

Abstract—This paper seeks to explain the practical issues

encountered when implementing point to multipoint capable

Bluetooth systems. System partitioning of the Bluetooth stack

between the hardware components is a crucial component of any

Bluetooth design and depends heavily on the bandwidth

requirements of the product. The MIPS estimates of the various

Bluetooth stack layers and some typical applications will be

presented. Open source Bluetooth stacks running in open source

embedded operating systems will be highlighted as a solution to

building low cost Scatternet capable Bluetooth devices

Index Terms—Bluetooth, Open Source, Scatternet, System

partitioning.

I. INTRODUCTION

Since its conception in 1998, Bluetooth has promised to

provide the world with a low power, short-range wireless link

that will connect hundreds of devices existing in the personal

area network space that surrounds us.

The Bluetooth (BT) system is described in the Bluetooth

Specifications 1.1 [2] and supports a 1 Mbit/s gross rate in a

so-called piconet, where up to 8 devices can simultaneously be

interconnected. The radius of a piconet (transmission range––

TR) is about 10 m for Class 3 devices and 100m for Class 1

devices. One of the key issues associated with the BT

technology is the possibility of dynamically setting up and

tearing down piconets. Devices or nodes can join and leave

piconets as they move in and out of range. Different piconets

can coexist by sharing the spectrum with different frequency

hopping sequences, and interconnect in a scatternet. When all

nodes are in radio visibility, the formation of overlapping

piconets allows more than 8 nodes to simultaneously

communicate and may enhance system capacity. In a multi-hop

scenario, where nodes are not all in radio vicinity, a scatternet

is mandatory to develop a connected platform for ad-hoc

networking.

In reality creating scatternets between many portable

devices such as mobile phones, Bluetooth headsets and PDA’s

D. Johnson is with the Information Society Technology centre at the

Council for Scientific and Industrial research, Pretoria, South Africa (e-mail:

djohnson@csir.co.za).

is not quite as straightforward as it may seem. Bluetooth single

chip IC’s running at about 20 MIPS, commonly found in cell

phones and headsets, promise point to multipoint functionality

but unfortunately do not have enough processing power to

maintain multiple connections by themselves. A second co-

processor, which shares some of the Bluetooth stack load, is

required on the device to make point to multipoint possible as

is the case with a PC connected to a Bluetooth USB dongle.

II. BLUETOOTH ARCHITECTURE

The hardware and software to support a Bluetooth link

consists of several components as seen in Fig. 1.

The following hardware components are used [5]:

1) Optional Host controller: Computer to run the higher

level code. It runs the Application software, upper layer of the

Bluetooth protocol stack - profiles, logical link control and

adaptation protocol (L2CAP), RFCOMM, and other stack

functions above the HCI

2) Link control processor: A microprocessor that runs at

least the lower layer of the stack. It may be combined with the

host controller in embedded applications. It runs: Lower layer

of the Bluetooth protocol stack - link manager protocol

(LMP), containing the link manager (LM) and the link

controller (LC). Software below the host control interface

(HCI).

3) Baseband controller: Logic block to control the RF

transceiver.

4) RF transceiver: Contains the RF synthesizer, VCO,

mixers, Gaussian filter, clock recovery, and data detector.

5) RF front end: Contains the antenna bandpass filter, the

transmit/receive switch and, if necessary, a low noise amplifier

(LNA) and power amplifier (PA).

6) Antenna: May be internal or external, integrated on the

PCB, or an OEM third-party component

 Hardware and software implications of creating

Bluetooth Scatternet devices

David Johnson

Host controller (PC or MCU)

Link control processor (MCU or

combine with host in case 5)

Basband controller (logic)

RF transceiver

RF font end (LNA, PA, T/R)

Antenna

Hardware

Software

Link Manager (LM)

Link Controller (LC)

Host Controller Interface (HCI)

Logical Link Control and

Adaptation Protocol (L2CAP)

RFCOMM

Service

Discovery

Protocol (SDP)

Bluetooth Profiles

Application

Fig. 1. Components of a Bluetooth system

Most Bluetooth suppliers have adopted a multichip

approach to system design, employing CMOS devices for the

baseband core and microprocessor and bipolar devices for the

RF functions (Fig. 2). While this approach helps simplify chip

design, inherent disadvantages such as higher component

count, inadequate board space, and other system integration

issues, can lead to higher implementation costs. A typical

implementation of a Bluetooth radio system, for example,

involves a considerable number of relatively expensive RF and

intermediate frequency (IF) filters. [1]

Micro-

processor

Baseband

core
RadioI/O

Audio

Fig. 2. Two IC Bluetooth solution

There are some Bluetooth suppliers that have achieved a

single chip solution (Fig. 3). Here the microprocessor,

baseband core and radio are all integrated onto one device

entirely in CMOS [3]. The advantages of a single-chip solution

are reduced cost, smaller footprint and a quick solution with

little knowledge of design in RF circuitry required.

Micro-

processor

Baseband

core
RadioI/O

Audio

Fig. 3. Single IC Bluetooth solution

III. BLUETOOTH STACK PARTITIONING

Apart from the question of a single or dual IC solution for

the Bluetooth module, there is also the question of how the

stack is partitioned between the module microprocessor and

the optional host controller.

With so many design options and architectural schemes on

the market, designers are faced with a myriad of approaches to

implementing Bluetooth technology in a system design. To

choose the right option, designers must have a detailed

understanding of the processing requirements of the

application. They also need to understand the hardware and

software approaches to implementing Bluetooth in system

architecture. Fig. 4 also shows some of the possible cases that

can be implemented in the system architecture [5].

Host controller (PC or MCU)

Link control processor (MCU or

combine with host in case 5)

Baseband controller (logic)

RF transceiver

RF font end (LNA, PA, T/R)

Antenna

Hardware

Software

Link Manager (LM)

Link Controller (LC)

Host Controller Interface (HCI)

Logical Link Control and

Adaptation Protocol (L2CAP)

RFCOMM

Bluetooth Profiles

Optional

Service

Discovery

Protocol (SDP)

Application

Case 2 and 4

All cases

Case 1,3 and 5

Case 1,2,3 and 5

Fig. 4. Bluetooth stack partitioning cases

Case 1: PC-based design (point-to-multipoint). The host

processor in this case is a PC running the product application

code. It communicates through an API with the upper layer of

the Bluetooth stack running on the PC. The stack software runs

as a Bluetooth driver to the application and uses a serial

interface to communicate with the lower layer of the stack

running on dedicated hardware outside of the PC (for example

a Bluetooth USB dongle). The serial interface uses HCI

commands to control and exchange data and event timing with

the lower layer stack.

Case 2: PC-based design 2 (point-to-point) An alternative

implementation of case 1 is to use a single-chip solution, with

the upper and lower layers of the stack integrated with the RF

and baseband functions. In this case, the interface to the host

processor is no longer HCI, but a chip-specific command set

which handles the higher-level commands that are not part of

the HCI.

Case 3: Stand-alone product – dual chip system (point-to-

multipoint). In a stand-alone product, there is typically a

microcontroller already included in the design. This

microcontroller needs to be powerful enough to handle the full

Bluetooth stack and the application. In addition to adequate

processing power adequate memory resources are also

important for point to multipoint functionality.

Case 4: stand-alone product – single chip solution (point-to-

point). This architecture is the most cost effective of all five

presented. It also represents the configuration targeted by most

of the Bluetooth silicon vendors. The full Bluetooth stack and

the application will run in the single chip. Many products that

need basic point-to-point functionality, such as a Bluetooth

headset, will use this architecture.

Case 5: Stand-alone product – ASIC (point-to-multipoint).

If the designer has well-staffed hardware-description language

(HDL) software teams available, and is simply looking for the

lowest-cost solution for large production runs, then this last

architecture may be the answer. It consists of an integrated

baseband and microcontroller, with an external RF transceiver.

In this scenario, a high-performance microcontroller handles

all the software tasks, from application to upper and lower

layers of the stack. In addition, baseband IP can be acquired

and integrated on an ASIC, together with application circuits.

IV. MICROPROCESSOR CONSIDERATIONS

Bluetooth IC vendors embed small, low-power processors

such as ARM7, Hitachi H8 or Motorolla Dragonball into their

IC’s, which have enough processing power to run the

Bluetooth stack. The following are typical MIPS estimates for

the upper and lower layers of the stack [3].

Baseband Layer (LC, LM and HCI): 8-12MIPS

Host Protocol Layer (HCI, L2CAP, RFCOMM, SDP):1-2

MIPS

The baseband layer is a real-time environment that has

625µs blocks to process received data, hence it’s larger

processing requirement. The application layer is very difficult

to quantify as it largely depends on other protocols and

services defined by the relevant profile. A headset, for

example will impose a minor additional processor load, while

a LAN access point with IP routing and multipoint

functionality will exhibit significant additional processor

loading. [3]

Single-IC vendors manage to create a full application such

as a Bluetooth headset on one IC. These IC’s have

microprocessors running at about 20MIPS, which is just

sufficient for the baseband layer, host protocol layer and the

small application.

V. OPEN SOURCE SOLUTIONS FOR BLUETOOTH

Once the hardware solution has been chosen, the Bluetooth

protocol layers and the application layer need to be loaded into

non-volatile memory of the device.

If a point-to-point solution is needed, for example replacing

a serial cable between two devices, a basic serial port profile

can be loaded into a module on each end of the link and a

point to point connection can be established. For example, the

Cambridge Silicon Radio development kits allow the user to

load point-to-point applications with the full Bluetooth stack

into the flash memory of a Bluetooth module and place these

in products.

However when an embedded point to multipoint solution is

needed, as explained in the section on Bluetooth stack

partitioning, an extra microprocessor is needed to run the

upper layers of the Bluetooth stack and the application. An

embedded operating system is also required on the

microprocessor to handle memory, scheduling, and other

system tasks. Commercial embedded operating systems such

as VXWorks or Nucleus and Bluetooth stacks such as Mezoe

or Windigo are available but at a substantial cost with royalty

fees on each product produced.

There are a number of robust open source embedded

operating systems that support microprocessors without

memory management such as eCos and uClinux. Similarly

there are now four open source Bluetooth stacks available for

FreeBSD and Linux which can be ported to embedded

environments [6]. These are the FreeBSD Bluetooth stack,

OpenBT developed by Axis, Bluez which is part of the Linux

kernel and Affix developed by Nokia.

An example of a commercial open source Bluetooth product

is the Axis access point [4]

VI. POINT TO MULTIPOINT SERIAL PORT ADAPTER

The point-to-multipoint serial port adapter was created by

the author at the CSIR in 2003 for a heart rate over Bluetooth

system which monitors multiple athletes’ heart rates from the

edge of a sports field. It was used for the 20/20 Supersport

cricket series held in South Africa during April 2004. The

system shown in Fig. 5 sends heart rate information, which is

measured using a sensor on the athletes’ chest, to a heart rate

slave module via magnetic induction. This information is sent

from the heart rate slave module via Bluetooth to a connected

class 1 master unit which can be up to 100m away. The master

unit is pre-programmed to connect to a set of Bluetooth slave

units and when it is connected to these slave units, it relays any

information it received from any of the slaves via its RS232 or

RS485 connection to a host PC. This PC will be running a

heart rate monitor application which can view a multiple

number of athlete’s heart rates. The host PC does not have any

local Bluetooth stack, it receives heart rate information via the

serial port either using polling commands or using a

multiplexing protocol.

Fig. 5. Bluetooth heart rate monitoring system

The heart rate slave module uses the stack partitioning

architecture outlined in case 4. As shown in Fig. 6 it runs the

entire stack and application in a single microprocessor. The

slave device was developed using the Cambridge Silicon

Radio Bluelab development framework environment which

creates a special user space called a virtual machine. This

virtual machine ensures that the application cannot interfere

with the real time requirements of the lower levels of the stack.

microprocessor

Basband controller (logic)

RF transceiver

RF font end (LNA, PA, T/R)

Antenna

Hardware

Software

Link Manager (LM)

Link Controller (LC)

Logical Link Control and

Adaptation Protocol (L2CAP)

RFCOMM

Service

Discovery

Protocol (SDP)

Bluetooth multipoint heartrate

slave Application
Virtual machine

Serial

port
GPIOHeartrate sensor

Bluelab Cambridge silicon

library framework

Bluetooth multipoint slave device

Fig. 6. Bluetooth heart rate slave device system

partitioning

The heart rate master module was created using uClinux and

the Bluez stack running on an ARM based Atmel AT91 series

microprocessor with no memory management, 4meg of RAM

and 2Meg of FLASH. The architecture for this serial port

adapter is shown in Fig. 7. This architecture uses the stack

partitioning outlined in case 3.

The Bluetooth multipoint application is responsible for

handling host to module communication (data and commands)

and setting up Bluetooth links to the slave devices. Commands

from the host to the application are carried out using AT

commands over the serial interface. These AT commands can

start an inquiry, list slave devices that the master should

connect to, set up baud rates etc. It is also capable of sending

data, which it received from the slave module, either using a

polling method such as MODBUS or using a multiplexing

protocol such as the one seen in Fig. 8.

Bluetooth hardware module running

lower layers of the stasck

USB driverUART driver

Bluez Core

SCO

sockets
L2CAP protocol

HCI

sockets

Bluetooth multipoint

applicationBluez utilities

User

space

Kernel

space

Berkley socket interface

Host controller interface

Driver interface

Protocol interface

Components provided by bluez

u
C

li
n

u
x

 o
p

e
ra

ti
n

g
 s

y
s

te
m

Serial port

/dev/ttyS0
Arm7TDMI

microprocessor
Host PC/

device

Bluetooth multipoint master device

Fig. 7. Bluetooth master device system partitioning

The multiplexing protocol (Fig. 8) embeds the length of the

frame, the Bluetooth address, command and data within the

message. A Bluetooth address of 0x00 is used to broadcast a

message to all the slaves.

0x00 0xff Length BTaddr Data

Length

Command

Fig. 8. Multiplexing protocol between host and Bluetooth

master device

A polling method is useful in an industrial environment

where Bluetooth is used to replace cables and a MODBUS

protocol is already being used. The multiplexing protocol

should be used where a new point to multipoint application is

being developed and the maximum data rate of the combined

slaves is less than the maximum data rate of the

communication between the host and master unit.

VII. CONCLUSION

Creating low cost scatternet enabled Bluetooth devices

cannot be achieved using a single chip solution. In a stand-

alone product, an additional microprocessor is needed which is

powerful enough to handle the full Bluetooth stack and the

application which sets up multiple connections. In addition to

adequate processing power, adequate memory resources are

also important for point to multipoint functionality. The use of

open source operating systems such as uClinux and open

source Bluetooth stacks such as Bluez running on this

microprocessor make it possible to build scatternet enabled

Bluetooth devices which are affordable and easily customized

to any required application. This Bluetooth device can

multiplex information from multiple slaves to an external port

connected to a host PC or other long range transmitting device

such as a GSM modem using a multiplexing protocol or a

polling method such as MODBUS.

REFERENCES

[1] M. Phillips, “Reducing Bluetooth components”, Electronic Engineering

Times, Issue 1134, Oct. 2000, pp. 88

[2] Specification of the Bluetooth System, Volume 1, Core, version 1.1,

http://www.bluetooth.com, 22 Feb. 2001.

[3] J. Bray, C. F. Sturman, “Bluetooth 1.1: Connect without cables”, 2nd ed,

Prentice Hall, 2001, pp. 480-492

[4] A. Karlsson, “Wireless open source platform”, M.S. Thesis, Dept. of

Telecommunications and Signal Processing, Blekinge Institute of

Technology, Dec. 2000

[5] S. Walton, R. Kumar, “Reducing time to market for Bluetooth-enabled

products”, CommsDesign, Oct. 2003

[6] D. Xiaoyong Yang, “Bluetooth Enabled Embedded Linux”, Nanyang

Technology University, Singapore, Linux Congress, 2002

