
Music Coach: Real-time Evaluation of Music Performance
using Nokia N900

David Johnson
Department of Computer Science

UCSB

djohnson@cs.ucsb.edu

Dianna Han
Department of Computer Science

UCSB

dianna@cs.ucsb.edu

ABSTRACT

In this paper, we describe the design and implementation of the

Music Coach application that runs on the Nokia N900 mobile

phone platform. The application plays the role of a music coach

which listens to the user’s musical performance and provides real-

time feedback on both timing and pitch accuracy. It also utilizes

the accelerometer in the mobile phone to detect and update tempo

set by the musician during performance. Due to the limit on

computational power, the main challenges of this project lie in

real-time processing of audio input/output and visual feedback.

Other challenges include light-weight accelerometer reading

processing and accurate pitch recognition. We discuss these

technical difficulties in detail and present our approaches to

resolve these issues. Our final results show that the Music Coach

application is both easy to use and helpful for entry-level

musicians to improve their skills.

Keywords

Mobile phone application, real-time audio processing, pitch

analysis, multi-modality input/output, real-time visual feedback,

accelerometer.

1. INTRODUCTION

Smartphones, or mobile phones with computational power

approaching that of PC’s and a wide range of integrated sensing

capabilities, are gaining popularity. Smartphones today

outperform desktop computers from ten years ago in terms of

processor speed, memory, and disk space; moreover, they have far

more functionality than traditional desktop or laptop computers

with additional items such as a camera, touch screen, and

accelerometer. For example, Apple iPhone 3GS, one of the most

popular and most successful mobile phones in the market, is

equipped not only with GPS and accelerometer but also with

proximity sensor and ambient light sensor.

In response to such a trend, numerous applications have been

migrated to smartphone platforms, and a variety of applications

are being designed and developed specifically for smartphones,

for both entertainment and practical usage. In this paper we

propose a new application called Music Coach that utilizes the

built-in multi-modality capabilities and the portability of a

smartphone to provide both musical training and entertainment to

the user.

Music Coach, as the name indicates, listens to the user’s musical

performance and provides real-time feedback on both timing and

pitch accuracy. With a pre-loaded music score, the application

shows the user a sequence of notes to play with timing

information, then checks if the notes are played at the correct

pitch and time. The application can also evaluate pitch without

pre-loaded music score by checking how close a note played is to

its nearest discrete note. The application is valuable for users from

beginners to advanced musicians and for higher range instruments

categories. The exclusion of low range instruments such as

double-bass is due to the long sample window needed to

accurately determine pitch for these low frequencies. It is

especially useful for pitch evaluation of instruments that do not

have discrete notes such as cello, violin, trombone, or even human

voice. Feedback is provided to the user both real-time and offline:

alerts that inform the user of pitch and rhythm inaccuracies, and

overall evaluation at the end of the performance.

As an additional feature, Music Coach also detects tempo set by

the user shaking or rocking their smartphone. Audio alerts similar

to a metronome will be played to the user during the performance

in accordance with the current tempo setting. This allows the user

to change the pace of music without explicitly specifying a

number to the application.

Music Coach is currently developed on Nokia N900 smartphone

platform, which is using Maemo 5 operating system and equipped

with microphone, speakers, touch-screen, and accelerometers.

In the following sections we will cover details of the application.

Section 2 gives an overview on the background of music

recognition applications and techniques. Section 3, 4, 5, and 6

analyze the application requirements, discuss major challenges,

and present our approaches, solution and results. Section 7

summaries the work and presents future improvements.

2. BACKGROUND

The idea of designing mobile phone applications that assist the

user in their musical activities is not foreign to us. On Apple

iPhone, GuitarToolkit[1] provides essential guitar utilities,

including an amazingly accurate tuner and a library of over

500,000 chords; TyroTuner[2] is another microphone-based

application specifically tailored to let the user tune a standard 6-

string guitar. Besides utilizing audio input/output, other

applications such as ZOOZBeat[3] also relies on accelerometer to

detect user gestures and movements to enable easy composing and

remixing music by shaking and tapping the phone.

Furthermore, applications on a non-mobile platform that provide

feedback on user performance are also familiar to us. A widely

known example would be a Karaoke system, which evaluates the

user at the end of a song by giving a score.

In the Music Coach project we propose to combine these two

categories of applications mentioned above by providing real-time

feedback to musicians using a mobile phone platform which can

change its tempo using the accelerometer. Music Coach aims

more at musicians who need to evaluate their performance on real

instruments. Such applications are not yet available to our

knowledge.

3. REQUIREMENT ANALYSIS

For a system whose main task is to recognize pitch and timing

accuracy of a musical performance done by instruments or via

human voice, relevant requirements will include pitch range,

frequency accuracy/resolution, sampling rate, and processing time.

3.1 Pitch Range

A pitch recognition system designed to work for all instruments

and human voice would have to cover a wide range of frequencies

from 20Hz to 4186Hz. Figure 3.1 shows the frequencies of all the

white notes on a keyboard and the ranges of some selected

instruments as well as human voice for equal temperament tuning.

Note that names of a keyboard scale are shown as A0 to C8,

where the letter represents the name of the note and the number

represents the octave. If a note sounds an octave higher than

another, its frequency doubles accordingly.

For most western music the tuning system follows an equal

temperament system in which adjacent notes in a scale are all

separated by logarithmically equal distances. Since this scale

divides an octave into twelve equal-ratio steps and an octave has a

frequency ratio of two, the frequency ratio between adjacent notes

is then the twelfth root of two (12

1

2 , or ~1.05946309). Tuning

allows music to sound the same in any key. It enabled Bach to

compose his well-tampered clavier in all 24 major and minor keys

for harpsichords, which he tuned himself to an equal tempered

scale. This was at the time when most of the instruments were

using tunings that didn’t allow them to play in any key.

As will be explained in following sections, this actually introduces

a certain degree of complexity as optimal settings in the pitch

recognition system are different for different instruments ranges.

3.2 Pitch Accuracy/Resolution

The accuracy requirements depend mainly on the pitch spacing

between adjacent notes. As mentioned before, the pitch spacing

between adjacent notes is logarithmic rather than linear. This

means that the frequency difference between two adjacent notes

of low frequencies will be smaller than that of high frequencies,

which leads to higher accuracy requirements for pitch detection.

For a particular instrument, its accuracy requirement will always

be set to the frequency interval between its lowest two notes. This

would resolve a detected frequency to its closet discrete note

frequency. Consequently, if feedback on pitch accuracy is

required at a higher resolution than adjacent notes in a 12-tone

scale, a smaller frequency interval is required.

For example, an alto recorder’s lowest frequency interval is 20Hz

between F4 and F#4. Therefore the required accuracy of the

system in order to detect all musical notes in range would be 20Hz,

although towards the top end of the range the highest frequency

interval is 171Hz. This means that 4 divisions of accuracy could

be defined at its top end but only 1 division of accuracy at its

bottom end.

if a set of 3 discrete zones are required for pitch analysis, which

specifies if the pitch is sharp (above the note), on the note, or flat

(below the note), then a sampling window should be chosen to

produce a frequency resolution of 20/3 ~ 6.5Hz for the alto

recorder, for example. Even though further divisions are possible

at the higher end of its range, the system will be designed around

the finest grained feedback on the bottom end of the scale for the

sake of uniformity.

Figure 3.1. Frequency Map for Instruments. The frequencies of
all the white notes on a keyboard are shown in this map along

with the frequency range of some example instruments.

3.3 Pitch Sample Rate

Pitch sample rate specifies how often the pitch of the audio signal

is sampled. Feedback frequency about pitch accuracy cannot be

faster than the sample rate as the system needs to first analyze the

current set of samples to determine the frequency. Requirements

for the sample rate are determined by the shortest note duration

expected in the performance as well as the lowest expected

frequency. The relationship between sample rate and frequency

will be explained in following sections. The Music Coach

application uses approximately 20Hz as its sample rate.

3.4 Processing Time

Processing time is determined by the computational overhead of

the application and the capability of the device. To facilitate real-

time feedback to the user the processing time to carry out pitch,

timing, and tempo detection should be made as short as possible.

The majority of the computational load is introduced by the pitch

detection system; thus the FFT thread that carries out this task was

assigned the highest priority. The Nokia N900 was able to carry

out an FFT on a 100ms sample of data in 3ms. In this case

feedback will be delivered to the user 103ms after the note started

playing, which is an acceptable and reasonable delay.

3.5 Tempo Detection

The fact that motion of the phone is reflected in accelerometer

measurements leads to our proposal of using the phone as a tempo

detector. When the user shakes or rocks the phone periodically,

the application detects the period of such movements and

translates it into tempo.

Figure 3.2 shows the typical accelerometer readings when the user

is moving the phone in a rhythmic manner. We can see clearly

from the plot that the period of repetitive motion is reflected in the

accelerometer readings as the time difference between two peak

readings. Since the phone can be shaken or rocked at any direction,

the vector amplitude would be a reasonable measure to use. In this

way, the tempo detection problem can be translated into a

problem of finding peaks in a digital signal.

Many peak detection methods and algorithms have been

developed and proposed in signal processing. However, most of

such algorithms are unsuitable for our application because of the

requirements of real-time and minimal lag. The ideal solution

would be an algorithm that does not need a large buffer to build

statistical models but processes data on the fly; the algorithm

should be robust and reasonably accurate, while the computational

cost should be minimized.

4. SYSTEM ARCHITECTURE

The software design for the system follows a threading model in

which components that needed to run concurrently are executed in

separated threads. These included (a) recording sound to a buffer,

(b) analyzing the sound with an FFT, and (c) carrying out analysis

of accelerometer input. There are also timer modules, such as (a)

note progress timer and (b) metronome timer, which control the

progress of notes and beats in the Music Coach system.

Figure 4.1 shows the interaction of all the components. The

software was built using the Qt application framework (Qt version

4.6). The signal and slot mechanism in the Qt framework is used

for inter-component communications. For example, when the FFT

thread detects a new note it will ‘emit’ a ‘signal’ to the Music

Coach object at a pre-configured ‘slot’. The master object will

then take appropriate actions to handle the displaying of the

detected note. Similarly, the accelerometer thread sends a tempo

update signal when it detects a change in tempo.

The MIC thread made use of the pulseaudio sound server. This

server allows the user to create full-duplex audio applications,

which was required for this application because the metronome

object produced sound at the same time as the microphone thread

recording sound.

5. DESIGN AND IMPLEMENTATION

5.1 Pitch Detection

Figure 3.2. Accelerometer readings when the user is moving the
phone back and forth. The top line is the plot of the vector

amplitude of x, y, z readings. The next three lines are x, y, z

direction readings respectively. Figure 4.1. System Architecture.

One of the best known techniques for pitch recognition uses the

Fast Fourier Transform (FFT). The FFT transforms a set of audio

samples in the time domain to a set of samples in the frequency

domain for frequency analysis.

Figure 5.1 illustrates how an FFT analyzes a monophonic musical

source. A continuous sequence of sound samples ()nx is fed to a

windowing function, restricting the set of points in the waveform

to a short segment of time. The FFT algorithm is then performed

on the windowed samples ()ny , producing a vector ()kY of

frequency domain coefficients. The pitch of the sound source can

then be determined by scanning the ()kY values to determine a

local maximum in this time window.

Although the FFT algorithm designed by J.W. Cooley in 1965

improved the general Discrete Fourier Transform (DFT) by

reducing the computational complexity from ()2NO to

()NNO log , it was still insufficient for real-time purposes on

personal computers in early 1990’s with a processing load of

approximately 184000 multiplications and additions per second at

a sample rate of 20Hz and a window size of 512 samples. Other

techniques such as autocorrelation in the time domain and

building a large filter bank to determine pitch were explored

before the dawn of high speed personal computers in the 1990’s

with a certain degree of accuracy, however, specialized hardware

was required in that case [8].

Nowadays, the time to compute an FFT on a sample window of

2048 samples on a modern computer capable of billions of

instructions per second is less than a millisecond. The Nokia

N900 phone has an ARM Cortex-A8 600 MHz processor capable

of 3.33 MIPS/MHz or 2000 MIPS at 600MHz.

As long as the time for the FFT is shorter than the sample window

size, real-time pitch analysis is possible. Measurements on the

N900 phone showed that for a sample window of 100ms with

4096 sample points the FFT took approximately 3ms to compute

with the full overhead of the operating system and simultaneously

recording the next window while computing. This measurement

was done using the QTime component in the Qt library with

millisecond accuracy.

A circular buffer shown in Figure 5.2 is used to record sound to

facilitate the mechanism of analyzing a sample window while

simultaneously recording the next window. Note that each buffer

is reused after 2 cycles.

One drawback of using an FFT is that the frequencies at which the

coefficients ()kY are computed are evenly spaced rather than

logarithmically spaced as with a linear sequence of musical notes

as shown in Figure 3.1.

Analyzing live musical performance involves continuously

processing a moving time window of audio data and obtaining the

frequency spectrum from it. The choice of time window size

depends on the expected smallest duration of the performed notes

as well as the frequency range expected from the performance.

The following definitions and formula will help to gain insight

into the expected accuracy of the real time analysis of a musical

performance.

R = sample rate (Hz)

N = number of samples in time window

T = N/R (period of time window)

F = R/N (frequency resolution of spectrum analysis)

For example, if you have audio data sampled at 44100 Hz and you

choose a sample window which contains 2048 samples, this will

result in a time window of 46ms and a frequency resolution of

21Hz. If the frequency spacing of the notes to be analyzed is far

less than 21Hz, these settings will not be sufficient to meet the

accuracy requirements and thus the sample window size will need

to be increased. However, increasing the sample window size will

increase the delay between the time a note is played and the time

feedback is given. This means there will always be a trade off

between accuracy and real-time delay.

The FFT library being used for this project is FFTW developed at

MIT [9]. Using a series of experiments, it was proved that it was

approximately 50% fast than 40 competing algorithms during

1998. Recent scans of the literature show that FFTW still contains

the fastest FFT open source implementation available today.

5.2 Tempo Detection using Accelerometer

Readings

As stated in 3.5, the main challenge in tempo detection is to

design a light-weight peak detection algorithm that does not

involve much computational power but still yields reasonable

accuracy.

Figure 5.1. Using FFT to Analyze a Monophonic Musical

Source.

Figure 5.2. Using a Circular Buffer to Allow FFT Pipeline

Processing.

A naïve approach would be the zero derivative point approach.

However, this algorithm is extremely sensitive to noise. As we

can see in Figure 5.3 where the amplitude stream is shown, data

collected from the accelerometer are naturally noisy and there are

many local maximums and minimums that will significantly

confuse the naïve zero derivative approach.

In order to overcome the noise issue, we designed two simple

algorithms to detect ‘significant’ peaks in the signal. They are

described in pseudo code below.

The two algorithms are both tested on the N900. Both of them are

robust and efficient detecting fast movements. When the

movement is slow, algorithm 1 yields better results than algorithm

2, which is easily explained by the fact that slow movements do

not generate a significant change in acceleration.

5.3 Audio Output

Music Coach has the option of using audio output to provide

tempo indication to the user. Tick sounds are played according to

the current tempo at each beat.

Two kinds of beat sounds are created at frequency 6000Hz and

4500Hz for the application to play to the user as tempo indicators.

The beat sounds are generated by simply sampling a sine wave:

Ni
f

if

a
s

k

i ..0,
2

1
2

sin255

=

+

×

=

π

, where
kf is the

frequency of the sine wave and
sf is the sampling frequency. In

our application,
sf is set to 44100Hz.

Sound management in Maemo 5 is done through PulseAudio. In

order to play a sound, the application passes a sound buffer to

PulseAudio specifying sampling frequency, data format, and

channels, and PulseAudio will automatically schedule the task and

interact the low-level drivers to produce the sound output.

5.4 GUI Design

Besides the limitation of processing power, applications on

mobile phones will also have to deal with small displays. The

Nokia N900 phone we use to implement our application has a

3.5inch LCD touch screen. In order to provide a good user

experience on a limited size display, much consideration has been

given on the GUI design.

Figure 5.3. The vector amplitudes of a accelerometer reading

stream when the user is moving the phone back and forth.

Algorithm 1. Detect Significant Drop or Rise

Smooth data by calculating a 5-reading average;

IF current_reading > max_value

 max_value = current_reading;

max_time = current_time;

END

IF current_reading < min_value

 min_value = current_reading;

min_time = current_time;

END

IF detecting_max

IF current_reading < (max_value – DELTA) AND

max_value > NOISE_THRESHOLD

 REPORT (peak, time)

 SET detecting_max to FALSE

 END

ELSE

IF current_reading > (min_value + DELTA) AND

max_value > NOISE_THRESHOLD

 REPORT (peak, time)

 SET detecting_max to FALSE

 END

END

Algorithm 2. Detect Significant Change

Smooth data by calculating a 5-reading average;

IF |current_average – previous_average| > THRESHOLD

 IF no peak was detected X time ago

 RECORD (peak, time)

 END

END

In the current design, Music Coach provides the user with real-

time feedback on their musical performance mainly through the

visual display. The idea is to translate detected pitch and timing

inaccuracies into easily recognizable measures on a screen. There

are many open-source applications available. Taking these

example applications as reference, we designed our GUI shown in

Figure 5.4.

We used the Qt framework to develop our GUI. However, due to

the fact that Qt 4.x releases are not stable in the Maemo 5

environment, we decided to launch it in classic Windows style.

In the main window the user will see notes detected or recorded in

a standard music score style. The application maintains a note

history played by the user and can be viewed later after the user

finishes their performance. In this way, Music Coach can also be

used to generate a music transcript.

On the top of the screen is the metronome and related tempo

control options. The user can choose to enable or disable tempo

detection using the accelerometer, as well as to enable or disable

the audio output generated by the metronome.

On the bottom of the screen are the rhythm indicator and the pitch

detection control options. The user can configure the pitch

detector to adapt to a noisy environments by setting the threshold

level.

On the right of the screen is the pitch indicator that provides

visual feedback to the user about their pitch accuracy. The

purpose would be to keep the bar in the green zone; if the note is

too high or too low, the bar will slide up or down and change to

orange. If the note is totally off, the bar will slide to the top or

bottom and be displayed in red.

6. RESULTS

Evaluating the real time performance of music is done by using a

line drawn on the music staves. For each note this line can move

between 3 discrete points on the y-axis (pitch axis). It can be “in

tune” which would represent a centre point of a normal discrete

note. It can be “sharp” or too high which would be a point 1/6 of

the stave spacing above the “in tune” point. It can be “flat” or too

low which would be a point 1/6 of the stave spacing below the “in

tune” point.

On the x-axis (time axis) the length of a continuous line segment

represents the length of time the note was played. The resolution

of the line segment is equal to the size of the sampling window.

For this particular example this was 100ms.

Analyzing the line segments after a performance will give a

musician a good idea of how accurately a note was pitched over

the complete duration of the note. This includes “wavering”

during the note performance, where the performer does not

maintain constant pitch. This can clearly be seen for the third note

in Figure 6.1. The rhythmic accuracy can be extracted by looking

at the start points of each line segment, relative to the note

positions. In this example, the first 3 notes were accurately played

whereas the performer played a little late on the 4th note. The

length of the note performance gives an idea of the playing style.

“Legato” playing, which is required for certain sections of music,

is a style in which the performer holds the notes as long as

possible before playing the following note. “Stacatto” playing

occurs when the performer plays the notes with very short

duration. In this example, “legato” style playing was used for the

first three notes and “staccato” style playing was used on the 4th

note.

Statistics can be calculated from this data to give the performer a

final rating in terms of percentage of notes that were on pitch and

average number of milliseconds of early or late note attacks

together with their corresponding variance.

7. SUMMARY AND FUTURE WORK

In this paper we present our mobile phone application Music

Coach that has been implemented on a Nokia N900 smartphone. It

utilizes the audio input/output as well as accelerometer to provide

the user real-time feedback on their musical performances. Our

result shows that the application is easy to use and convenient for

musical learners, especially beginners. In addition to the real-time

feedback it is possible for a performer to review their performance

and see exactly how accurate their pitch or rhythm was for every

single note using a line graph display on a musical stave.

Although our current implementation of Music Coach

demonstrates the fundamental idea of the application and shows

Figure 5.4. The Music Coach Application GUI.

Figure 6.1. Real time music performance analysis, black notes
show pre-loaded music score, red line shows actual notes

played and duration.

the potential of coaching/learning software on mobile phones, we

can still foresee following improvements in the future.

� GUI Design: Better GUI design can be achieved by

releasing prototypes and collecting user feedback on the

overall experience.

� Improved Audio Isolation: A Bluetooth headset/mic can be

used and attached to the instrument to reduce noise.

� Threading: Separate threads can be used to detect note

timing and note pitch. Note timing can be done using

threshold in the time domain, which will also allow more

accurate evaluation of rhythm.

� Professional music typesetting Library Support: guido[7]

note library can be used for typesetting music on the screen.

This is “latex” like music library for professional typeset

music.

� Display-Free Feedback: Buzzer can be sued to provide

feedback about note performance instead of visual feedback.

8. REFERENCES
[1] GuitarToolkit, http://appshopper.com/music/guitartoolkit

[2] TyroTuner,

http://www.appstoreapps.com/2008/07/30/tyrotuner/

[3] ZOOZBeat: http://www.zoozbeat.com/

[4] PeakDet, http://billauer.co.il/peakdet.html

[5] GTick, http://www.antcom.de/gtick/

[6] MuseScore, http://www.musescore.org/

[7] GUIDOLib qt music notation library,

http://guidolib.sourceforge.net/

[8] Kuhn, W.B., Gupta, P. and Kumar, P.R., A real-time pitch

recognition algorithm for music applications, Computer

Music Journal, pp. 60-71, 1990

[9] Frigo, M., and Johnson, S.G., FFTW: An adaptive software

architecture for the FFT, IEEE International Conference on

Acoustics Speech and Signal Processing, volume 3, 1998

