:resource="#Variable"/>
<rdfs:range rdf:resource="#Variable"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-space.owl#hasSpatialConstraints">
<rdfs:domain rdf:resource="#BayesianNetwork"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-theme.owl#observesEntity">
<rdfs:domain rdf:resource="#ObservationVariable"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-theme.owl#observesProperty">
<rdfs:domain rdf:resource="#ObservationVariable"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-time.owl#hasTemporalConstraint">
<rdfs:domain rdf:resource="#BayesianNetwork"/>

</owl:ObjectProperty>

<!-- Instances -->
<swap-uncertainty:DiscreteBooleanState rdf:about="#False">
<rdf:type rdf:resource="&owl;Thing"/>

</swap-uncertainty:DiscreteBooleanState>

<swap-uncertainty:DiscreteBooleanState rdf:about="#True">
<rdf:type rdf:resource="&owl;Thing"/>

</swap-uncertainty:DiscreteBooleanState>
</rdf:RDF>

208

A.5 THE TECHNICAL ONTOLOGIES

A.5.1 The swap-agent ontology

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY eo-domain.owl "http://masii.cs.ukzn.ac.za/swap/eo-domain.owl">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY swap-agent.owl "http://masii.cs.ukzn.ac.za/swap/swap-agent.owl">
<!ENTITY swap-data.owl "http://masii.cs.ukzn.ac.za/swap/swap-data.owl">
<!ENTITY swap-space.owl "http://masii.cs.ukzn.ac.za/swap/swap-space.owl">
<!ENTITY swap-time.owl "http://masii.cs.ukzn.ac.za/swap/swap-time.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-agent.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->
<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="&eo-domain.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&swap-data.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&swap-space.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&swap-time.owl;"/>

</owl:imports>
</owl:Ontology>

<!-- Classes -->
<owl:Class rdf:about="#Action"/>
<owl:Class rdf:about="#Agent"/>
<owl:Class rdf:about="#AlertRequest">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#Application">
<rdfs:subClassOf rdf:resource="#ServiceDescription"/>

</owl:Class>

<owl:Class rdf:about="#CapabilityRegistration">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#CapabilityRequest">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#DataProcessing">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#DataRequest">
<rdfs:subClassOf rdf:resource="#Protocol"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#InformDataAction"/>
<owl:onProperty rdf:resource="#hasResponse"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#QueryAction"/>
<owl:onProperty rdf:resource="#hasRequest"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#DataSet">
<rdfs:subClassOf rdf:resource="#ServiceDescription"/>

</owl:Class>

<owl:Class rdf:about="#ExecuteWorkflowAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#InformAlertAction">
<rdfs:subClassOf rdf:resource="#ResponseAction"/>

</owl:Class>

<owl:Class rdf:about="#InformCapabilitiesAction">
<rdfs:subClassOf rdf:resource="#ResponseAction"/>

</owl:Class>

<owl:Class rdf:about="#InformDataAction">

209

<rdfs:subClassOf rdf:resource="#ResponseAction"/>
</owl:Class>

<owl:Class rdf:about="#InformPredictionAction">
<rdfs:subClassOf rdf:resource="#ResponseAction"/>

</owl:Class>

<owl:Class rdf:about="#InformResultAction">
<rdfs:subClassOf rdf:resource="#ResponseAction"/>

</owl:Class>

<owl:Class rdf:about="#InformServicesAction">
<rdfs:subClassOf rdf:resource="#ResponseAction"/>

</owl:Class>

<owl:Class rdf:about="#Message"/>
<owl:Class rdf:about="#Modeling">
<rdfs:subClassOf rdf:resource="#ServiceDescription"/>

</owl:Class>

<owl:Class rdf:about="#PredictionRequest">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#ProcessAgentMapping"/>
<owl:Class rdf:about="#ProcessDataAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#Protocol"/>
<owl:Class rdf:about="#QueryAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#RegisterServiceAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#RequestAction">
<rdfs:subClassOf rdf:resource="#Action"/>
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#RequestAlertAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#RequestCapabilitiesAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#RequestPredictionAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#ResponseAction">
<rdfs:subClassOf rdf:resource="#Action"/>

</owl:Class>

<owl:Class rdf:about="#SearchDirectoryAction">
<rdfs:subClassOf rdf:resource="#RequestAction"/>

</owl:Class>

<owl:Class rdf:about="#Service"/>
<owl:Class rdf:about="#ServiceDescription"/>
<owl:Class rdf:about="#ServiceQuery">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#ServiceRegistration">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#Tool">
<rdfs:subClassOf rdf:resource="#ServiceDescription"/>

</owl:Class>

<owl:Class rdf:about="#ToolExecution">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<owl:Class rdf:about="#Workflow">
<rdfs:subClassOf rdf:resource="#ServiceDescription"/>

</owl:Class>

<owl:Class rdf:about="#WorkflowExecution">
<rdfs:subClassOf rdf:resource="#Protocol"/>

</owl:Class>

<!-- Datatypes -->
<rdfs:Datatype rdf:about="&xsd;anyURI"/>
<rdfs:Datatype rdf:about="&xsd;dateTime"/>
<rdfs:Datatype rdf:about="&xsd;long"/>
<rdfs:Datatype rdf:about="&xsd;positiveInteger"/>
<rdfs:Datatype rdf:about="&xsd;string"/>

<!-- Annotation Properties -->
<owl:AnnotationProperty rdf:about="&rdfs;comment"/>

210

<!-- Datatype Properties -->
<owl:DatatypeProperty rdf:about="#conversationId">
<rdfs:domain rdf:resource="#Message"/>
<rdfs:range rdf:resource="&xsd;long"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasAgentName">
<rdfs:domain rdf:resource="#Agent"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasBlueband">
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasCommonName"/>
<owl:DatatypeProperty rdf:about="#hasEndTime">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasGreenBand">
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasRedBand">
<rdfs:comment rdf:datatype="&xsd;string">description of redband</rdfs:comment>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasSequenceNumber">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#type">
<rdfs:domain rdf:resource="#Message"/>
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&swap-data.owl;#hasCharEncodedValue"/>
<owl:DatatypeProperty rdf:about="&swap-data.owl;#hasType">
<rdfs:domain rdf:resource="#DataSet"/>

</owl:DatatypeProperty>

<!-- Object Properties -->
<owl:ObjectProperty rdf:about="#attachment">
<rdfs:domain rdf:resource="#Message"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#components"/>
<owl:ObjectProperty rdf:about="#composedOf"/>
<owl:ObjectProperty rdf:about="#content">
<rdfs:domain rdf:resource="#Message"/>
<rdfs:range rdf:resource="#Action"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#detectPhenomenon">
<rdfs:domain rdf:resource="#Application"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#exhibitedBy"/>
<owl:ObjectProperty rdf:about="#fromProcess"/>
<owl:FunctionalProperty rdf:about="#hasAction">
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:range rdf:resource="#Action"/>

</owl:FunctionalProperty>

<owl:ObjectProperty rdf:about="#hasAgentMapping">
<rdfs:range rdf:resource="#ProcessAgentMapping"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasAlert">
<rdfs:domain rdf:resource="#InformAlertAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasCapabilities">
<rdfs:domain rdf:resource="#InformCapabilitiesAction"/>
<rdfs:range rdf:resource="#Service"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDataDescription"/>
<owl:ObjectProperty rdf:about="#hasDataQuery"/>
<owl:ObjectProperty rdf:about="#hasDataSource"/>
<owl:FunctionalProperty rdf:about="#hasDataStructure">
<rdf:type rdf:resource="&owl;ObjectProperty"/>

</owl:FunctionalProperty>

<owl:ObjectProperty rdf:about="#hasIncreasedActivityIn"/>
<owl:ObjectProperty rdf:about="#hasInput">
<rdfs:domain rdf:resource="#ProcessDataAction"/>
<rdfs:domain rdf:resource="#RequestPredictionAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInputAction">
<rdfs:range rdf:resource="#Action"/>

</owl:ObjectProperty>

211

<owl:ObjectProperty rdf:about="#hasInputMapping">
<rdfs:domain rdf:resource="#ProcessAgentMapping"/>
<rdfs:range rdf:resource="#RequestAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInputType">
<rdfs:domain rdf:resource="#Tool"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#hasObservable">
<rdf:type rdf:resource="&owl;ObjectProperty"/>

</owl:FunctionalProperty>

<owl:ObjectProperty rdf:about="#hasObservationTime"/>
<owl:ObjectProperty rdf:about="#hasOutput">
<rdfs:domain rdf:resource="#InformPredictionAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOutputAction">
<rdfs:range rdf:resource="#Action"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOutputMapping">
<rdfs:domain rdf:resource="#ProcessAgentMapping"/>
<rdfs:range rdf:resource="#ResponseAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOutputType">
<rdfs:domain rdf:resource="#Tool"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#hasRepresentation">
<rdf:type rdf:resource="&owl;ObjectProperty"/>

</owl:FunctionalProperty>

<owl:ObjectProperty rdf:about="#hasRequest">
<rdfs:domain rdf:resource="#Protocol"/>
<rdfs:range rdf:resource="#RequestAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasResponse">
<rdfs:domain rdf:resource="#Protocol"/>
<rdfs:range rdf:resource="#ResponseAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasResult"/>
<owl:ObjectProperty rdf:about="#hasServiceDescriptionValue">
<rdfs:domain rdf:resource="#SearchDirectoryAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialConstraints"/>
<owl:ObjectProperty rdf:about="#hasTemporalConstraints"/>
<owl:ObjectProperty rdf:about="#hasTemporalExtent"/>
<owl:ObjectProperty rdf:about="#hasWorkflow">
<rdfs:domain rdf:resource="#ExecuteWorkflowAction"/>
<rdfs:range rdf:resource="#Workflow"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isDescribedBy">
<rdfs:domain rdf:resource="#Service"/>
<rdfs:range rdf:resource="#ServiceDescription"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#measuresphenomenan"/>
<owl:ObjectProperty rdf:about="#observedBy">
<rdfs:comment rdf:datatype="&xsd;string">
The instrument or person that generated this observation. [used-> procedure] in O&M
</rdfs:comment>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#providedBy">
<rdfs:domain rdf:resource="#Service"/>
<rdfs:range rdf:resource="#Agent"/>
<owl:inverseOf rdf:resource="#provides"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#provides">
<rdfs:domain rdf:resource="#Agent"/>
<rdfs:domain rdf:resource="#RegisterServiceAction"/>
<rdfs:range rdf:resource="#Service"/>
<owl:inverseOf rdf:resource="#providedBy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#recipient">
<rdfs:domain rdf:resource="#Message"/>
<rdfs:range rdf:resource="#Agent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#sender">
<rdfs:domain rdf:resource="#Message"/>
<rdfs:range rdf:resource="#Agent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#usesProtocol">
<rdfs:domain rdf:resource="#Service"/>
<rdfs:range rdf:resource="#Protocol"/>

</owl:ObjectProperty>

212

<owl:ObjectProperty rdf:about="#usesWorkflowAgent">
<rdfs:domain rdf:resource="#Application"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#usingDataSet">
<rdfs:domain rdf:resource="#QueryAction"/>
<rdfs:range rdf:resource="#DataSet"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&swap-data.owl;#hasData">
<rdfs:domain rdf:resource="#InformDataAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&swap-data.owl;#hasValueStructure"/>
<owl:ObjectProperty rdf:about="&swap-space.owl;#hasSpatialProperties">
<rdfs:domain rdf:resource="#DataSet"/>
<rdfs:domain rdf:resource="#QueryAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&swap-space.owl;#hasSpatialRelation"/>
<owl:ObjectProperty rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-theme.owl#hasThematicProperties">
<rdfs:domain rdf:resource="#DataSet"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://masii.cs.ukzn.ac.za/swap/swap-theme.owl#observesEntity"/>
<owl:ObjectProperty rdf:about="&swap-time.owl;#hasTemporalProperty">
<rdfs:domain rdf:resource="#DataSet"/>
<rdfs:domain rdf:resource="#QueryAction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.daml.org/services/owl-s/1.1/Service.owl#describedBy">
<rdfs:domain rdf:resource="#ServiceDescription"/>

</owl:ObjectProperty>
</rdf:RDF>

A.5.2 The swap-task ontology

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY Grounding.owl "file:///Grounding.owl">
<!ENTITY Process.owl "file:///Process.owl">
<!ENTITY Profile.owl "file:///Profile.owl">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY swap-task.owl "http://masii.cs.ukzn.ac.za/swap/swap-task.owl">
<!ENTITY swrl.owl "http://www.w3.org/2003/11/swrl">
<!ENTITY swrlb.owl "http://www.w3.org/2003/11/swrlb.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-task.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;">

<!-- Ontology Information -->
<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="&Grounding.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&Process.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&Profile.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&swrl.owl;"/>

</owl:imports>
<owl:imports>
<owl:Ontology rdf:about="&swrlb.owl;"/>

</owl:imports>
</owl:Ontology>

</rdf:RDF>

213

A.5.3 The swap-data ontology

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY ObjectList.owl "http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY swap-data "http://masii.cs.ukzn.ac.za/swap/swap-data.owl#">
<!ENTITY swap-data.owl "http://masii.cs.ukzn.ac.za/swap/swap-data.owl">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>
<rdf:RDF xml:base="&swap-data.owl;"

xmlns:owl="&owl;"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:swap-data="&swap-data;">

<!-- Ontology Information -->
<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="&ObjectList.owl;"/>

</owl:imports>
</owl:Ontology>

<!-- Classes -->
<owl:Class rdf:about="#ArrayValue">
<rdfs:subClassOf rdf:resource="#StructuredValue"/>

</owl:Class>

<owl:Class rdf:about="#Data"/>
<owl:Class rdf:about="#DataSet"/>
<owl:Class rdf:about="#FileValue">
<rdfs:subClassOf rdf:resource="#StructuredValue"/>

</owl:Class>

<owl:Class rdf:about="#ImageFileValue">
<rdfs:subClassOf rdf:resource="#FileValue"/>

</owl:Class>

<owl:Class rdf:about="#ImageFormats"/>
<owl:Class rdf:about="#NumericInterval">
<rdfs:subClassOf rdf:resource="#Value"/>

</owl:Class>

<owl:Class rdf:about="#PositionalValue">
<rdfs:subClassOf rdf:resource="#Value"/>

</owl:Class>

<owl:Class rdf:about="#SingleValue">
<rdfs:subClassOf rdf:resource="#Value"/>

</owl:Class>

<owl:Class rdf:about="#StructuredValue">
<rdfs:subClassOf rdf:resource="#Value"/>

</owl:Class>

<owl:Class rdf:about="#Units">
<rdfs:comment rdf:datatype="&xsd;string">use sweet units</rdfs:comment>

</owl:Class>

<owl:Class rdf:about="#Value"/>

<!-- Datatypes -->
<rdfs:Datatype rdf:about="&xsd;anySimpleType"/>
<rdfs:Datatype rdf:about="&xsd;anyURI"/>
<rdfs:Datatype rdf:about="&xsd;double"/>
<rdfs:Datatype rdf:about="&xsd;int"/>
<rdfs:Datatype rdf:about="&xsd;string"/>

<!-- Annotation Properties -->
<owl:AnnotationProperty rdf:about="&rdfs;comment"/>

<!-- Datatype Properties -->
<owl:DatatypeProperty rdf:about="#hasCharEncodedValue">
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasColumns">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#ArrayValue"/>
<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasLocalPath">
<rdfs:domain rdf:resource="#FileValue"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasLowerLimit">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#NumericInterval"/>
<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasNumericValue">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>

214

<rdfs:domain rdf:resource="#SingleValue"/>
<rdfs:range rdf:resource="&xsd;anySimpleType"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasRows">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#ArrayValue"/>
<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasSpatialVariation">
<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasType">
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasURI">
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasUpperLimit">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#NumericInterval"/>
<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#parameterType"/>
<owl:DatatypeProperty rdf:about="#recurringIntValues">
<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<!-- Object Properties -->
<owl:ObjectProperty rdf:about="#fromDataSet">
<rdfs:range rdf:resource="#DataSet"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasData">
<rdfs:range rdf:resource="#Data"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasImageFormat">
<rdfs:domain rdf:resource="#ImageFileValue"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSingleValue">
<rdfs:range rdf:resource="#SingleValue"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasUnit">
<rdfs:domain rdf:resource="#SingleValue"/>
<rdfs:range rdf:resource="#Units"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasValueStructure">
<rdfs:range rdf:resource="#StructuredValue"/>

</owl:ObjectProperty>

<!-- Instances -->
<swap-data:ImageFormats rdf:about="#GeoTiff"/>

</rdf:RDF>

BIBLIOGRAPHY

[1] 52 North [online]. Available from: http://52north.org.

[2] BNJ - Bayesian Networks tools in Java [online]. Available from: http://bnj.
sourceforge.net.

[3] JENA - A Semantic Web Framework for Java [online]. Available from: http://jena.
sourceforge.net.

[4] Plant Ontology Consortium (POC) [online]. Available from: http://www.
plantontology.org.

[5] SNOMED CT [online]. Available from: http://www.ihtsdo.org/snomed-ct.

[6] The Java Agent Development Framework (JADE) [online]. Available from: http://jade.
tilab.com.

[7] The Open Biomedical Ontologies [online]. Available from: http://obofoundry.org.

[8] The Open Geospatial Consortium [online]. Available from: http://www.
opengeospatial.org.

[9] The Protege Ontology Editor [online]. Available from: http://protege.stanford.edu.

[10] The Suggested Upper Merged Ontology (SUMO) [online]. Available from: http://suo.
ieee.org/SUO/SUMO/index.html.

[11] The Waikato Environment for Knowledge Analysis (WEKA) [online]. Available from: http:
//www.cs.waikato.ac.nz/ml/weka.

[12] The World Wide Web Consortium [online]. Available from: http://www.w3c.org.

[13] TopBraid Composer [online]. Available from: http://www.topbraidcomposer.com.

[14] WonderWeb Ontology Infrastructure for the Semantic Web [online]. Available from: http:
//wonderweb.semanticweb.org/.

[15] ABUGESSAISA, I. E. A., AND SIVERTUN, A. Ontological approach to modeling information sys-
tems. In CIT ’04: Proc. 4th International Conference on Computer and Information Technology
(Washington, DC, USA, 2004), IEEE Computer Society, pp. 1122–1127.

[16] AGARWAL, P. Ontological considerations in GIScience. International Journal of Geographical
Information Science 19, 5 (2005), 501–535.

[17] AGUILAR-PONCE, R., KUMAR, A., TECPANECATL-XIHUITL, J. L., AND BAYOUMI, M. A
network of sensor-based framework for automated visual surveillance. J. Netw. Comput. Appl. 30,
3 (2007), 1244–1271.

[18] AKYILDIZ, I. F., MELODIA, T., AND CHOWDHURY, K. R. A survey on wireless multimedia
sensor networks. Comput. Networks 51, 4 (2007), 921–960.

[19] ALANI, H. Position paper: ontology construction from online ontologies. In WWW ’06:Proc.
15th international conference on World Wide Web (2006), ACM Press.

215

216

[20] ALLEN, J. F. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11 (1983),
832–843.

[21] ATHANASIADIS, I. N. A review of agent-based systems applied in environmental informatics.
In MODSIM 2005: International Congress on Modelling and Simulation, Melbourne, Australia,
Modelling and Simulation Society of Australia and New Zealand, December 2005 (2005).

[22] ATHANASIADIS, I. N., MILIS, M., MITKAS, P. A., AND MICHAELIDES, S. C. Abacus: A
multi-agent system for meteorological radar data management and decision support. In ISESS-05:
International Symposium on Environmental Software Systems, Sesimbra, Portugal (May, 2005).

[23] ATHANASIADIS, I. N., AND MITKAS, P. A. An agent-based intelligent environmental monitor-
ing system. Management of Environmental Quality 15, 3 (2004), 238–249.

[24] BAADER, F., CALVANESE, D., MCGUINNESS, D., NARDI, D., AND PATEL-SCHNEIDER, P.,
Eds. The Description Logic Handbook. Cambridge University Press, 2003.

[25] BALAZINSKA, M., DESHPANDE, A., FRANKLIN, M. J., GIBBONS, P. B., GRAY, J., HANSEN,
M., LIEBHOLD, M., NATH, S., SZALAY, A., AND TAO, V. Data management in the worldwide
sensor web. IEEE Pervasive Computing 6, 2 (2007), 30–40.

[26] BEN-AMI, D., AND SHEHORY, O. A comparative evaluation of agent location mechanisms in
large scale MAS. In AAMAS ’05: Proc. 4th international joint conference on Autonomous agents
and multiagent systems (2005), ACM Press.

[27] BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The semantic web. Scientific American
(May 2001). Available from: http://www.sciam.com.

[28] BISWAS, P., AND PHOHA, S. A middleware-driven architecture for information dissemination in
distributed sensor networks. In Intelligent Sensors, Sensor Networks and Information Processing
Conference, 2004 (14-17 Dec. 2004).

[29] BISWAS, P. K., SCHMIEDEKAMP, M., AND PHOHA, S. An agent-oriented information process-
ing architecture for sensor network applications. Int. J. Ad Hoc Ubiquitous Comput. 1, 3 (2006),
110–125.

[30] BORDINI, R., BRAUBACH, L., DASTANI, M., SEGHROUCHNI, A. E. F., GOMEZ-SANZ, J.,
LEITE, J., O’HARE, G., POKAHR, A., AND RICCI, A. A survey of programming languages and
platforms for multi-agent systems. Informatica 30, 1 (2006), 33–44.

[31] BOTTS, M., PERCIVALL, G., REED, C., AND DAVIDSON, J. OGC sensor web enablement:
Overview and high level architecture:version: 3.0. Tech. rep., Open Geospatial Consortium, OGC,
December 28 2007. Available from: http://portal.opengeospatial.org/files/
?artifact_id=25562.

[32] BRACHMAN, R., AND LEVESQUE, H. Knowledge Representation and Reasoning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2004.

[33] BRATMAN, M. E. Intentions, Plans, and Practical Reason. Harvard University Press, 1987.

[34] BRAUBACH, L., POKAHR, A., BADE, D., KREMPELS, K.-H., AND LAMERSDORF, W. 5th
International Workshop on Engineering Societies in the Agents World, LNAI 3451. Springer-
Verlag Berlin Heidelberg, 2005, ch. Deployment of Distributed Multi-agent Systems, pp. 261–
276.

217

[35] BRICKLEY, D., AND GUHA, R. V. RDF vocabulary description language 1.0: RDF schema.
Tech. rep., W3C, February 2004. Available from: http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/ [cited 24 June 2007].

[36] BROOKS, R. Architectures for Intelligence. Lawrence Erlbaum Assosiates, Hillsdale, NJ, 1991,
ch. How to build complete creatures rather than isolated cognitive simulators, pp. 225–239.

[37] BRÖRING, A., FÖRSTER, T., AND SIMONIS, I. Sensor web enablement: The 52 North SWE
suite. In FOSS4G2006 - Free And Open Source Software for Geoinformatics,11-15 September
2006, Lausanne, Switzerland (2006). Available from: http://www.foss4g2006.org/
contributionDisplay.py?contribId=134&sessionId=37&confId=1 [cited 3
March 2007].

[38] BURSTEIN, M., BUSSLER, C., ZAREMBA, M., FININ, T., HUHNS, M. N., PAOLUCCI, M.,
SHETH, A. P., AND WILLIAMS, S. A semantic web services architecture. IEEE Internet Com-
puting 9, 5 (2005), 72–81.

[39] BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc., New York, NY,
USA, 1996.

[40] C. MATHEUS, M. KOKAR, K. B., AND LETKOWSKI, J. Using SWRL and OWL to capture
domain knowledge for a situation awareness application applied to a supply logistics scenario. In
RuleML-2005: International Conference on Rules and Rule Markup Languages for the Semantic
Web, Galway, Ireland, November, 2005 (2005).

[41] CAMPBELL, J., GIBBONS, P. B., NATH, S., PILLAI, P., SESHAN, S., AND SUKTHANKAR, R.
Irisnet: an internet-scale architecture for multimedia sensors. In MULTIMEDIA ’05: Proc. 13th
annual ACM international conference on Multimedia (New York, NY, USA, 2005), ACM Press,
pp. 81–88.

[42] CARDOSO, J. Semantic Web Services, Processes and Applications. In Cardoso and Sheth [44],
2006, ch. Programming the Semantic Web, pp. 351–380.

[43] CARDOSO, J. The semantic web vision: Where are we? IEEE Intelligent Systems 22, 5 (2007),
84–88.

[44] CARDOSO, J., AND SHETH, A., Eds. Semantic Web Services, Processes and Applications.
Springer Science+Business Media, LLC, New York, USA, 2006.

[45] CHEN, H., FININ, T., AND JOSHI, A. Ontologies for Agents: Theory and Experiences. Birkhuser
Basel, 2005, ch. The SOUPA Ontology for Pervasive Computing, pp. 233–258.

[46] CHEN, H. L. An Intelligent Broker Architecture For Pervasive Context-Aware Systems. PhD
thesis, University of Maryland, Baltimore County, 2004.

[47] CHIEN, S., CICHY, B., DAVIES, A., TRAN, D., RABIDEAU, G., CASTANO, R., SHERWOOD,
R., MANDL, D., FRYE, S., SHULMAN, S., JONES, J., AND GROSVENOR, S. An autonomous
earth-observing sensor web. IEEE Intelligent Systems 20, 3 (2005), 16–24.

[48] CHOI, N., SONG, I.-Y., AND HAN, H. A survey on ontology mapping. SIGMOD Rec. 35, 3
(2006), 34–41.

[49] CLEMENTINI, E., FELICE, P. D., AND VAN OOSTEROM, P. A small set of formal topological
relationships suitable for end-user interaction. In SSD ’93: Proc. 3rd International Symposium on
Advances in Spatial Databases (London, UK, 1993), Springer-Verlag, pp. 277–295.

218

[50] COX, S. Observations and measurements. discussion paper. OGC 05-087r3 version 0.13.0 obser-
vations and measurements. 2006. Available from: http://www.opengeospatial.org/
standards/requests/37.

[51] CRANEFIELD, S., PURVIS, M., NOWOSTAWSKI, M., AND HWANG, P. Ontologies for interaction
protocols. In Proc. Workshop on Ontologies in Agent Systems, Bologna, Italy, July 2002 (2002).

[52] DAVIES, J., FENSEL, D., AND VAN HARMELEN, F., Eds. Towards the Semantic Web: Ontology-
driven Knowledge Management. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[53] DAVIS, M. Secrets of the JTS topology suite. In Free and Open Source Software for Geospatial
2007, FOSS4G2007, Victoria, Canada (24-27 September 2007). Available from: http://www.
foss4g2007.org/.

[54] DECKER, K., SYCARA, K., AND WILLIAMSON, M. Middle agents for the Internet. In Proc.
15th Int. Joint Conference on Artificial Intelligence Nagoya, Japan (August 1997), pp. 578–584.

[55] DELIN, K., AND JACKSON, S. The sensor web: a new instrument concept. In Proc. SPIE
Symposium on Integrated Optics, 20-26 Jan. 2001, San Jose, CA (2001), vol. 4284, pp. 1–9.

[56] DELIN, K. A. The sensor web: Distributed sensing for collective action. Sensors Online (July
2006).

[57] DING, Z. BayesOWL: A Probabilistic Framework for Semantic Web. PhD thesis, University of
Maryland, Baltimore County, December 2005.

[58] DING, Z., PENG, Y., AND PAN, R. BayesOWL: Uncertainty Modeling in Semantic Web Ontolo-
gies. Studies in Fuzziness and Soft Computing. Springer-Verlag, October 2006, pp. 3–29.

[59] DRUMMOND, N., RECTOR, A., STEVENS, R., MOULTON, G., HORRIDGE, M., WANG, H. H.,
AND SEIDENBERG, J. Putting OWL in order: Patterns for sequences in OWL. In OWLED 2006:
Proc. of the Workshop on OWL: Experiences and Directions, Athens, Georgia (USA) November
10-11, 2006 (2006), B. C. Grau, P. Hitzler, C. Shankey, and E. Wallace, Eds.

[60] EGENHOFER, M. J. Toward the semantic geospatial web. In GIS ’02: Proc. 10th ACM interna-
tional symposium on Advances in geographic information systems (New York, NY, USA, 2002),
ACM, pp. 1–4.

[61] EGENHOFER, M. J., AND HERRING, J. Categorizing binary topological relationships between re-
gions, lines and points in geographic databases. Tech. rep., Department of Surveying Engineering,
University of Maine, Orono, ME, 1991.

[62] ELENIUS, D., DENKER, G., MARTIN, D., GILHAM, F., KHOURI, J., SADAATI, S., AND

SENANAYAKE, R. The Semantic Web: Research and Applications, Proc. 2nd European Seman-
tic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29-June 1, 2005. Springer
Berlin/Heidelberg, 2005, ch. The OWL-S Editor A Development Tool for Semantic Web Ser-
vices, pp. 78–92.

[63] FLEMING, G., VAN DEN BERGH, F., CLAUDEL, F., AND FROST, P. Sensor web enabling
the advanced fire information system. In ISESS 2005: Proc. 2005 International Symposium
for Environmental Software Systems, Hotel do Mar, Sesimbra, Portugal (2005). Available from:
http://www.isess.org/documents/2005/presentations/.

[64] FONSECA, F., EGENHOFER, M., AGOURIS, P., AND CAMARA, G. Using ontologies for inte-
grated geographic information systems.

219

[65] FOUNDATION FOR INTELLIGENT AND PHYSICAL AGENTS. Fipa ontology service specification:
Xc00086d, 2001. Available from: http://www.fipa.org/ [cited 18 October 2006].

[66] FOUNDATION FOR INTELLIGENT AND PHYSICAL AGENTS. Fipa abstract architecture specifica-
tion: Sc00001l, 2002. Available from: http://www.fipa.org/ [cited 18 October 2006].

[67] FOUNDATION FOR INTELLIGENT AND PHYSICAL AGENTS. Fipa agent configuration manage-
ment specification: Fipa00090, 2002. Available from: http://www.fipa.org/ [cited 18
October 2006].

[68] FOUNDATION FOR INTELLIGENT AND PHYSICAL AGENTS. Fipa communicative act library
specification, 03 2002. Available from: http://www.fipa.org/ [cited 18 October 2006].

[69] FOUNDATION FOR INTELLIGENT AND PHYSICAL AGENTS. Fipa agent management specifica-
tion: Fipa00023, 2004. Available from: http://www.fipa.org/ [cited 18 October 2006].

[70] FRANCONI, E., AND TESSARIS, S. Rules and queries with ontologies: a unified logical frame-
work. In Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR-04), 2004.
(2004), E. Franconi and S. Tessaris, Eds.

[71] FROST, P., AND VOSLOO, H. Providing satellite-based early warnings of fires to reduce fire
flashovers on transmission lines. ESI Africa 2 (2006), 48–51.

[72] GANGEMI, A., GUARINO, N., MASOLO, C., AND OLTRAMARI, A. Sweetening WORDNET
with DOLCE. AI Mag. 24, 3 (2003), 13–24.

[73] GASPARI, M. Concurrency and knowledge-level communication in agent languages. Artif. Intell.
105, 1-2 (1998), 1–45.

[74] GASSER, L. MAS Infrastructure, Definitions, Needs, and Prospects. Springer-Verlag, 2001.

[75] GENESERETH, M. R., AND KETCHPEL, S. P. Software agents. Commun. ACM 37, 7 (1994).

[76] GEROIMENKO, V., AND CHEN, C. Visualizing the Semantic Web: XML-based Internet and
Information Visualization. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[77] GIBBONS, P. B., KARP, B., KE, Y., NATH, S., AND SESHAN, S. IrisNet: An architecture for a
worldwide sensor web. IEEE Pervasive Computing 02, 4 (2003), 22–33.

[78] GINSBERG, A., POSTON, J. D., AND HORNE, W. D. Experiments in cognitive radio and dy-
namic spectrum access using an ontology-rule hybrid architecture. In RuleML-2006, Second In-
ternational Conference. Athens, Georgia, USA, 10-11 November 2006 (2006).

[79] GOLBREICH, C., AND WALLACE, E. K. OWL 2 web ontology language new fea-
tures and rationale, 22 September 2009. Available from: http://www.w3.org/TR/
owl2-new-features/ [cited 30 September 2009].

[80] GOMEZ-PEREZ, A., CORCHO-GARCIA, O., AND FERNANDEZ-LOPEZ, M. Ontological Engi-
neering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[81] GREAVES, M., HOLMBACK, H., AND BRADSHAW, J. What is a conversation policy? In Issues
in Agent Communication (London, UK, 2000), Springer-Verlag, pp. 118–131.

[82] GROSOF, B. N., HORROCKS, I., VOLZ, R., AND DECKER, S. Description logic programs: com-
bining logic programs with description logic. In WWW ’03: Proc. 12th international conference
on the World Wide Web (New York, NY, USA, 2003), ACM, pp. 48–57.

220

[83] GROUP ON EARTH OBSERVATIONS. 10-Year Implementation Plan Reference Document. ESA
Publication Division, Noordwijk, The Netherlands, February 2005. Available from: http://
www.earthobservations.org.

[84] GRUBER, T. R. Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies 43, 5,6 (1995), 907–928.

[85] GRUNINGER, M., AND MCILRAITH, S. Specifying a web service ontology in first-order logic.
In 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its
Applications to Knowledge Representation and Question Answering March 27 – 29, 2006 (2006).

[86] GUARINO, N. Formal Ontology in Information Systems. IOS Press, Amsterdam, The Netherlands,
The Netherlands, 1998.

[87] HAARSLEV, V., AND MÖLLER, R. Racer: A core inference engine for the semantic web. In
Proc. 2nd International Workshop on Evaluation of Ontology-based Tools (EON2003), located
at the 2nd International Semantic Web Conference ISWC 2003, Sanibel Island, Florida, USA,
October 20 (2003), pp. 27–36.

[88] HAKIMPOUR, F., ALEMAN-MEZA, B., PERRY, M., AND SHETH, A. Data processing in space,
time and semantics dimensions. In Terra Cognita 2006 - Directions to the Geospatial Semantic
Web; An International Semantic Web Conference (ISWC) 2006 Workshop (2006).

[89] HENDLER, J. Is there an intelligent agent in your future?, March 1999. Available from:
http://www.nature.com/nature/webmatters/agents/agents.html [cited 31
Oct. 2006].

[90] HENDLER, J. Where are all the intelligent agents? IEEE Intelligent Systems 22, 3 (2007), 2–3.

[91] HENDLER, J., BERNERS-LEE, T., AND MILLER, E. Integrating applications on the semantic
web. Journal of the Institute of Electrical Engineers of Japan 122, 10 (October, 2002), 676–680.

[92] HEPP, M. Semantic web and semantic web services: father and son or indivisible twins? IEEE
Internet Computing 10, 2 (March-April 2006), 85–88.

[93] HEWITT, C., AND DE JONG, P. Open systems. In On Conceptual Modelling (Intervale) (1982),
pp. 147–164.

[94] HOBBS, J. R. A DAML ontology of time, 2002. Available from: http://www.cs.
rochester.edu/˜ferguson/daml/daml-time-nov2002.txt [cited 11 November
2007].

[95] HOBBS, J. R., AND PAN, F. An ontology of time for the semantic web. ACM Transactions on
Asian Language Information Processing (TALIP) 3, 1 (2004), 66–85.

[96] HOBBS, J. R., AND PAN, F. Time ontology in OWL, W3C editor’s draft 6 september
2006, 09 2006. Available from: http://www.w3.org/2001/sw/BestPractices/
OEP/Time-Ontology-20060906.

[97] HORROCKS, I., PATEL-SCHNEIDER, P. F., BOLEY, H., TABET, S., GROSOF, B., AND DEAN,
M. SWRL: A semantic web rule language combining OWL and RuleML, 21 May 2004. Available
from: http://www.w3.org/Submission/SWRL/ [cited 31 December 2007].

[98] HORROCKS, I., PATEL-SCHNEIDER, P. F., BOLEY, H., TABET, S., GROSOF, B., AND DEAN,
M. SWRL: A semantic web rule language, 21 May 2004. Available from: http://www.w3.
org/Submission/2004/SUBM-SWRL-20040521/ [cited 25 February 2007].

221

[99] HUHNS, M. N. A research agenda for agent-based service-oriented architectures. In Cooperative
Intelligent Agents (2006), pp. 8–22.

[100] HUHNS, M. N., SINGH, M. P., BURSTEIN, M., DECKER, K., DURFEE, E., FININ, T., GASSER,
L., GORADIA, H., JENNINGS, N., LAKKARAJU, K., NAKASHIMA, H., PARUNAK, H. V. D.,
ROSENSCHEIN, J. S., RUVINSKY, A., SUKTHANKAR, G., SWARUP, S., SYCARA, K., TAMBE,
M., WAGNER, T., AND ZAVALA, L. Research directions for service-oriented multiagent systems.
IEEE Internet Computing 9, 6 (November 2005), 65–70.

[101] JENNINGS, N. R. An agent-based approach for building complex software systems. Commun.
ACM 44, 4 (2001), 35–41.

[102] JENNINGS, N. R., SYCARA, K., AND WOOLDRIDGE, M. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems 1, 1 (1998), 7–38.

[103] JIANG, G., CHUNG, W., AND CYBENKO, G. Semantic agent technologies for tactical sensor
networks. In Proc. 5th SPIE Conference on Unattended Ground Sensor Technologies and Appli-
cations (Orlando, FL, September 2003), E. M. Carapezza, Ed., vol. 5090, SPIE, pp. 311–320.

[104] KALFOGLOU, Y., AND SCHORLEMMER, M. Ontology mapping: the state of the art. Knowl. Eng.
Rev. 18, 1 (2003), 1–31.

[105] KALYANPUR, A., PARSIA, B., SIRIN, E., GRAUA, B. C., AND HENDLER, J. SWOOP: A web
ontology editing browser. Web Semantics: Science, Services and Agents on the World Wide Web
4, 2 (June 2006), 144–153.

[106] KASHYAP, V., AND SHETH, A. Semantic Heterogeneity in Global Information Systems: The Role
of Metadata, Context and Ontologies. Academic Press, San Diego, 1997, pp. 139–178.

[107] KELLER, U., LARA, R., LAUSEN, H., AND FENSEL, D. Semantic Web Services: Theory, Tools
and Applications. IGI Global, 2007, ch. Semantic Web Service Discovery in the WSMO Frame-
work, pp. 281–316.

[108] KLUSCH, M. Intelligent Information Agents: Agent-Based Information Discovery and Manage-
ment on the Internet. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[109] KLUSCH, M. Information agent technology for the Internet: a survey. Data Knowl. Eng. 36, 3
(2001), 337–372.

[110] KLUSCH, M., BERGAMASCHI, S., AND PETTA, P. European Research and Development of
Intelligent Information Agents: The AgentLink Perspective. 2003, pp. 1–21.

[111] KLUSCH, M., ROVATSOS, M., AND PAYNE, T. R., Eds. Cooperative Information Agents X, 10th
International Workshop, CIA 2006, Edinburgh, UK, September 11-13, 2006, Proceedings (2006),
vol. 4149 of Lecture Notes in Computer Science, Springer.

[112] KLYNE, G., AND CARROLL, J. Resource description framework (RDF): Concepts and abstract
syntax, February 2004. Available from: http://www.w3.org/TR/rdf-concepts/ [cited
28 May 2006].

[113] KOLAS, D., HEBELER, J., AND DEAN, M. Geospatial semantic web: Architecture of ontologies.
In GeoS 2005, LNCS 3799 (2005), M. R. et al., Ed., Springer-Verlag Berlin Heidelberg, p. 183
194.

[114] KONE, M. T., SHIMAZU, A., AND NAKAJIMA, T. The state of the art in agent communication
languages. Knowledge and Information Systems 2, 3 (2000), 259–284.

222

[115] KOZLENKOV, A., PENALOZA, R., NIGAM, V., ROYER, L., DAWELBAIT, G., AND

SCHROEDER, M. PROVA: Rule-based Java scripting for distributed web applications: A case
study in bioinformatics. In Reactivity on the Web Workshop, Munich 2006 (2006).

[116] KUBLAUCH, H. Ontology driven software development in the context of the semantic web: An
example scenario with ProtegeOWL, 2005.

[117] KUHN, W. Geospatial semantics: Why, of what, and how? In J. Data Semantics III (2005),
S. Spaccapietra and E. Zimányi, Eds., vol. 3534 of Lecture Notes in Computer Science, Springer,
pp. 1–24.

[118] LABROU, Y., FININ, T., AND PENG, Y. Agent communication languages: The current landscape.
IEEE Intelligent Systems 14, 2 (1999), 45–52.

[119] LACLAVIK, M., BALOGH, Z., BABIK, M., AND HLUCHÝ, L. AgentOWL: Semantic knowledge
model and agent architecture. Computers and Artificial Intelligence 25, 5 (2006).

[120] LANGLEY, B. K., PAOLUCCI, M., AND SYCARA, K. Discovery of infrastructure in multi-agent
systems. In AAMAS ’03: Proc. 2nd international joint conference on Autonomous agents and
multiagent systems (New York, NY, USA, 2003), ACM Press, pp. 1046–1047.

[121] LEMMENS, R., DE BY, R., GOULD, M., WYTZISK, A., GRANELL, C., AND VAN OOSTEROM,
P. Enhancing geo-service chaining through deep service descriptions. Transactions in GIS 11, 6
(March 2007), 849–871.

[122] LI, K., VERMA, K., MULYE, R., RABBANI, R., MILLER, J., AND SHETH, A. Semantic Web
Services, Processes and Applications. In Cardoso and Sheth [44], 2006, ch. Designing Semantic
Web Processes: The WSDL-S Approach.

[123] LIANG, S. H. L., CROITORU, A., AND TAO, C. V. A distributed geospatial infrastructure for
sensor web. Computers & Geosciences 31, 2 (2005), 221–231.

[124] LIEBERMAN, J. Geospatial semantic web interoperability experiment report, version 0.5. Tech.
rep., Open Geospatial Consortium, 2006.

[125] LIU, J., AND ZHAO, F. Towards semantic services for sensor-rich information systems. In The
2nd IEEE/CreateNet International Workshop on Broadband Advanced Sensor Networks (Basenets
2005), Boston, MA (Oct. 3, 2005).

[126] LUCK, M., MCBURNEY, P., SHEHORY, O., AND WILLMOTT, S. Agent technology roadmap: A
roadmap for agent based computing, 2005. Available from: http://www.agentlink.org/
roadmap/index.html [cited 28 May 2006].

[127] LUTZ, M., AND KLEIN, E. Ontology-based retrieval of geographic information. Journal of
Geographical Information Science 20, 3 (2006), 233–260.

[128] LUTZ, M., AND KOLAS, D. Rule-based discovery in spatial data infrastructure. Transactions in
GIS 11, 3 (2007), 317–336.

[129] MARTIN, D., BURSTEIN, M., HOBBS, J., LASSILA, O., MCDERMOTT, D., MCILRAITH, S.,
NARAYANAN, S., PAOLUCCI, M., PARSIA, B., PAYNE, T., SIRIN, E., SRINIVASAN, N., AND

SYCARA, K. OWL-S: Semantic markup for web services, 22 November 2004. Available from:
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[130] MARTIN, D., BURSTEIN, M., MCDERMOTT, D., MCILRAITH, S., PAOLUCCI, M., SYCARA,
K., MCGUINNESS, D. L., SIRIN, E., AND SRINIVASAN, N. Bringing semantics to web services
with OWL-S. World Wide Web 10, 3 (2007), 243–277.

223

[131] MCGUINNESS, D. L., AND VAN HARMELEN, F. OWL: Web ontology language
overview, February 2004. Available from: http://www.w3.org/TR/2004/
REC-owl-features-20040210/ [cited 24 June 2007].

[132] MENNIS, J., PEUQUET, D., AND QIAN, L. A conceptual framework for incorporating cogni-
tive principles into geographical database representation. International Journal of Geographical
Information Science 1414, 6 (2000), 501–520.

[133] MICHENER, W. K., BEACH, J. H., JONES, M. B., LUDÄSCHER, B., PENNINGTON, D. D.,
PEREIRA, R. S., RAJASEKAR, A., AND SCHILDHAUER, M. A knowledge environment for the
biodiversity and ecological sciences. J. Intell. Inf. Syst. 29, 1 (2007), 111–126.

[134] MOODLEY, D. The future of the Internet: The semantic web, web services and a multi-agent
system infrastructure for the Internet. In Proc. South African Computer Lecturers Association
2004, 4-6 July Durban, 2004 (2004).

[135] MOODLEY, D., AND KINYUA, J. A multi-agent system for electronic job markets. In Proc.
6th International conference on Business Information Systems, Colorado Springs, USA, 4-6 June
2003, published by Dept. of Management Info. Systems, The Poznan University of Economics,
Poznan (2003), pp. 42–48.

[136] MOODLEY, D., AND KINYUA, J. D. M. Towards a multi-agent infrastructure for distributed
Internet applications. In 8th Annual Conference on WWW Applications, Bloemfontein, South
Africa, 5-6 September (2006).

[137] MOODLEY, D., AND SIMONIS, I. A new architecture for the sensor web: the SWAP-framework.
In Semantic Sensor Networks Workshop, A workshop of the 5th International Semantic Web Con-
ference ISWC 2006, November 5-9, Athens, Georgia, USA (2006).

[138] MOODLEY, D., TERHORST, A., SIMONIS, I., MCFERREN, G., AND VAN DEN BERGH, F. Using
the sensor web to detect and monitor the spread of wild fires. In Second International Symposium
on Geo-information for Disaster Management (Gi4DM) September 25-26, Pre-Conference Sym-
posium to ISPRS TC-IV and ISRS Symposium on Geospatial Databases for Sustainable Develop-
ment September 27-30, at Goa, India (2006).

[139] MOODLEY, D., VAHED, A., SIMONIS, I., MCFERREN, G., AND ZYL, T. V. Enabling a new
era of earth observation research: scientific workflows for the sensor web. Ecological Circuits 1
(2008), 20–23.

[140] MOTIK, B. On the properties of metamodeling in OWL. In Proc. of ISWC 2005 (2005).

[141] MÜLLER, J. P., AND PISCHEL, M. The agent architecture InteRRaP: Concept and application.
Tech. rep., German Research Center for Artificial Intelligence, 1993. RR 93-26. Available from:
http://www.dfki.uni-sb.de/mas/interrap/interrap.v3.ps.

[142] NEGRI, A., POGGI, A., TOMAIUOLO, M., AND TURCI, P. Agents for e-business applications.
In AAMAS ’06: Proc. 5th international joint conference on Autonomous agents and multiagent
systems (New York, NY, USA, 2006), ACM Press, pp. 907–914.

[143] NOLAN, J. An agent-based architecture for distributed imagery and geospatial computing. PhD
thesis, George Mason University, 2003.

[144] NOY, N., AND RECTOR, A. Defining n-ary relations on the semantic web: Use with individu-
als, W3C working group note, 12 April 2006. Available from: http://www.w3.org/TR/
swbp-n-aryRelations/.

224

[145] NOY, N. F. Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33, 4
(2004), 65–70.

[146] NWANA, H. S., AND NDUMU, D. T. A perspective on software agents research. Knowledge
Engineering Revue 14, 2 (1999), 125–142.

[147] OBERLE, D. Semantic Management of Middleware. Springer, New York, 2006.

[148] OGSTON, E., AND VASSILIADIS, S. Matchmaking among minimal agents without a facilitator.
In AGENTS ’01: Proc. 5th international conference on Autonomous agents (New York, NY, USA,
2001), ACM Press, pp. 608–615.

[149] OMICINI, A., OSSOWSKI, S., AND RICCI, A. Coordination Infrastructures in the Engineering
of Multiagent Systems, vol. 11 of Multiagent Systems, Artificial Societies, and Simulated Organi-
zations. Kluwer Academic Publishers, June 2004.

[150] OPEN GIS CONSORTIUM, INC. OpenGIS simple features specification for SQL revision 1.1.
Tech. rep., OpenGIS Project Document 99-049, May 5, 1999.

[151] OUKSEL, A. M. Intelligent Information Agents: Agent-Based Information Discovery and Man-
agement on the Internet. Springer, Berlin, Germany, 1999, ch. A framework for a scalable agent
architecture of cooperating heterogeneous knowledge sources, pp. 100–124.

[152] OUKSEL, A. M., AND SHETH, A. Semantic interoperability in global information systems.
SIGMOD Rec. 28, 1 (1999), 5–12.

[153] OZDEMIR, S., AND XIAO, Y. Secure data aggregation in wireless sensor networks: A compre-
hensive overview. Computer Networks 53, 12 (2009), 2022 – 2037.

[154] PAN, J. Z. A flexible ontology reasoning architecture for the semantic web. IEEE Transactions
on Knowledge and Data Engineering 19, 2 (2007), 246–260.

[155] PAN, J. Z., AND HORROCKS, I. OWL-EU: Adding customised datatypes into OWL. Web Se-
mantics: Science, Services and Agents on the World Wide Web 4, 1 (January 2006), 29–39.

[156] PARBHOO, C. An ontology driven sensor web application for detecting and classifying informal
settlements. Master’s thesis, School of Computer Science, University of KwaZulu-Natal, 2009.

[157] PARUNAK, H. V. D. Multiagent systems: a modern approach to distributed artificial intelligence.
In [198], 1999, ch. Industrial and practical applications of DAI, pp. 377–421.

[158] PAYNE, T., SINGH, R., AND SYCARA, K. Communicating agents in open multi-agent systems.
In First GSFC/JPL Workshop on Radical Agent Concepts (WRAC) (2002).

[159] PEARL, J., AND RUSSEL, S. Handbook of Brain Theory and Neural Networks. MIT Press,
Cambridge, MA, 2003, ch. Bayesian networks, pp. 157–160.

[160] PECHOUCEK, M., THOMPSON, S. G., BAXTER, J. W., HORN, G. S., KOK, K., WARMER,
C., KAMPHUIS, R., MARIK, V., VRBA, P., HALL, K. H., MATURANA, F. P., DORER, K.,
AND CALISTI, M. Agents in industry: The best from the AAMAS 2005 industry track. IEEE
Intelligent Systems 21, 2 (2006), 86–95.

[161] PERRY, M., HAKIMPOUR, F., AND SHETH, A. Analyzing theme, space, and time: an ontology-
based approach. In GIS ’06: Proc. 14th annual ACM international symposium on Advances in
geographic information systems (New York, NY, USA, 2006), ACM Press, pp. 147–154.

225

[162] PETRIE, C. J. Agent-based engineering, the web, and intelligence. IEEE Expert: Intelligent
Systems and Their Applications 11, 6 (1996), 24–29.

[163] PHIL TETLOW, I., OBERLE, J. Z. P. D., WALLACE, E., USCHOLD, M., AND KENDALL, E.
Ontology driven architectures and potential uses of the semantic web in systems and software
engineering, 2006. Available from: http://www.w3.org/2001/sw/BestPractices/
SE/ODA/060211/ [cited 3 October 2009].

[164] PRUD’HOMMEAUX, E., AND SEABORNE, A. SPARQL query language for RDF, 14 June
2007. Available from: http://www.w3.org/TR/rdf-sparql-query/ [cited 3 Novem-
ber 2007].

[165] RANDELL, D., AND COHN, A. A spatial logic based on regions and connection. In B. Nebel,
W. Swartout, C. Rich (Eds.), Proc. 3rd international Conference on the Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann, Los Altos, CA (1992), pp. 165–176.

[166] RAO, A. S., AND GEORGEFF, M. P. Modeling rational agents within a BDI-architecture. In
Proc. 2nd international Conference on Principles of Knowledge Representation and Reasoning
(1991), J. Allen, R. Fikes, and E. Sandewall, Eds., Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA, pp. 473–484.

[167] RASKIN, R. Guide to SWEET ontologies. Available from: http://sweet.jpl.nasa.
gov/guide.doc [cited 16 February 2007].

[168] RASKIN, R. G., AND PAN, M. J. Knowledge representation in the semantic web for earth and
environmental terminology (SWEET). Computers & Geosciences 31, 9 (November 2005), 1119–
1125.

[169] REED, S., AND LENAT, D. Mapping ontologies into CYC. In AAAI 2002 Conference Workshop
on Ontologies For The Semantic Web, Edmonton, Canada (July 2002).

[170] REITSMA, F., AND ALBRECHT, J. Modeling with the semantic web in the geosciences. IEEE
Intelligent Systems 20, 2 (2005), 86–88.

[171] RUSSELL, S., AND NORVIG, P. Artificial Intelligence: A Modern Approach, 2nd edition ed.
Prentice-Hall, Englewood Cliffs, NJ, 2003.

[172] RUSSOMANNO, D. J., KOTHARI, C. R., AND THOMAS, O. A. Building a sensor ontology:
A practical approach leveraging ISO and OGC models. In IC-AI (2005), H. R. Arabnia and
R. Joshua, Eds., CSREA Press, pp. 637–643.

[173] SCHARL, A., AND TOCHTERMANN, K., Eds. The Geospatial Web. Springer, 2007.

[174] SCHREINER, K. HPKBs and beyond. IEEE Intelligent Systems and Their Applications 14, 2
(Mar/Apr 1999), 80–84.

[175] SEARLE, J. R. Speech Acts: An Essay in the Philosophy of Language. Cambridge University
PressCambridge, 1969.

[176] SENGUPTA, R., AND SIEBER, R. Geospatial agents, agents everywhere . . . Transactions in GIS
11, 4 (2007), 483–506.

[177] SHADBOLT, N., BERNERS-LEE, T., AND HALL, W. The semantic web revisited. IEEE Intelli-
gent Systems 21, 3 (2006), 96–101.

[178] SHAMSFARD, M., AND BARFOROUSH, A. A. The state of the art in ontology learning: a frame-
work for comparison. Knowl. Eng. Rev. 18, 4 (2003), 293–316.

226

[179] SHETH, A. Interoperating Geographic Information Systems. Kluwer Academic Publishers, 1998,
ch. Changing Focus on Interoperability in Information Systems: From System, Syntax, Structure
to Semantics, pp. 5–30.

[180] SINGH, M. P., CHOPRA, A. K., DESAI, N., AND MALLYA, A. U. Protocols for processes:
programming in the large for open systems. vol. 39, ACM Press, pp. 73–83.

[181] SINGH, M. P., AND HUHNS, M. N. Service-oriented computing: Semantics, Processes, Agents.
John Wiley & Sons Ltd, Chichester, England, 2005.

[182] SIRIN, E., PARSIA, B., GRAU, B. C., KALYANPUR, A., AND KATZ, Y. Pellet: A practical
OWL-DL reasoner. Web Semant. 5, 2 (2007), 51–53.

[183] SMITH, B., ASHBURNER, M., ROSSE, C., BARD, J., BUG, W., CEUSTERS, W., GOLDBERG,
L. J., EILBECK, K., IRELAND, A., MUNGALL, C. J., CONSORTIUM, T. O., LEONTIS, N.,
ROCCA-SERRA, P., RUTTENBERG, A., SANSONE, S.-A., SCHEUERMANN, R. H., SHAH, N.,
WHETZEL, P. L., AND LEWIS, S. The OBO foundry: coordinated evolution of ontologies to
support biomedical data integration. Nature Biotechnology 25 (2007), 1251–1255.

[184] SUJANANI, A., RAY, P., PARAMESH, N., AND BHAR, R. The development of ontology driven
multi-agent systems: a case study in the financial services domain. In BSN ’05: Proc. IEEE EEE05
international workshop on Business services networks (Piscataway, NJ, USA, 2005), IEEE Press.

[185] SUN DEVELOPER NETWORK. J2EE CORBA technology and the Java platform. Available from:
http://java.sun.com/j2ee/corba/index.html [cited 13 November 2007].

[186] SYCARA, K. Multiagent systems. AI Magazine 10, 2 (1998), 79–93.

[187] SYCARA, K. Multi-agent infrastructure, agent discovery, middle agents for Web services and
interoperation. Springer-Verlag New York, Inc., New York, NY, USA, 2001, pp. 17–49.

[188] SYCARA, K., PAOLUCCI, M., VELSEN, M. V., AND GIAMPAPA, J. A. The RETSINA MAS
infrastructure. Autonomous Agents and Multi-Agent Systems 7, 1/2 (July 2003), 29–48. also
appears as CMU-RI-TR-01-05.

[189] TERHORST, A., MOODLEY, D., SIMONIS, I., FROST, P., MCFERREN, G., ROOS, S., AND

VAN DEN BERGH, F. Geosensor Networks, Lecture Notes in Computer Science, Volume
4540/2008. Springer-Verlag, 2008, ch. Using the Sensor Web to Detect and Monitor the Spread
of Vegetation Fires in Southern Africa, pp. 239–251.

[190] TERHORST, A., SIMONIS, I., AND MOODLEY, D. A service-oriented multi-agent systems archi-
tecture for the sensor web. In SAEON Summit, Centurion, South Africa (2006).

[191] THE OWL-S COALITION. OWL-S 1.1 release. Tech. rep., Novmber 2004. Available from:
http://www.daml.org/services/owl-s/1.1/ [cited 25 February 2006].

[192] TWEEDALE, J., ICHALKARANJE, N., SIOUTIS, C., JARVIS, B., CONSOLI, A., AND PHILLIPS-
WREN, G. Innovations in multi-agent systems. J. Netw. Comput. Appl. 30, 3 (2007), 1089–1115.

[193] USCHOLD, M. Ontology-driven information systems: Past, present and future. In FOIS (2008),
pp. 3–18.

[194] USCHOLD, M., AND GRUNINGER, M. Ontologies and semantics for seamless connectivity.
SIGMOD Rec. 33, 4 (2004), 58–64.

[195] VALCKENAERS, P., SAUTER, J., SIERRA, C., AND RODRIGUEZ-AGUILAR, J. A. Applications
and environments for multi-agent systems. Autonomous Agents and Multi-Agent Systems (2006).

227

[196] VO, Q. B., AND PADGHAM, L. Conversation-based specification and composition of agent ser-
vices. In ciax06 (2006), pp. 168–182.

[197] WALTON, C. Agency and the Semantic Web. Oxford University Press, Inc., New York, NY, USA,
2006.

[198] WEISS, G. Multiagent systems: a modern approach to distributed artificial intelligence. MIT
Press, 1999.

[199] WELTY, C. Guest editorial: ontology research. AI Mag. 24, 3 (2003), 11–12.

[200] WEYNS, D., AND HOLVOET, T. On the role of environments in multiagent systems. Informatica
29, 4 (2005), 409–422.

[201] WHITEHOUSE, K., ZHAO, F., AND LIU, J. Semantic streams: A framework for composable
semantic interpretation of sensor data. K. Rmer, H. Karl, and F. Mattern, Eds., Springer, pp. 5–20.

[202] WICKLER, G., AND TATE, A. Capability representations for brokering: A survey. 1999.

[203] WIJNGAARDS, N. J. E., OVEREINDER, B. J., VAN STEEN, M., AND BRAZIER, F. M. T. Sup-
porting internet-scale multi-agent systems. Data Knowl. Eng. 41, 2-3 (2002), 229–245.

[204] WITT, K. J., STANLEY, J., SMITHBAUER, D., MANDL, D., LY, V., DERBRINK, A. U., AND

METHENY, M. Enabling sensor webs by utilizing SWAMOfor autonomous operations. In 8th
NASA Earth Science Technology Conference (2008).

[205] WOOLDRIDGE, M. An Introduction to Multiagent Systems. John Wiley & Sons (Chichester,
England), 2002.

[206] WOOLDRIDGE, M., AND JENNINGS, N. R. Agent theories, architectures, and languages: a
survey. In ECAI-94: Proc. workshop on agent theories, architectures, and languages on Intelligent
agents (New York, NY, USA, 1995), Springer-Verlag New York, Inc., pp. 1–39.

[207] YANG, Y., AND CALMET, J. OntoBayes: An ontology-driven uncertainty model. In CIMCA
’05: Proc. International Conference on Computational Intelligence for Modelling, Control and
Automation and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce Vol-1 (CIMCA-IAWTIC’06) (Washington, DC, USA, 2005), IEEE Computer Society,
pp. 457–463.

[208] YANG, Y., AND CALMET, J. Foundations of Intelligent Systems, LNCS 4203. Springer, 2006,
ch. OntoBayes Approach to Corporate Knowledge, pp. 274–283.

[209] YICK, J., MUKHERJEE, B., AND GHOSAL, D. Wireless sensor network survey. Computer
Networks 52, 12 (2008), 2292 – 2330.

[210] YUE, P., DI, L., YANG, W., YU, G., AND ZHAO, P. Semantics-based automatic composition of
geospatial web service chains. Comput. Geosci. 33, 5 (2007), 649–665.

[211] ZAHARIA, R., VASILIU, L., HOFFMAN, J., AND KLIEN, E. Semantic execution meets geospatial
web services: A pilot application. Transactions in GIS 12, Suppl. 1 (2008), 59–73.

[212] ZAMBONELLI, F., JENNING, N. R., OMICINI, A., AND WOOLDRIDGE, M. J. Agent-oriented
software engineering for Internet agents. 326–346.

[213] ZAMBONNELLI, F., J. N. R. W. M. Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and Methodology 12, 3 (2003), 317–370.

228

[214] ZAREMBA, M., KERRIGAN, M., MOCAN, A., AND MORAN, M. Semantic Web Services, Pro-
cesses and Applications. In Cardoso and Sheth [44], 2006, ch. Web Services Modeling Ontology,
pp. 63–87.

[215] ZHOU, L. Ontology learning: state of the art and open issues. Inf. Tech. and Management 8, 3
(2007), 241–252.

[216] ZOU, Y., FININ, T., DING, L., CHEN, H., AND PAN, R. Using semantic web technology in
multi-agent systems: a case study in the TAGA trading agent environment. In ICEC ’03: Proc.
5th international conference on Electronic commerce (New York, NY, USA, 2003), ACM, pp. 95–
101.

