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Abstract

Complexity in Natural Scenes:
A Viewer Centered Metric for Computing Adaptive Detail.

Natural scenes are complex and have seemingly limitless detail. Animation compounds

these problems. This dissertation describes research into controlling the complexity by

imposing a priority metric. The metric ensures that only visually relevant detail is processed

and presented to the viewer. Two kinds of metric are identified: a static metric for spatial

detail, and a dynamic metric which measures detail in time.

Theories of the way the natural world is seen, particularly optic flow perception, are inte-

grated with accounts of the effects of computer displays. The mathematical formulation of

the priority metrics is based on this synthesis.

The object oriented approach to computer animation is critically investigated. This program-

ming paradigm provides the most appropriate abstraction for modelling the elements of the

environment and their interactions. If physical objects are to be modelled it should be

extended to include part-whole hierarchies. This approach, together with the priority metrics,

allow different hierarchical representations to be used together.

Three experimental implementations were used to investigate the metrics:

a) A stick figure, with its non-uniform hierarchical structure, provided the first test. The

Smalltalk implementation demonstrated adaptive detail effects which depended on the

spatial priority metric.

b) A uniform hierarchy of detail levels, fractal surfaces, were implemented in C++ and

rendered on a shaded display. The metric allowed faster rendering with smaller mem-

ory requirements than non-adaptive algorithms.

c) The dynamic metric was used with textured images moving in three-dimensions to

limit motion detail. Animation sequences were synthesized using the various orders of

optic flow effects, without continual reference to a three-dimensional model.

Computational complexity was controlled by adapting accuracy to the evolving demands of

the viewer. This resulted in faster animation and smaller memory requirements.
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Frontispiece ‘Joe’: The stick figure used in examples on the part-whole hierar-
chy and adaptive detail with a non-uniform hierarchy. Not all parts are fully enu-
merated, for example the toes have been suppressed and many of the fingers.
This is due to the action of the spatial priority metric for adaptive detail.
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Chapter I

Introduction.

The issue of computational complexity in the animation of natural scenes is
introduced. This provides an outline of the purpose of the study and the context
in which the research was conducted. The viewer centered metric for computing
adaptive detail is presented qualitatively as a methodical way of using adaptive
detail in animated scenes. Object oriented programming is introduced and
adapted to deal with the computational complexity of interactive computer
graphics and computer animation. This methodology helps in thinking about,
designing, and implementing these computer systems.
The basic literature in computer graphics on which this research depends, and
which it extends, is surveyed. This includes previous approaches to adaptive
detail and various hierarchical data structures. The chapter concludes with a
summary and an outline of the rest of the thesis.

§1.1 Aims of the Study: Dealing with complexity.

Natural scenes are well known to be very complex and to have seemingly limitless detail.

The problem we face is to synthesize pictures based on a three-dimensional representation of

the natural environment. Objects will move in this environment and we also have observers

which move about amongst the richly textured fields.

The principal goal of this research was to formulate measures of detail for such scenes which

would reduce the computational burden of synthesizing the pictures. The original idea was

that picture synthesis should be regarded from the point of view of the final observer and not

from the point of view of the modelled object. This shifts the emphasis from realistic object

models to production of convincing pictures.

The basic viewer-centered approach was then generalized. The aim is to provide appropriate

information at all levels of communication between the entities in an animation system.

Redundant information at a particular level should be hidden. Adaptive detail becomes the

special case in which a modelled object hides redundant information from a synthetic cam-

era. The result of this research has been to formulate two priority metrics and a methodol-

ogy which can be applied to animated three-dimensional representations of the natural

environment.

The metrics measure the importance to the viewer of both spatial and temporal features of

the changing scene. Irrelevant detail can then be eliminated from the picture with
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Chapter 1 — Introduction

predictable visual consequences. This reduces the complexity of the computation and results

in faster execution and the use of less memory.

The methodology for tackling these animation problems is based on object oriented pro-

gramming. The main extension to the general paradigm was modelling actors with a

whole-part hierarchy and distinguishing this from the normal hierarchy of object types (the

class hierarchy). The viewer centered approach added a new data type to the model of an

actor: an Appearance. The Appearance mediates between an object and a synthetic camera

so as to minimize the computer resources required to render the object.

The prime purpose and most important result of the experimental work conducted has been

to test the application of the detail measures. There are two priority metrics: a static (or spa-

tial) metric and a dynamic (or temporal) metric. Their use and benefit was tested in three

implementations:

(1) simple mobile stick figures with a moving camera,

(2) multiple views on a static textured landscape, and,

(3) continuous motion of highly detailed objects.

In these implementations certain key features of natural scenes, that is, animated landscapes

with moving figures and a changing point of view, were picked out. The choice of features

was guided by an analysis of the perception of natural scenes. The features incorporated into

the experiments were: textured fields receding into the distance with a gradual loss of detail

and animals represented as moving jointed stick figures. Movement is conveyed by syn-

thesizing a sequence of textured pictures corresponding to the sequence of incremental

times.

Another purpose of the experimental implementations arose form the fact that computation

for graphics and animation is complex not just in an algorithmic sense but also in a pro-

gramming sense — if we can entertain this distinction for the moment. By this is meant

that, quite apart from the complexity of the algorithms used, another kind of programming

complexity arises due to the scale of the overall system. This is because animation systems

are typically very large integrated programs making use of a wide range of techniques. They

deal with large and disparate databases which represent the environment. They simulate the

concurrent interaction between a large number of actors. Typically a number of output

12



Chapter 1 — Introduction

formats are possible and in many cases they allow for real time interaction with a user. Sys-

tems which represent natural scenes are found in aircraft simulators, in video games and the

production of special cinematic effects.

Object oriented programming developed from simulation languages and from projects to

manage programming complexity. Object oriented programming provides a natural way of

dealing with the concurrent actions of entities which have to be modelled in animation. The

principles of data abstraction which are embodied by object oriented languages allow a

number of different internal representations to coexist. All information is stored in terms of

active objects with an internal state (actors) and this seems to appeal to the humans which

have to program and use the systems interactively.

The use of object oriented programming in the implementations has largely been vindicated,

although the need for a part hierarchy as an integral part of any language for representing

physical objects was identified and added into Smalltalk. Smalltalk proved useful for proto-

typing and for the complex modelling required for jointed figures. The need for speed (albeit

with simpler textured fields) was met by using C++. The type checking and type hierarchies

of C++ allowed the fairly large programs required for the second and third experiments ( ∼

10,000 lines of code, 40,000 words) to be developed quickly.

Some other points which also emerged from this project are summarized in §1.4.1.

The single unifying idea which lies at the heart of this research project is that there is an

optimal information content at the various levels of interaction in a (human-)computer sys-

tem. When object modelling is approached in this manner one even finds details in a model

which were included for physical realism but never used in practice, such unused detail can

be dispensed with altogether.

This can also be called a subjective approach to computation, that is, entities should exist

only for the benefit of the user; whether that user is a programmer or the final viewer of the

results. When applied to programming a computer animation system this means that the

data and programming structures should closely reflect the way the programmer thinks about

the problem: actors moving about and interacting in a three-dimensional environment.

When applied to complexity in generating the images it is known as the viewer centered

approach to graphical computation.

13



Chapter 1 — Introduction

Occam’s razor now becomes:

‘‘Entities are not to be multiplied beyond those required to convince the
viewer’’.

The rest of this dissertation shows how these ideas can be made precise and refines them to

be practical tools for producing pictures. In doing this we shall be providing a theoretical

basis for some of the existing techniques used to ‘‘fake’’ pictures by making them appear to

contain more physical information than is actually modelled.

§1.2 Introducing the Spatial and Temporal Priority Metric.

We want to produce pictures that are convincing for the purpose for which they are made;

this purpose could be producing a ‘realistic’ science fiction film or a ‘realistic’ flight simula-

tor. In neither case does such realism have to imply the simulation of the physical laws of

nature [Reeves, 1987; Schachter, 1981]. Our sole aim is to induce in the viewer a sense of

conviction about the validity of the scene: a willing suspension of disbelief†. We shall

return to this question in Chapter 2.

Seen in this light, detail in shape representation ought to exist only to the extent necessary

for convincing the viewer. This could be achieved by using hierarchical data structures.

Detail would then be increased by progressing to further hierarchical levels. Numerous such

data structures have been proposed. It has been largely an unsolved problem however to

create a relation automatically between the data structures and the rendering process so that

exactly the necessary level of detail is available [Badler & Carlbom, 1984‡].

First we will introduce the approach taken in this research and then in the next subsection we

shall examine previous work in this area (§1.3). The metric is introduced now in order to

motivate the body of theory which has to precede its mathematical formulation. This theory

deals with how we actually see nature. The mathematical formulation of the metric depends

on ideas taking from vision research and sampling theory.
����������������

† Coleridge [1817] discusses how the power of poetry can arise either from a faithful adherence to na-
ture or using imagination: ‘‘so as to transfer from our inward nature a human interest and a sem-
blance of truth sufficient to procure for these shadows of imagination that willing suspension of dis-
belief for the moment, which constitutes poetic faith.’’

‡ ‘‘... methods of building object models with several levels of detail (selected according to the size of
its image on the display screen) have been proposed, but automatic generation of such hierarchies re-
quires further research.’’
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Chapter 1 — Introduction

A good example of one kind of problem which we want to tackle is described in the follow-

ing observation of Leonardo da Vinci [in MacCurdy, 1954, p351]:

In every figure placed at a great distance you lose first the knowledge of its most
minute parts, and preserve to the last that of the larger parts, losing, however, the
perception of all their extremities; and they become oval or spherical in shape,
and their boundaries are indistinct.

This kind of figure is the subject of the first experimental implementation and is discussed in

Chapter 5. Some implications for object oriented programming arising from modelling such

figures are mentioned in Chapter 3.

The hierarchical detail representations are related to one another by means of a priority

metric. There are two separate metrics that can be defined in an animated scene. The intui-

tive notions are:

Spatial (static) Priority.
Those objects further away from the view point are visually less important to the
picture being generated than those closer by.

Temporal (dynamic) Priority.
Objects moving quickly with respect to the observer need to be redrawn more
often than those at relative rest.

These simple ideas are extended and mathematically formulated so that they can be applied.

The extensions include allowance for:

� Atmospheric effects (by means of a weighting of the distance).

� Trade-offs between temporal and spatial resolution in human vision.

The spatial priority metric, even allowing for atmospheric effects, is relatively straight for-

ward: at least it can be resolved into a single measure. The temporal priority of an object is

more complex since there are several ways in which the moving image of an object can

change from one frame of an animated sequence to another. A sound theoretical basis for

these changes can be provided by optic flow theory (see Chapters 2 and 4).

The trade-off between spatial and temporal detail still largely lacks a computationally appli-

cable theory: although some relations between spatial frequency and temporal frequency can

be given (see Chapter 2).
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Chapter 1 — Introduction

With these qualitative ideas as motivation we can now examine the relevant literature in

computer graphics.

§1.3 Previous Work on Representing Objects with Adaptive Detail.

One of the earliest problems for picture synthesis was hidden surface removal; once satisfac-

tory algorithms had emerged for solving this, and with the advent of raster displays the pur-

suit of realistic pictures could begin in earnest. Subsequently synthesis techniques pro-

ceeded on three fronts [Amanatides, 1987; Magnenat-Thalmann & Thalmann, 1987]: (1)

rendering and the effects of light, (2) modelling and the representation detail, and, (3) sam-

pling, which links the picture to the model.

This research makes a contribution to object representation, but the means adopted straddles

all three fronts. In this section we will examine the literature in a number of areas of com-

puter graphics because we depend on results from these areas. The immediate aim is not,

however, to produce better anti-aliased or ray traced images, but to show that the way our

images are viewed has important implications for the way they are represented. Another

important aim of this section is to bring out a common underlying theme of adaptive

viewer-centered detail. This theme can be found even when the authors of a technique lay

the emphasis on their adherence to physical reality, as for example, in so many papers on ray

tracing.

Warnock’s hidden surface algorithm is an early example of a technique which adapts itself

according to the visible detail in a picture [Sutherland, Sproull & Schumacker, 1974]. It

proceeds by splitting the image up into smaller and smaller pieces until the pieces become

simple or the size is reduced to a single pixel. From Rogers [1985, †] it is apparent that the

algorithm resulted from the application of a viewer-centered approximation approach.

Warnock’s algorithm is a clear example of divide-and-conquer adaptively applied and the

resulting data structures are rather similar to quadtrees [e.g., Samet, 1984]. This basic idea

recurs in the application of the spatial detail metric to various data structures.
����������������

† ‘‘... basic ideas behind the Warnock algorithm are very general. They are, by analogy, based on an
hypothesis of how the human eye-brain combination processes information contained in the scene.
The hypothesis is that very little time or effort is expended on areas that contain little information.
The majority of the time and effort is spent on areas of high information content. ... the area of in-
terest narrows, and the level of detail sought increases.’’
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Chapter 1 — Introduction

Clark [1976] sets the goal of a single unified structuring of the three-dimensional environ-

ment using hierarchical models. The normal object hierarchy [Foley & van Dam, 1982] is

extended to include sub-hierarchies which contain objects modelled in greater and greater

detail. Searches and traversals proceed only down to the smallest resolvable level of detail.

Visible surface algorithms can use bounding volumes to achieve logarithmic dependence on

complexity.

Clark mentions the ‘‘interesting possibilities’’ of having full detail at the centre of attention

of the scene and also of making the amount of detail inversely dependent on the speed of

motion. In Chapter 2 we shall see that a theoretical basis for the computation of trade-offs

between spatial and temporal detail are only now emerging.

Another important contribution of Clark is the notion of the ‘‘graphical working set’’ which

is the set of objects in view at any one time. In animation we shall show that the idea of a

working set can be extended. We shall distinguish between visible objects according to the

nature of their motion relative to the viewer (see also §1.3.5). These ideas find their eventual

expression in the temporal priority metric.

Rubin & Whitted [1980] developed a homogeneous hierarchical representation of objects

based on a uniform spatial enumeration; nodes could be procedurally generated. The entire

representation contained nothing but bounding volumes. At the initial levels the bounding

volumes were arbitrary parallelepipeds, while at lower levels they were subdivided to

become very much the now familiar octrees [Meagher, 1982]. As with Clark (above), the

determination of which objects are visible became a logarithmic search of the object space.

The nodes could be explicitly stored or else generated only when needed.

The problems with a uniform spatial enumeration are two-fold: firstly it forces all objects to

be reduced to a uniform representation which is difficult to model directly, and secondly,

these data structures imply a sampling of the object space which means that, in general,

motion involves an expensive resampling process (see also §1.3.3). We are looking for a

more general solution. With a detail metric any abstract data type which provides the com-

mon protocol (or functional interface) can be incorporated. No common underlying

representation is required and no uniform sampling of object space is implied.

Rubin [1982] briefly described a scheme where the representation is expanded to allow

geometric transformations between nodes. The hierarchy consists only of parallelepipeds,

17



Chapter 1 — Introduction

but each has an associated transformation matrix which allows arbitrary scaling and rotation.

Unlike octree encoding there is a system of distributed local coordinates. The use of distri-

buted local coordinates greatly simplifies the modelling task and reduces the global depen-

dence of objects on each other. To prevent scintillation small objects are not removed at the

resolution limit but are faded according to a simple heuristic. Fading is an example of the

way in which loss of spatial detail can be approximated on a raster display.

More recently, work in interactive graphics has introduced the idea of adaptive refinement of

images to better and better quality levels [Forrest, 1985; Bergman, Fuchs et al. 1986].

Images on a workstation, or images transmitted over slow transmission lines, are rendered

quickly to a coarse approximation and then refined while the user examines the image. The

cost of good anti-aliasing is incurred only after the user has been given some idea of what

the image looks like. The problem which we address is related but rather different: we

would like to identify automatically those objects where the loss of detail will never be

noticed. For moving textured objects of the types commonly found in natural scenes, some

form of anti-aliasing cannot be avoided.

1.3.1 Limiting the Complexity of Ray Tracing.

Most complex and realistic scenes are produced by ray tracing. This is a way of sampling

the multidimensional simulated environment by applying the laws of geometrical optics.

The basic algorithm is very simple and very expensive, it depends on the squared complexity

of the modelled environment. The high computational burden arises from intersecting mil-

lions of rays with the surfaces in the modelled environment.

Reducing the number of ray/surface intersection calculations by means of hierarchical

bounding volumes has received a great deal of attention. The first implementation of Clark’s

ideas to ray tracing was by Whitted [1980]. Methods of producing a hierarchical description

of the environment were developed in Weghorst, Hooper & Greenberg [1984]. The number

of studies still produced in this area reflect its interest and importance [Bouville, 1985;

Fujimoto et al., 1986; Glassner, 1984; Goldsmith & Salmon, 1987; Jansen, 1986; Kay &

Kajiya, 1986; Snyder & Barr, 1987]. The sampling density required depends on the scene

information content and the display resolution and the animation frame rate.

Ray tracing is actually a general technique which can be applied to sampling the environ-

ment along many dimensions. Stochastic sampling is an elegant generalization of ray
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tracing which can be used to reduce the samples required in both space and time [Cook,

1986; Cook, Porter & Carpenter, 1984; Dippé & Wold, 1985; Lee, Redner & Uselton, 1985].

The model remains undersampled and the success of stochastic sampling depends to a large

extent on a particular feature of human vision: we are much less sensitive to noise than to to

coherent aliasing.

Ray tracing produces very realistic pictures but to achieve that physical realism the com-

plexity of the problem is reduced as much as possible. Firstly, objects are merged hierarchi-

cally into larger groups. Secondly, sampling requirements are relaxed when this will not be

noticed by the human eye. Even with these techniques ray tracing remains expensive. We

would like to have a framework which subsumes it in a more general array of methods

which can be called upon as needed.

1.3.2 Variable Resolution Texture Mapping.

Some of the ways in which texture mapping is done are also of interest. Texture mapping is

a technique which allows relatively simple three-dimensional objects to appear very com-

plex [survey — Heckbert, 1986]. Texture mapping can be used as a cheap alternative to ray

tracing in complex natural environments [Cook, Carpenter & Catmull, 1987]. Flat textures

are projected onto the surface of the three-dimensional object. In order to perform texture

mapping one has to apply geometrical transformations and prevent aliasing artifacts.

From the point of view of the proposed priority metrics, we are interested in the adaptive

detail filtering techniques associated with texture mapping, rather than the geometrical

transformations. Although in applying the temporal metric to moving objects there are often

cases where the image of an object is a slightly distorted version of the one from the previ-

ous frame.

Something somewhat akin to texture mapping can be used to generate images from one

frame to the next directly from the two-dimensional image; that is, a frame can be regarded

in a first approximation as a two-dimensional affine mapping of the previous frame. But tex-

ture mapping of itself does not provide an automatic method of making these frames. The

whole theory which relates the distortion of the image of a three-dimensional object from

one frame to the next has still to be provided. Thus we adapt some of the geometrical

transformation techniques for the experimental implementation described in Chapter 7

[Braccini & Marino, 1980; Catmull & Smith, 1980; Weiman, 1980].
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As the scale of the object changes the sampling of the texture also changes. To avoid alias-

ing the texture should be filtered to remove frequencies higher than the sampling rate. To

avoid doing this repeatedly textures can be prefiltered to various resolutions and organized

hierarchically [Williams, 1983: ‘‘Pyramidal Parametrics.’’; Crow, 1984: ‘‘Summed-Area

Tables’’; Glassner, 1986]. These hierarchies store the texture maps as a series of detail lev-

els.

We are going to be defining hierarchies of detail for natural scenes. These hierarchies will

be applied to models of objects (not just their textures) and will apply to both space and time

dimensions.

1.3.3 Adaptive Detail with Octrees.

Octrees were independently developed by a number of researchers as a generalization of

quadtrees (quadtrees themselves are a two-dimensional generalization of binary trees which

are used for encoding images) [Meagher 1982]. Octrees can represent three-dimensional

objects to any specified resolution. The representation enumerates space into cubical cells

stored in a tree structure. The size of the cells decreases geometrically with increasing depth

on the tree. Octrees are simple uniform representations and so allow parallel hardware

implementations for real-time graphics [Meagher, 1984; Oliver, 1986].

Octrees are generated by a machine, they are not a representation people use. Spatial

enumeration is automatically done by some medical imaging systems but otherwise the

octrees must be generated from other representations (e.g., CSG [Samet & Tamminen,

1985]). Octrees can be easily translated and rotated through 90 degrees [Jackins & Tani-

moto, 1980], but for animation the disadvantage is that rotating a general octree encoded

object through arbitrary angles is difficult (being essentially a conversion from one sampling

of space to another, with attendant aliasing problems) and is usually performed by recomput-

ing the octree after rotating the original representation. Similar sampling problems appear in

shapes with complex detail [Meagher, 1982, Ahuja & Nash, 1984, Weng & Ahuja, 1987].

Octrees do allow the detail in the projected image to be varied by changing the depth to

which the octree is processed. This can be done adaptively depending on the resolution of

the display using a ray tracing rendering algorithm [Sandor, 1985].

In this study we shall be abstracting the general features of recursive subdivision. By keep-

ing our definition abstract, and by not specifying exactly what the underlying data
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representation must be, we can avoid the rigidities of octree space subdivision. We shall

therefore define recursive detail data structures in terms of their response to the static prior-

ity metric. The characterization hierarchical detail data structures is not by specifying some

underlying concrete implementation, but by specifying the functional interface to the

abstract hierarchical detail type.

1.3.4 Hierarchical Data Structures for Adaptive Detail.

At this stage it is useful to distinguish between geometrical hierarchies which explicitly

contain all levels of detail as geometrical models, and those procedural hierarchies whose

most primitive elements are procedures which know how to render the primitive on a

display. A third category, homogeneous hierarchies, must be introduced to deal with those

hierarchies where the distinction is less clear, like the octrees presented in the previous sub-

section. Such hierarchies have a completely uniform representation of space (also know as

spatial enumeration or decomposition) which can be subdivided until the sub-model is

atomic , i.e., it can no longer be resolved. Such primitives can then be directly rendered.

There are very many representations which can be stored in a hierarchical fashion:

1) D. Marr’s generalized cylinder models of people and animals [Marr & Nishihara,

1978; Marr & Vaina, 1982] arise from work in model based vision.

� Many shapes have inherent axes. Pipe cleaner (stick) people and animals are

very convincing despite their simplicity.

� They need object centered coordinate systems which are distributed over the

figure so that each resolvable part has its own coordinate system.

2) B.B. Mandelbrot’s fractals [Mandelbrot, 1982b; Fournier, Fussell & Carpenter, 1982;

Pentland, 1984 & 1985; Miller, 1986; Oppenheimer, 1986; Voss, 1985]

� rough natural surfaces are best described by fractals.

� Fractal surfaces are statistically similar at all levels of detail.

� The range of objects which can be represented by fractals complements those

represented by generalized cylinder models. Eroded hillsides are an example of

such surfaces,
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3) Procedural branching models [Aono & Kunii, 1984; A.R. Smith, 1984]. These models

yield very realistic trees and plants.

4) Particle systems [Reeves, 1983; Kajiya & von Herzen, 1984; Reeves & Blau, 1985]

are stochastic systems which can represent things like dust and fires.

5) Procedural approaches can be generalized by developing special languages for describ-

ing shapes and textures which can be applied in a recursive fashion [Henderson, 1982;

Perlin, 1985; Beyer & Friedell, 1987].

As we shall see in the coming chapters the main thrust of the research is to develop the

metrics of adaptive detail. Concrete implementations of the abstract hierarchical data types

will be used to test the theory. The first and second experiments make use of the first and

second types of hierarchy respectively. For the third experiment we build a procedural

hierarchy of temporal detail levels directly on top of two-dimensional rasters.

1.3.5 Dynamic Effects: Frame-to-frame Coherence and Motion Blur.

Moving from static image synthesis to dynamic image synthesis we can extend the notion of

object coherence, which gave us the hierarchical bounding boxes, to frame-to-frame coher-

ence. We create dynamic effects by synthesizing a sequence of still frames. From one

frame to the next the picture does not change very much and so it seems attractive to use the

information about the previous scene when calculating the next frame.

This idea was first used in Schumacker’s hidden surface algorithm [Sutherland, Sproull &

Schumacker, 1974] developed for use in real-time flight simulation. In this algorithm the

relative priority of faces of planar objects (which must be convex and linearly separable), are

precalculated, possibly with human intervention. A less restrictive frame-to-frame coher-

ence algorithm was presented by Fuchs, Kedem & Naylor [1980], and an implementation

described [Fuchs, Abram & Grant, 1983]. The application is effectively limited to using

static environments because all visibility relations have to be recalculated when the environ-

ment changes.

The coherence experienced by an observer moving through a static environment is described

in Hubschman & Zucker [1982]. This is a definitive analysis of the work on frame-to-frame

coherence for static scenes consisting of stationary, closed, convex, non-intersecting polyhe-

dra. Shelley & Greenberg [1982] provide a very practical implementation for interactively
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specifying the path of the moving observer through a static, linearly separable, polygonal

environment. By examining the sequence of positions and view directions along the path of

the observer, notions of frame-to-frame coherence can be applied as preprocessing steps

before rendering is attempted. In forthcoming chapters the idea of frame-to-frame coherence

will be formalized in terms of the equations of optic flow. Optic flow applies to all kinds of

environments and also applies to all possible moving images (e.g., the continuously chang-

ing ones picked up by the human visual system) not just sequences of coherent ‘‘frames’’.

Recently Clark’s idea of a graphical working set (§1.3) has been extended to dynamic

environments [Hegron, 1987]. The problem is to maintain a dynamic database of visible

objects as the synthetic camera ranges over the environment. Some data about the speed-up

resulting from using such algorithms is presented in Crocker [1987].

The ‘‘converse’’ of frame-to-frame coherence is motion blur. It is the converse in the sense

that frame-to-frame coherence is used with relatively static objects. Fast moving objects, on

the other hand, are blurred by their motion. In 1983 a number of papers appeared in the

graphics literature which dealt with the topic of temporal anti-aliasing or motion blur

[Korein & Badler, 1983; Potmesil & Chakravarty, 1983; and Reeves, 1983]. Optic flow

analysis can equally be applied to fast moving objects to give a measure of the blurring

which would result from their motion through the image.

In keeping with our viewer centered approach we shall also be approaching this problem

from the subjective point of view. Optic flow, which has already been mentioned above, can

be described as the way a participant experiences these motion effects. This theory will be

presented in the next chapter and the mathematics developed in Chapter 4. In applying optic

flow to the analysis of moving images we will be able to characterize various orders of

frame-to-frame coherence (see Chapter 7). These orders of coherence can be used to divide

the objects into a number of classes. The graphical working set can then be further refined

so that it distinguishes not just the fact of visibility, but also the ‘‘importance’’ of the move-

ment.
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§1.4 Metrics for Computing Adaptive Detail: Summary.

The basic thesis of this research programme is that space and time priority metrics may be

defined for a moving three-dimensional modelled object. These metrics measure the spatial

and temporal detail which will be visible to the viewer of a synthesized picture containing

that object. These priority metrics allow the determination of the importance of the objects

to be made automatically. The properties of objects which allow such adaptive detail may

be abstractly defined in terms of their response to the priority metrics, and without requiring

the existence of a uniform underlying primitive representation.

The previous subsection surveyed the ways in which adaptive detail has been used in com-

puter graphics and computer animation. Procedural models are used in many of these cases

because they simplify the representation of detail where it can be structured in some way.

The divide-and-conquer approach was a natural companion of the hierarchical data struc-

tures.

It is quite apparent that there are very many techniques with a common aim of simplifying

the ultimate computational complexity. It would seem very useful to formulate a metric

which allows one to relate the various techniques to one another and a programming metho-

dology which could provide a uniform interface and hide the internal representations when

these are irrelevant to the computational task.

In the context of computer science our thesis is that the computational complexity of anima-

tion systems may be reduced by applying the spatial and temporal priority metrics. This

benefit is felt both in storage requirements and in execution times. We will also argue that

object oriented programming is particularly suited to thinking about and writing computer

animation programs.

1.4.1 Other Results.

This chapter has been concerned with introducing the main thesis. A few other subsidiary

points also emerged from this project. They form minor themes which were interesting but

which were not directly relevant to the arguments presented so far. It is useful to mention a

few now.

Quaternions have distinct advantages over matrices in describing the coordinate transforma-

tions required in animation and they are very easily made an integral part of the object

oriented languages used.
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Another point which emerged was the conceptual advantage of working on projections onto

the unit sphere rather than planar perspective projection. The unit sphere description is often

closer to the subjective experience of the observer than is a description involving the image

plane.

Although Fourier techniques formed the basis of many theoretical analyses, the final algo-

rithms invariably avoided the use of discrete Fourier analysis.

Some new results regarding quadcodes were used in the recursive subdivision of fractal

landscapes to derive limits on storage requirements.

A fast one-pass method of achieving general two-dimensional transformations of images

formed part of the implementation of the dynamic detail metric.

A number of these results concern the conceptual advantages of one approach over another,

while others are more to do with practical spin-offs in terms of a new algorithm or theorem.

A theme which also clearly emerges, in Chapter 2 and elsewhere, is an analysis of what real-

ism means in computer graphics.

1.4.2 Outline of the Rest of the Dissertation.

This is an investigation into an integrated approach to dealing with complexity in computer

graphics and computer animation. A very general approach is refined and made applicable

by tackling representative problems. So Chapters 4, 5 and 6 contain discussions of fully

worked out experimental computer implementations of ideas which first make their appear-

ance here, in this chapter, as general ways for regarding and understanding problems. In the

intervening chapters the theory to fit the general paradigm is developed. These theories are

used to analyse problems and provide mathematical formulations.

The introduction has set the scene and introduced the priority metric as a methodical way of

using adaptive detail in animated scenes, as opposed to the disparate collection of techniques

reviewed in the previous section (§1.3). That was the first of three literature surveys which

appear in the first three chapters. The next chapter, Chapter 2, deals with natural scenes and

how they appear. This allows us to extract the essential features of natural scenes as the

basis for the experimental implementations. Chapter 3 then contains the introduction to

object oriented animation and a survey of the progress in functional animation. It also gives

the first original result: the clear difference which exists between class hierarchies and
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whole-part hierarchies. In Chapter 4 we can finally formulate the priority metric and discuss

the data types which the implementations will require.

The three Chapters devoted to computer implementations and experimental results follow.

Finally, in Chapter 8, there is a discussion of the results and the conclusion. The conclusion

and Appendix D also outline some specific proposals for further research.

1.4.3 Annotated Table of Contents of the Remaining Chapters.

2. The Appearance of Natural Scenes: a viewer centered approach.

This chapter answers the question: ‘‘What essential information about natural scenes

would have to be simulated to provide convincing animated pictures?’’. This chapter

not only surveys a great deal of vision literature but gives an original synthesis of that

body of theory for the purposes of computer animation.

2.1 Scene Simulation and the Problem of Realism.

Perspective, Art, Naturalism & Computer Graphics. The question answered here

is: What are ‘‘convincing animated pictures’’?

2.2 Describing Natural Scenes.

We survey very briefly: Gibson’s Ecological Optics, Morphology (Form of

animals, trees, grass, etc.), Texture and Fuzzy Objects (Fractal description of

nature). The introduction to Optic Flow is an important part of this subsection.

2.3 Image ∼ Object Relationships and the Optical Transfer Function.

The Fourier analysis of moving image formation is presented here.

2.4 The ‘Atmosphere’-VDU-Eye transfer function.

We discuss the filtering characteristics of the human eye.

2.5 Information Channels: From Computer Model to Viewer’s Mind.

The preceding subsections provided the theoretical basis for describing what has

to be simulated in order to generate good computer animation. This subsection

draws the conclusions concerning the spatial and temporal metrics.

2.6 Summary and Conclusion.
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3 Object Oriented Representation in Animation.

3.1 Structuring Complex Programs and Data.

(or: Data Abstraction is a ‘‘good thing’’.) We introduce the notion of object

oriented or actor based programming. We discuss instances and subclasses,

Actor/Message passing and overloading of operators. It contains a literature sur-

vey on the use of actors (or object oriented programming) in animation. The

important final subsection discusses functional animation.

3.2 Animating Jointed Figures.

This subsection introduces part-whole and coordinate hierarchies as important

aspects of models of physical objects in general and animals in particular.

3.3 Smalltalk and C++.

Discussion, using the example of quaternions, of how object oriented program-

ming was used in the implementations.

3.4 Representing Physical Objects: The part hierarchy.

This subsection discusses why Smalltalk and other object oriented languages

need to be extended in order represent physical objects which are made up of

parts.

3.5 Experience with Using the Part Hierarchy.

Results from the use of our extension to Smalltalk which used message forward-

ing to access the parts of an object.

3.6 Implications of the Part Hierarchy for Object Oriented Languages

3.7 Conclusion.

The use of object oriented programming in animating natural environments.
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4 The Formulation of the Spatial and Temporal Priority Metrics.

4.1 Introduction: What is Detail?

Introduction to the mathematical theory of the properties of objects which the

metrics will measure.

4.2 The Spatial Metric.

Derivation of spatial metric based on an analysis of spatial frequencies present in

images.

4.3 The Temporal Metric.

The temporal metric is more elaborate than the spatial metric. Objects move in

three dimensions and the changing images which result from this can be divided

into a number of categories depending on the optic flow effects.

4.4 Data Types.

Discusses how the metric may be applied to data structures. It derives features

needed in the protocol of the abstract data type which will interface which the

various metrics.

4.5 Conclusion: Practical Priority Metrics for Animation.

Conclusion and summary of the chapter.

5 The First Experiment: Using the Static Metric on a Model with a Non-uniform Hierar-

chy.

5.1 Discrete detail and a continuous metric.

A hierarchy of coordinate systems is derived to describe stick figures, and their

interaction with the metric.

5.2 Implementing the System of Priorities.

Simple moving figures with a mobile camera. Smalltalk version. Showing coor-

dinate system hierarchies. Only the spatial metric applied here.

5.3 Results from Running the Experimental Implementation.

The costs and benefits of using the metric are analysed. The depth complexity of

a scene is reduced. The method has low computational cost and imposes very
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little extra work when a model is designed.

5.4 Conclusion.

6 The Second Experiment: The Spatial Metric Applied to Continuous Detail Levels.

Investigates the application of a static metric to those data structures with the pleasant

property that they can be broken down to any desired level of detail.

6.1 Introduction: Digital Representation of Landscapes.

This subsection characterizes landscapes as chaotic single valued functions

which may be evaluated over some grid.

6.2 Synthesizing Pictures of Landscapes.

Discussion of how landscapes can be modelled and rendered on a computer.

Includes ways of approximating fractals, hidden surface removal and clipping.

Some new results regarding the use of Quadcodes are presented.

6.3 Rendering Landscapes Efficiently on a Raster Display.

A recursive algorithm for using the spatial priority metric is presented with an

object oriented implementation. The quadcode analysis from the previous sub-

section allows the recursive algorithm to communicate needed information

efficiently from one recursion to another.

6.4 The Results of Using the Spatial Metric.

Analysis of costs and benefits. The major benefit, borne out by timings of the

programs, was a great reduction in execution time. The storage requirements

were also reduced. The cost is again minimal for the problem area chosen: that

is, landscapes. But sampling artefacts have to be corrected if used for other pur-

poses.

6.5 Conclusion.
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7 The Third Experiment: Priority Based Execution of Motion.

All aspects of the temporal priority metric were investigated: adaptive updating, adap-

tive breakdown of 3-D motion into 2-D components and the trade-off between spatial

and temporal detail.

7.1 Moving Figures and the Dynamic Metric.

Introduction to the application of the dynamic metric and the formulation of an

experiment to test it.

7.2 Approximating Projected 3-D Motion with Optic Flow Effects.

The concept of frame-to-frame coherence is extended to include the notion of

‘‘Orders’’ of frame to frame coherence. The optic flow analysis from Chapter 4

is developed into an algorithm for modifying planar facets of 3-D objects. Algo-

rithms for 2-D transformations of images of objects are developed.

7.3 A Simple Priority Based Animation System.

The object oriented implementation is outlined. Emphasis is placed on the need

for dynamic binding in such systems.

7.4 Results of Using the Temporal Priority Metric for Animation.

A summary of the results achieved. For adaptive updating timings indicate

much faster execution. The practicality of approximating 3-D with 2-D motion

automatically under certain circumstances was demonstrated. The trade-offs

between spatial and temporal detail was less conclusively beneficial.

7.5 Conclusion.

The most important and novel result from this experiment was the inversion of

optic flow analysis to synthesize moving pictures.

8 Conclusion.

8.1 The Main Implications of the Space-Time Priority Metric.

What have we gained from all this?. The implications of the research both for
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computer animation and object oriented programming are discussed.

8.2 Future Extensions.

Extending the results achieved by the experimental implementations. A detailed

proposal for one aspect is found in Appendix D.

A Implementing a Part-Whole Hierarchy in Smalltalk.

Some practical details of the part-whole hierarchy introduced in Chapter 3.

B Timings of the Continuous Spatial Metric Experiment.

Tabulated raw timings of the second experiment.

C Timings of the Dynamic Metric Experiment.

Tabulated raw timings of the third experiment.

D Concurrent Object Oriented Animation.

This appendix contains a detailed proposal for using the part-whole hierarchy for

parallel processing, and it discusses some of the expected benefits.

D.1 Concurrent Object Oriented Animation: A Research Proposal.

The object oriented approach is naturally conducive to a parallel processing

implementation. This corresponds to the concurrency of events in nature. Part

hierarchies provide a natural way of distributing a global name space. They also

provide a hierarchy for controlling synchronization of actors.

D.2 Controlling Figure Animation.

Animation can either be externally controlled or else we can allow internal con-

trol by means of feedback between independent actors. In the latter case there

are difficulties with ensuring termination of frame generation cycles.

D.3 A System for Concurrent Figure Animation without Feedback.

The part hierarchy and the system of ‘Appearances’ together provide a way of

implementing the concurrent animation clock cycle in an extended version of
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Smalltalk.

D.4 A System for Concurrent Figure Animation with Feedback.

The part hierarchy enables the building of a system of constraints and to detect

when the processing for a single frame has terminated.

D.5 Conclusion.
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Chapter II

The Appearance of Natural Scenes.

This chapter serves to answer the question: ‘‘What essential information about
natural scenes would have to be simulated to provide convincing animated pic-
tures?’’ This answer is arrived at through a survey and tutorial of parts of the
vision and image analysis literature. The aim is to provide a useful synthesis of
aspects of these fields which is relevant to computer graphics.
This chapter has a broad and qualitative approach, the more rigorous mathemati-
cal formulation of specific areas is left to Chapter 4.

§2.1 Scene Simulation and the Problem of Realism.

Computer graphics has been governed by a pragmatic approach to producing realistic pic-

tures, with little attention being given to providing a theoretical basis for the techniques

used. This pragmatism is found both in entertainments applications and in demanding appli-

cations like flight simulation where it is explicitly stated that the main goal is training effec-

tiveness, not physical realism [Schachter, 1981]. The large collection of ad hoc techniques

has become unmanageable. A better foundation has to be sought but it would be unfortunate

if computer animation was forced into a restrictive framework.

The parallel quest for realism and improved theoretical standards has recently caused some

controversy. On one side there are the often dogmatic adherents of physical correctness [e.g.

Greenberg, 1988†], and on the other the defenders of ‘‘faking it’’ [e.g. Reeves, 1987 &

1988‡]. To some extent this is the difference between people interested in scientific visuali-

zation and those who use graphics for training (e.g. flight simulation) or entertainment. But

there is a danger that physics will become the only theory underlying all animation, by

default, because no alternative has been presented.

It is hoped that this thesis will help to dispel the notion that computer graphics improve-

ments must be based on the laws of physics. This plea is obviously not against a scientific

approach, but the science needed is much broader than simply physics. It must be a science
����������������

† ‘‘Just as VLSI advances were made by material scientists and biological advances were made by
cracking the genetic code and molecular modeling, so must computer graphics improvements be
based on the laws of physics.’’ [Greenberg, 1988].

‡ ‘‘You do what you can, and then fake it. That’s nothing to be ashamed of. I enjoy fooling you.’’
[Reeves, 1988].
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which can incorporate ‘‘faking’’ and provide an explanation of how it works and which can

also encompass principles of traditional animation like ‘‘exaggeration’’ [Lasseter, 1987].

We shall consider natural scenes: these are the obvious proving ground for realism. I pro-

pose that the basis for a sound theory for computer animation of natural scenes lies in an

appreciation of what is visually important in the environment and integrating this with a

theory of how we perceive artificial images.

Aspects of this theory are outlined in this chapter, but first some phenomenology:

The natural world as described by physics differs from the world of sensory experience. The

purpose of computer graphics is not to simulate the former for its own sake but to stimulate

the latter. This distinction is rather difficult to convey to those who do not accept it, and

mundanely obvious to those who already accept it†. The world of physics is the world of

objective facts about what ‘‘really’’ happens in the realms of energy and matter. The world

of sensory experience is a world of interesting or boring pictures, convincing or unconvinc-

ing images. It depends as much (more?) on the perceiver than on the objects actually per-

ceived.

Maintaining this distinction was crucial in formulating the approach taken in this research

programme although it may not be as crucial in understanding the resulting theory. How-

ever, without this distinction there is a danger that the results may appear to have been

pulled out of a hat and the ideas in the thesis may seem unrelated.

The contrast between physical representation and experiential modelling may be illustrated

by means of a simple experiment [Varela, 1984; Maturana & Varela, 1988; but it dates back

to Otto von Guericke, 1672]: Consider a white wall on which both a red light and a white

light is being shone. If we put our hand in front of the white light we get a shadow sur-

rounded by a pink background. Since only the red light is being shone on the shadowed area

it is reddish. But if we obscure the red light instead we do not get a whitish shadow. It is

aquamarine! No amount of ray-tracing ‘‘The Red, Green and Blue’’ components will ever

give that colour.

����������������

† Philosophical Note: This view of computer graphics is compatible with the phenomenology ex-
pounded, for the benefit of computer scientists, in Winograd & Flores [1986]
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Of course this argument does not mean that there is no real world, nor that studying tri-

stimulus colour theory is worthless. It simply means that we have further options to con-

sider in computer graphics and greater scope for creativity. The only test for pictures is the

conviction they carry. Remarks concerning physical faithlessness are irrelevant. A corollary

is that a new technique should not be accepted only because it models the underlying physi-

cal reality more accurately.

The argument concerning the appropriateness of physics, chemistry, biology, physiology and

other ‘‘hard’’ sciences to the study of computer graphics is one of levels of description. The

physical reality of the four elementary forces, of quantum theory, is clearly irrelevant to

computer graphics. But so also is classical mechanics, radiation transfer functions and the

neurophysiology of the eye. These are too low level. They will form components of an

integrated theory. But such a theory also has to take into account the centuries of practical

investigation into human visual experience conducted by artists.

2.1.1 Artificial, Natural, and Synthetic Perspective.

An example of the relevance of artistic experience to computer graphics is given by the old

topic — the sine qua non of realism — perspective projection. The knowledge that the eye

perceives only the solid angle subtended by an object, and that more distant objects subtend

smaller angles, is ancient [Euclid’s Optics — third century B.C.]. This is commonly called

natural perspective. Natural perspective is closely related to projection on the unit sphere

surrounding the observer. Straight lines project onto great circles on the unit sphere.

Artificial perspective is the mathematically accurate perspective projection of three-

dimensional scenes onto a two-dimensional plane. The first exponent was probably Filippo

Brunelleschi in the early fifteenth century. On the plane, artificial perspective will reproduce

the natural perspective solid angle correctly for only one particular viewing point. Straight

lines project onto straight lines on the plane [see e.g. Carlbom & Paciorek, 1978].

The study of perspective much occupied the Renaissance painters; the term perspective

covered a broad range of effects: perspective projection on a flat plane (artificial perspec-

tive), natural perspective (Euclid’s viewer centered pyramids; cf. Gibson’s optic array in

§2.2.2), motion transformations (§2.2.2) and atmospheric effects (§2.2.3).

It is useful at this stage to dispel the notion that perspective projection as practised in com-

puter graphics is absolutely rooted in physical reality. Pictures, including moving pictures,
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are normally viewed without any regard for the one point at which the planar projection re-

creates the visual solid angles of the scene. But we have all learned to unscramble the off-

centre views to make them look realistic [Haber, 1983]. Artists also tend to avoid wide

angles where artificial perspective diverges very much from natural perspective (unless the

distortion is deliberately sought, as in anamorphic images).

Leonardo da Vinci [Ackerman, 1978] gave a good example of this distortion: If a row of

circular columns parallel to the picture plane are projected then those further away will be

bigger on the picture (see Figure 2.1). Various curvilinear perspectives have been proposed

as alternatives but ultimately the advice has been to avoid situations yielding gross distor-

tions. Synthetic perspective is the name given to various techniques to reduce the counter-

intuitive distortions of artificial perspective.

Figure 2.1.��������� Demonstration of perspective distortion by Leonardo da Vinci. The
image of a planar projection of the more distant columns is larger, while on a
unit sphere they are smaller [Institut de France, manuscript A, folio 38r , from
Ackerman, 1978].

One final point can be made regarding realism: what seems very realistic today becomes

dreadfully artificial tomorrow, what is realistic in one culture is stilted and artificial in

another.

When you look at a bed sideways, or in front, or from any other position what-
ever, does it alter its identity at all, or does it continue really the same, though it
appears changed? ... Does painting study to imitate the real nature of real
objects, or the apparent nature of appearances? ... Painting therefore is busy
about a work, which is far removed from the truth.
[Plato, The Republic 598, ∼ 375 B.C. — quoted in Wright, 1983, p 35].
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Plato would never have accepted that a theory of computer graphics which allowed perspec-

tive views could be compatible with physical laws — it would be faking things!

This discussion of realism has attempted to show how unsure our footing is in even that

exemplar of realistic picture production: perspective projection. Actually, this problem of

realism and perspective has been confusing artists (or rather art theorists) at least since the

Renaissance. The particular question of spherical versus planar projection will recur when

we define the spatial and temporal priority metrics.

2.1.2 Requirements for Synthetic Three Dimensional Moving Images.

The appearance of nature has long been investigated by artists and scientists. Centuries of

experience in rendering it are available, and the standards are high. Nature has an intrinsi-

cally pied beauty. Gerard Manley Hopkins praises God for dappled things, for ‘‘Landscapes

plotted and pieced — fold, fallow and plough.’’

But computer animation has an even more ambitious programme: rendering three-

dimensional movement. The third dimension brings in a completely new set of changing

visibility relations and deformations when movement occurs in the scene.

To make convincing three-dimensional animations there has to be a model of the world

being animated. The background objects and all the mobile actors need to be represented in

the machine, including a model of the mobile camera. That is, the system must ‘know’,

perhaps implicitly, how images are seen. The visible scene then has to be rendered with a

resolution in space and time which will satisfy the final user of the system.

Vision, our most important sense, is firmly utilitarian, irrelevant detail is ignored. Display

devices are even more prosaic offerings in terms of their field of view, and spatial and tem-

poral resolution. Our system can exploit these facts. The idea of the research presented in

this dissertation is that one can arrive at an object space measure of how important the

modelled objects really are to the viewer.

To derive such a metric we must allow for effects in two distinct realms:

First, we have to have a theory of how information would have been transmitted to an

observer in nature. We then want to mimic these natural information transmis-

sion effects (§2.2 & §2.3).
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Second, the viewer is actually sitting in front of some raster display device or perhaps a

movie screen. So, we also need a theory of how information is in fact transmitted

to the viewer who is actually watching the synthetic images. We wish to allow

for the way these artifacts affect information transmission (§2.4 & §2.5).

These two theoretical descriptions have to be combined to yield a theory of how to simulate

natural viewing conditions on a computer display unit (a Surface-Atmosphere-Camera-

Raster-Observer Viewing theory!). Even this simple naming of the theory contains assump-

tions, for example, it is not clear that modelling a synthetic camera is at all necessary: we

need the information about the imagined scene converted to a form which is intelligible on a

display, we do not need to model a camera per se [cf. Haber, 1983]. Although for the

moment we may be content with doing that.

These descriptions can be thought of in terms of changes in knowledge representation levels.

It starts at a high level of knowledge representation in the machine: a complete simulation of

a natural environment. It proceeds downwards in steps to a very low level: two-dimensional

moving light patterns on a display. The human visual perceptive apparatus then extracts the

information from this display to re-create the high level representation. Thus computer ani-

mation means solving the inverse problem to that addressed by computer vision [Eklundh &

Kjelldahl, 1985].

A Theory for Scene Simulation.

The spatial and temporal metrics which were introduced in the previous chapter (§1.2), have

the aim of producing a satisfactory image as efficiently as possible. The metric measures

information required from the earlier stages of processing for achieving this end.

Section 2 of this chapter discusses the appearance of natural scenes, and shows in which

ways the natural world of perception differs from the natural world described by physics.

Subsequently we discuss image formation from the perspective of Fourier analysis (§2.3)

and then the way information is transmitted to the viewer (§2.4). We conclude with the

implications of this survey for our thesis (§2.5), and a brief summary (§ 2.6).

These metrics and their associated theoretical background should make some contribution to

providing a theoretical foundation for realistic computer animation; a foundation which can

embrace and explain a wide range of techniques. Such a basis should provide a fertile

38



Chapter 2 — Appearance of Natural Scenes

ground for deriving further applications and new techniques.

§2.2 Describing Natural Scenes

This section is firmly based on the work of Gibson on ecological optics [Gibson, 1979]. In

computer science, knowledge of Gibson’s work is mainly limited to computer vision

researchers. Ironically Gibson gives a very detailed description of the complex stimuli

available in the environment, while avoiding any theory of the processing involved in per-

ception. That fact seems to make his work more applicable in computer graphics. The

relevant features of his research and of others will now be reviewed and examined. Recently

a good discussion of the relevance of vision research to computer graphics has appeared [van

de Grind, 1987].

As a starting point Gibson insists on the distinction between the world of physics, and the

environment as perceived by animals. He also maintains that the observers and their

environment are complementary. These topics have already been mentioned in the previous

section. The major departure from other approaches to investigating vision was Gibson’s

insistence that visual perception operates properly only in a situation where the observer is

free to move about, use both eyes, and observe rich changing scenes. Clearly a visual

display unit is limited in this respect, but various computer generated environments where

the viewer is immersed in a scene in which he is free to move about, could create such a

situation artificially [e.g. Brooks, 1987, Fisher et al., 1987].

2.2.1 Natural Surfaces: Appearance and Simulation.

The most important feature of the natural environment (and the one currently giving such

rewarding problems to computer graphics) is that the components of nature exist in many

levels of detail. These levels of detail are simultaneously perceived as nested within one

another: Grains of sand on beaches in bays along the coast; stones amongst rocks below

cliffs on the mountains in the distance; everything covered with vegetation; fine fuzz on

leaves on trees in forests. At every scale there are forms within forms.

Thus objects consist of components, and these components have further, smaller, com-

ponents. These components form a hierarchy in some important cases [see §4.4.1], but in

general there is an overlapping network of relationships.
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There is no fixed scale with which to measure things, scale adapts to the situation [‘‘... no

atomic units of the world considered as an environment.’’ Gibson, 1979, p9]. Equally, there

is no absolute flow of time. Instead of time there is change and sequences of events. No

events means no time and no process. It can be seen therefore that an aspect of the proposed

static metric is to provide the appropriate distance scale to measure the environment in the

given situation, while the dynamic metric measures the flow of time appropriate to a given

circumstance.

The environment is characterized by persistence of solid substances and their layout. There

are semi-solids which change shape and liquids which are contained by solids and perturbed

by waves. The air is not a substance in our view but a medium permitting vision and

locomotion. Solids are perceived by the layout of their textured surfaces.

Gibson argues that in ecological optics it is more important to distinguish between animate

and inanimate objects than between living and non-living, as biologists do. This is because

observers generally treat plants as part of the background along with the rocks and the soil.

The texture, or graininess, of the surfaces of particular substances remains relatively constant

and is one of their most distinctive characteristics [Haber, 1983]. A textured ground stretch-

ing away from the observer gives information both on the slope and the distance of the sur-

face.

Mandelbrot [1982b] has advocated the use of fractals to model many natural phenomena.

The name fractal is meant to invoke the idea of broken, irregular objects. Fractals have (sta-

tistically) self similar detail at all scales. They are very compact procedural models from

which convincing images of rivers, coastlines and mountains can be generated. Pentland

[1984] presents some evidence to indicate that fractals capture what naive observers mean

by surface roughness.

In contrast, it can be argued that we can recognize animals quite well without having to

reproduce their surfaces [Marr & Nishihara, 1978]. The success of stick figures and pipe

cleaner animals bear this out. The essential feature of such figures is a hierarchy of coordi-

nate systems arranged along the natural axes of the parts of the figures.

Stick figures serve for many natural shapes whose form was achieved by growth. Other

natural shapes, perhaps because they were produced by random weathering, can be described

by fractals. Plants belong to both camps: they are sticks with random texture.
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Both Mandelbrot (‘‘to see is to believe’’ [1982b, p. 256]) and Marr & Nishihara (‘‘as we see

... animal shapes are portrayed quite effectively’’ [1978, p 271]) appeal to the convincing

images presented to justify their models: this is a very good basis for a representation to use

in computer graphics.

2.2.2 The Effects of Motion on the Appearance of Objects.

The natural environment contains many surfaces and a great many textures. All of them

reflecting light in their varied ways. Light is not only transmitted by air, but rebounds

between all the surfaces to reach an equilibrium. This ambient illumination is structured

with information about all the nested surfaces of the environment.

Gazing in any direction an observer is apparently at the convergence point of a dense struc-

ture of intersecting visual pyramids. There is a pyramid for every discernible feature in the

scene — it is the solid angle which light from the outline of the object subtends at the eye of

the observer. Together the visual pyramids from all objects in the scene form the optic array

(Figure 2.2).

Figure 2.2.��������� The ambient optic array. The optic array is formed by the nested
solid angles which radiate from the viewpoint.

Some of these interlocking pyramids belong to animals and have their own independent

motion, but superimposed on these independent proper movements are the global effects of

the observer’s own translations and rotations. These movements of the optic array constitute
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the optic flow field. The optic flow field is the foundation of depth vision [Lee, 1980], espe-

cially in the absence of binocular vision. The notion of optic flow originated with Gibson

and has been in wide use in computer vision research [e.g., Buxton, 1984; Buxton & Buxton,

1983; Koenderink & van Doorn, 1975, Koenderink, 1986; Lee, 1980; Waxman & Ullman,

1985]. In the computer graphics literature there are some reviews: [Neumann, 1984 —

brief] and [Van de Grind, 1987].

Observer Motion

Focus of
expansion

Figure 2.3.��������� Optic flow. The flow of optic array resulting from observer locomo-
tion. The vectors represent the angular velocities of texture elements in the
scene.

We shall be returning to the optic flow field in Chapter 4 when formulating the dynamic

metric. We shall then give a mathematical formulation which will lead to an analysis of the

hierarchies of optic flow effects. For the present we shall give a qualitative summary of the

features of the optic flow field [Koenderink, 1986] (see Figure 2.3).

Global Features of the Flow.

� Rotations around an axis through the vantage point (eye movements to a very

good approximation) yield no information about spatial layout, or depth.

� Translations of the vantage point always yield the same pattern of field lines.

The shape, but not the value, of the flow field is independent of spatial layout. In

other words: when moving forward the general trend will be for objects to move
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backward, radiating out from a focus of expansion and this fact is independent of

where the objects are in the environment.

� Optic flow consists of piece-wise smooth regions within which the flow is

smoothly varying, separated by discontinuities.

Local Features of the Flow.

� The Average flow velocity at a point in the field.

� The Motion parallax field is the structure of the local variation of velocity in the

immediate neighbourhood of the point. This important topic is amenable to vec-

tor field theory analysis and this is discussed in §4.3.2.

The analysis of Chapter 4 is based on the observation that any surface patch can be described

as a Taylor series expansion in terms of distance in a given direction. The various Taylor

series terms (distance, orientation, curvature, etc.) can each be used to specify local optic

flow (or motion parallax) effects — 0, 1st, 2nd, ... order optic flow effects. Moreover, the 1st

order terms lead to an affine transformation of the image of the patch which in turn can be

decomposed into basic transformations: translation, scaling, rotation and shear.

In Chapter 7 these various orders of optic flow effects are implemented and reformulated as

various orders of frame-to-frame coherence.

2.2.3 Atmospheric Effects.

A detector of light pointing in a certain direction through the air, will not only pick up light

reflected off objects in its path, but also photons from objects near the target (adjacency

effect). This results in the apparent field of view being enlarged and high spatial frequencies

being lost. In addition there is also light scattered directly from the sun (‘‘sun’’, since we

are considering natural scenes) and from ground reflectance along the path. This causes loss

of contrast, for example, black surfaces seem lighter [Kaufman, 1984; Gorraiz & Horvath,

1983].

In deriving an expression for light transmission through the atmosphere various simplifying

assumptions can be made. These include:

(a) every volume element of the atmosphere is illuminated by the same amount of light.
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(b) both extinction coefficient and scattering function are constant along the path of sight.

The radiance, L, reaching the eye from a specific direction can be written as follows:

L = LS + LA + LO + LP (2.1)

where:

LS Signal: Radiance reflected by the surface and directly transmitted: this is the attenuated

signal providing information about the object. The light is reduced by the factor

r 2

exp ( −σε
. r)

����������� by atmospheric extinction and the inverse square law ( r is distance and

σε is the extinction coefficient of the aerosol).

LA Adjacency Effect: Reflected by surface and scattered by the atmosphere. Diffuses radi-

ation between fields and reduces the apparent resolution of the sensor.

LO Scattered Sunlight: Radiance of direct sun beam scattered by the air. Independent of

the surface reflectance and causes loss of contrast.

LP Path Radiance: Reflected by surfaces along the path of the light and then scattered

towards the sensor. Depends strongly on the albedo of surfaces between the sensor

and the target and can often be neglected. It has similar effects to LO as far as the sen-

sor is concerned.

Summary.

� Environment is what we perceive (not the world of physics):

� Distinguish animate (animals) from inanimate (including plants).

� Components and events of nature fall into nested, overlapping, levels of detail. This

gives rise to the ambient optic array = nested visual solid angles.

� Observer motion transforms the ambient optic array and creates the optic flow field.

� The minimal natural environment can be modelled by a richly textured field and

animals.
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§2.3 Image ∼∼ Object Relationships and the Optical Transfer Function.

In this section some concepts from Fourier analysis, which are needed later to discuss how

images are actually perceived (§2.4), are reviewed. It can be skipped if the ideas are fami-

liar.

2.3.1 Analysing Image Formation.

Changing images are functions of two space variables and of time, they can be written as

f ( x, y, t), where f is the time (t) varying illuminance at the image plane; x and y being the

horizontal and vertical axis respectively. The image can be analysed as the sum, or integral,

of a large number of space and time frequencies, which constitute its spectrum. The Fourier

transform operator performs this spectral analysis of f, producing F (ξ, η, ν). Where ν

represents temporal frequency and ξ and η represent the horizontal and vertical spatial fre-

quencies. In optics F is invariably non-zero only over a finite part of its domain; that is, f is

always a band-limited function. The bandwidth of f is closely related to the information con-

tent of the changing scene.

Optical information is transferred from an object through the air and the lens system of the

eye, to the retina. From there sensors transmit the information to the cortex via various

visual ‘‘channels’’. At each stage transmission is governed by the characteristics of the

medium; at each stage the information is filtered.

Duffieux [1983, p86] discusses two ways to model transmission:

1. Transmission controlled from the outside:- by means of transformation invariants

between the object and image spaces, or an initial to a final state, or input excitation to

output response of a filter. Convolution theory yields a model which can be applied to

the domain of image formation where the mode of transmission not determined.

2. Transmission controlled from the inside:- a mode of transmission is defined that may

be progressively integrated from the object to the image. Equations of propagation

are: ray-tracing equations, Fermat’s principle, Huygens’ principle, wave equations, etc.

In computational terms we may loosely call the first a black-box, declarative approach, and

the second the explicitly simulated, procedural approach. We shall use Fourier or convolu-

tion method for reasoning about the process of image formation, but we shall generally use

the other methods when producing pictures.
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2.3.2 Linear Systems and Convolutions. [Bracewell, 1978; Duffieux 1983; Yu, 1976;
Pearson, 1975]

In physical imaging problems linearity and spatial invariance is often an inaccurate but use-

ful approximation. There are also doubts about the degree to which neural sampling and

transmission can correctly be analysed with a linear theory†. However no general techniques

exist for analysing nonlinear problems.

Necessary and sufficient conditions for linearity correspond to the principle of superposition

(‘‘the response of a linear system due to several inputs acting simultaneously is equal to the

sum of the responses of each input acting alone’’). Another consequence is that a scale fac-

tor of the input is preserved in the output (this is sometimes referred to as ‘‘homogeneity’’,

but in this context that can also mean space-invariance, which is not necessarily connected

with linearity).

A system with constant parameters will also possess the important property of being time-

invariant and space-invariant. Under these conditions the response of a linear system to har-

monic input is itself harmonic at the same frequency. The response is then related to the

stimulus as a convolution (alias Faltung or composition product). In optics an instrument

which can be described in this way is said to have an isoplanatic spread function. This

spread function gives the way a point of light energy is dissipated, it is also called the

impulse response.

Let f (x, y, t) be the image which a ‘‘perfect’’ optical system would transmit, f can also be

regarded as the input to the system. Let d (x, y, t) be the observed effective image. If we

write g (x′, y′, t′) for the point spread function, then the convolution is:

d (x, y, t) = f (x, y, t) ∗∗ g (x, y, t) (2.2a)

=
− ∞
∫
∞

− ∞
∫
∞

− ∞
∫
∞

f (x′, y′, t′) . g (x −x′, y − y′, t −t′) dx′ dy′ dt′

����������������

† Discussed in [Westheimer, 1972]. Linear example: [Campbell & Robson 1968]; non-linear example:
[Fiorentini, 1972].
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This can conveniently be written in vector notation as:

f (r)∗∗g (r) =
− ∞
∫
∞

f (r′′)g (r−r′′)dr′′ (2.2b)

where the integral is over all dimensions.

The convolution can be interpreted as a superposition of the spreads of each point of the per-

fect (or stigmatic) image. The convolution has a smoothing effect on sharp changes in the

stigmatic image. The convolution product is commutative and associative and also distribu-

tive over addition — hence the asterisk (∗∗) notation.

We define a unit impulse as:

δ(x) = 0 x ≠ 0 (2.3a)

− ∞
∫
∞

δ(x) = 1

In three dimensions:

δ(x, y,z) = δ(x) δ( y) δ(z) (2.3b)

= δ(x, y) δ(z)

while for circular symmetry in space:

δ(x, y,t) =
πr

δ(r)δ(t)
������� (2.3c)

where

r = √�������x 2 + y 2

For the sake of brevity we express our ideas in one dimension for the moment.

The impulse response has already been introduced intuitively above, it has the property that:

δ(x)∗∗g (x) = g (x) (2.4)

An invariant linear filter is completely specified by its impulse response, g, since the

response to any input is a convolution with g.
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If we regard information as being transmitted in stages, as a series of images, from the object

f 0(x) to a final image f n(x), then for each intermediate stage f 1, f 2, . . . f n −1 there is a

corresponding convolution, and we can write:

f 0∗∗g 1∗∗g 2∗∗ . . . ∗∗gn = f n (2.5)

Each successive convolution is a frequency filter.

2.3.3 Fourier Analysis of Band-limited Functions.

Using the same vector notation as that used above we may write the Fourier transform pair

as:

F (k) =
− ∞
∫
∞

f (r) exp( −i 2πr . k)dr (2.6a)

f (r) =
− ∞
∫
∞

F (k) exp( i2πk . r)dk (2.6b)

A band-limited function is one whose Fourier transform is non-zero only over a finite range.

In optics we are only concerned with band-limited functions. We are, of course, ultimately

limited in the spatial detail we can see by the wavelength of visible electromagnetic radia-

tion. However, long before this limit is reached, the various transmission systems between

our mind and the outside world would limit spatial and temporal frequencies far more drasti-

cally.

In dealing with band-limited functions two special functions which form a transform pair are

very useful: the rectangle function of unit height and base Π(x) and the filtering or interpo-

lation function sinc x .

These are defined as follows:

Π(u) =

��
�
�
�
�
�
��

1
2
1��
0

| u | <
2
1��

| u | =
2
1��

| u | >
2
1��

(2.7)
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sinc =
πx

sin πx
������ (2.8)

with:

sinc 0 = 1

sinc n = 0 n non-zero integer

− ∞
∫
∞

sinc x dx = 1.

In three dimensions we have:

Π(ξ, η, ν) = Π(ξ) . Π(η) . Π(ν) (2.9)

= Π(ξ,η) . Π(ν)

and

sinc (x, y,t) = sinc x sinc y sinc t (2.10)

= sinc (x, y) . sinc t

If we have √�������x 2 + y 2 = r ; that is, circular symmetry, then we have the following Fourier

transform pair:

f (r,t) = Π(r)Π(t) (disc) (2.11a)

F(k,ν) =
πk

J 1(πk)������� sinc ν (2.11b)

where J 1 is a first order Bessel function of the first kind.

The properties of sinc and Π given above apply to all separable functions; that is, (in two

dimensions) if f (x, y) = f 1(x) . f 2( y) then the Fourier transform is F (υ, ν)

= F 1(υ) . F 2(ν).

The convolution of sinc x with another function removes all components above a cut off fre-

quency but leaves all below unchanged; that is, it performs ideal low-pass filtering.

If f is a band-limited function with Fourier transform F, we can write Φ for the function Π

which has been shifted and stretched so that its range (the values of the domain for which it
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is unity) coincides with the range of F. The transform of Φ is φ. We then have the following

identities:

FΦ ≡ F (2.12a)

and

f ∗∗φ ≡ f (2.12b)

2.3.3.1 Multiple Convolutions.

Consider the succession of images from Equation 2.5:

f 0 ∗∗ g 1 ∗∗ g 2 ∗∗ . . . ∗∗ gn −1 = f n (2.13a)

F 0G1G2
. . . Gn −1 = Fn (2.13b)

φ0 ∗∗ φ1 ∗∗ φ2 ∗∗ . . . ∗∗ φn −1 = φn (2.13c)

Φ0Φ1Φ2
. . . Φn −1 = Φn (2.13d)

here f 0 and f n are the initial and final images and the g 1 ... gn −1 are the intermediate point

spread functions. The Fourier transforms (2.13b) are simple products. If we neglect time

then we can call the Fourier transforms the spatial spectra. The Φ0 ... Φn are called the spec-

tral ranges, while the φ0 ... φn are the spread functions or internal diffraction functions. The

final image has a spectrum which is the intersection of the ranges of the intermediate stages.

The G1 ... Gn −1 are called the transfer functions of the filters. The impulse response com-

pletely specifies the filter and so does its Fourier transform, the transfer function. Measuring

the transfer function for optical devices directly from the point spread function is usually

difficult. The usual procedure is therefore measure the relative contrast for sinusoidal test

patterns of all frequencies and orientations. In this way the attenuation as a function of fre-

quency can be found and thus the transfer function determined.

2.3.3.2 The Optical Transfer Function. [Hall, 1979]

The response of an imaging system to incident radiation can be described in terms of the

optical transfer function (OTF). As seen in the previous subsection the OTF is simply the

Fourier transform, G, of the impulse response or point spread function, g.
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The magnitude or modulus of G is called the modulation transfer function (MTF):

M = | G | (2.14)

2.3.4 Sampling.

In order to represent a image on a video screen it has to be scanned, or sampled. For a raster

display this is a two-dimensional process. The sampling symbol (called shah or comb) III(x)

is defined as:

III(x) =
n = − ∞
Σ
∞

δ(x−n) (2.15)

The symbol III(x) is its own transform.

Sampling is represented by multiplying some picture f by III. If sampling takes place at

intervals τ this is represented by f (r) III(
τ
r
��). The transform is τ III(τk) ∗∗ F(k). τ III(τk) is a

row of impulses at spacing τ−1. Thus the spectrum F(k) is replicated in the frequency

domain at τ−1 intervals.

The sampling process is completed by extracting a single copy of the replicated spectrum

with the Π(k) function. This will be possible provided the replicated spectra were not mixed

up through overlap, that is, if the interval of replication τ−1 was large enough to prevent the

spectra from overlapping. If the range of F(k) is from −kc to kc, where kc is the highest fre-

quency present in the picture then τ−1 > 2kc is the criterion for non-overlap and hence repro-

ducibility of f from the samples f (r) III(
τ
r
��). For critical sampling we have τ−1 = 2kc.

Thus to reproduce a band-limited function we have to sample at intervals not exceeding 1⁄2

its shortest wavelength.

If the sampling is too coarse for the range of frequencies present in the image then some of

the duplicated higher frequencies will overlap with the lower frequencies. The high frequen-

cies will be indistinguishable from the lower frequencies. This phenomenon is known as

aliasing: the high frequencies appear under another alias. Preventing this from happening, or

minimizing its effects, is known as anti-aliasing.
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2.3.5 The Fourier Transform of an Image in Motion.

In subsection 2.3.1 we wrote the Fourier transform of a changing image, f (x, y, t), as

F (ξ, η, ν), where ν represented the temporal frequency and ξ and η represented spatial fre-

quencies. Motion induces a shear in the temporal frequency dimension. If the velocity of

the image is (u, v) then the new temporal frequency ν′ is related to ν by

ν′ = ν + uξ + vη (2.16)

The spectrum of a stationary image lies in the ξ, η plane, when the image moves the spec-

trum lies in an oblique plane through the origin [Adelson & Bergen, 1985; Watson & Ahu-

mada, 1985].

Summary

� We use Fourier analysis to deduce the properties of moving images.

� A sequence of convolutions describe image formation to a reasonable degree of accu-

racy. Imaging is then a sequence of filtering operations.

� The components of an optical system are characterized by their impulse response or

point spread function.

� In optics we deal with band-limited functions. When such functions are convolved

together the resulting range of frequencies is limited to that of smallest range taking

part in the convolution.

� The Optical Transfer Function is the name given to this concatenation of convolutions.

� Sampling effectively replicates the spectrum of a sampled function. The interval

between these replicated copies of the sample’s spectrum is inversely proportional to

the sampling interval. Band-limited functions have to be sampled with a frequency at

least twice their highest spectral frequency.

� When an image moves its spectrum is sheared in the temporal frequency dimension.
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§2.4 The ‘Atmosphere’-VDU-Eye transfer function.

We wish to portray changing scenes and we would like to adapt the information displayed to

meet the minimum requirements of convincing the human eye. Animators already use

psychophysical principles implicitly: the essential effect upon which animation depends is

the way the eye integrates changes in the visual field over time. A consequence of this is

that a succession of static samples from a changing optic array can be indistinguishable from

the original continuously changing array. This effect makes cinema possible — different

frames are presented twenty-four times a second, flashing on and off at about three times that

rate.

Colour video displays already exploit the psychophysical model expressed in the tri-stimulus

theory of colour to reduce the variation in wavelength distribution greatly (i.e. down to the

responses of three coloured phosphors).

In this section we discuss various broad principles of human vision. This is relevant in two

distinct areas of research:

� The synthetic camera which roams our artificial model of the natural environment is

not necessarily meant to mimic a camera. It is there to get the information from the

scene that an observer would get.

� When we present the information to the real observer, the viewer of the animation, it is

as if everything is being seen for a second time. This time the act of observation is

real but the display is artificial.

In both these cases features of human vision are important. The first step of perception is

light entering the eye (§2.4.1). This light is sampled by the retina (§2.4.2), where certain

fundamental sampling trade-offs hold. The next stage of perception occurs in the cortex and

here we can observe pathways or channels which specialize in the different dimensions of

the stimulus (§2.4.3).

Having traced the information, we can make certain observations about spatial (§2.4.4),

brightness (§2.4.5) and motion (§2.4.6) vision. Finally we emphasize the fact that display

screens form an essential link between our artificial eye and the real observer (§2.4.7).
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2.4.1 The Eye as a Receiver of Optic Information.

Light, as the physical conveyor of optical information about the environment, can vary only

in terms of luminance, wavelength distribution, and spatio-temporal pattern.

Mainly because we want to have a tractable problem, but also because of hardware limita-

tions imposed on this research, our main concern will be with conveying information by

means of spatio-temporal variation of shaded, (more or less) monochrome, images. These

images will subtend angles of about twenty or thirty degrees at the viewer.

All rays reflected from the environment cross over at the eye’s nodal point and are mapped

onto retina with a central (polar) projection. This mapping results in a perspective transfor-

mation of figures, as in a camera. But the eye is nothing like a camera when it comes to cap-

turing motion. The motion camera has a shutter which serves to neutralize movement and

produce a series of static images. The eye has no shutter, it is constructed for continuous

recording of optical change over time. The spatio-temporal flow in the incoming array of

light, the optical flow, is in fact needed to get a neural response to the information encoded

in the light energy. Essentially the eye analyses only retinal flows, it deals with time-

continuous perspective transformations [Johansson, 1978].

The purpose of computer animation therefore is to induce a perception of optic flow which

contains the necessary information, not (necessarily) to produce a sequence of complete

static images.

2.4.2 Sampling Trade-Offs in the Eye.

As pointed out many times already it is the human eye which is to be simulated. The syn-

thetic camera can then incorporate a model of the sampling processes occurring in the

human eye.

D.M. MacKay [1981] discusses space vs. frequency domain representations and touches on

sampling theory as it applies to a simple cell in the visual cortex. In terms of Gabor’s [1946]

theory of communication, if we want to represent a signal by a sequence of samples, we

have to accept a compromise between uncertainty in time and in frequency. The uncertainty

relation is Δ f . Δt ≥
2
1
�� , where Δ f and Δt are imprecisions in frequency and in time respec-

tively. For the product Δ f . Δt to be a minimum, the elementary samples should not have

sharp cut-offs in time or frequency. For analogous reasons functions of space are most

efficiently sampled with elementary spatial functions with Gaussian profiles. For any linear
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system then, a given spatial sampling spread results in a corresponding spatial frequency

preference. The narrower the spatial profile ( Δx ), the poorer the frequency selectivity.

The receptive fields of simple cells are near optimal in sampling optical images in both fre-

quency and spatial domains. The spatial-frequency bandwidth is relatively wide ( 1⁄2

wavelength or roughly an octave) suggesting that the information-theoretic compromise is

weighted in favour of spatial resolution.

The theory presented above is in terms of one dimension. Vision operates on three dimen-

sions: the two space dimensions and time. Daugman, [1985] has discussed Gabor’s theory

for the two space dimensions. Basically the uncertainty relation given above applies to both

the x and y directions separately. The joint lower limit to resolution is thus 1⁄4.

A salient feature of the response of a simple cell of the visual cortex is a preference for edges

or bars at specific orientations [Hubel & Wiesel, 1962]. A preferred orientation and a pre-

ferred spatial frequency are the polar spectral variables parameterizing the 2D frequency

domain of 2D linear spatial filters, which could equally well be expressed in the cartesian

coordinates of width and length in the frequency domain.

Thus the same uncertainty relation limits the attainable joint resolution in space, spatial-

frequency and orientation. The inescapable trade-offs can therefore be achieved in different

ways and there seems to be a division of labour between cells with different cells doing dif-

ferent jobs by using a particular set of trade-offs.

2.4.3 Human Visual Perception.

A fundamental insight of sensory physiology is that there are many parallel pathways within

a sensory system, each specialized to carry information about a different stimulus element

[Westheimer, 1972; Bradick et al., 1978]. Information from different parts of the visual field

about various different properties of that field are carried to different neurons for further pro-

cessing. Each neuron can be said to have a receptive field, which is a certain part of the total

stimulus space to which the visual system can respond. The dimensions of the field are not

just the two position dimensions but also dimensions such as orientation or colour.

The complete range of a stimulus dimension can be regarded as subdivided into sub-ranges,

with combinations of subranges forming receptive fields. An independent structural element

of the visual system, dealing with its particular subrange of the stimulus dimension, is called
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a channel. A classic example of channels in visual processing is the idea (first enunciated by

T. Young in 1802) that different structures in the visual system respond to different

wavelength ranges of light.

Image/Object relationships in optical systems can be specified in terms of Fourier theory

(§2.3). If an object is a sinusoidal grating, i.e., a grating across which luminance variations

are sinusoidally modulated, it forms an image which is also a sinusoidal grating, albeit with

reduced contrast or modulation. The eye can be characterized by a graph showing the demo-

dulation of sine wave gratings as a function of their spatial frequency, the so-called modula-

tion transfer function (MTF — see §2.3.3.2). This function is the Fourier transform of the

line-spread function and contains the same information.

To the extent that the visual system can be treated as linear, the MTF provides a complete

description. This is generally the case where input variations are small (i.e., no saturation,

accommodation, etc. and homogeneous response to spatial variation). In a sinusoidal grating

modulation may be defined by the ratio, m =
I max + I min

I max − I min
���������� .

In a prototypical experiment to determine the spatial MTF, Schade [1956] determined the

threshold modulation ratio for a number of spatial frequencies. He found that the threshold

modulation sensitivity falls off with increasing spatial frequency as can be expected for any

optical system. However experiments indicate a response attenuation at low spatial frequen-

cies, especially at higher luminance levels. The eye’s optics and the rest of the visual system

act as a band pass filter tuned to a center frequency of about 5 cycles/degree.

Campbell & Robson [1968] found that the detectability of a square-wave grating could be

predicted in terms of the detectability of its Fourier components. Thus, at least at threshold,

linear analysis could be applied to the visual system. Their findings also indicated however

that each narrow band of spatial frequencies is dealt with by an independent channel. The

overall MTF being the envelope of the sensitivities of the separate channels. The multi-

channel model implies that the separate channels signal the components of an approximate

Fourier analysis of the input stimulus done by the visual system.

The major conclusion from this section is that the higher visual functions can be analysed, at

least to begin with, by means of the same Fourier analysis developed in §2.3. Thus for our

purposes an analysis in terms of spatial and temporal frequencies will have a wider applica-

tion than just the optical stages of the perceptual process.

56



Chapter 2 — Appearance of Natural Scenes

2.4.4 Spatial Discrimination.

As far as spatial vision is concerned, the optical apparatus of the eye is a linear filtering sys-

tem [Westheimer, 1972]. It transforms each luminous point in object space into light distri-

buted on the retina according to a point-spread function (§2.3.2). Conversely, the distance

weighted intensity spreads of all objects sum at each retinal point, that is, each retinal sensor

picks up a convolution of the light contributed by all (in practice, nearby) objects.

The further, neural, processing of the visual system has been discussed in the preceding sec-

tion. It is much more complicated.

Characteristics of human spatial vision:

1 Visual acuity of the retina drops off rapidly with eccentricity of the retinal image from

the fovea.

2 Beyond a certain luminance level visual acuity is independent of illumination.

3 Horizontal and vertical gratings are resolved better than oblique ones.

4 The human visual system is capable of judging relative position with remarkable accu-

racy. Thresholds for these tasks are often 3-5 arc sec. These low thresholds are 5-10

times finer than either the cut off spatial frequency, as determined by the spatial filter-

ing properties of the pupil, or the inter-cone (retinal sensor) spacing.

2.4.5 Brightness and Colour Discrimination.

Seeing depends on the ability to distinguish differences in light intensity and colour. In

developing the spatial and temporal metrics (the main thrust of this study) we shall be ignor-

ing questions which relate specifically to colour discrimination. The loss of colour with dis-

tance because of scattering (things turn blue with distance) could be incorporated into the

spatial metric with ease. However practical tests would add to the complexity of the initial

experiments without adding much to the conviction of the results. Thus colour discrimina-

tion was not considered essential to the initial development.

Questions of contrast thresholds, on the other hand, are directly relevant to the development

of the spatial metric. Spatial resolution is related to contrast ratio. The retinal sensors

respond to the volume under the surface of point-spread functions. The detection of a small

object with a wide point-spread function is equivalent to a small contrast detection.
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2.4.6 Motion Vision.

Real movement refers to the experience of motion when an object is continuously displaced

across the visual field [Anstis, 1978]. Apparent motion is said to occur whenever the dis-

placement of an object is discontinuous or intermittent and motion is still perceived. Since

any individual frame in a motion picture is actually stationary this is said to convey apparent

motion.

Movement perception is not a failure to resolve space and time, but rather an active integra-

tion of the two. Movement is seen if two spots are alternately exposed with a separation in

space which can easily be resolved. Even if the separation in time is too short to allow per-

ception of sequence, motion can still be seen.

While real and apparent movement are equivalent in some sense in the visual system, the

question arises whether the same mechanism is used to perceive both. The answer [Bradick,

1974] seems to be that apparent movement perception is mediated by two processes: one, a

‘‘short-range’’ process, also handles real movement, while the other, a ‘‘long-range’’ pro-

cess, does not.

The short range process operates with video displays, and is important for our study. This

process can be shown to precede shape recognition. For example, random ‘‘sand-paper’’ pat-

terns presented successively to the same eye, and which differ only in that a square sub-area

is displaced, will result in the apparent movement of the square. This moving square being

invisible in the individual patterns. This effect is seen only for displacements less than about
1⁄4 degree.

On the other hand, movement can also be seen when the square is made up of two different

patterns both with a square outline, i.e., the square must first be recognized as a shape in

each case before the movement can be seen. This would correspond to the long-range

apparent motion effect. This view is not completely accepted by all workers in the field

[Kolers, 1984].

From the point of view of image synthesis the important point is that there seems to be a

mechanism for detecting motion independent of the recognition of shape. This mechanism

operates when series of images along a path are presented rapidly, as in video or film [Adel-

son & Bergen, 1985]. We may therefore hope to be able to sacrifice spatial fidelity in order

to get movement at the correct speed for a particular object on a computer display.
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2.4.7 Artificial Displays and Viewing Conditions.

There are many kinds of artificial displays, even excluding exotic devices such as the head

mounted displays mentioned earlier there are too many to even begin to discuss here [see,

for example, Salmon & Slater, 1987]. They have one common feature however: limited

bandwidth.

This bandwidth limitation affects both spatial and temporal detail. Aliasing (see §2.3.4)

effects occur if the source contains higher frequencies than the display can handle. If the

update rate of a display is too low then we can’t hope to induce apparent motion effects.

That is we will not have what is known in computer graphics as a ‘real-time’ display.

If we restrict ourselves to the more standard TV type displays, we have the following types:

0.5 - 1 Gigabits per second — high definition displays.

In high definition video displays we have 1000-1200 lines and up to 80 fields per

second. In this case the resolution is high enough for distortions in output to be below

visible thresholds. The problem is mainly one of producing the vast amount of output

data. Both the spatial and the dynamic metric can be used for this purpose.

30 - 100 Megabits per second — broadcast TV.

Broadcast TV resolution is generally high enough to share most of the qualities of high

definition displays but anti-aliasing is vital.

64 Kilobits per second - 2 Megabits per second — long distance video.

Movement cannot be shown in ‘real-time’. The spatial metric would be useful to

reduce detail, while the dynamic metric can be used to pick out moving areas which

are important visually.

9.6 - 64 Kilobits per second — Remote terminals and telephone lines.

At this rate no movement is possible. The spatial metric can be used to increase the

size of primitives by decreasing the detail required.

The limits to human spatial- and temporal-frequency sensitivity have been called a window

of visibility [Watson, Ahumada & Farrell, 1986]. Watson et al. provide a useful synthesis of

results from vision research specifically for time-sampled displays and computer imagery.

There are limits to human spatial- and temporal-frequency sensitivity and these limits are

relatively independent of each other. We can therefore place a limiting box over the
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frequencies (ξ, η, ν) of the image f (x, y, t). Those frequencies outside this range will be

filtered out. If we take one spatial frequency for simplicity then the window passes all fre-

quencies

{ξ, ν | ξ ≤ ξl & ν ≤ νl} (2.17)

where ξl and νl are the spatial and temporal limits respectively.

A more precise expression of this hypothesis is that the spatio-temporal distribu-
tion of contrast in the image is filtered at some stage in the visual system. The
limits of the passband of this filter are ξl and νl . If, after passing through the
filter, the two stimuli are identical, then an observer relying on the output of this
filter will be incapable of distinguishing between the two.
[Watson, Ahumada & Farrell, 1986, p. 302]

This window predicts the critical sample rates required in space and time to render motion

accurately on artificial displays. For computer generated imagery it is suggested that various

spatial frequency bands in such synthesized images be treated separately and to display only

those whose velocity does not produce aliasing at the display device sampling rate.

Summary

� Computer generated animation depends on features of human visual perception to

make the image synthesis problem tractable.

� It may be possible to exploit further features of human visual processing in order to get

more realistic animation sequences cheaply.

� Uncertainty relations govern the accuracy with which position and spatial frequency

can be resolved together.

� Fourier and convolution analysis can be applied to higher level perceptual functions,

not just to the optical imaging which takes place in the eye.

� Movement is not perceived by freezing motion and looking for correspondences

between static images. It appears that optic flow is directly sensed in a space-time

domain.

� Spatio-temporal low pass filtering occurs at some stage in the visual system. This

defines a window of visibility which limits spatial- and temporal-sensitivity.
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§2.5 Information Channels: From Computer Model to Viewer’s Mind.

The metrics introduced in the previous chapter are meant to be applied to animating scenes

taken from nature. On the one hand the rich detail of such scenes makes them difficult to

represent in a machine, while on the other hand the lighting effects are simpler than in

artificial environments.

In this section we will discuss the information requirements of the spatial and temporal

metric. As we have seen the human visual processing system does not draw such a sharp

distinction, it is always a spatio-temporal system. Therefore the two metrics will never be

independent of one another.

Although we have reviewed human vision qualitatively we still do not have quantitative

answers to the following questions:

� Brightness Thresholds: What are just-noticeable-differences for various test patches

over different regions of a scene? This is needed to decide cut-off, quantization and

permitted noise levels.

� Resolution Trade-offs: What should spatial and temporal resolution be?

� Motion: How do viewers interpret errors in rendering motion?

We will not have have these figures either because they are still current research topics.

However our implementation is really experimental. Therefore many questions can be

answered simply by starting with what is available (i.e., the qualitative relationships which

obtain). In a sense the success or failure of the various metrics will provide experimental

values for some of the numbers which are lacking

2.5.1 Information Transmitted to the Viewer.

The characteristics of visual perception in artificial and natural conditions (both cir-

cumstances being of interest to us) is the subject of current research. But for the present we

can make do with the qualitative aspects of such theory. The actual implementation will

require ad hoc adjustment of parameters (but not of the theory). For the present we only

want to know what the parameters are and what their interrelationships might be. Lacking a

fully operational system, the actual parameter values will be irrelevant.

Information conveyed to the viewer goes through several processing steps in the combined
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theory. Describing each of these steps means gleaning the information from the appropriate

theory. The processing goes from a dynamic three-dimensional description to a limited

resolution two-dimensional display sequence. From this the viewer is expected to recon-

struct in their own mind a close approximation to the author’s intended environment.

Some of the steps and corresponding theoretical disciplines are listed below. Of course this

table is too tidy: For example, human visual perception, listed as the sixth step informs the

way nature is described in step one, it is intimately connected with rendering (step 4).
���������������������������������������������������������������������������

No. Nature of Step Applicable Theory Section
���������������������������������������������������������������������������

0. Formulation of author’s intention in

some computer animation language

not considered here.

1. 2.2Simulating the Appearance of Natural

Surfaces

Morphology. Modelling.

2. 2.2.2 & 2.3Spatial & Motion Relations of Objects

(Light-scene-observer geometry).

Geometry. Kinematics.

3. 2.2.3Atmospheric Effects (scattering & ab-

sorption).

Atmospheric Optics.

4. 2.3.4 & 2.4.2Synthetic Eye in Synthesized Nature

(Rendering to simulate human vision).

Sampling. (see also 6

below).

5. 2.4.7Artificial Viewing Conditions (VDU

or cinema screen).

Display Engineering. Ex-

perimental (?).

6. 2.4Human Visual Perception Psychophysics & Low,

Intermediate Level AI.

7. 2.1Eureka! (Decoding the symbols). Theory of Art. Psycholo-

gy. High Level AI.
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Table 2.1.��������� Steps in the transmission of information to the viewer.

The steps one up to four are simulations on a computer and are thus also subject to the limi-

tations imposed by computer hardware and software resources.

The actions from two to six can perhaps be viewed as a series of filters. Some actions are

really forms of sampling, but since sampling is only accurate for band pass filtered images, it

can be assumed here that sampling is a form of filtering. We should distinguish between
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three kinds of filtering:

a. Filtering implicit in a realistic model of the natural environment (e.g. atmospheric

effects).

b. Filtering due to display device and other viewing conditions (e.g. low pass nature of

the raster display).

c. Filtering due to trade-offs in the human visual system (e.g. trade off between spatial

and temporal detail).

and of course:

d. ‘‘Filtering’’ due to coarseness of data structures and lack of processing time (i.e., lack

of detail on surfaces and lack smoothness in motion).

We could also regard the steps outlined above as stages in a connected series of information

channels each with its own encoding.

2.5.2 The Spatial Metric.

The term ‘‘perspective effects’’ has long been used by artists to mean the way the appear-

ances of things change with increasing distance from the viewer. It meant both the loss of

spatial detail seen in objects, and the colour changes over longer distances.

The spatial metric is primarily dependent on distance. It measures perspective effects in the

broad sense defined above. Although it will not here be applied to colour effects (see §2.4.5

& §2.5.3). The primary ‘cause’ of loss of detail is the inverse square law which describes

the relative diminution of areas with distance. A secondary cause of loss of detail is atmos-

pheric perspective which results because light travelling through the air is scattered and

absorbed.

Under normal conditions the geometrical perspective effect predominates in the medium

range of distances. It is of course easily modelled. The longer range is always dominated by

atmospheric effects. Since, when light is transmitted in the atmosphere, the resolution drops

to nothing and the object merges with the background long before the geometrically

predicted vanishing point (at infinite distance!) is reached.

Kaufman [Kaufman, 1981] has produced a model of the way the human eye responds to
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atmospheric effects when viewing the boundary between two contrasting fields from above

(so the path radiance, LP , of §2.2.3 is neglected). He makes use of a modulation transfer

function (MTF) of the atmosphere and derives an MTF of the eye from a model of vision by

I. Overington.

The spatial metric can be extended to take into account the curvatures of the surfaces of the

objects being modelled. That is, sharply curved surfaces could be rendered in more detail.

This is equivalent to having a higher sampling rate for surfaces with high spatial frequencies.

Even if this is not done it is clear that as we decrease the level of detail being rendered,

because the object being rendered is further away, the aliasing effects can occur unless the

surface is low-pass filtered.

2.5.3 Colour Effects

The human visual system samples the optical wavelengths with three detectors. This means

of course a great simplification for computer representation of surface spectral reflectance

and light source spectral distributions. It should also be possible to apply the idea of a

metric in the modelling of the differential transmission of the various wavelengths of light in

the atmosphere. However, that is beyond the scope of this study (see also §2.4.5).

2.5.4 The Temporal Metric.

As pointed out previously the observer in nature is confronted by a dense optic array ori-

ginating in the many nested levels of structure in the environment. Some of the elements of

the optic array originate from objects with their own independent motion. Superimposed on

these independent proper movements are the effects of the observer’s own motion: these

combined changes in the optic array constitute the optic flow field.

In an analogous way to the spatial metric, the dynamic metric can measure the speed with

which the projected images move. This speed can govern update rates. The temporal metric

can be extended to measure the various levels of optic flow effects. The optic flow is

smoothly varying where the optic array originates in an object whose surface is reasonably

regular (relative to viewing distance). Over these areas the higher order optic flow effects

could be taken into account, this is analogous to incorporating surface curvature measures

into the spatial metric.
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2.5.5 Trade-offs Between the Spatial and Temporal Metrics.

When objects move their frequencies get altered according to Equation (2.16). However the

passband of the window of visibility, Equation (2.17) remains unchanged. Therefore some

detail must be lost. This detail may of course appear in an aliased form if it is not filtered

out; that is, for particular velocities there are limits to the spatial-frequencies which contain

useful information and which can be displayed without aliasing. If we could have some

description of the objects in a scene in terms of the 2-D velocities of their image components

then we would have identified the limits to the detail needed from such objects. The tem-

poral metric will provide such a measure via optic flow analysis.

In this chapter the computational cost of implementing the ideas has not been discussed. It

can be considerable in the case of some of the pre-filtering steps discussed in this sub-section

(see §7.4.3).

Another way of approaching the trade-off is to consider the conditions under which apparent

motion is sensed. We have seen apparent motion in rapidly changing images does not

depend on feature recognition (§2.4.6) and therefore the sensation of movement will not be

impaired if the moving image is blurred.

Conversely we could try to exploit the longer range motion perception which does depend

on feature recognition. In this case we render images too slowly for the short range process

but in such a way that the long range process operates. Such motion will appear jerky, but

this may be acceptable in some cases.

§2.6 Summary and Conclusion.

We have argued in this chapter that realistic pictures do not necessarily depend on realistic

and accurate physics. In the first place, the natural world as we perceive it cannot usefully

be described by the laws of physics. In the second place, the various imaging systems which

lie between such a natural world and its imitation on a computer display have their own limi-

tations and possibilities. These characteristics have very little to do with the physics of

nature.

Finally, our perception of these displays is an active process which strives to create order

and sense. For example, real motion and full colour are seen where there are only static

images and three-coloured phosphors. Those examples are familiar but there are other
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characteristics of perception which might also be exploited. For example, the limits in sensi-

tivity to spatial and temporal frequencies, and the perception of optic flow fields rather than

sequences of static images.

The need for a theoretical basis for synthesizing realistic pictures remains even if physics by

itself proves inadequate. Such a theory can use laws of ecological optics as its starting point.

This theory can then proceed to allow for computer modelled three-dimensional worlds and

artificial display techniques. In the end it will also have to cover the way these displays are

finally perceived by the viewer.

This is what we have attempted to do in this chapter. We have ended up with qualitative

definitions of the spatial and temporal priority metrics. These are refinements of what is so

inadequately called ‘‘faking it’’.

Some properties of the two metrics are summarized in the following diagram:
���������������������������������������������������������������������������

Spatial Metric Temporal Metric .
���������������������������������������������������������������������������

Main variable: Relative distance. Relative angular velocity.

Effects: Blurring of detail. Update rate.

Refinements: Atmospheric effects, Surface

curvature.

Optic flow field, hierarchy of

motion effects.
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Table 2.2.��������� Summary of the properties of the spatial and temporal metrics.

A combined effect of the temporal and spatial metric is found in the loss of spatial detail due

to motion.

Thus far we have discussed providing a theoretical foundation for computer animation

without mentioning computer science! The next chapter will remedy this. Once that is done

we can formalize the qualitative definitions of the spatial and temporal metrics given above.
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Chapter III

Object Oriented Representation in Animation.

Any attempt to deal with the complexity of computer animation should have a
well founded and appropriate underlying abstraction. This chapter introduces
and critically examines the object oriented paradigm as it applies to computer
graphics and animation. Regarding parts of an animation as independent actors
communicating via messages has an intuitive appeal. This initial appeal, ela-
borated to become object oriented animation, does seem to stand up to the closer
scrutiny.
However, it was discovered that object oriented languages need to be extended if
we want to describe the way physical objects (and imaginary ones) are made up
out of parts. This new abstraction was added to Smalltalk.
This chapter includes two surveys of the relevant literature: §3.1.6 examines
object oriented computer animation and §3.2.1 surveys work on animating arti-
culated figures.

§3.1 Structuring Complex Programs and Data.

Complexity in 3-D computer animation arises from many sources: the representation of

geometric detail, motion, interactions between actors, the user interface, and the complexity

inherent in large systems. We want to deal with complex natural scenes. Animation vastly

compounds the problem since it adds changes and interrelations over time.

We have introduced the spatial and temporal priority metrics in the previous chapters. We

are looking for ways to structure our graphics and animation programs which will simplify

the conceptual, programming and interaction tasks. The object oriented paradigm seems

very useful for this.

The priority metric measures the level of detail required from each object in the animated

environment. It demands that different hierarchical representations be used together. That

is, different underlying representations should appear the same from the ‘outside’. In this

chapter we shall show how the object oriented paradigm provides a most appropriate

abstraction to describe the elements of the environment and their animated interactions.

The rest of this section (§3.1) introduces object oriented programming; it contains a survey of

object oriented programming in animation (§3.1.6) and concludes (§3.1.7) with a com-

parison between the object oriented and functional approaches to animation. The basic

requirements for modelling animated figures form the subject of §3.2. A brief survey of

67



Chapter 3 — Object Oriented Animation

relevant literature is followed by an exposition of the role of part-whole and coordinate

hierarchies in representing physical objects.

In the following section the object oriented programming languages used in the experimental

implementations, Smalltalk and C++, are compared (§3.3). We take as a working example

how a new class of numbers, quaternions, can be introduced. This also serves as a discus-

sion of how localized coordinate systems are implemented.

§3.4 shows how object oriented languages ought to be extended if we want to model real

physical objects and still retain all the conceptual and programming advantages of object

oriented programming. We analyse our use of part hierarchies in Smalltalk (§3.5) and follow

it with a discussion of the broader implications of part whole hierarchies for object oriented

programming (§3.6). The conclusion (§3.7) also mentions possible extensions to allow mul-

tiple views of the same object.

3.1.1 The Object Oriented Paradigm.

‘‘Object orientation’’ has been used rather loosely in animation to mean nothing more than

using 3-D object models instead of doing 2-D key frame animation. This is not what is

meant by the term here. We adopt the more conventional ‘‘definition’’ [Cardelli & Wegner,

1985; Rensch, 1982; Stefik & Bobrow, 1985] where object orientation is some combination

of:

Data abstraction (named interfaces and hidden local state) plus object types (or
classes) plus type inheritance (attributes inherited from superclasses). Process-
ing is done by objects sending and replying to messages.

Languages need not conform to all these characteristics to be called ‘‘object oriented’’.

Object oriented languages descend from Simula and are exemplified by Smalltalk [Goldberg

& Robson, 1983]. Some established languages have also been given object oriented

features (e.g. C++ [Stroustrup, 1986]). In Hewitt’s actor formalism [Agha, 1986] greater

emphasis is placed on concurrency and message passing. The NeWS windowing system has

shown how naturally PostScript supports object oriented programming for user interfaces

[Adobe Systems, 1985; NeWS, 1987; Densmore & Rosenthal, 1987].
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3.1.2 Abstract Data Types.

In object oriented languages the computing process is factored into objects. Each object is

comprised of data elements and procedure elements. Objects are typically instances of some

class, or, equivalently, objects belong to a type.

Procedural abstraction means that procedures can be invoked by naming them without

regard to their internals, that is, without regard to how the particular part of the algorithm

was implemented. This forms the basis of structured, modularized, procedure oriented pro-

gramming.

Data abstraction is used for similar reasons in object oriented programming. The state and

implementation of an object is hidden from other objects. Instead an object possesses a pro-

tocol of messages which form its only interface with the outside. In order to use an object

one need only know the protocol, or equivalently, its class or type [Cardelli & Wegner,

1985].

3.1.3 Classes and Inheritance.

In most object oriented languages objects belong to classes (these classes being objects in

their own right). Objects which are instances of the same class are similar in that they share

the same interface and have the same structure. Class and inheritance is based on an analogy

with both taxonomy and genetics.

Delegation is used in actor languages in preference to the notion of class [Agha, 1986]. This

means that an object’s message protocol includes those messages which can be delegated to

prototypes or exemplars [Borning, 1986; Lieberman, 1986; LaLonde, Thomas & Pugh,

1986]. For example, if we were modelling horses, the Platonic ideal horse would be a proto-

type and a particular nag in the field would delegate the responses to some of its messages to

that ideal prototype.

Classes in object oriented languages form a hierarchy. Subclasses are specializations of their

superclasses, and they inherit all the characteristics of the superclasses [Cardelli, 1984].

Simple abstract classes characterize the higher levels of the hierarchy while more complex

behaviours, in concretely useful classes, are found at lower levels. Even actor languages

which do not have a notion of class employ inheritance to organize information.

The simple hierarchy of inheritance relationships can be extended to a network of relation-

ships. This is referred to as multiple inheritance. In some systems a class need not inherit all
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the features of a particular super class. This is even closer to the situation in biology where

traits are distributed amongst individuals in a gene pool and can be inherited separately.

The class hierarchy can be taken to express an ‘‘IS-A’’ relation [Brachman, 1983]. Thus an

integer IS-A number. More specifically, if the inheritance hierarchy is anything more than

an implementation tool then it exemplifies the ‘‘IS-A-KIND-OF’’ relation: integer IS-A-

KIND-OF number.

Programming in an object oriented language is a question of designing and implementing

classes (or their equivalent in prototype based languages). A large problem is split into a

number of hierarchies of classes.

3.1.4 Message Passing and Polymorphism.

Polymorphism can be used in a number of senses; rather perversely the meaning is usually

that a single form can be applied to a variety of underlying types. For example: conven-

tional typed programming languages allow the parameters of functions to have only one

type. If this idea was strictly applied then addition would require a different function for

each type of number and generalized routines, like head of an arbitrary list, would be impos-

sible. Polymorphic languages allow for the same functions to accept many different parame-

ter types. This idea can be inverted in a way which is more appropriate to object oriented

programming: polymorphic types are types whose functions can be applied to many dif-

ferent types.

In object oriented languages the same messages can be sent to a number of different classes

and the messages can have any type of argument. The messages need not be used to provide

concurrent communication but might behave largely like procedure calls. However, unlike

procedure calls, messages sending allows polymorphism without requiring the constant

checking of parameter types [Ingalls, 1986]. The existence of class hierarchies must entail a

certain polymorphism if related but distinct classes are to understand the same messages

[inclusion polymorphism — Cardelli & Wegner, 1985].

The conceptual power of inheritance hierarchies derives, at least partly, from the way in

which they allow automatic but controlled polymorphism for all subclasses. One largely

knows the behaviour of an object if one knows the behaviour of its superclass. (The other

major advantage of class hierarchies is of course that they allow code sharing).
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Having polymorphic messages makes it possible to program by extending the language with

new types. For example, it was very easy to add a new class of number, namely quaternions,

to Smalltalk. These quaternions understand exactly the same messages, for multiplication,

addition, square root, and so forth, as other numbers. Smalltalk can be said to exhibit

‘‘true’’ polymorphism because all objects are uniformly represented and can exhibit uniform

behaviour without coercion or explicit type checking.

C++ does not use message lookup for procedure calls and is statically typed, but it does

allow operator overloading, i.e., the same operator can have a number of different, but

predetermined, types of arguments. Quaternions can be implemented just as elegantly as

with Smalltalk.

3.1.5 Concurrency.

Events in nature happen at the same time. Simulating such an environment requires con-

current execution of the objects representing elements of this environment, at least in princi-

ple. Luckily ‘‘time’’ when applied to computer animation actually means discrete steps syn-

chronized every twentieth of a (simulated) second. Thus one could simply service all

objects sequentially in each time slot. However explicit support for concurrency can be use-

ful and it is provided in Smalltalk. See Appendix D for a further discussion of this topic.

3.1.6 Actors and Animation.

Actors in a different guise are met in object oriented animation systems. Early examples are

DIRECTOR [Kahn, 1976] and ASAS [Reynolds, 1982]. A succession of animation systems

based to a greater or lesser extent on the actor formalism have been developed by

Magnenat-Thalmann & Thalmann [1985].

Message passing actors have proved to be very appropriate for modelling 3-D animation.

Object oriented animation has its origins with Smalltalk and this aspect of Smalltalk was

influenced by Logo [Kay, 1977]. Logo is not object oriented: in Kay’s terms Logo is a

data-procedure language. Whereas in Smalltalk the data and procedures are replaced by the

single idea of ‘‘activities’’ which belong to families. New families are created by combin-

ing and enriching properties which are inherited as traits. This message-activity system is

inherently parallel. The kinds of animation produced nevertheless still have a distinct

Logo-like flavour.
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A similar strong influence of Logo is apparent in Kahn’s [Kahn, 1976; Magnenat-Thalmann

& Thalmann, 1985] Director language. Like Kay he emphasizes that a computer language

should reflect both the structure of its applications and the intuitions of its users. For anima-

tion this means that each entity should be a ‘‘little person’’ who communicates with others

by means of messages. An animation as a whole is then produced by a number of parallel

cooperating processes.

Kahn’s animation system is a practical approximation to this ideal. There is a Universe

which holds the actors. Each actor remembers its own actions and the Universe (the

scheduler) merely sends a ‘tick’ message to them. At each tick an actor performs its actions

and interactions for that time increment. The display messages are sent to a screen actor and

these messages can also be remembered to make a movie.

It is significant that two problems addressed in the fourth section of this chapter, that is,

part-whole relations and the different ways of regarding an object to be composed of parts,

are mentioned as future research goals by the two previous authors. Kahn mentions the need

for better primitives for dealing with composite objects and for constructing objects out of

parts. Kay advocates the development of an ‘‘observer language’’ by which he means a

language which allows objects to be regarded from different viewpoints with respect to what

they are said to be composed of. He gives the example of a dog which ‘‘can be viewed

abstractly (as an animal), analytically (as being composed of organs, cells and molecules),

pragmatically (as a vehicle by a child) ... ’’

Both Kay and Kahn produced rather simple two-dimensional images. In ASAS [Reynolds,

1982] we get much more realistic three-dimensional graphics.

3.1.7 Functional Animation and Object Oriented Animation.

Functional programming provides a useful abstraction for computer graphics [Arya, 1986;

Henderson, 1982; Salmon & Slater 1987]. A few points of contrast and similarity with

object oriented graphics will be given but a detailed comparison is not a concern of this

research programme. Both fields are new and developing rapidly so such a comparison

would probably be premature.

Functional programming derives its power from giving functions first class status. Functions

can be combined and manipulated just like any other object. Data structures are defined by

means of constructor functions which make abstract data objects. Access is only via the
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operations defined on the data objects. The usefulness of data abstraction has already been

mentioned. In functional programming polymorphism and concurrency are also

emphasized.

Pure functional programs are declarative. They can be reasoned about and manipulated with

formal tools. One can consider programs as static objects. The meaning of an expression

does not change as computation proceeds. This property, know as referential transparency,

also allows functional languages great power in using parallel evaluation [Darlington, 1984].

It is much more difficult to reason about the behaviour of procedural languages in a formal

way, and virtually impossible in languages like Smalltalk which depend on dynamic type

checking.

Real objects persist while their configurations and attributes change over time (§2.2). Ani-

mation, as the mimicking of three-dimensional physical objects, depends on a notion of

state. We have seen that this meshes rather well with the concept of actors and objects in

object oriented programming. In functional graphics the emphasis is shifted to dealing with

a sequence of different objects related by a sequence of transformations. This model of com-

putation is found in key frame animation, which is mainly used for two-dimensional pic-

tures. (Slater also discusses the fact that difficulties arise when using functional languages

for programming interaction and when using attributes [Salmon & Slater, 1987, pp. 290-

291]).

Reasoning about concurrent functional programs with history dependence, (this includes

interactive programs) faces a fundamental theoretical difficulty: such programs are non-

deterministic [Abramsky, 1984]. This could lessen one of the theoretical advantages of

functional animation over object oriented animation.

This does not prevent functional programming from being used in practice in time depen-

dent situations. Generally it is possible to ‘‘abstract away’’ the notion of time, and replace it

with some idea of sequences over infinite lists [Arya, 1986]. To discover the relation

between the figures in the list one refers to the functions which constructed them. The

sequence of transformations of an actor over time can be established by the user on input,

but generating the transformations from some three-dimensional model might prove more

difficult.
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So it seems that the virtue of functional programming often becomes its vice in modelling

animation. The conceptual advantages of functional programs remain limited precisely

because such programs describe a dynamically changing world as a (conceptually) frozen

system of infinite sequences.

Functional programming is evolving, and the final conclusions regarding functional versus

object oriented approaches to computer animation cannot yet be drawn. The extent to which

a (possibly impure [e.g., Halstead, 1985]) functional approach can be elaborated for three-

dimensional animation needs further investigation. On the other hand, object oriented ani-

mation already seems well suited to modelling changing objects executing concurrently.

§3.2 Animating Jointed Figures.

There are two aspects to modelling animated figures: producing computer representations

which allow movement and controlling that movement. The first problem is addressed in

this study since we are concerned with the appearance of moving figures at various levels of

detail. The problem of controlling figure movements so that they appear realistic is an area

of active research to which answers are only now appearing. In developing our chosen

representation we shall be very concerned with providing an underlying mechanism which

allows constraints on movement to be handled elegantly. We shall not be concerned with

motion control directly nor with the related problem of modelling motion subject to various

constraints. In spite of the circumscribed area of interest, a significant result, which is the

need to extend object oriented languages to include a part-whole hierarchy, will be presented

in §3.4.

At the simplest level we can regard people and animals as being composed of limbs con-

nected by revolute joints. The challenge of animation lies mostly in making movement real-

istic [Badler, 1987]. A general abstraction is developed in the next section for incorporating

the notion of ‘‘an object made up of active parts which are related via constraints’’. The

purpose of this section was to provide the motivation for that abstraction.

3.2.1 Modelling Articulated Figures for Computer Animation.

This is a difficult problem which has attracted many researchers. IEEE Computer Graphics

and Applications has devoted two special issues to the problem, both edited by Norman

Badler of the University of Pennsylvania: November 1982 and June 1987. Apart from
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material directly addressing computer animation, research in robotics and the design of

legged vehicles is often also relevant. Of course a major inspiration is the success of tradi-

tional hand-drawn animation, many of whose principles can be applied to 3-D computer ani-

mation [Lasseter, 1987].

An early survey of the field is Badler & Smoliar [1979]. Various issues concerning the

representation of human movement were explored. A large part of the paper is devoted to

describing a human movement simulator which interprets Labanotation. Labanotation

(which is also know as ‘‘Kinetography Laban’’ in Europe) is a notation for describing

human movement. It is mainly used for dance but can be used for human movement gen-

erally [Preston-Dunlop, 1969]. The basic architecture of the simulator is of a network of

special purpose processors — one for each joint.

Computer animators note the need for abstraction as a way of dealing with their rather

difficult problem. Zeltzer presents the argument for creating an integrated view of computer

animation and in passing gives a survey of the field [Zeltzer, 1985]. Zeltzer describes dif-

ferent kinds of abstraction useful for character animation. His terminology presupposes a

constant awareness that motion is inherent in animation and for the non-animator the terms

are more easily understood by adding the word ‘‘motion’’ before the word ‘‘abstraction’’ in

every case.

� Structural abstraction describes the kinematic properties of the figure, i.e. the hierarchy

of jointed limbs and their possible motions.

� Procedural abstraction describes the movements in terms of the desired results rather

than the particular kinematic structure.

� Functional abstraction describes movements in terms parameterized skills or basic

movements. For example: walking or grasping, which can be fast or slow.

Zeltzer also points out how a human figure can be modelled as a tree structure of joints and

parts. The parts are embedded in a generalization lattice of attributes, this lattice being sup-

plied by some sort of multiple class inheritance hierarchy (in the object oriented sense). He

emphasizes that the complex modelled environment of an animated object has to be struc-

tured in some way which allows rapid testing for the proximity of objects. The description

of objects in terms of a hierarchy of parts which also reflect levels of detail should go a long

way towards meeting this need.
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ThingLab [Borning, 1979, 1981] is a system for simulating physical objects (e.g., geometric

shapes, bridges, electrical circuits, documents, calculators). In ThingLab, objects consist of

parts. Multiple class inheritance hierarchies, and part-whole hierarchies are used to describe

the objects and their interrelations. Parts are referred to symbolically by means of paths that

name the nodes to be visited in proceeding down the part hierarchy.

In ThingLab the superclasses of an object are a part of the object: an object contains an

instance of its superclass (in the type theoretic sense) as sub-part (in the sense of part versus

whole objects). The class which describes such a superclass part is a subclass of the normal

part description class. Apart from this notion of multiple superclasses ThingLab also

employs prototypes to provide initialized instances of objects.

The major contribution of ThingLab is a system for representing and satisfying constraints

which exist between the parts. However, when it comes to providing a tool for modelling

complex objects confusion can arise. Our work extracts, analyses, and refines the concept of

a part hierarchy first encountered in ThingLab. In particular we draw a clearer distinction

between class hierarchies and part hierarchies. We dispense with prototypes, not that classes

are preferable to prototypes. It is just that Smalltalk already has classes.

3.2.2 What is meant by a Part Hierarchy and Why is it Important?

Things are often described in terms of parts and wholes; the way the division into parts is

made depends on the purpose of the analysis. A part is a part by virtue of its being included

in a larger whole. A part can become a whole in itself, which can then be split into further

parts. In this way we build up a hierarchy of parts and wholes, which we have called the

part hierarchy. Rather than attempt a formal description of part-whole relations [Smith,

1982] we shall present a series of illustrative examples.

We distinguish between a mere collection, or additive whole, or heap, (e.g., a bag of mar-

bles, a pile of electronic components) and a more structured whole (e.g., an animal, a wired-

up electronic circuit). To the former we apply set theory, to the later a part hierarchy.

It is also useful to distinguish between extensive parts — components, fragments, consti-

tuents, pieces — and non-extensive attributes — features, aspects, moments. For example:

A table is made up out of a flat top and four identical legs placed in the corners, these are the

parts. A table also has a colour, which is an attribute rather than a part. We shall be more

concerned with parts than attributes.
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Part-whole analysis is crucial to science and technology. Pirsig [1974] provides a very good

example of the hierarchical description of the assemblies and subassemblies used in

engineering:

A motorcycle may be divided for purposes of classical rational analysis by
means of its component assemblies and by means of its functions.
If divided by means of its component assemblies, its most basic division is into a
power assembly and a running assembly.
The power assembly may be divided into the engine and the power-delivery sys-
tem. The engine will be taken up first.
The engine consists of a housing containing a power train, a fuel-air system, an
ignition system, a feedback system and a lubrication system.
The power train consists of cylinders, pistons, connecting rods, a crankshaft and
a flywheel.
The ignition system consists of an alternator, a rectifier, a battery, a high-voltage
coil and spark plugs.

That’s a motorcycle divided according to its components. To know what the
components are for, a division according to functions is necessary ...

Parts are also met in the those branches of computation where physical objects are

represented, for example, model-based computer vision and computer graphics.

The example which will be used to test and illustrate our implementation is the same one

which is used for the spatial detail experiment (Chapter 5): a stick figure. It should be noted

that this very stick figure has importance not only in animation but is also found in a Marr’s

computer vision research [Marr & Nishihara, 1978] (see Figure 5.1). The particular stick

figure we shall discuss, called ‘‘joe’’, has numerous parts arranged hierarchically. For exam-

ple, joe’s legs have feet which have toes, and toes consist of phalanges.

Model-based vision draws upon the work on knowledge representation in artificial intelli-

gence [e.g., Brooks, 1981]. Frame-based representation [Fikes & Kehler, 1985] has similari-

ties to the object oriented approach. Frames describe parts and attributes by means of slots.

One of the standard texts on computer graphics [Foley & van Dam, 1982] devotes a chapter

to ‘‘Modelling and the Object Hierarchy’’. The proposed new graphics standard PHIGS

(Programmer’s Hierarchical Interactive Graphics System) [1986] organizes objects in a

structure hierarchy. Both structure hierarchy and object hierarchy, as used above, are

synonyms for our part hierarchy.

PHIGS also has the novel concept of inheritance on a part hierarchy where attributes of the
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whole are inherited by the parts. E.g., the legs of the table could inherit the colour of the

whole. The requirement is not quite as general as it at first appears. This ‘‘inheritance’’ is

only used when the whole structure is traversed from the root down in order to display it.

Thus the wholes are always accessed before the parts and the attributes can therefore be

stacked.

We adopt the policy that information is stored in the part hierarchy at its corresponding logi-

cal level: Information about the whole is not stored in the parts, information about the parts

which is not modified by the whole remains with the parts. Ideally the whole knows the

parts but the parts do not know of the whole.

3.2.3 Coordinate Transformations.

Coordinate transformations play a vital role in computer graphics and animation. Scene

composition, rendering and motion would be impossible without them.

Each object is modelled in its own coordinate space and is placed in its correct position rela-

tive to other objects in the environment by means of its own coordinate transformation. The

camera is similarly positioned in the modelled environment. To render three-dimensional

models of objects on the display they have to be transformed into the camera coordinate

space and then projected by a perspective transformation. The movement of rigid objects is

achieved by altering their coordinate transformations.

Each part of the hierarchical representation of an object has its own changing local coordi-

nate system. In animation and rendering these coordinate systems have to be related to one

another and to the world coordinate system.

The most general motion of a rigid body in the world coordinate system can be described as

the combination of a translation of a fixed point in the object combined with a rotation about

that point. (In a more general formulation this is Chasles’ theorem [Goldstein, 1980]). A

freely moving rigid body has six degrees of freedom. The most general motion if one point

is fixed is just rotation. Rotations are thus the most important transformation when imple-

menting a system of localized coordinates for an animal’s limbs (or robot’s for that matter).

The standard formalism for 3-D computer graphics has tended to be homogeneous coordi-

nates [Newman & Sproull, 1979]. Transformations can be expressed in a single 4*4 matrix

which includes terms for translation, rotation and perspective transformations. Hamilton’s
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quaternions, although rather neglected since the turn of the century [Goldstein, 1980:

‘‘musty mathematics’’], make a computationally efficient formalism which is also easy to

understand. Compared to homogeneous transformation matrices quaternions have fewer

redundant terms. An introduction to Quaternions is given in the next section (§3.3) where

they are used as a running example in a comparison of object oriented programming in C++

and Smalltalk.

Each limb of the modelled figure has a local transformation quaternion (actually unit

quaternion) which specifies its rotation with respect to the coordinate system of the limb to

which it is attached. It also has a quaternion (actually a vector) which specifies its position

relative to the origin of that coordinate system. This vector does not change for most limbs,

only those which form the root of the hierarchy of coordinates reflect the changing transla-

tion of the actor as a whole. The synthetic camera requires a similar pair of quaternions. Per-

spective projection is achieved by bringing all objects into the camera coordinate system and

then dividing by the distance along the viewing direction (invariably the z-axis coordinate).

§3.3 Smalltalk and C++.

Having discussed a number of theoretical issues concerning object oriented languages, we

can now give a brief taste and comparison of the object oriented languages used in this

research project: Smalltalk and C++.

The initial implementation and all the figure animation work was done in Smalltalk-80. The

landscape generation and optic flow animation was done in C++. The choice of Smalltalk

and C++ is motivated in § 3.3.1 and §3.3.2. We illustrate and compare their use while at the

same time presenting the implementation of quaternions to describe coordinates and their

transformations (§3.3.3).

3.3.1 Why Smalltalk?

For an initial implementation, like the stick figure of Chapter 5, one wants to try new ideas

out quickly with enough realism to draw conclusions about feasibility. Smalltalk [Goldberg

& Robson, 1983] is an object oriented language that makes a very attractive prototyping

tool. A great deal of effort has gone into designing its programmer and user interface. When

the application is a graphical simulation there is seems to be little to beat it. In order to

include an object hierarchy and still retain the spirit of modularity, object oriented languages
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should be extended to support part-whole relationships as discussed in §3.4.

The following are key features of Smalltalk:

� Graphical user interface.

The user interface already provides the basic data types for graphical bitmap display

and mouse interaction.

� Powerful development tools.

Programming in Smalltalk is designed to be an incremental activity. The whole library

of existing programs can be examined with ease. Powerful interactive debugging is

provided. Since binding is dynamic there is no need to link new methods.

� Smalltalk is easily modifiable.

All system classes (including, for example, the compiler) are accessible and can be

modified or, preferably, extended by adding sub-classes.

A disadvantage of Smalltalk is that a number of new concepts and approaches to program-

ming have to be learned. Smalltalk programming consists in defining data types or classes,

or rather refining existing classes. Although the language itself is small, one has to have a

good grasp of existing system classes. Once these classes are understood however, they

assist greatly in writing new programs. We shall give details of the use of an object oriented

language for animation in Chapter 5.

Other restrictions of existing Smalltalk implementations, such as restricted object memory,

lack of colour primitives, slow speed and poor support for parallel processes have been, or

are being, alleviated [Miranda, 1987].

3.3.2 Why C++?

There are two main reasons for using C++ once the choice has been fixed on an object

oriented language: computational speed and compatibility with C (that is old C). What is

sacrificed to get this, comparing C++ with Smalltalk, is dynamic binding and true polymor-

phism. A somewhat less serious loss with current implementations is that debugging

becomes much more difficult.

Quite apart from its value as an object oriented language C++ provides facilities which are

lacking from (old) C, e.g. type checking for function arguments, facilities for avoiding
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macros such as inline functions, and typed constants.

But we are interested in C++ because it is a object oriented language: It allows one to define

new types and subtypes. One can enforce information hiding (it provides better checking of

this than Smalltalk) by declaring messages and data to be private to a class. Operators and

function names can be overloaded, which allows a clean syntax for new types. ‘‘Virtual’’

functions allow one a limited form of dynamic binding: the binding of certain declared reci-

pients of messages can be looked up at run-time, provided they share a common superclass.

Operators include the usual ‘+ - ∗ /’ as well as C specialities like ‘>>=’ and even the sub-

scription operator ‘[]’ and function call operator ‘()’.

C++ does not provide a garbage collection mechanism for dynamic storage. One can how-

ever declare constructors and clean-up functions which are called automatically when a vari-

able comes into or goes out of scope.

Generally C++ has provided a fast object oriented language which can co-exist with systems

designed for C. The fact that it is a preprocessor which increases the compilation-link cycle

time and the lack of a source level debugger does mean that development is slower than with

Smalltalk. The modularity of the object oriented language has made the task of developing a

fair sized experimental system (8000 lines of code for the landscape synthesis suite) quite

manageable.

3.3.3 Quaternions.

Hamilton’s quaternions were introduced to as a way of representing coordinate transforma-

tions (§3.2.3). Quaternions consist of a scalar part and a three-dimensional vector part

[Hamilton, 1969, Pervin & Webb, 1982]. Those with the same unit vector part are iso-

morphic to complex numbers. Quaternion multiplication combines scalar and vector multi-

plication and is non-commutative in general. The famous formula discovered by Hamilton

in 1843 shows the scalar result of multiplying the unit vectors:

i2 = j2 = k2 = i j k = −1

Quaternions represent rotations in terms of the axis of rotation and the angle about that axis.

The effect of applying a quaternion is far easier to visualize than the more common Euler

angles. Quaternions represent both the operands (vectors) and operators (rotations and trans-

lations) uniformly. Rotations can be combined by multiplying the quaternion
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representations. Quaternions are more efficient computationally than rotation matrices

because they don’t have the same number of redundant terms [Shoemake, 1985].

Quaternions are thus chosen since they are powerful and provide a representation of 3-D

rotation which is easy to understand. They are not too general for 3-D transformations and

so are computationally efficient. Quaternions provide a uniform representation of operators

and operands; a vector can simply be regarded (and implemented) as a quaternion with a

zero scalar term.

3.3.4 Adding Quaternions to Smalltalk and C++.

The inherent polymorphism of messages (or overloading of operators) in Smalltalk allows

easy and elegant implementation. The normal arithmetic messages can be implemented for

quaternions; combined with a few coercion messages that is really all that is required to add

quaternions as a subclass of numbers (Figure 5.4 shows multiplication). Quaternions then

become fully integrated in an extended system-wide concept of Number.

A minor complication is having to represent translation and rotation as separate transforma-

tions. Once again one can simply define a new class which incorporates both and the rest of

the system need never know of the true implementation.

For greater efficiency, unit quaternions, which are used for rotation transformations, are

given special treatment. This is quite easy in Smalltalk and is transparent to the user. It is

analogous to the way small integers are treated in the standard system. Unit quaternions are

declared as a subclass of quaternions. The general messages are then handled by the super-

class but specialized messages and more efficient implementations are dealt with by the sub-

class. For example, the inverse of a unit quaternion can be found without recourse to divi-

sion and so this message is re-implemented in the subclass.

Much the same comments apply to C++ since it also allows operator overloading, subclass-

ing and the possibility of overriding the methods defined by the superclass in the subclass.

In the case of quaternions the lack of dynamic binding does not matter greatly. Dynamic

binding obviates the need for re-linking when the underlying representation of a type is

changed. It is in the nature of a number system like quaternions that the implementation and

messages understood does not change very often, although new optimizations may occasion-

ally be introduced. Dynamic binding also allows a particular place holder (variable name) to
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contain a number of different types of objects. The binding is made at run time when the

variable has been instantiated. Quaternions can reasonably be interchanged only with

scalars and vectors and for such a limited set of possibilities coercion rules can be drawn up

which the C++ compiler will then invoke automatically. It has generally been the case that

the types of objects used in arithmetic can be determined at compile time.

The use of automatic coercion does have some hidden snags. Unless one is careful a lot of

conversion can happen from unit quaternions to quaternions (this is cheap) and then back

again (which is expensive since it involves division and square root calculation).

§3.4 Representing Physical Objects: The part hierarchy.

From §3.2 it can be seen that there are two salient features of an animated figure which we

must capture: (a) it is composed of parts (limbs) which depend on each other, and (b), these

limbs can can move subject to various constraints. The notion of objects being constructed

from parts, which in their turn may consist of smaller parts, is employed in very many other

situations too (for example, in engineering design we speak of assemblies and subassem-

blies). Since this is such a fundamental property we would like it incorporated in our object

oriented abstraction which, as I have argued, has much to recommend itself.

But, Smalltalk and many other object oriented languages fail to provide the facility to

describe objects in terms of their parts. Or more accurately, when we want to model objects

consisting of parts in Smalltalk, and many other object oriented languages, we are con-

fronted with a dilemma: either sacrifice the data encapsulation properties of the language or

utterly flatten the hierarchy whole which consist of parts.

Composite objects are provided in Loops [Stefik & Bobrow, 1985]. The emphasis seems to

be on providing a uniform method for instantiation. For this purpose a simple type system is

developed where classes are specified for each part. Using these classes the parts can then

be correctly generated when a new instance of the whole is required. We developed a simi-

lar system (§3.5.1), but it tends to rather inflexible, and more elaborate parameterized typing

might be necessary.

Once extended to include a part-whole hierarchy, object oriented languages, with their simu-

lation (Simula) pedigree, become ideal choices for animation of natural environments.
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3.4.1 The Dilemma Posed by Parts in Object Oriented Languages.

Data abstraction is a fundamental aspect of object oriented languages (§3.1.2). Data abstrac-

tion can be summarized as meaning explicit interface protocols and a hidden local state.

When an object is assembled from its parts these parts are no longer independent. A part

belongs to the local state of the whole and the interface is mediated by the owner.

If this requirement is strictly interpreted the existence of the parts should become invisible to

the users of the whole. The whole protocol which a part understands, some of which it may

implement perfectly adequately, will have to be re-implemented as the protocol of the

whole. The net result is that the part hierarchy is replaced by a single monolithic whole as

far as the external world is concerned.

On the other hand, if we did not include parts in the local state of the whole, external users

could explicitly request the part and then modify it. The resulting changes could violate the

integrity of the whole. The response of a part would be also be independent of its position in

the whole.

This is the dilemma. We would like the parts to remain visible, while at the same time

access is mediated by the owner on the next higher level.

An Example of the Dilemma in Smalltalk.

Parts can be identified with a particular kind of instance variable, that can be accessed via

messages to read and assign the parts. In standard Smalltalk the parts can be accessed by

putting together the message selectors of the various parts.

In our example of a stick figure (see Figures 5.2 and 5.3) we define the following classes:

Person with instance variables: chest, leftLeg, etc.

Foot has instance variables: bigToe, secondToe etc..

then:

joe ← Person new. "Create an instance of Person called ‘joe’"

joe leftLeg. "Return contents of the left leg instance variable."

joe leftLeg lowerLeg foot. "Return the left foot."

joe leftLeg lowerLeg foot bigToe wiggle. "Wiggle left big toe."

"(provided toes understand ‘wiggle’)"
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This standard syntax has the disadvantage that the actual instance variable objects them-

selves are handed out and the sender of the message can modify them at will. This subverts

the idea that objects can hide and control their local state.

The alternative is to disallow the direct part access messages. But then the top level object

needs to implement the whole message protocol for all its parts. For example, to wiggle the

left big toe the class Person would need a message like ‘leftLegLowerLegFootBigToeWig-

gle’ in its instance message protocol. This collapsed message utterly flattens the part hierar-

chy and so removes the conceptual advantages of factoring that knowledge in an intuitive

manner.

One could attempt to intermix direct access to instance variables in ‘‘safe’’ cases, and use

collapsed messages (e.g., leftLegLowerLegFoot) when access must be controlled, in an ad

hoc manner. This is really worse, because the external world needs to know when to send

collapsed messages and when not. If ‘joe’ in our example above, gets his foot encased in

plaster then a collapsed message would be needed instead of direct access and all callers

would have to know this.

3.4.1.1 Class Hierarchies Do Not Provide Part Hierarchies.

Neither single nor multiple class inheritance seem to have any bearing on the part-whole

dilemma mentioned above. Classes deal with specializations of objects. In single inheri-

tance we have a partial ordering which provides the same structure as can be expressed by

sets and subsets. Even with multiple inheritance only one set of instance variables can be

inherited for each superclass. Thus, even if the class ‘‘Table’’ inherited legs four times over

along different paths, it would still only have the characteristics of one leg.

If multiple inheritance were extended so that the instance variable data were somehow kept

separate, the parts would still be defined at the same level as the whole. That is, the same

object would contain both the complete part protocols and the protocols corresponding to

their structured interaction.

3.4.1.2 Parts in Smalltalk.

The standard Smalltalk system provides for objects to have dependants. The normal opera-

tion is that parts are given backpointers to their owners. The owner can then be informed of
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changes. However:

� Parts have to know which changes are significant to the owner. (i.e., high level

knowledge at lower levels).

� If parts forward all changes indiscriminately to the owner object then the owner must

again contain the equivalent of the protocols of all the parts.

� It creates circular structures, with attendant maintenance problems.

This system of storing knowledge of the whole in a part which is then handed out, is useful

where the part hierarchy is shallow and where it is simpler to hand out parts to the external

world. An example of such a ‘‘part’’ is the model in the Smalltalk model-view-controller

mechanism.

3.4.1.3 Prototypes and Delegation.

As will be seen in §3.4.2, our implementation of a part hierarchy makes use of message for-

warding. Message forwarding is a powerful general notion which can also be used to imple-

ment delegation, which has long been used in actor languages in preference to the notion of

class (§3.1.3).

It is in this sense that multiple inheritance was implemented by means of parts in ThingLab

(§3.1.6). This creates a rather blurred distinction between a part hierarchy and a class hierar-

chy which we want to avoid. The notion of class is retained, as is the possibility of multiple

class inheritance.

3.4.2 A Mechanism for Modelling Objects with Parts.

We have given a concrete example of incorporating parts using standard Smalltalk (§3.4.1).

This provides the motivation for making a small change to the standard syntax (§3.4.2.1)

which does allow a full part hierarchy to coexist with data encapsulation. The implementa-

tion of the extended language (§3.4.2.2) is achieved by a rather simple modification to the

standard system.

For the rest of this section we shall be concerned with Smalltalk, but many of the remarks

will apply to other object oriented languages.
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3.4.2.1 A Syntax and Semantics for Manipulating Parts in Smalltalk.

We want to recognize that parts are objects in their own right — active first class objects.

But without violating the principle of encapsulation. A whole is allowed to hide its parts,

even pretend it has parts which do not in fact exist as such. The whole has additional pro-

perties arising from the interaction of the parts, which should not be stored in the parts.

Our solution uses the notion of censored access. The Whole forwards messages, possibly

censored, to parts, and receives answers, also possibly censored, from parts. This necessi-

tates a new kind of message selector: a compound message selector and a new concept: mes-

sage forwarding of possibly censored messages.

Let us call the message selectors of standard Smalltalk simple selectors, whether they be

unary, binary or keyword selectors. A compound selector is then a <path>+‘‘.’’+<simple-

selector>. The path is a series of one or more part names also separated by full stops (‘‘.’’).

Part names always begin with a lower case letter. The first part name in a path (its head if it

were a list) is called the prefix. A path provides a way of referring to a part further down the

part hierarchy.

Our example (§3.4.1) then becomes:

joe leftLeg. "Return the left leg instance variable."

joe leftLeg.foot.bigToe. "Return the left toe."

joe leftLeg.foot.bigToe.wiggle. "Wiggle left big toe."

The semantics associated with the construct is one of message forwarding. Either a class

understands a full compound message selector or it does not. If it does then the method

corresponding to the compound selector is executed and the result returned, this may involve

sending a censored version of the message to the part.

If the compound message is not part of the protocol of the object then the prefix is stripped

off. The rest of the (possibly compound message) is forwarded to the instance variable

named by the prefix. In that case the answer to the forwarded message is also the answer to

the compound message as a whole. This definition is clearly recursive.

If the Smalltalk convention of private messages for information hiding is accepted then parts

can always be accessed by means of automatically generated private messages. The mes-

sage is then forwarded, not to an instance variable, but to the answer returned by sending a

part access message. This means that the parts need not necessarily be instance variables.
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They can be generated as and when needed. This could provide multiple views of the same

object without storing all versions explicitly. This further extends the principle of informa-

tion hiding.

3.4.2.2 Implementing the Part Hierarchy. (see also appendix A).

To implement the part hierarchy the following changes are needed:

1) Change the compiler to allow compound messages.

2) Extend the message selector class (Symbol) to provide access to the various parts of

the compound messages.

3) Implement the mechanism for forwarding messages to parts.

4) (Optional) Add a class initialization method to add private messages automatically to

access all parts and instantiate new parts depending on a predetermined dictionary

associating classes with parts.

The extended Smalltalk with multiple inheritance [Borning & Ingalls, 1982] is widely distri-

buted. This provides (1) and most of (2) above, while (4) is an elementary exercise.

It is (3) which is the heart of the system. It uses a powerful general mechanism: message

forwarding. When a compound message is initially sent it is only understood if the object

needs control over that aspect of its part structure which the message accesses. If the com-

pound message is not understood then the part named by the message prefix can safely han-

dle the message. Code is then compiled just to forward the message. If the same message is

sent again the code already exists and the message will be understood.

The forwarding of messages can be overridden in a completely natural way if it is later

decided that an object does need control over that aspect of its parts. The controlling

method is simply added with the compound selector which names the part, and it replaces

the forwarder.
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§3.5 Experience with Using the Part Hierarchy.

The importance of a part hierarchy in computer graphics and vision has been mentioned in

the the previous sections, as was the example of a stick figure. In this section we analyse

how our extension to Smalltalk worked in practice. The part hierarchy described the struc-

tured figure rather well (§3.5.1) but it is not designed for a collection of stick figures

(§3.5.2).

3.5.1 Results from Modelling a Single Stick Figure.

A moving stick figure and camera was implemented using the part hierarchy defined above

(see Chapter 5). The following points arose from this experiment:

1) Parts are compatible with the existing multiple inheritance implementation.

2) For deep hierarchies the message selectors become rather lengthy.

3) Some, more or less elaborate, form of typing is required for the parts of an object

(mainly to instantiate parts automatically).

4) The class inheritance hierarchy can interact in unexpected ways with the modelling

hierarchy.

The second point means we might require some more syntactic sugar by way of abbrevia-

tions. In the case of parts which are common to a number of subclasses it is, at present, pos-

sible to define an abbreviation explicitly in the superclass. For example, all limbs of the

stick figure have a proximal joint which implements the local coordinates. A common mes-

sage to the proximal joint is to alter its orientation, thus the superclass of limbs implemented

the abbreviation ‘‘orientation:’’ for the compound message ‘‘proximalJoint.orientation:’’.

The third point, concerning typing, uncovers an active area of current research, which is

beyond the scope of our investigation. The need for an instance variable type arises when a

new object is created and its parts have to be instantiated. In order to instantiate the parts

their classes have to be known. This can be coded as an initialization message to the new

instance, but a more general solution is to associate a default class with each instance vari-

able. When a new object is then created, the creation message is also forwarded to these

classes in order to create the parts.

The fourth point concerns the interaction between the class inheritance hierarchy and the
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modelling hierarchy. Message forwarders are treated as normal methods and are inherited

by subclasses. Consider message forwarders created in the class of the receiver of the com-

pound message and not in the (super) class where the instance variable is actually defined. If

the superclass is modified to intercept the compound message it will have no effect in those

subclasses which have already acquired message forwarders. This would cause unpredict-

able results which depend on the past execution history. This problem is aggravated if mes-

sage forwarders are made invisible to the user. The solutions are obvious and easy to imple-

ment.

3.5.2 Elements of a Collection are not Parts.

In our experimental implementation of stick figures the one situation where the part hierar-

chy was at a distinct disadvantage was with collections of stick figures. This is perhaps not

too surprising since wholes are meant to be more structured than sets. The collection itself

has an associated coordinate system in which the figures are embedded, it may even have a

graphical appearance. Thus the collection is a kind of ‘‘Actor’’, and in some ways a whole

just like a single stick figure.

The problem with using parts is two fold:

� The representation of a variable number of parts is rather difficult.

� The requirement that parts have explicit names, otherwise such an advantage, is here a

liability. Objects in a collection are nameless, or at least their names change.

Representing a variable number of parts can be achieved in a number of more or less messy

ways: a class for each cardinal number, allowance for empty part slots, or having indexed

anonymous parts. All these options were attempted but had to be rejected.

If classes are dispensed with and prototypes used instead, some of these objections might be

met. Each particular collection with a fixed number of elements could perhaps have its own

part access messages. However, an appropriate solution is provided by multiple inheritance

of both a Collection to provide access to the objects and a basic class of figure (Actor) to

convey the appearance and position of the collection. This was the strategy adopted. The

individuals in the collection were accessed with the normal messages used on collections.
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§3.6 Implications of the Part Hierarchy for Object Oriented Languages.

At this stage of the chapter we have established the general importance of part hierarchies in

natural philosophy and engineering. We have shown how a simple extension of Smalltalk

can provide, fairly elegantly, a part hierarchy mechanism. This mechanism has been illus-

trated and criticized by means of examples drawn from three-dimensional modelling. We are

now going to characterize the results of this effort.

3.6.1 Part Hierarchies and Class Inheritance Hierarchies.

When it comes to a single inheritance language, the question is really how orthogonal the

concepts of part hierarchy and class hierarchy are. That the implementations can have mutual

dependencies has already been seen.

The class hierarchy can be taken to express an ‘‘IS-A-KIND-OF’’ relation: integer IS-A-

KIND-OF number (§3.1.3). The part hierarchy on the other hand expresses an ‘‘IS-A-

PART-OF’’ relation, or more accurately since the part does not know its owner it expresses

the reversed ‘‘HAS-A-PART’’ relation.

If we adopt this view then the two concepts are orthogonal. The class hierarchy provides

generalization and specialization, this has nothing to do with structured building up of

objects from parts, except that general objects may sometimes have fewer parts than their

specialized subclasses.

It has already been seen that delegation provides an inheritance mechanism. Message for-

warding, which we use to access parts, can be used for delegation. Therefore message for-

warding can be used to implement multiple inheritance [Borning, 1986]. If we retain the

notion of class (or maintain a distinction between prototypes and other objects), then we can

regard this as an implementation issue and not a fundamental relation.

Multiple inheritance is preferred when objects are unstructured collections. When objects

have a fixed structure, or when parts are subservient to the emergent properties of the whole,

then a part hierarchy is better.

A part hierarchy is thus a valuable extension to both single and multiple inheritance object

oriented languages.
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3.6.2 Part Hierarchies and Encapsulation.

At first sight it might appear that part hierarchies violate the principle of data encapsulation

and information hiding, because they provide access to the parts of an object. In our view

the opposite is actually the case. Part hierarchies provide better control over access to the

parts than is found in many object oriented languages.

It is true that the internal structure of the object is made visible. But this is strictly mediated

by censored messages. These messages allow full control and even allow the whole to pre-

tend it has parts, by providing messages, which are not in fact explicitly implemented.

The need to see structure of an object is similar to the need for ‘‘grey-boxes’’ rather than

‘‘black-boxes’’ in engineering. Depending on the level at which we are designing we need

more or less of the structure of our wholes to be visible.

3.6.2.1 Phantom Parts.

A whole can pretend to have parts which are not actually stored as such [Borning 1979,

‘‘virtual parts’’]. Since access to the parts is only via censored messages the responses to

these messages can be generated on the fly, rather than stored. A rectangle can be stored in

terms of a top-left and bottom-right corner, but it can equally well pretend to have a centre

which can be read or modified.

In animation the ability to have parts which are dynamically implemented allows great free-

dom in representing anomalous structures (such as the grin of the Cheshire cat which gets

bigger and bigger while the cat disappears).

It is apparent that doing this would have been impossible if we had sacrificed data encapsu-

lation. These different names (like ‘‘phantom’’, or ‘‘imaginary’’, or ‘‘virtual’’) for such

parts refer purely to an implementation issue: to the outside of the object the distinction does

not exist.

§3.7 Conclusion.

This chapter has been concerned with object oriented programming and its use in animating

natural environments. We have argued that figure animation makes two basic demands on a

system: (a) the system should allow figures to be built up as a hierarchy of parts and (b) pro-

vide for constrained motion of these parts relative to one another. It was emphasized in the
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literature survey that this only provides the basic building blocks for a complete animation

system.

Motion is provided by means of changing coordinate transformations. Quaternions provide

this facility in intuitively appealing and at the same time computationally efficient way. The

introduction of quaternions as a new type of number can be done rather elegantly in object

oriented languages, because programming such languages is centered around the addition of

user defined types or classes.

The basic requirements for part hierarchies have been incorporated in object oriented

languages in a way which strengthens the data abstraction properties of these languages.

Such part hierarchies are most useful in simulation, where we a concerned with structured

physical objects.

Part hierarchies provide facilities not provided by class hierarchies. This is because class

hierarchies provide less structure than part hierarchies, they provide the structure of sets, and

sets contain no notion of relative position or multiplicity. Part hierarchies are less useful for

describing sets and collections and multiple inheritance may be needed to deal with these.

Part hierarchies can be regarded as being an orthogonal notion to class inheritance hierar-

chies.
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The Formulation of the Spatial and Temporal Priority Metrics.

We first develop a definition of detail (§4.1). We then derive formulations of the
spatial and temporal priority metrics which can be applied in practice to syn-
thesize images which have adaptive detail. The simple spatial metric depends on
distance, it can be extended to allow for atmospheric effects. The simplest form
of the temporal metric allows adaptive updating of moving images. The more
complex versions allow the adaptive approximation of 3-D motion by 2-D image
movement and distortion. There can also be a trade-off between spatial detail
and movement accuracy.
The definition of the abstract data structure which interacts with the metric is
given (§4.4). The use of fractals is discussed as an illustration.

§4.1 Introduction: What is Detail?

This chapter provides a mathematical formulation of the spatial and temporal priority

metrics. These metrics were introduced in Chapter 1 as measures of the importance of

features in the modelled environment to the viewer. The vague but general term ‘‘impor-

tance of a feature to the viewer’’ is now converted to ‘‘amount of detail contributed by the

feature to the image’’. This is more precise, but it is also more restricted.

The tools and background for the formulation we are going to present were given in Chapter

2. The first section presented an aesthetic view which equated realism with a subjective

human sensation of conviction of truth, rather than an objective criterion of physical correct-

ness — verisimilitude rather than veracity. This view was then expanded with an analysis of

perception of nature and artificial display devices.

Chapter 3 was concerned with the issue of modelling animated physical objects in a com-

puter. The discussion was more concerned with general issues than specific data representa-

tions. Physical objects were seen to consist of assemblies of parts. Changing objects main-

tain their identity while changing their state. These features were captured very well by

object oriented programming or actor/message semantics. In this chapter we will make use

of another feature, common to both object oriented and functional programming: abstract

data types. This is a very practical way of specifying the essential behaviour of data types.

These various sources will now be drawn together. However there is a difficulty which can-

not be avoided nor can it ever be completely overcome: a precise definition cannot capture
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all the senses of an intuition. In view of this difficulty we will accept a definition on the

basis of its practical utility. The definitions of the spatial and temporal metrics derived in

this chapter will be tested by the experimental applications of the subsequent chapters.

It would be very difficult to give a complete integrated mathematical theory of the way we

see natural scenes which have been rendered on artificial displays. Aesthetics is not

quantified and many things about human perception are still unknown. The analysis of

visual requirements which follows will therefore be limited to low level vision, sampling

theory and geometry†. This will still provide a number of interesting and applicable results.

By importance of an object we will understand ‘‘the amount of relevant detail’’. This can be

taken as an ‘‘axiom’’ provided the terms used are further defined. The axiom is motivated in

Chapter 2 and restricted by need for a mathematical formulation. The ‘‘axiom’’ requires

two definitions however: A definition of detail and of relevant. The rest of this section is

concerned with defining detail. Relevance is a more qualitative than quantitative concept and

it will be discussed in terms of various criteria for relevance. It will be dealt with in the sec-

tions concerned with the metrics themselves. For the time being we can note (another

interpretation of the drunkard’s world view!) that any detail which is visible can possibly be

considered relevant.

There are at least four interrelated ways in which we can talk about detail which is important

to us, and these will be covered in the next few subsections:

� Detail refers to the spatial scale which we are observing. The smaller the scale the

higher the level of detail (§4.1.1).

� Detail can refer to the spatial and temporal frequencies present in the image. The

higher the frequency the more detail (§4.1.2).

� Detail can also be taken to refer to the information content of the moving picture

(§4.1.3).
����������������

† I am irresistibly reminded of the joke about a drunk who was found crawling about under a lamp-
post by a policeman. Once the drunk had explained that he was looking for his house keys which he
had lost the policeman helped in the search. Eventually, because nothing could be seen, the drunk is
asked whether he is sure he lost his keys under the lamp-post. ‘‘Oh no’’, says the drunk, ‘‘I lost
them somewhere in the dark, but I can only find them by using the light.’’ [I don’t recall the source
of this joke]. The mathematical formulation of the priority metric has not gone quite so far off
course!
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� Detail can also be taken to mean the visibility of contrast in the picture (§4.1.4).

Detail is used to reconstruct the object which produced the image. The more detail the more

accurately we can reconstruct the source of the image. Detail can be destroyed by noise

added to the image by the various processing steps which the image undergoes from source

representation to display (§4.1.5).

4.1.1 Spatial Scale.

Detail can be measured as the apparent size of features in an image. The best way of sam-

pling features of scale σ is by means of a Gaussian with standard deviation σ (§2.4.2). The

level of detail present in an image is limited by the width of the sampling filter. We can

define the detail level or scale of an image feature to be the smallest σ for which feature still

appears in the image when the image is convolved with G (r) = 1⁄2πσ2exp (r/2σ).

Natural images contain information in nested levels of detail (§2.2.1). There is no single

scale which could contain all the relevant information about the scene. If we already have

an image we can create other images a lower levels of detail by convolving the image with

different, wider, Gaussian kernels. The behaviour of features of such an image is illustrated

in figure 4.1 [‘‘scale space filtering’’, Witkin 1983 & 1986].

In order to synthesize an image with such definable levels of detail it would be very useful if

the the various levels of image detail could be directly computed from the three-dimensional

representation.

It could be argued that interesting features of a scene, such as occluding edges, are the result

of physical processes and appear on a number of scales independently in the image [‘‘spatial

coincidence assumption’’, Marr & Hildreth 1980]. When applied to image synthesis we can

say that important features are those which are spatially localized but which exist even at

large scales in the model.

4.1.2 Spatial and Temporal Frequency.

From the discussion of Fourier analysis in §2.3 it is clear that relations in the space and time

domain have equivalent relations in the spatial and temporal frequency domains. Which we

use is a matter of convenience. Clearly the spatial domain argument presented in the previ-

ous subsection can be expressed in the spatial frequency domain as well. Smaller spatial

scales correspond to higher spatial frequencies.
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Figure 4.1.��������� Scale Space Filtering. This diagram shows the effect of decreasing
the detail resolution (from [Witkin, 1983]).

The frequency domain makes it easier to see the trade-off between spatial and temporal

detail. The Fourier analysis of images can be extended to the three-dimensions of 2-D space

and time (§2.3.5). Motion shifts higher spatial frequencies more than low spatial frequen-

cies. Large features are therefore more visible at high speeds if the same band-pass filters

are subsequently applied (§2.4.7).

4.1.3 Information Content of a Moving Picture.

Information theory was developed in the field of electrical signal transmission by Shannon

[Pearson, 1975; Yu, 1976]. It is mainly concerned with communication. The information

content of a message depends on how unexpected it was. Messages with a high probability

carry little information. The viewer centered metric can be cast as a communication prob-

lem as follows:

The combination of (raster) display and the finite bandwidth of the human visual
system constitute a finite capacity communication channel. What is the informa-
tion capacity of this channel, that is, what is the upper bound on the information
which can be transmitted through the channel?

This upper bound on the information which we would want from our three-dimensional

computer representation is not much use. For normal viewing conditions the pixel size of the
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raster display is just not resolvable. The channel capacity is thus determined by our display

resolution and luminance levels. This maximum capacity, in Shannon’s terms, would be

reached for a completely uncorrelated image. Clearly this is not the upper limit in practice

because the human visual system would never be able to decode such an image.

Real images contain multiple redundancies at much larger scales than that of the image reso-

lution, in other words, there is a high correlation between pieces of an image. Because infor-

mation theory depends on knowing the ensemble of values from which the input signals are

drawn this theory cannot easily be applied to images produced from natural scenes [Pearson,

1975]. In order to use Shannon’s theory it would be necessary to replace the original image

with a new image encoding [Yu, 1976]. It is not clear how such an encoding would be

arrived at.

We will therefore not be making further use of Shannon information theory in this disserta-

tion.

4.1.4 Contrast Visibility.

Unless there is some contrast between a feature of interest and its background then that

feature will not be visible. Contrast visibility measures an extreme case: we ignore colour

and grey levels. It is useful in establishing bounds on visibility. It also has the virtue of

being amenable to mathematical analysis [e.g., Gordon & Johnson, 1984].

The observed brightness Bo of an ideal black object at a distance L is solely due to the light

scattered into view between the object and the observer (see also §2.2.3). The solid angle of

the object at the observer is dω. Consider a thin layer of air of thickness dx at a distance x.

An elementary volume along the view path is then: dv = x 2 . dx . dω. This volume element

contributes a certain scattered luminous intensity dI = dv . σε
. A. Where A includes the

influence of the total illumination and of the relative scattering function of dv, and σε is the

extinction coefficient. Actually A could depend on x because of varying illumination or

because of the varying reflectance properties of the ground along the path of sight [Gorraiz

& Horvath, 1983]. A has values of 1.0 in the sun to 0.4 in the shade, while A at an albedo of

∼ 0.9 is 2×A at an albedo of 0.1 (Soil & plant reflectance ≈ 5% and snow ≈ 90%). Both the

scattering function and the extinction coefficient are assumed constant.

The light scattered by the volume element is reduced by a factor depending both on atmos-

pheric extinction (exp ( − σε
. x)) and on the inverse square law (1/x 2). Hence the
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illuminance contribution of dv is

dE = A . σε
.

x 2
e − σεx
����� . dv (4.1)

The brightness of the volume element is (by definition) dB = dE /dω, and from Equation 4.1

this becomes:

dB = A . σε
. e − σεx . dx (4.2)

Integrating Equation 4.2 we get:

Bo =
0
∫
L

A σεe − σεx dx (4.3)

Equation 4.3 gives the brightness of an ideal black target. The brightness of the horizon is

defined as Bh = L → ∞
lim Bo . Thus the contrast of of the black object seen against the horizon

is:

C =
Bh

Bo − Bh
������� (4.4)

If we assume that A is constant then Equation 4.4 reduces to C = − exp ( − σεL). If we

further take a typical value for the contrast threshold of the eye in daylight of 0.02 then we

can deduce the visibility of the black target to be: Vb = 3.9/σε . Horizontal atmospheric visi-

bility ranges from a few metres in fog to ∼ 270 km. for a purely molecular atmosphere.

The minimum requirement for visibility of a feature is that the luminance difference with

which it is encoded lies just above the viewer’s contrast threshold. Therefore if we can show

that the contrast of a feature is below threshold it can be eliminated from further considera-

tion. Further use of contrast thresholds is hampered by the fact that no simple relation exists

between contrast thresholds and grey level discrimination [Pearson, 1975]. However we can

use the form of the above equations for reduction of illumination to extend the usefulness of

the spatial priority metric (§4.2.2).

A further extension of the spatial priority metric can be made by combining the atmospheric

transfer equations with the equations of the eye (as was done by Kaufman [1981], see

§2.5.2). This should be the ultimate aim of the synthesis we are making.
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4.1.5 Noise and Detail.

Producing a picture is a process by which information concerning a three-dimensional

environment is collapsed into a two-dimensional picture of limited resolution. Naturally

information is lost. The viewer reconstructs a representation of the three-dimensional scene

from the information available in the moving picture. This reconstruction is complicated by

the presence of noise. This noise may have no connection with the scene (e.g. random

noise) or it could have had its origin in features of the scene which are being misrepresented

(e.g. aliasing effects). On the whole the eye is remarkably tolerant of noise, provided the

noise energy is randomly distributed. This is the perceptual basis for stochastic sampling

which can be seen as a way of converting the coherent errors of aliasing into random noise

[Cook, 1986].

To produce good pictures we need not attempt to exclude all noise, the hazard only really

lies with correlated noise. Such correlated noise can result from attempting to render

unresolvable detail. We are going to define a detail metric. Its function is to limit extrane-

ous detail. However, as long as the extra detail does not cause unwanted artifacts in the pic-

ture (like jagged edges or scintillation of moving objects) it causes no reduction in picture

quality, although it probably reduces the efficiency of computer rendering routines.

4.1.6 Conclusion.

We have examined a number of definitions of detail. The most promising for practical

implementations seems to be that of spatial scale (§4.1.1), especially if we avoid aliasing

effects in the way described in §4.1.5. The Fourier description (§4.1.2) will underpin our

theoretical analysis. We shall not be making much use of information theory and the ideas

from §4.1.4 on contrast visibility, integrated with an account of human vision, will only be

used in extensions to the spatial priority metric.

We shall now derive the spatial priority metric (§4.2) and the temporal priority metric

(§4.3). In §4.4 we show how well these metrics are suited to the abstractions of object

oriented programming. The last section (§4.5) reviews the results of this chapter.
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§4.2 The Spatial Metric.

The static spatial metric measures the extent to which extraneous detail can be dispensed

with, or equivalently, the extent to which high spatial frequencies will be attenuated. In a

sense spatial filtering is applied directly to object representations. In this section we shall

see that the static priority of an object is inversely proportional to the width of its spatial fre-

quency spectrum as modified by the various imaging operations (§2.5.2).

For example: the atmospheric modulation transfer function (MTF — §2.3.3.2) is combined

with the eye MTF of the supposed viewer [Kaufman, 1981]). Finally, allowance is made for

any limitations in the imaging apparatus, such as it being a raster display.

This is therefore more than the usual anti-aliasing in two ways:

(a) anti-aliasing tends to account only for the MTF of the raster display, and

(b) we want to reduce spatial detail in the 3-D representations and not just in the projected

image, so as to get the full computational benefit from these approximations.

The priority metric should measure the importance of the object to the viewer and not its

size on the image. Geometrically, it is the solid angle subtended at the synthetic camera

which is important (§2.1.1). That solid angle, or equivalently projection on the unit sphere,

is dependent on the true Euclidian distance and this distance is used to calculate spatial

priority. As we have seen in §2.1.1 for small viewing angles there is not much difference

between the perpendicular distance to an object from the image plane and the radial distance.

We can therefore approximate the radial distance by the perpendicular distance in such

cases.

The priority dependence on distance can also be explained by considering the spatial fre-

quency domain of the Fourier transform (§2.3.3 & [Bracewell, 1978]). Let f (ξ,υ) be an

object and e (x,y) the observed effective image, let the corresponding Fourier transforms be

F (ν, ω) and E (u,v). According to the previous argument we measure x & y as angular dis-

placements. x = 2arctan(ξ /2ρ) where ξ is one of the spatial coordinates measured in meters

and ρ is the distance to the image. If ρ >> 1 then we can approximate x by ξ /ρ. So:

e (x, y) = f (ρx, ρ y) (4.5)
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where ρ is the distance to the image f (xi, υ) and ρ >> 1. The scaling in space produces an

equivalent scaling of the Fourier transform with:

E (u,v) =
ρ2

F
�
�
� ρ

u�� ,
ρ
v��

�
�
����������� (4.6)

This shows how the receding figure has its frequency spectrum spread out over a larger and

larger width of frequencies. When low-pass filters subsequently process this image less

detail will be passed since detail is concentrated in the shifted higher frequencies.

Apart from the purely geometrical matter of perspective projection image formation is the

result of convolution. Many low-pass spatial filtering processes in cascade occur in any

image formation system (§2.3). The result of successive convolution is normally to spread a

function out: the variance of the convolution of two functions is equal to the sum of the vari-

ances of the functions. In fact, as the number of functions convolved together increases

indefinitely the result approaches the smooth Gaussian form (Central-limit theorem) pro-

vided the transforms are ‘‘humped’’ at the origin.

This generally results in the image being smeared out and losing more and more of its

interesting features which are in the high spatial frequencies associated with edges. To

demonstrate this blurring would require a grey level display.

The low-pass filters can be (crudely) approximated on black/white displays by choosing not

to display features smaller than some threshold. The cutoff being determined by the

apparent area of the feature in the image. In frequency terms we cut the image if a charac-

teristic spectral width [Bracewell, 1978] exceeds a limit derived from our priority metric. If

we replace the spectrum of our real (even) images with a box which has the same height as

the central ordinate of the spectrum and the same volume, then its width is related inversely

to the area of the image, if we assume the image is of uniform brightness. That is, the width
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of the spectrum is:

E (0,0)
− ∞
∫
∞

− ∞
∫
∞

E (u,v) du dv
����������������� =

− ∞
∫
∞

− ∞
∫
∞

e (x,y) dx dy

e(0,0)
���������������� (4.7)

=
image area

1
���������� (if the image is uniform)

4.2.1 The Simple Version of Spatial Priority.

The simplest measure of priority of a feature is to measure its lowest spatial frequency in the

image. From the preceding discussion this is proportional to its size and inversely propor-

tional to the distance of the object from the synthetic camera.

The precise meaning of size depends on the extent to which human spatial frequency detec-

tors are orientation specific. If there is averaging over all orientations of spatial frequency

then the square root of the area would be a good measure of priority. If the receptors are

highly tuned to a specific orientation then using the object’s largest dimension is a better

measure of size. In practice this has not mattered much since the priority needs only to be a

minimum measure of visibility not an accurate one. The priority of an object is determined

when its modelling transformation is applied.

The metric is applied by calculating the distance to the object at each frame. In the simple

case the object is not displayed if its priority is less than the distance (§5.1.2).

4.2.2 Extensions to the Spatial Priority Metric.

The presence of the atmosphere causes loss of higher spatial frequencies. The effects are

also stronger in red wavelengths of light. The effect can be approximated by applying a

small exponential weighting to the distance used in the priority calculation (see §4.1.4).

The sharp cut off of features below the resolution limit can cause scintillation in moving

objects. On a grey level display these effects can be minimized by using anti-aliasing tech-

niques. The simplest of which is to proceed to sub-pixel resolution and fade the object. This

fading of small objects is a form of adaptive supersampling. Supersampling, i.e., increasing

in the sampling frequency, is simply a way of increasing the frequency at which aliasing
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effects occur (§2.3.4) it does not eliminate aliasing.

The effect of spatial priority cut-off on extended objects is to cause them to be sampled more

and more crudely. In this case supersampling only delays the onset of aliasing and does not

prevent it. There are probably three ways to avoid aliasing in this case:

� Filter the image of object with a low pass filter before rendering. This approach is use-

ful when the object in question can be represented (implicitly) at different resolution

levels.

� Use stochastic sampling [Cook, 1986] to replace the aliasing with random noise, which

is much more acceptable visually.

� If neither of these approaches are possible the single priority figure for an object must

be replaced by a function which depends on the local curvature. This will then result

in adaptive sampling of the surface.

§4.3 The Temporal Metric.

The temporal metric is much more elaborate than the spatial metric, it encompasses several

different orders of effect. The simplest view of the temporal metric is the directly analogy

with the spatial metric: Objects moving quickly with respect to the observer need to be

redrawn more often than those at relative rest. Because two-dimensional motion of the

display screen is much simpler than three-dimensional movement in space the next feature

which can be measured is the extent to which a particular three-dimensional motion may be

approximated by an image transformation. Finally, because of the possible trade-offs

between spatial and temporal detail, there is the question about the extent to which spatial

detail can be sacrificed in fast moving images.

4.3.1 The Simple Temporal Metric.

The relative speed with which an object is moving with respect to the unit sphere surround-

ing the observer determines the extent to which its image changes from frame to frame. If

there is no movement it need not be rendered again. This is the familiar concept of frame-

to-frame coherence. Although this idea is easy to state and the formulation is trivial it is

often difficult to apply in practice because of computational difficulties.
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When objects in an animation are modelled as actors (in the sense of representing auto-

nomous threads of control) then the temporal priority can be thought of as being the process-

ing priority of the actor computational process. The priority of a real-time computer process

is usually unchanging. However, consider a relatively slow moving object. If we don’t

update its position in one frame then by the time the next frame is rendered the error in its

position will have increased. Thus the temporal priority of an actor slowly increases at a rate

proportional to its relative speed, until the actor is rendered.

The temporal priority of an object is therefore best formulated as the relative distance moved

with respect to the camera since the last update of the image of the object.

4.3.2 Two-Dimensional Approximation to Three-Dimensional Motion.

The generation of images which represent the stages between two configurations of a scene

is known as in-betweening. Generally the automatic generation of in-between images

requires a full simulation of the three-dimensional geometry of the scene. In only a few

cases can we replace the full simulation of three-dimensional motion with changes defined in

the two-dimensional image.

Some examples of 2-D transformations which accurately reflect 3-D movements are:

� Rotation of the object (or camera) about the view direction is simply a rotation in the

image plane.

� Movement of an object in a great circle about the camera (or camera pan or tilt) results

in a simple translation of the image (for small viewing angles).

� Small movement directly towards the camera results in magnification of the image.

The general transformation of an image includes a combination of these effects as well as

image shear. There is no simple linear interpolation which can in general transform one pro-

jected image into another without doing visible violence to the accuracy with which three-

dimensional motion is being rendered [Burtnyk & Wein, 1976].

The optic flow field (§2.2.2) does provide an estimate of the extent to which a three-

dimensional motion can be approximated by two-dimensional movement. We shall consider

those areas over which the optic flow field is a smooth function of position.
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4.3.3 Decomposing the Optic Flow Field.

We shall first establish a few elementary results. The general references were given in

§2.2.2, the specific notation used here is largely that of Buxton [1984]. Consider an ideal

pin-hole camera. A set of three-dimensional observer coordinates are chosen with the origin

at the pin-hole and the z-axis pointing along the direction of view. The re-inverted image

plane is fixed at z = l with normal k ( k being a unit vector in the z-axis direction). We

shall indicate an object point with the vector R = (X, Y, Z), and an image point with the

vector r = (u, v, l). (See Figure 4.2). The familiar perspective projection equation is then:

l
r
�� =

Z
R
��� (4.8)

y

xr

l

O

Z

R

y

x

z

Figure 4.2.��������� Perspective projection of a re-inverted pinhole camera. The centre of
projection is at the origin, O. Z is the optic axis. The image plane is on the
same side as the object viewed.

If R is a function of time then:

dt
dr��� = r. =

Z
l R

.
���� −

Z 2
l RZ

.
����� (4.9)

but R
.

= ΩΩ×R + V, where ΩΩ is the angular velocity of the (rigid) object about the origin and

V is its velocity due to translation, and Z
.

= k . ΩΩ×R + k . V is the projection of R
.

on the Z-

axis. Now, eliminating R with Equation 4.8, we can write the equation of the optic flow
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field:

r. =
Z

l V − (k . V)r
������������ + ΩΩ×r − [k . ΩΩ×r]

l
r
�� (4.10)

One feature of this result is that it can be split into a (first) translational part which depends

on Z, the depth, and a rotational part which is independent of depth. Information on 3-D

structure is all contained in the translational part.

If we write r0 for the image of the point towards which we are moving then:

r0 =
k . V
l V
����� (4.11)

Substituting Equation 4.11 in 4.10 and taking the case of pure translation (i.e., ΩΩ = 0) we

get:

r. = − (r − r0)
Z

k . V
����� (4.12)

If V is fixed then image points (texture elements) move away from r0, which is called the

focus of expansion for that reason. The speed of the texture elements is proportional to their

distance on the image from the focus of expansion and to their depth (see Figure 2.3).

The optic flow field r. (Equation. 4.10) is a smooth function over r and t only if V , ΩΩ and Z

are smoothly varying. If we assume we are dealing with freely moving rigid bodies then the

flow field will be segmented into smoothly varying patches. The boundaries of these patches

occurring where there are depth discontinuities or where one object occludes another, or

moves faster than another.

Up to now we have used a general vector notation for optic flow. For the purposes of com-

putation we fix on a rectangular coordinate system, and write xn = (x 1, x 2, x 3). The vector

product (a×b)i = εimn am bn , where we use the summation convention that repeated indices

are summed over all possible values and where εijk is the permutation symbol (εijk = 1 for

even permutations, −1 for odd permutations, and 0 if any indices are equal). The indices

i, j & k range over 1 & 2 only and the other indices, m & n, range over 1, 2 & 3. The

Kronecker delta, δij is 1 if i = j and 0 if i≠ j.
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We can then rewrite equation (4.10) as:

r. = vi =
X 3

l Vi
���� −

X 3

V 3 xi
����� + εimnΩmxn −

l
xi
���ε3mnΩmxn (4.13)

In the analysis which follows we shall need the derivatives of the optic flow field. The par-

tial derivatives (i.e., covariant derivatives in a rectangular coordinate system) with respect to

x and y of the optic flow field are the following second order tensor:

∂x j

∂vi
���� =

X3
2

− l Vi + V 3 xi
������������

∂x j

∂X 3
���� − εijm Ωm +

l
xi
��� ε3 jm Ωm (4.14)

− δij
�
�
� X 3

V 3��� +
l

ε3mn Ωm xn����������
�
�
�

To derive this equation we have made use of the following results:

∂x j

∂���� (εimn Ωm xn) = − εijmΩm

∂x j

∂���� (xiε3mnΩmxn) = − xiε3 jmΩm + δij ε3mn Ωm xn

Finally, the second derivative of the flow field w.r.t. the image coordinates is:

∂xk ∂x j

∂2vi������� =
�
�
� X3

2

l Vi + V 3 xi����������
�
�
�

�
�
� X 3

2���
∂x j

∂X 3����
∂xk

∂X 3���� −
∂xk ∂x j

∂2X 3�������
�
�
�

(4.15)

+ δij
�
�
� X3

2

V 3���
∂xk

∂X 3���� +
l

ε3km Ωm��������
�
�
�
+ δik

�
�
� X3

2

V 3���
∂x j

∂X 3���� +
l

ε3 jm Ωm��������
�
�
�

In this sub-section we have derived the Optic Flow Equation (4.10 or 4.13), with its associ-

ated focus of expansion (4.11). For smooth flows we then found the 1st partial derivative

(4.14) and the 2nd partial derivative (4.15) with respect to the image coordinates. These

equations will be used to define 0, 1st and 2nd order optic flows.

4.3.3.1 First Order Effects of the Optic Flow Field.

The derivatives only apply to the flow field to the extent that the underlying surface is

smooth and rigid (although recently some work on bending deformations has appeared:

[Koenderink & van Doorn, 1986]). If we apply these equations to a plane moving in three-

dimensions we should be able test the applicability of the flow field decomposition to
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animation.

If we want to apply optic flow in image synthesis it is useful to express the 1st partial deriva-

tives w.r.t. image coordinates (4.14) as a composition of three separate terms:

A. An Isotropic term — represents expansion/contraction of elementary patches of the

flow field.

B. A Traceless Symmetric term — embodies shear.

C. An Antisymmetric term — contains the rotation component.

These terms would then measure the rate at which transformations applied to differential

planar facets change. The basic two-dimensional transformations mentioned above (i.e.

excluding translation) can be expressed by 2 × 2 matrices.

The tensor
∂x j

∂xi
���� from equation 4.14 can be written out as a 2 × 2 matrix:

�
�
�
�
�
� ∂x

∂ y.���
∂x
∂x.���

∂ y
∂ y.���
∂ y
∂x.���

�
�
�
�
�
�

= (4.16)

�
�
�
�
�
� Z 2

−lV y + yVz����������
∂x
∂Z��� +

l
y��Ω y + Ωz

Z 2

−lVx + xVz���������
∂x
∂Z��� −

Z
Vz��� +

l
2x���Ω y −

l
y��Ωx

Z 2

−lV y + yVz����������
∂ y
∂Z��� −

Z
Vz��� +

l
x��Ω y −

l
2 y���Ωx

Z 2

−lVx + xVz���������
∂ y
∂Z��� −

l
x��Ωx − Ωz

�
�
�
�
�
�

These can be written as changes to scaling, shear and rotation by splitting the matrix up as

follows:

�
� c

a
d
b �

� =
2
1�� �

� b+c
2a

2d
b+c �

� +
2
1�� �

� c−b
0

0
b−c �

� (4.17)

symmetric antisymmetric

=
2
1�� �

� 0
a+d

a+d
0 �

� +
2
1�� �

� b+c
a−d

d−a
b+c �

� +
2
1�� �

� c−b
0

0
b−c �

� (4.18)

scaling shear spin
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In order to apply these transformations we still need to derive the basic image transformation

to which these corrections can be applied. This basic transformation depends on the type of

surface being rendered (e.g., plane, quadric etc.). These considerations will be left to the

actual implementation when such details are known (§7.2.2).

4.3.3.2 Power Series Expansion of the Optic Flow Field.

Any smooth surface patch can be described as a Taylor series expansion in terms of distance

in a given direction. If we take the direction to be the line of sight, i.e., the Z-axis, then the

distance is the depth Z and we can write [cf. Koenderink, 1986; Waxman & Ullman, 1985]:

Z = Z 0 + X
∂X
∂Z
���

|
|
|

|
|
|0

+ Y
∂Y
∂Z
���

|
|
|

|
|
|0

(4.19a)

+
2

X 2
���

∂X 2
∂2Z
����

|
|
|

|
|
|0

+
2

Y 2
���

∂Y 2
∂2Z
����

|
|
|

|
|
|0

+ X Y
∂X∂Y
∂2Z

������
|
|
|

|
|
|0

+ ...

The zero order term (Z 0) determines the position of the patch. The two first order terms

specify the orientation (slant and tilt). The second order terms give the curvature of the

patch.

Because of the perspective projection equation (eqn 4.8) we can also write:

Z = Z 0 +
l

x Z
����

∂X
∂Z
���

|
|
|

|
|
|0

+
l

y Z
����

∂Y
∂Z
���

|
|
|

|
|
|0

(4.19b)

+
2 l 2

x 2 Z 2
������

∂X 2
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If we now substitute the first few terms of Equation 4.19a for all Z in Equation 4.19b, and

collect terms in x & y up to a power of two we get:
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However expansion can equally well be given in terms of the image coordinates, so then we

have:

Z ∼∼ Z 0 + x
∂x
∂Z��� |

|
|

|
|
|0

+ y
∂ y
∂Z��� |

|
|

|
|
|0

+
2

x 2���
∂x 2
∂2Z���� |

|
|

|
|
|0

+
2
y 2���

∂ y 2
∂2Z���� |

|
|

|
|
|0

+ x y
∂x∂ y
∂2Z����� |

|
|

|
|
|0

(4.19d)

Then equating powers of x & y of Equation 4.19d with those in Equation 4.19c we get the

following relations:
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These relations allow us to express image transformations in terms of geometrical properties

of surfaces. The various Taylor series terms (distance, orientation, curvature, etc.) can now

be used to specify local optic flow (or motion parallax) effects — 0, 1st, 2nd, ..., order optic

flow effects. This is important in that it expresses the optic flow measure in object coordi-

nates.

The derivatives derived above for the optic flow field (Equations 4.13, 4.14 & 4.15) can now

be used for a Taylor series expansion of the optic flow field about a given direction. More-

over, by substituting the relations of Equation 4.20, these can be expressed in terms of the

object geometry and motion. For planar objects these relations are not needed because we

can use the equation of the plane (R−R0) . N = 0 together with the perspective projection

equation (Equation 4.8) to eliminate Z from the optic flow equations [Waxman & Wohn,
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1985] — see §7.2.2.

Zero order optic flow is uniform motion in the image plane. The zero order flow has two

terms (vx, v y) given by Equations 4.10 or 4.13. It accurately accounts for translation

parallel to the image plane and rotation about axes in the image plane.

First order optic flow effects are the dilation, spin and shear transformations of Equation

4.16. It is particularly useful for graphics since such affine transformations can be

implemented efficiently. If second order effects are small then these transformations

account for the optic flow of a surface.

Second order optic flow (Equation 4.15) provides the gradients of the 1st order description.

Second order optic flow exactly describes the flow of planar patches. It can be

regarded as a truncated Taylor series approximation to the flow produced by a quadric

surface patch. For such a patch it has a small but finite radius of convergence.

We have seen that 3-D movement of a surface can be analysed as movement of the features

in the corresponding Taylor’s expansion as projected onto the image plane. In the case of a

planar object the only non-zero terms are the distance (zero order) and orientation of the

plane (1st order). Such planar patches do not induce optic flow effects above 2nd order (see

§7.2.2).

For more complex surfaces one can either go on to higher order terms or, more practically,

build these surfaces with facets which are much simpler. Alternatively we can note that the

deformations of first order optic flow (Equation 4.16) apply to small patches and/or short

time spans. We can then use the temporal metric to indicate the extent of validity of the

approximations. These approximations can then be used for short stretches until the

estimated error becomes too large. The full equations for projected 3-D motion can then be

applied to correct any errors and a new cycle of approximation can then be initiated.

4.3.4 Influence of the Temporal Metric on Spatial Detail.

We have already seen from Fourier analysis that motion can shift high spatial frequencies

(§2.3.5) to the extent that they become invisible §2.4.7). We have also mentioned that there

seem to be two kinds of processes operating in the perception of visual apparent motion, one

at high frame rates and another at lower frame rates, but that there is no unanimity about this

amongst researchers in the field (§2.4.6).
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The short range process is said to operate at high frame rates. It is also a truism of animation

that realistic motion can compensate for crudely drawn pictures, indicating perhaps that the

higher level cognitive process is also at work here. Unfortunately such effects are hard to

quantify. This is a case in which experimental determination of parameters might be more

useful than mathematical analysis.

A simple experiment along these lines could be comparing the effects a quick rendering

method for fast moving objects and slower, but more detailed, rendering method for slower

moving objects. One important property of such a fast rendering method has to be that it

does not cause small details to disappear altogether. The sudden appearance and disappear-

ance of even very small detail is very obvious, indicating that low resolution objects should

be low-pass filtered.

4.3.5 Conclusion.

The spatial metric is used to reduce the levels of detail required from a representation to the

minimum required for conviction. It depends primarily on distance, but it can also be

weighted to allow for atmospheric effects and human visual characteristics.

The temporal metric measures the ways motion influences the relative visual importance of

objects to the camera. The temporal metric aims at:

1) a reduction of the rate at which moving images have to be updated,

2) a reduction in the extent to which moving 2-D images have to be recomputed from the

underlying 3-D representation.

3) a reduction in the spatial detail of fast moving images.

Only the relative motion of an object with respect to the observer influences temporal prior-

ity. This is another expression of our general principle of viewer-centredness. Thus it is

more profitable to speak, not of the motion of the camera, but rather of the optic flow field of

the environment about the camera.

The optic flow field can be split naturally into a hierarchy of effects, 0, 1st, 2nd, etc., order

flow. Using these various orders of optic flow we can approximate 3-D projected motion

with 2-D image transformations in a predictable fashion. The magnitude of the neglected

terms provide an estimate of the error of neglecting them and the higher order terms. In
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Chapter 7 this concept will be more fully developed. The temporal metric will then be seen

to be a measure of frame-to-frame coherence (§7.2.2). The temporal metric is not just a sin-

gle number — it is hierarchy of terms.

§4.4 Data Types.

The definitions of the various detail metrics have now been derived. In this section we will

state a few general principles which govern the application of the metrics to object models.

We shall first examine how variable detail representations would interact with the metric

(§4.4.1) and then present the general type of abstract interface such data structures will

require.

4.4.1 The Prototype of a Variable Detail Data Structure: Fractals.

Fractals can be generated with increasing detail. This results in a process which is a reversal

of the way scale space filtering is done. Fractals of increasing detail can be synthesized

adding higher and high spatial frequencies to a picture (see Figure 4.3). Because of the way

they are generated we can also guarantee that high frequencies are absent. Thus low-pass

filtering is inherent.

Unfortunately the Fourier synthesis method requires that all the levels of detail be precom-

puted. Increasing detail is cheaper with other methods which are less accurate approxima-

tions to true fractals. The ideal data representation would be recursive. That would mean

that at any particular spatial patch the amount of detail could be increased to the required

level for the spatial priority of that location. As we have seen (§4.2.4) the generation of

extra detail could stop once the typical dimensions of the patch were below the spatial prior-

ity indicated by the metric.

4.4.2 Data Types Required for Adaptive Detail Animation.

Three basic classes of object are required to produce an animated picture with adaptive

detail:

� A Camera which can render shapes in perspective on the display.

� Actors which contain the basic motion and geometric information.

� An Appearance type which mediates between the underlying model and the Camera in
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Figure 4.3.��������� Increased detail by further generation of a fractal. Compare with the
figure 4.1. (From [Voss, 1985]).

order to produce an adaptive rendering depending on the priority metrics.

Naturally many more classes would be involved, but these are the ones which directly parti-

cipate in the application of the spatial and temporal metric. Of these types the Appearance

plays a central role. It is a part of the Actor in the sense used in Chapter 3. However it is

part which can be handed out to the Camera as a message parameter. If we did not have such

a type then the Camera would have to interact with all the different Actor types by means of

a standard primitive representation.

In the case of the static metric the Appearance is handed to the Camera once the Actor’s

position in the coordinate space of the Camera is known. The Appearance can incorporate

information about the way the Actor looks which is tuned to the specific circumstances,

including of course the spatial priority. An Actor can have many varieties of Appearance,

depending on how it is to be rendered, e.g. wireframe or shaded.

In the dynamic case the Appearance is handed to the Camera once an Actor has performed

all updating for the particular time step which has to be done whether the Actor is displayed

or not. The Appearance thus signals completion of processing and can be used to ensure that
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Actors have terminated before rendering proceeds. The Appearance will maintain a link

with the Actor in this case since the Actor may need to know whether it has in fact been ren-

dered or not.

The Appearances embody the spatial and temporal detail metrics. They are used to specify

salient features about the Actor relative to the Camera before the Actor is actually rendered.

This discussion has served to give a qualitative outline of the specifications of the abstract

data types needed in adaptive detail rendering. These ideas are further worked out in

Chapters 5, 6 and 7. Finally in the conclusion, §8.1.3, the progression of ideas culminates in

a general methodology. As a postscript Appendix D contains some proposals for using these

abstractions in concurrent animation.

§4.5 Conclusion: Practical Priority Metrics for Animation.

The spatial and temporal metric measure the amount of relevant detail in an object (or

Actor). The definition of detail in terms of spatial frequencies is favoured for analysis, and

this allows us to discuss the various stages of processing filters or convolutions of the spec-

trum of an object.

The practical implementation of the metrics does not depend on this kind of Fourier

analysis. Instead we derive simple measures and constructive definitions. The spatial metric

is a weighted distance to the object, where distance can be either the radial distance from the

viewpoint or the perpendicular distance from the image point. The spatial metric is always

weighted, the weighting allows for Camera viewing angle, display characteristics, and can

be extended to include atmospheric effects, etc.

The temporal metric is more complex. In its simplest form it can also be expressed as a sin-

gle measure: radial speed of the object with respect to the synthetic camera. Once again the

option exists to take the velocity as projected on the unit sphere (true radial velocity) or as

projected on the image plane.

More complex forms of the temporal metric depend on optic flow decomposition. In the 1st

order case we get a 2 × 2 transformation matrix which measure the rate of change of the

two-dimensional image transformation. This measure is quite general: it applies to all sur-

faces, at least to some approximation, in exactly the same sense as a normal Taylor
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expansion. However, its application depends on the kind of surface being modelled (§7.2.2).

To encapsulate the various ways in which the priority metrics interact with objects we define

the interaction in terms of an abstract data type: the Appearance. The Appearance mediates

between an Actor (or object) and the synthetic Camera. The Actors can have any underlying

data representation and the Camera a number of different rendering options. The Appearance

calculates the various priority measures based on the relative states of the Actor and Camera.

The correct data can then be extracted and presented to the chosen rendering mechanism.

Summary of the Metrics.

1) Spatial priority metric:

� Limits detail via a single measure depending on distance.

� Extended to allow for atmospheric and perceptual MTF.

2) Temporal priority metric:

� The measure for adaptive processing and updating is the relative distance moved

since the last update, or, the order of optic flow transformation which has to be

done.

� In order to replace 3-D motion with 2-D transformations it measures various ord-

ers of optic flow effects (0, 1, 2, ...).

3) Trade-offs between spatial and temporal detail:

E.g. less detail needed in fast, blurred objects.

4) Abstract Data Types:

� The various actors and synthetic cameras are implemented as classes with a fixed

interaction protocol.

� Interaction between Actors and Cameras is mediated by an Appearance. This

abstract data type encapsulates the priority metrics.

This concludes our formulation of the spatial and temporal priority metrics. The experimen-

tal tests of the metrics will now be presented.
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Chapter V

The First Experiment:
Using the Static Metric on a Model with a Non-Uniform Hierarchy.

A stick figure, which has a non-uniform hierarchical structure, was chosen for
the first implementation. This prototype was implemented in Smalltalk which
had been extended to include a part-whole (assembly-subassembly) hierarchy.
This experiment provided a test of some key aspects of the static (spatial) prior-
ity metric formulated in the previous chapter. The resulting costs and benefits
have been analysed (§5.3).
This experiment also provided an opportunity for critically examining the object
oriented programming paradigm as exemplified by Smalltalk, some results have
already been discussed in Chapter 3.

§5.1 Discrete Detail and a Continuous Metric.

As a first test of the operation of the metric a simple implementation of a stick figure was

used. Such a stick figure has a non-uniform hierarchy of parts making up wholes. The levels

represented discrete unequal changes in detail. The device chosen for displaying the

animated figures in this first implementation was a simple black/white display without grey

levels.

Stick figures were chosen because they are easily drawn on a display which lacks grey-

levels. They are more challenging than many other hierarchical models with respect to the

priority metric because the levels of detail are not equally spaced nor are the figures

infinitely divisible (as fractal representations are).

The intention is to demonstrate the adaptive detail display, and not primarily to create realis-

tic pictures. The low-pass filters are crudely approximated by choosing not to display

features smaller than some threshold. The cutoff was determined by the apparent area of the

feature in the image. In frequency terms, we cut the image if a characteristic spectral width

exceeds a limit derived from our priority metric. The relation between frequency and the

apparent size of spatial detail has already been investigated theoretically in the previous

chapter (§4.2).

The reader is no doubt aware that simply cutting out a feature when it reaches the resolution

limit could cause distracting ‘‘boiling’’ or scintillation effects in an animated sequence

where a part of a figure moves continually in and out of resolution. This can be avoided for
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such figures by choosing part priorities so that a feature only disappears when it already has

sub-pixel size. In this case the metric should in fact reduce scintillation because for sub-

pixel sized objects some sampling schemes record alternate hits and misses on a minute

object as it moves. By using the priority metric these occasional hits are prevented. Since

the target display (a standard Smalltalk display) does not allow shading this is probably the

best we can do. In §5.4.1 some consideration is given to the case where a shaded display is

available.

5.1.1 The Hierarchical Representation of a Stick Figure.

When viewed at the coarsest resolution or from far away, the human body can be

represented by a single upright cylinder [Marr & Nishihara, 1978, Clark, 1976]. Thus previ-

ously also Leonardo da Vinci [MS E 80v, (∼1513) in MacCurdy, 1954, p349.]:

Thus with a horse, it would lose the legs sooner than the head because the legs
are thinner than the head, and it would lose the neck before the trunk for the
same reason. It follows therefore that the part of the horse which the eye will be
able last to discern will be the trunk, retaining still its oval form, but rather
approximating to the shape of a cylinder, and it will lose its thickness sooner
than its length ...

Making the shape a sharp edged cylinder is a further simplification which neglects the loss

of high spatial frequencies which cause the ‘‘cylinder’’ to be rounded. At the next level of

resolution, when the body is being viewed from somewhat closer by, we have a collection of

attached cylinders representing the torso, head, arms and legs. At still closer approach, the

hands and feet, fingers, toes, and features of the face would become visible. So to represent

the body at each of these distances, successively more complex models are needed. These

models can be organized in a hierarchical list (Figure 5.1).

We need not go through all features of an object to identify and represent each possible level

of detail. This means, for example, that we need not necessarily organize the features of the

face into a separate hierarchy. The features could be incorporated into one of the higher lev-

els, such as the head as a whole, and we could depend on the rendering mechanism to

‘‘filter’’ out the extraneous detail.

Using an object oriented approach to modelling has the advantage that the parts which an

object possesses need not actually be represented as such in the object (§3.6.3). The internal

implementation of the object is hidden behind the object’s interface protocol. The only

requirement is that the object respond correctly to messages which address the part. This

allows great freedom for dealing with special cases. A particular object is free to possess
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Level  0 Level  1 Level  2 Level  3 Level  4

Figure 5.1.��������� The hierarchy of levels of detail in representing a human figure. Lev-
el 0 is an unstructured ‘‘blob’’, while level 4, which is represented on the di-
agram only by an elaboration of the hand, is much more detailed (based on [Marr
& Nishihara, 1978]).

phantom appendages which represent anomalous detail structures that appear occasionally.

Up to now we have been talking of a hierarchy of levels of detail. When an object is

modelled we get a different kind of hierarchy: the modelling hierarchy. A modelling hierar-

chy records the way complex objects are built up out of simpler parts. When animating

natural figures consisting of rigid limbs connected by joints it is usual to model a figure as a

tree of dependent parts. This is in general not possible for artificial objects where mechani-

cal feedback loops necessitate more complicated structures, but such objects do not concern

us in this study.

It is vital too to note that the modelling hierarchy for a stick figure is very similar to the

detail hierarchy. The human body can be modelled as a tree of parts, the root of which is the

torso and the parts are the chest, head, upper arm, forearm, hands, thigh, lower leg, foot, etc

(Figure 5.2). While this hierarchy is not the same as the visibility list, it is closely related in

that parts at lower levels of the tree are also generally smaller.
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middlePhalanx
↑

middlePhalanx
↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑
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↑

distalPhalanx
↑

fourthToe
↑

littleToe
↑
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↑
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↑
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↑
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↑
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fourthToe
↑
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Figure 5.2.��������� The part hierarchy for the stick figure. The boxes contain the name
of the part and below it the class to which the part belongs. This is a component
hierarchy, but it is very similar to the detail hierarchy in Figure 5.1.
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This result applies to large class of living things. They can often be represented by general-

ized cylinder figures with extremities of ever decreasing size. Marr & Nishihara [1978] con-

tains illustrations of a pipe-cleaner rabbit, giraffe, ostrich and so forth. It can be conjectured

that being able to describe the figures in this way is a combination of ontogenesis (artifacts

can always have big bits tacked on) and of size (insects do not seem to have such a simple

relation between distance from the ‘‘torso’’ and limb size).

5.1.2 Using the Priority Metric with a Stick Figure.

We shall now examine the way the priority of an object is actually calculated and the way in

which the calculated priority interacts with the hierarchical representation in order to vary

the detail of the figure to be displayed.

The detail hierarchy deviates from the object hierarchy in the treatment of parts which lie at

the lowest level of detail which is still visible. Parts thus have two guises: They are internal

nodes when there are other, smaller, parts which can still be resolved. When a part is itself

the smallest resolvable object in its sub-tree then it is said to assume its leaf appearance.

Generally, and by default, the leaf appearance is the same as the internal node appearance,

but it can differ. This differing leaf appearance is to allow for the effects of blurred nodes

lower in the hierarchy, but it can only accurately be used when there is only one dependent

node (unary sub-tree, as with the elbow joint or finger joints), but this is also where it is most

needed.

The priority (P) of a part is the square-root of the maximal cross-sectional area which its

‘‘leaf’’ appearance can present. In practice the ‘‘leaf’’ appearance is empirically determined

and is mostly the same as the internal node appearance. In frequency terms we are assuming

that the frequency spectrum is circularly symmetric and its width can be represented by a

single number (see also §4.2.1).

The precise definition of the priority is not that important at this stage provided it can con-

sistently be applied and provided it ensures that sufficient detail is provided to the camera.

Thus for stick figures a simple measure which depends only on the maximum dimension (the

length) of a part could also be used.

Each part has a range ( R), which is the maximum distance by which its extremes or the ends

of its parts can move while it rotates in one place. This is essentially a spherical bound on

its position. More precisely: if the sub-parts are at distances xi from the proximal joint of
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the part in question and if the ranges of the sub-parts are ri where i is the index of the sub-

part, then the range R of a part is the maximum of xi+ri or the length of the part itself if that

is longer. The range is independent of the higher levels of the hierarchy of a part (which it

need not know about in any case).

Distance ( d) is measured from the camera and weighted for viewing angle (or magnification

m) and display resolution. The rendering algorithm then only descends the hierarchical

model up to the level where (object priority + range) becomes less than the

magnification*distance.

In symbols:

if P + R > md then display part.

For any particular object the extent to which its complexity drops off with distance depends

on its structure. For the human figure used in the experiment the choice of priorities, deter-

mined by means of areas as outlined above, resulted in the number of parts dropping off

more or less with the square root of the distance, for those distances over which the figure

was visible.

§5.2 Implementing the System of Priorities.

The advantages of using Smalltalk for the initial implementation is discussed in Chapter 3

(§3.3.1). In order to include an object hierarchy and still retain the spirit of modularity,

object-oriented languages should be extended to support part-whole relationships (see §3.4).

As far as modelling an animated figure the above mentioned sections may be summarized as

showing that once object oriented languages, with their simulation (Simula) pedigree, are

extended to include a part-whole hierarchy they become ideal choices for animating natural

environments.

Coordinate system transformations are needed to relate the systems of localized coordinates

of the stick figure’s limbs (§3.2.3). These manipulations were effected by an implementa-

tion of Hamilton’s quaternions (§3.3.3).
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Digit

Actor

Camera

LowerLeg
Foot
Hand

NohActor

ForeArm

Arm

Letters

ObjectWithParts

Chest

Arrow

Person

Thumb
Leg

SimpleActor
MiddlePhalanx
BigToe
ActorCollection

PositionableObject

Figure 5.3.��������� The subclass hierarchy of the class ObjectWithParts. It contains the
classes used to model the stick figure. Contrast this with the part hierarchy of
Figure 5.2.

5.2.1 Splitting the Problem into an Hierarchy of Classes.

The knowledge required to implement moving figures is factored over a hierarchy of classes.

As usual the top level class in our sub-hierarchy for creating actors is the most general,

abstract, and simplest. This is the class ‘‘ObjectWithParts’’ (Figure 5.3); it confers the abil-

ity on objects to consist of parts. Subclasses of ObjectWithParts will inherit its message pro-

tocol, which is the set of messages it can understand, along with any methods implemented

for executing the messages. Processing is carried on by instances of classes, but no instances

of this class are created since it is rather abstract.

The next subclass, ‘‘PositionableObject’’, which is also an abstract class, provides the six

degrees of freedom of objects in space: position and orientation. The required transforma-

tions are implemented by instances of the class ‘‘RevoluteJoint’’ which in turn uses the class

‘‘Quaternion’’. Any subclass of PositionableObject will be able to implement a modelling

hierarchy consisting of subassemblies and transformations.
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Instances of the subclass ‘‘Camera’’ are used to render other actors. The class ‘‘Actor’’

confers the ability for an object to have a visible appearance but is itself too general to be

concrete. The appearance of an Actor depends on the class of object in its appearance ‘slot’

or instance variable. For a stick figure this is an instance of the class ‘‘Stick’’, but it could

be a more complicated appearance. Instances of Stick know how to interact with an instance

of Camera for rendering and this all that would be required from more complicated appear-

ances.

The subclasses of Actor are the actual parts of a figure. Because a ‘‘SimpleActor’’ is a ter-

minal node in the object hierarchy it has no parts and its inherited capability for parts is dis-

abled.

5.2.2 Putting Together a Figure.

Having defined the classes which make up the figure we still have to instantiate it. In gen-

eral with object oriented programming this is a fairly simple operation: the class to which an

object belongs (which is another object in its own right) is requested to return a new instance

of the object. Most non-trivial objects also require a simple method for initializing the

instance. But stick figures are rather complex assemblies of objects and their initialization

would involve using numerous ad hoc routines for ensuring that all parts are present and

correct.

For complicated objects composed of parts, numerous advantages accrue from using a for-

malism which provides language support to the notion of assembling complex objects from

simpler parts. The classes defined above come ready equipped to collect the necessary parts

and slot them into itself correctly. This is because all actors (parts) inherit from the abstract

superclass ‘‘ObjectWithParts’’ the following features:

� Objects are assembled from parts.

� Parts are instances in their own right and can belong to any concrete subclass of

ObjectWithParts.

� To instantiate a whole object the classes of the parts must be known. Defaults are

stored as a dictionary of parts and classes.

� On becoming part of a whole an object ceases to be independent. It belongs to the

whole’s hidden local state and the interface is mediated by its owner.
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Thus when defining a new kind of Actor the system ensures that a default class is specified

for each part. Then when a new instance of a whole is requested the system will have com-

piled code which can automatically instantiate an instance of the whole with all its parts.

But actors are not merely assemblies of parts, they live in three dimensional space and their

limbs have lengths and orientations. These lengths have to be specified for each kind of

figure. This knowledge is typically not stored at the level of the part but rather in its owning

whole. Each part by default is of unit length and it overrides the lengths of its sub-parts.

Thus, for example, the hand specifies the (relative) lengths of the fingers, while the body as a

whole specifies the size of the head, arms and hands, and so forth.

Thus the system can instantiate whole objects with very little user effort. What it cannot do

is provide for the proper physical placing of parts which are kinds of ‘‘PositionableObject’’.

In general the programmer still has to define methods for setting the relative positions of

limbs.

5.2.3. Movement.

Each part of the hierarchical representation may have its own changing coordinate system.

In rendering these coordinate systems have to be related to one another by a traversal of the

whole object. Essentially the task of the animator is to specify a visually convincing series

of transformations of positions. That this is a large and complex topic, which is in many

ways an art rather than a science has, already been mentioned in Chapter 3.

The purpose of this first experiment discussed in this chapter is to show that we have pro-

vided the basic, essential, foundation of an animation system and that the spatial metric can

successfully interact with such a system. On the basis of an examination of the literature

(see §3.1.6) we can perhaps make the stronger claim that such an actor based system makes

a very good foundation for an animation system.

In this experiment we are content to have figures and cameras moving steadily in straight

lines or circular arcs by direct manipulation of coordinate transformations. After all, we are

trying to show the variation in levels of detail only.

The parts of the figure are each defined in its own local coordinate system, which oriented

along the principal axis of the limb. The rendering algorithm of the camera starts by getting

the names of the actors from the World and recursively descending the part hierarchy of each
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actor. The coordinate transformations are concatenated with the inverse coordinate transfor-

mation of the camera.

Thus a change in position of a part affects all parts lower in the hierarchy. Traversal for

rendering stops when the limits of resolution determined by the priority metric is reached.

Figure movement is therefore effected by altering the coordinate transformation of a joint

(see Figure 5.4) after which the figure is rendered again on the display.

Figure 5.4.��������� Accessing the part-whole hierarchy with a compound message. The
new instance of Person is assigned to the variable ‘joe’. Joe is asked to forward
messages to its right foot. The request is to replace the orientation Quaternion
by one which has been rotated by 40° about a vector along the y-axis. Notice
that the familiar multiplication message ‘‘*’’ is also understood by Quaternions.

The compound message syntax, though elegant from a modelling point of view is rather

unwieldy for the user’s point of view. Abbreviations of messages by defining single word

abbreviations for the more common compound selectors is an obvious first step. For exam-

ple all subclasses of PositionableObject understand the message ‘orientation’ which is sim-

ply an abbreviation of ‘proximalJoint.orientation’ as used in the illustration.

A somewhat better user interface could include a system of direct manipulation where the

user selects and positions an object on the display by using some kind of pointing device
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(this is routinely done in Smalltalk based systems, see for example ThingLab [Borning,

1979]). The complicating factor here is that we have the normal depth ambiguity of a 2-D

perspective projection of a 3-D scene. This ambiguity affects both selection and the

specification of movement direction.

The figures have been modelled as a hierarchical collection of parts. These parts each pos-

sess a local coordinate frame which can be altered to show movement when the figure is ren-

dered. Thus the basic requirements for an animation system exists and there is good reason

to believe that it can be extended. The point of the experiment was to see how the spatial

priority metric interacts with such an object.

Figure 5.5.��������� Stills from a sequence of the camera flying in to the right hand. The
effects of the spatial detail metric have been exaggerated to show how new lev-
els of detail are added: in this case the spindly fingers. The little finger appears
last.
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§5.3 Results from Running the Experimental Implementation.

The effects of the spatial priority metric are illustrated by the sequence of stick figures (Fig-

ure 5.5). The camera is flying in to the right hand. The effects of the priority metric have

been exaggerated in order make its operation visible. The persistence of a feature can be

seen to depend on both its length and its width. For the human figure used in the experiment

the choice of priorities resulted in the number of parts dropping off more or less with the

square root of the distance, for those distances over which the figure was visible.

Coordinate system hierarchies were used; each part of the figure being described in its own

local coordinate system. Such a part and all its dependent parts is moved by changing its

coordinate transformation. The hierarchy has a considerably richer structure than octree

hierarchies, and motion was easily modelled.

We greatly simplified spatial frequency effects and used a simple rendering algorithm on a

bit-mapped display. The scenes are animated but dynamic effects on the visual importance

of detail were neglected. That is, only a spatial metric was applied.

5.3.1 Computational Benefits.

The depth complexity of natural scenes can be very large: on average an ‘X-ray’ from the

viewer to the horizon will pierce many more potentially visible surfaces than the two or

three surfaces in artificial scenes [Sutherland et al. 1974]. The terms normally used to

analyse rendering complexity, such as number of faces in the environment and average face

height, do not apply because we have tried to capture the nested complexity of nature in the

hierarchical models.

We shall assume in this analysis that the environment is isotropic, that is, objects are uni-

formly distributed on the two-dimensional surface of the Earth with density K. Therefore

the depth complexity of views which are not too vertical is independent of viewing direc-

tion.

Consider those objects in the simulated environment which lie beyond the furthest limit of

resolution, they need only be considered as unstructured ‘‘blobs’’. The range, R, will ensure

that this condition is satisfied for all internal configurations of the objects. Then for average

R and priority, P, the average limit of resolution is l = R + P (see §5.1.2). The area con-

tained within the resolution limit is proportional to l 2 and so only K (P + R)2 non trivial

objects need be examined in any greater detail. Rendering complexity is decoupled from the

129



Chapter 5 — Static Metric with a Non-Uniform Hierarchy

total number of objects and depends on the density of objects, K.

Within the average resolution limit the priority metric attempts to remove all sub-pixel sized

parts from consideration. The object therefore cannot consist of many more parts than the

number of pixels it covers. The complexity of the rendered scene depends on the resolution

of the display which can now be adjusted to suit viewing conditions. We reduce the number

of (parts of) objects to be examined in clipping and rendering, two very substantial costs

when realism is sought.

The principal computational benefit is to limit the extent to which the complexity of the

rendering problem depends on the complexity of the environment. Detail in an object

depends on its distance from the synthetic camera, weighted for screen resolution etc.

The second substantial benefit is that a uniform metric allows different forms of hierarchical

models to be integrated in an animated environment. It is an essential component in provid-

ing a uniform interface between the synthetic cameras and object representations.

5.3.2 Costs.

The major cost, apart from setting up the hierarchy, is associated with calculating the

metric. Instead of just the distance along the axis of projection, the Euclidian distance to the

part must be found, and the priority comparison made. However, the three squares and

square root calculation is far less expensive than any but the simplest of rendering options.

We do not give relative timings here because our rendering was the simplest imaginable.

The complexity arguments given above are convincing enough to indicate the promise of the

approach. More detailed considerations of the costs and benefits of this approach will be

found in the next chapter (Chapter 6). The rendering problem considered there is much

more realistic.

If the cost of calculating the square root is considered excessive then both sides of the prior-

ity comparison, P + R > md , can be squared. Or the Euclidian distance metric could be

simplified, but this was not considered worth exploring in this demonstration.

The cost of setting up the hierarchy has two aspects: the amount of effort required by the

modeller and the effort required from the machine. In animation the effort from the machine

is insignificant because the benefits will be accrued frame after frame.
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We are then left with the effort required from the modeller. The resolution hierarchy can

readily be superimposed on the modelling hierarchy which is already required. Therefore

the additional effort by the modeller is small. The only exception arises when parts on the

modelling hierarchy have only one dependant with no decrease in size. The two levels must

then be essentially one object as far as the display hierarchy is concerned. For example, the

arm is modelled as two parts which drop in and out of visibility together.

The cost during the running of the system is the calculation of the distance and the check

against priority. This is small compared to the cost of 3-D shaded rendering. Setting up the

detail hierarchy for many living things is not much more complicated than producing the

normal object hierarchy which is required in any case.

§5.4 Conclusion.

By means of the experimental implementation discussed in this chapter we have investigated

methods to use in building representations for animating complex environments such as

those found in nature. An approach to modelling was presented and implemented which:

� can cope with the rich detail of natural figures.

� is computationally efficient.

� is appropriate to modelling animated objects.

The implementation showed that a metric can be used with stick figures on a bit mapped

display. Computational costs seemed minimal on the basis of complexity arguments and the

benefits grow according to the complexity of the environments.

We have so far investigated the benefits in terms of the reduction in rendering time. The

approach is more general than that. In general the priority metric can be used to modify the

computational cost of any property of the model which can be bundled or batched as the

object becomes less important to the scene. This can apply also to movement modelling.

For example: individual birds merge into a flock where we need not model wing movement

and eventually the birds coalesce into a single body.
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Chapter VI

The Second Experiment:
The Spatial Metric Applied to Continuous Detail Levels.

The usefulness of a spatial priority metric is investigated further by applying it to
a landscape model. A fractal representation is chosen. This has, properly speak-
ing, self similar detail at all levels of resolution. This model is approximately
rendered by an algorithm which combines a number of recent approaches to the
rendering of land surfaces with the static detail metric. The metric is used to
limit both the space and the time requirements of the computation. The resulting
algorithm is recursive with each level of recursion increasing the resolution of
the picture.

§6.1 Introduction: Digital Representation of Landscapes.

It has already been pointed out that nature presents us with a startling array of nested levels

of detail. This profusion of detail can be bewildering to the builder of a digital model of a

physical landscape, or rather it would have been if we had attempted the task a couple of

decades ago. Since then Mandelbrot’s fractal geometry [Mandelbrot, 1982b] has provided a

satisfying and compact mathematical description of many complex natural phenomena,

including landscapes.

Fractals are mathematically ideal shapes, albeit rather chaotic compared to the traditional

geometrical ideals. They are governed by rather precise statistical correlations between the

various levels of detail. The properties of fractals were discussed in §1.3.4 and §2.2. To

render these mathematical descriptions on the display of a computer we have to approximate

them. We may even choose to simplify the statistical properties, but thereby run the risk of

introducing artifacts into the pleasing natural appearance of the pictures [Mandelbrot, 1982a

& 1983]. The algorithm adopted (§6.3) is based on a previously adopted compromise

between mathematical rigour and computational efficiency. Methods of computing fractals

and approaches to rendering landscapes are reviewed in §6.2.

The earth’s surface can be represented by a (single valued) height function over the area

being modelled. For such surfaces the processes of clipping, hidden surface removal and

shading can be greatly simplified compared to the requirements for general three-

dimensional shapes. A feature of our approach is that the fractal texture can be overlaid to

provide additional texture to an existing less detailed model of the landscape defined over a
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grid of data points. This is an essential requirement for creating realistic landscapes which

fit in with a story. A number of cameras can range simultaneously over the landscape and

facilities are provided for setting these cameras up interactively.

The point of this experiment to analyse the applicability of the spatial priority metric (§6.4).

Adding a spatial priority metric greatly reduced the time to render the landscape satisfac-

torily for the most common viewing conditions. The application of the metric also reduced

the number of intermediate results which had to be stored.

§6.2 Synthesizing Pictures of Landscapes.

In this section we provide a brief recap of recognized ways in which models of landscapes

can be built and rendered with a computer.

Producing a computer model of a landscape is really a question capturing the endless detail

in an efficient way. The fractal model of a landscape stores features as a procedure for gen-

erating them. The procedure is governed by very few parameters: typically a parameter

which governs roughness, or perhaps a couple of parameters governing the way roughness

depends on absolute height. Alternatively there are digital maps of the earth’s surface which

specify explicitly the height for all points of interest. In computer animation it is usually

desirable to be able to specify the general shape of the landscape and allow the computer to

fill in the details.

Although fractals require few parameters to initialize them they do require storage for previ-

ous and intermediate results. This is because it is an essential feature of fractals that there is

correlation between points at all distance scales. This requirement for some sort of global

state make it difficult to implement fractal generation recursively.

Having produced our landscape model we still have to render it on a display. The assump-

tion that landscapes are represented by single valued height functions of position allows clip-

ping and hidden surface removal to be greatly simplified.

6.2.1 Approximating Fractals on a Computer.

Fractals were introduced in Chapter 2 as an excellent description of rough natural

landscapes. There exist a number of ways fractals can be approximated for rendition on a

computer display. That they have to be approximated is evident from the fact that a
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mathematical fractal contains self similar detail at all spatial frequencies. The very least that

is needed is to limit the small levels of detail, in principle this is done through low pass

filtering at the Nyquist limit of the display.

Fractals require the calculation of an stochastic function, BH(t). Methods of generating frac-

tals include [Voss, 1985, Fournier et al., 1982, Haruyama & Barsky, 1984, Brelstaff, 1984,

Miller, 1986, Mastin et al., 1987]:

1) Sum of independent random pulses. This method is analogous to the way in which

Brownian motion is the sum independent random jumps. It is computationally very

expensive. Termination conditions depend largely on visual acceptability so precise

terms are difficult to estimate. Each step addition affects half the points being gen-

erated on average. Voss quotes 10000 steps for models which appear to contain some

1000000 points, thus the number of operations was n 5/3 in that particular case.

2) Fast Fourier transform filtering. This method allows the synthesis of random func-

tions with any desired spectral density. Finding the FFT of n points takes O( n log n)

operations. However all points have to be calculated at the same time to the same

resolution which makes it unsuitable for our purposes.

3) Random midpoint displacement. This method is very quick, O( n) although extensions

by a single point can take O( log n) operations. Unfortunately the fractals approxi-

mated by this method do not have the required correlations between points and this

produces visible artificial faults which do not disappear with added detail. The recur-

sive algorithm developed in the next section is based on this method, it is further dis-

cussed below.

4) Successive random additions. Like the midpoint displacement method, this method,

due to Voss [1985], also only requires O( n) operations, though with a larger constant

term. This method has the advantage that it can be made to approach the accuracy of

the FFT method, but it cannot easily be implemented recursively because determining

the position of a point requires information to be communicated from other, distant,

points.

5) Weierstrass-Mandelbrot fractal function. This function is the infinite sum of geometr-

ically changing levels of detail. Exponentially decreasing Gaussian random terms

modulate sine waves of exponentially increasing frequencies. The phase of the sine
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wave is uniformly random [Berry & Lewis, 1980]. Methods 3 and 4 are in fact special

cases of this method, and like method 4 it requires too much global information to be

easily implemented recursively.

Random Midpoint Displacement. [Fournier, Fussell & Carpenter, 1982]

This method proceeds recursively with each stage increasing the level of detail represented.

Consider starting with a sample of Ni points at stage i and smallest detail of size δi . The

next stage i + 1 with detail of size δi +1 = δi /2 requires Ni +1 = Ni × 2 points. Of these only

Ni are new. They are generated by interpolating between the points in the previous stage.

To the Ni new points of the stage i + 1 a Gaussian random variation of zero mean and vari-

ance δi +1
2 is added. H is the parameter which governs the roughness of the resulting sur-

face, and 0 < H < 1. For our height fields the fractional dimension D = 3−H.

With the random midpoint displacement method however we do not add a random element

to every point at every stage, once a point is determined it remains fixed. When the final

stage n is reached with its Nn points each will have had only one random addition. The cal-

culation therefore requires Nn calculations and additions of random variables.

6.2.2 Hidden Surface Removal with Height Fields.

To render an object we have to display those surfaces which are visible from the chosen

viewpoint and give them the correct shade for the existing light conditions. To decide which

surfaces are visible is in general a sorting problem which is well know to be an O( n log n)

problem for n elements [Sutherland et al., 1974]. However, excluding the odd cave and bee-

tling cliff, landscapes are essentially single sheets with the height h = f h(x, y). Provided

the height field can be made single valued, we can circumvent the need for sorting the facets

of the landscape. Instead, the facets can be enumerated in a predetermined order which can

ensure the closer facets are always presented after the further ones (or vice versa), this order

is called an occlusion compatible ordering.

We can make a trivial, but quite general, observation about visibility on the unit sphere (Fig-

ure 6.1) which surrounds the viewer: only those objects which lie along the same ray from

the centre can fall on the same point on the sphere. Therefore only such objects can occlude

one another.

A landscape reduces the spherical symmetry to that of a cylinder, whether or not the

observer is on the ground. Call the point on the earth’s surface directly below the observer
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Figure 6.1.��������� Visibility relations on the unit sphere. Those objects which lie along
the same ray from the centre fall on the same point on the sphere, and only such
objects can occlude one another. Relative height cannot alter this fact.

the station point. Then we can measure direction as the two-dimensional geographical direc-

tion about that point. Any position in space can then be characterized by a direction ( θ), a

distance along that direction ( r ) and a vertical height h. It is clear that only objects lying in

the same direction ( θ) from the observer can obscure one another. If one object (A)

obscures another (B) then it must also be closer in the horizontal direction ( rA < rB ), height

cannot influence this fact.

The representation of the station point in the picture is the vanishing point for all vertical

lines. Radial directions in world coordinates about the station point thus project into the

same straight lines as vertical displacements from those directions. This simply expresses
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the same relation given above for world coordinates in terms of image coordinates.

If the earth’s surface is traversed for rendering in such a way that for every direction we first

visit the furthest points along that direction then we can simply render the surface on the

display as it is encountered. The closer opaque areas will obscure the more distant points —

the painter’s algorithm.

When applied to height fields the painter’s algorithm can involve a lot of unnecessary

rendering of surfaces which are eventually obscured. This happens particularly when the

landscape is viewed in an almost horizontal direction: the most common view direction for

animals which can’t fly. Fortunately the spatial priority metric is most efficient at limiting

detail in such cases.

‘‘Obscured features of the landscape lie below the horizon’’ is another, equivalent way of

expressing the relations derived above. This leads to another hidden surface algorithm

which can be used with height fields: the floating horizon method. For this algorithm the

height field is traversed from the nearest to the most distant points. A representation of the

current horizon is maintained. New pieces of the landscape are rendered if they are above

the present horizon in that horizontal direction. These calculations can be performed in

screen coordinates by making use of the vertical vanishing point [Anderson, 1982]. This

method requires more housekeeping but it allows anti-aliasing of facet edges.

6.2.3 Clipping Height Fields.

Coquillart & Gangnet [1984] described a way of precomputing which area of the height field

is definitely invisible, which might be visible, and which is certainly visible. Again this can

be done without needing to calculate the height fields in detail. All that is required is max-

imum or minimum values which the heights can reach.

We shall describe the way the whole area which is potentially visible can be deduced, this is

the only one which we need. The way of finding which areas are certainly visible is analo-

gous. Let C be a convex polygon on the plane of z = 0 (zero height). Initially this polygon

will be the domain over which the height field is defined, typically a rectangle.

The synthetic camera is a rectangular window on the scene. With the viewpoint at the apex

this forms the traditional viewing pyramid. There are thus at least four intersecting planes

which limit the field of view: top, bottom, left and right. Objects on the viewer’s side of the
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window can also be excluded: the front clipping plane. (A distant clipping plane can also be

defined but it was not used in this case.

Let P be such a plane, it has an equation (in world coordinates) of a ax + b y + cz + d = 0, or

in vector notation n . x − d = 0 where n is the normal to the plane. If the normal is chosen

to point into the visible area then all those points for which n . x − d < 0 will certainly be

invisible. It thus remains to deduce from this plane the domain of the height field which can

only produce invisible points.

If the height field was uniformly at its maximum height ( z max) then the plane P would inter-

sect it along the line ax + b y + cz max = 0. The half plane H− where ax + b y + cz max < 0

would then be the invisible domain. If the height field were at its minimum value we would

similarly substitute z min. The real height function lies between these values and so the real

intersection will lie between them as well. It then only remains to determine which of the

half planes is the most conservative estimate. This depends on whether the normal to the

plane P is horizontal or vertical or whether it has a net positive of negative vertical com-

ponent. The details can be found in the cited paper.

One consequence which we will use is that if plane P has an upward normal (c > 0 ) then

the maximum height is the limiting factor. For most views only the bottom clipping plane

will have such a normal. If it were otherwise we would be staring at the sky with our syn-

thetic camera. Such a bottom plane cannot intersect the surface at a point closer than the

view point whatever happens, and that intersection will happen if the maximum height

reached is the height of the viewer. This fact is used with fractal surfaces in the next section

where the extrema are not exactly determinable.

6.2.4 Quadtrees, Quadtries and Quadcodes.

Quadtrees [Hunter & Steiglitz, 1979a; 1979b; Samet, 1984] are well known methods for

recursively subdividing square images into quadrants. They can of course be used for any

function defined over a two-dimensional domain, including height fields. A quadtree is a

generalization of an extended binary tree with nodes which have either 4 children or none.

A node with no children is a leaf. The leaves will represent points on the height field.

We are interested in surfaces defined by single valued functions over a finite, square, two-

dimensional domain. The function is evaluated or approximated at finite points correspond-

ing to the corners of a quadrant. A particular quadrant can be characterized by the length of
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its sides, which we can represent as some integer power of 2 in any convenient unit of meas-

urement.

Quadcodes are a way of addressing and representing the recursively subdivided quadrants.

The order of this subdivision is not circular, it is left to right and top to bottom: north-west to

north-east to south- west to south-east (Figure 6.2).

0231

01 03

00 02

1 3

20
021 023

022020

Figure 6.2.��������� Recursive subdivision of a square into quadrants. The quadrants are
labelled with their quadcodes.

A base four (quaternary) number can be assigned to each quadrant in the order given above

and on Figure 6.2. As the quadrants are subdivided the further digits can be appended on the

right (least significant position). The resulting code uniquely specifies the position and

depth of the subdivision, and constitute a quadcode. Some properties of quadcodes were

recently documented by Li & Loew, [1987a; 1987b], Samet refers to them as locational

codes.

We write a quadcode of length n as:

Q = q 1q 2
. . . qn (6.1)

where qi ∈ {0,1,2,3 } for i = 1,2,...,n.

When a sequence of quaternary digits are used as keys in this way to access data the struc-

ture is known as a quadtrie [‘‘information retrieval’’ Fredkin, 1960].

The resolution (R) of the function approximation is then the length of the quadrant at whose

corners we evaluate it. The size of the domain (M) is also a power of 2.
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R = 2l ≤ M = 2m (6.2)

where l & m are integers, l ≤ m.

The corners of the domain M are addressed by quadcodes of length 1. The corners of the

quadrants at resolution R are addressed by quadcodes of length m − l + 1.

There is a simple relationship between fully enumerated quadcodes for some square area and

the corresponding matrix with the same resolution. If we index the matrix with binary row

index i and binary column index j then the quadcode takes its odd bits from i and its even

bits from j.

We can write:

q 1q 2
. . . qn = i 1 j 1i 2 j 2 ...in jn (6.3)

We are concerned with enumerating point data in a preorder traversal of an implicit quad-

tree. We visit first the root, then node 0, then node 1, then node 2 and finally node 3. We

can call such a traversal monotonic if we never decrease the depth of recursion as we

proceed. As we proceed with the recursion an area is gradually traced out by the leaves, this

area must obviously form a connected region. The boundary of this region can never be

longer than the border of the original quadrant which is being subdivided.

This can easily shown inductively by considering the subdivision process for a quadrant.

For each of the nodes 0,1,2,3 the boundary length is obviously less than or equal to the qua-

drant border length.

The point data we are concerned with is stored at the corners of a quadrant. During the

recursive subdivision process some points are shared by disjoint subtrees. These are perime-

ter points, other points are called interior points. Consider the first subdivision step in sub-

dividing a quadrant: clearly the centre point of the quadrant which is shared by all subqua-

drants can be directly passed to them without having to appear on a perimeter. The corners

of the quadrant will have come from a higher level and need not concern further, except to

pass it on to the lower levels. Exactly 4 points remain: the midpoints of the sides.

We assume that the quadrant has been assigned a quadcode. We can then label the midpoints

with either the odd or even bits of the the quadcode depending on whether the midpoints are

on a horizontal or a vertical edge. Provided we distinguish between outer and inner edges
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we then have a compact and unique labeling for our perimeter points. This method is recur-

sive. Taking as our base case the root quadrant, whose corners are given as input, it is clear

that the following result follows by induction over the recursion depth:

Theorem 6.1:����������� The perimeter of a preorder recursive subdivision of a quadrants can be stored

in four binary trees with the same depth as the quadrant subdivision.

The four binary trees are called horizons, (by analogy with the floating horizon method).

They are called the inner and outer, horizontal and vertical, horizons. The codes to access

the elements on the horizons depend on the quadcode of the quadrant being subdivided.

The maximum number of values which have to be stored in a horizon depends on the depth

of the quadrant subdivision. Starting with l = 0 we store 2l values at each level of the binary

tree.

Corollary 6.2:������������ Each horizon contains
l
Σ 2l values = 2n −1 where l = 0,1,...n .

Since n is the log2 of the number of subdivisions of an edge the number of values which

have to be stored in an horizon is of the same order as the resolution along an edge in object

space.

§6.3 Rendering Landscapes Efficiently on a Raster Display.

A number of threads in recent research in rendering landscapes (discussed in the previous

section) can be combined with the spatial priority metric to reduce the computational com-

plexity of the problem. These are:

� Using a predeterminable occlusion compatible ordering for traversing a landscape for

rendering. This makes hidden surface removal very simple, though it may in fact

increase the overall computation time. It was used because sophisticated hidden sur-

face removal is not relevant to the purpose of this experiment. Backfacing facets were

eliminated before rendering them.

� Clipping the domain of the height function to the maximal region which could be visi-

ble without reference to the actual function values. This is a simple technique to

reduce the area over which the fractal has to be calculated. It was used both with and

without the priority metric.
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� Approximating self similar fractals by the method of random midpoint displacement.

This technique produces adequate results when we interpolate between the points of

the predefined grid data. The grid data is read from a file which was in fact generated

by the Fourier method but could equally be real altitude data.

� Use of quadcodes and our result derived above for the subdivision perimeter to limit

the storage requirements for a recursive subdivision method only when combined with

the spatial detail metric.

We make use of these and add the spatial priority measure to produce a recursive algorithm

(§6.3.1). The algorithm is implemented in an object oriented language: C++. This allows a

clear separation of the camera and associated priority metric from the representation of the

modelled landscape ((§6.3.2). See Figure 6.9 for a snapshot of the rendering algorithm in

action.

6.3.1 Recursive Subdivision Algorithm for Synthesizing Landscapes.

The algorithm has five stages:

1) The polygonal domain of potentially visible points in the height field is determined.

2) The occlusion compatible ordering for recursively traversing the domain is deter-

mined.

3) Recursive subdivision commences and proceeds to the level determined by the priority

metric.

4) Intermediate results are stored for later reuse where necessary.

5) The smallest resolvable square facets are passed to the shader in an order which is

compatible with their being rendered immediately on the screen. Normals to the facets

can be found without any multiplication.

Stage 1. Clipping.

The algorithm for stage one has been described in §6.2.3. The only potential problem lies in

the fact that the maximum and minimum heights which are the random result of the random

additions cannot be exactly predetermined. The expected variance of the overall process

could be used. Or we can simply say that all heights below a certain level will be suppressed
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(‘‘filled with water’’) which fixes the minimum height. As discussed above, using the

viewer’s height instead of the maximum height will produce a correct result for all view

directions that are met in practice. The actual height of the landscape underneath the viewer

can be calculated and used as the minimal height of the viewer.

We require from this stage a function which can say if a point on the height field in world

coordinates (x, y) is potentially visible or not. We also need the maximum and minimum

values of the bounding polygon in the x and y directions, which gives us a bounding box.

This clipping allows us to reject points as being invisible without having to find their posi-

tion relative to the viewer (i.e. without projecting them).

Stage 2. Ordering.

Let the station point (the point on the world’s surface vertically below the view point) be the

origin of a viewer centered coordinate system in the plane z = 0. The plane is divided into

four quadrants (Figure 6.2) labelled 0 to 3, but where 0 is the south-west, 1 the north-west, 2

the south-east and 3 the north-east quadrants. As discussed in section §6.2.2 we want to deal

with the points which lie along any given direction in a predetermined order. Let us say

furthest first, that is, from the outside inwards (see Figure 6.3). Similar arguments would

apply if we chose the opposite, outwards, order.
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Figure 6.3.��������� Occlusion compatible ordering with quadcodes. The figure indicates
the ordering for progression from the outside inwards. The horizons are also in-
dicated.
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Not all the quadrants will be visible for a given viewpoint. We can determine which will be

visible by classifying the station point with respect to the clipping polygon’s bounding box.

We intend recursively subdividing the quadrants and want to know what order to proceed in.

We number subdivided quadrants in the same order as the major quadrants. An occlusion

compatible inwards order for quadrant n is then:

first: subquadrant n

second: subquadrant 1 ˆ n

third: subquadrant 2 ˆ n

fourth: subquadrant ¬ n & 3

Where ¬ denotes bitwise negation (ones complement), & is bitwise and, and ˆ is bitwise

exclusive or. It is clear that the order presented here corresponds to the quadcode preorder

traversal examined in §6.2.4.

Stage 3. Recursion.

For each potentially visible quadrant we choose the subquadrants in the order specified in

the previous stage. The quadrants are recursively subdivided in a depth first fashion.

According to the clipping polygon quadrants are either completely within the polygon of

potentially visible points, partially inside it, or completely outside it. Subquadrants, which

we can now call facets, are discarded when they are certainly invisible. The other facets are

continually subdivided until the current resolution limit as determined by the priority

metric is reached. Subfacets of facets which have been found to be completely within the

clipping polygon need not be tested further against the clipping polygon.

The priority metric is based on the distance from the viewpoint to the facet corner closest to

the origin (it is numbered ¬n & 3 according to the scheme presented above). The distance is

either the true Euclidean distance or the distance projected onto the camera axis pointing

into the scene (i.e. the distance used for perspective projection). The choice is determined

for each camera individually. The true distance is left as a square and is compared to the

area of the grid underneath a facet. The projected distance is compared with the average

dimensions of the grid.
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The real Euclidean distance is more expensive to calculate. The reasons for using this meas-

ure (which is equivalent to projection on the unit sphere) have already been discussed

(§2.1.1 and §4.2). Any weighting of the distance for atmospheric effects can only accurately

be applied to the true distance, although for small viewing angles the two measures are virtu-

ally the same.

Once the resolution limit is reached the facet can be passed to the camera for shading and

rendering. Thus recursion terminates either when the resolution limit is reached or when it

is found that a facet is completely outside the visible area.

Stage 4. Storing Intermediate Results.

As the recursive subdivision proceeds the recursion reaches greater and greater depths, since

we are proceeding from more distant points to closer points which need to be examined in

more detail according to our spatial detail metric. This process need not be monotonic but

since we are interested in maximal storage requirements we will deal with the maximum

depth reached at any stage.

A disadvantage of recursive subdivision methods is that state information cannot easily be

communicated form one subtree to another. This information is needed to ensure con-

sistency between adjacent points, to avoid unnecessary recalculation and to communicate

information on the gradients of adjacent facets for smooth shading purposes. However the

spatial metric can be used to limit the storage required for these intermediate results.

From corollary 6.2 we have an upper limit on the perimeter storage required which depends

on the depth to which the current quadrant is being subdivided. This is normally the root

quadrant. However we can prune form our tree any quadrants for which we have completely

enumerated the zeroth, first and second subquadrants. The effective quadrant becomes then

subquadrant 3. In terms of quadcodes we can ignore a leading sequence of threes.

Because of the spatial priority metric the deepest recursion levels will in general be reached

only on the closest subquadrants.

Stage 5. Rendering.

Hidden surface removal is particularly simple. Nothing need be done! The facets don’t

arrive in exactly the depth order or furthest first. However they do arrive in such a way that

any facet which can obscure another arrives after that other one. Before this last stage
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proceeds a final clipping test in screen coordinates determines whether the projected facet

does fall on the screen.

We can assume that the surface of the world is always viewed from above. This fact,

together with the knowledge of which facet corner is furthest and which nearest to the

viewer, means that back facing facets can be eliminated by a two-dimensional scalar product

in integer screen coordinates. This test is inexpensive.

The facets are defined on a grid. The average of the normals to the four corners determines

the facet normal. This average can be found without resorting to any multiplications. The

shade of a facet is calculated by the cosine law. The scalar product of the facet normal and

the light direction is found and normalized.

Scan conversion is done by a polygon fill operation with the selected shade. The facets are

small enough to obviate the need for interpolating shades across the polygon. Although this

can be done since information about adjoining normals can be communicated via the perim-

eter horizons.

It is also possible to divide the facets into a far and near triangle a priori without having to

calculate distances. The same rendering algorithms apply except that the normal for shad-

ing purposes is now unique and need not be averaged.

6.3.2 An Object Oriented Implementation.

The various parts of the problem are divided into a number of classes. In addition some

classes interface with the workstation display and interaction routines. The program as a

whole was designed for interactive use (see Figure 6.4). The user can specify various

parameters of a camera which is to view the world. A number of cameras can view the same

environment concurrently.

The basic classes into which the problem was divided was:

World This class ‘‘owns’’ the other classes and is responsible for starting up the

interaction with the user.

Camera Responsible for rendering and projections. Performs the basic calculations

which the facet interprets as the spatial priority. (Algorithm stage 3, priority

metric, and stage 5, rendering.)
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Figure 6.4.��������� Interactive fractal generation. Setting up the program to produce a
picture.

ClipTest Responsible for initial clipping. (Stage 1 of algorithm).

Recursor The ordering of quadrants (stage 2) and the actual recursion (stage 3) is han-

dled by this class. The Recursor corresponds to the object model, except that

in this case it is a procedural definition which can generate the data points or

read them from a predefined data file.

Facet Incorporates the information passed between Camera and Recursor. The

facet corresponds to the Appearance class mentioned in other experiments.

The priority metric test is done by a Facet, which decides when it has reached

a small enough resolution to be rendered.

Horizon The perimeters of the four quadrants are stored and managed by this class

(stage 4).

Quaternion This class provides coordinate transformations. The efficiency of perspective

transformations depends crucially on the efficiency of rotations. See Chapter

3 for more details.
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In addition there are two interface modules written in C (‘‘old’’ C) which provide an inter-

face between the operating system and the landscape renderer (which is called static).

This implementation allows a number of Cameras to have different views of the same

model. These views can differ in perspective and in rendering properties (resolution, shad-

ing, etc.). This multiplicity of views is a specialization of the notion of phantom parts intro-

duced in §3.6.2.1. These different views are realized by means of the class Facet, an exam-

ple of an ‘Appearance’. The general need for such a class was identified in this study. Each

combination of Camera and model (Recursor) results in a stream of Facets being created

only when the spatial priority metric indicates the necessity.

§6.4 The Results of using the Spatial Metric.

The recursive method outlined in the previous section was tested to discover benefits and

limitations. The major benefit was in greatly reducing the time required to render typical

views of landscapes §6.4.1. The limitation of the recursive method lay in the limited appli-

cability of the method §6.4.2. Some coloured pictures illustrating various aspects of fractal

generation are included at the end of the chapter (Figures 6.7 — 6.10).

6.4.1 Benefits of the Metric applied to Recursive Landscape Synthesis.

The spatial detail metric effectively limits the amount of detail required from a representa-

tion. For all viewpoints and view directions there is a limit on the total number of facets

which have to be rendered.

Although the metric applies to all cases it is perhaps best illustrated by taking an oblique

view of the landscape (as opposed to a vertically downwards view). This is of course the

most common way that a landscape is viewed. Figure 6.5 illustrates the situation by means

of a plan view of the facets to be rendered. The camera is situated somewhere above the ori-

gin (marked O) and is pointing slightly downwards. At each distance from the camera there

is always approximately the same number of facets. On the screen they are almost the same

size, but on the ground they cover bigger and bigger areas. Clearly if the metric was not in

effect then we would have had a geometrically growing number of facets as distance

increased. Instead of illustrating approximately 40 facets the diagram would have to contain

more than 600. The exact dependence is complicated because the rate at which the number

of facets changes with distance depends on the viewing conditions. With the spatial metric
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Figure 6.5.��������� Facet plan view. Diagrammatic representation of one quadrant of a
two quadrant view field. The camera is above point O looking slightly down-
wards. The squares indicate the sizes of the facets. The centre of each square is
labelled by the level of recursion at which the point was generated. Notice how
the number of facets at each distance remains fairly constant at about four.

the size of the facets increase in proportion to distance. So if the picture is a projection over

a range of distances d then the saving is proportional to d 2.

This saving was first tested with a regular function with a single dominant spatial frequency

and then with a series of fractals.

The function was the product of sine waves depending on x and y over the domain 0 to

2048 in each coordinate. The viewing direction was along the positive diagonal at an angle

of about 20 degrees downwards (along the vector 1, 1, -0.5). The observer was at the origin

at a height of 24 in the z coordinate. The priority metric was weighted to produce a nominal

facet size of 16, with this metric the maximum recursion depth was 12 levels. The results
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were compared with the case where the test against the metric was eliminated with recur-

sion fixed at 12 levels for the whole visible picture.

Table 6.1 is typical of the results obtained:
��������������������������������������������������������

With Spatial Metric Without Metric
��������������������������������������������������������

Time (seconds): 32.74 19 343.10

Recursion calls: 22 585 overflowed

Facets Passed: 16 939 16 777 216

Facets Drawn: 9 557 10 841 987
���������������������������������������������������������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table 6.1�������� Typical results of profiling with a regular (sine) height field. The time
is cpu time. The figure for ‘‘facets passed’’ refers to the number of facets not el-
iminated at the first clipping test inside the recursion. The figure for ‘‘facets
drawn’’ refers to the number of facets which passed the final clipping test.

The benefit of the metric is clear. Even if the view is more vertical the metric limits spatial

resolution automatically to that required for a given screen resolution.

Time

After these encouraging results a customized polygon fill was written since the standard rou-

tine was unrealistically slow. The timings were performed for a number of cases using a

fractal landscape, the raw results are in Appendix B.

Firstly for a particular image size there is an inverse relation between facet size and execu-

tion time: the smaller the facets the longer execution takes. The case of 512 × 512 images

the squared correlation coefficient for the model t = 23.01 + 2113/ f 2 is 0.9963. The graph

in Figure 6.6 plots √�t against 1/ f to illustrate this relationship. On the same graph are the

times for case where the recursion depth is constant for the whole image. These are clearly a

lot slower. The shapes of the curves are similar because the constant depth recursion case

also represents a variable resolution from one data point to the next, it just does not adapt

within the image.
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Figure 6.6 The inverse relation between facet size and execution time. The
graph shows t , where t is the execution time in seconds, against 1 / f , where f is
the facet size.

The following table contains some of the times plotted on the graph:

Facet Recursion Time (seconds)

size depth Adaptive detail Constant resolution

32 7 4.6 30.3

16 8 15.0 113.7

8 9 49.1 402.6

4 10 174.1 1303.3

2 11 626.1 4487.9

1 12 2100.9 15978.6

Table 6.2 Summary of Timings from Appendix B for 512 512 Images.

The model given above for the relation of time to facet size (t f 2 ) had a very good

correlation with the data. However from examining the logarithms of the facet sizes and the

times a better model was found to be t 3.543 2106 f 1.764, i.e. the time dependency
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for the particular case analysed is somewhat less than a square.

The times given above show that the adaptive detail case resulted in a seven fold increase in

speed over a wide range of detail levels. This was for a simple fractal scene without any par-

ticular depth complexity. If scenes were more complex greater speed-up can be expected.

Storage requirements

The stack space required for storing the intermediate results for recursion is minimal and

obviously depends on the log of the domain being examined. The other requirement is

storage for the perimeter as discussed above.

Binary trees are rather inefficient compared to arrays as far as storage is concerned. How-

ever we have already seen that we have a unique index which can be derived from the quad-

code of the quadrant. Thus the horizon (binary tree) can be stored as a series of dynamically

created arrays. As we proceed down the recursion the size of the arrays increases by powers

of two until we reach leaf nodes which can be rendered. Once the nodes are small enough to

be rendered then as we have indicated already the effective quadrant which being subdi-

vided gets smaller and smaller.

In the ideal case of a constant height field we can expect the size of these arrays to remain

fairly constant as a result of the application of the spatial metric. The extremes to be con-

sidered vary from a vertical view direction where all facets have more or less the same spa-

tial priority to a very oblique view as illustrated in Figure 6.5. Clearly in the case of a verti-

cal view the depth of enumeration is limited by the display resolution, there is a direct

correspondence between the number of facets required to tile the display and the number of

quadrants into which the domain of the height field is subdivided. The spatial priority metric

ensures that the same happens in the case of oblique views.

6.4.2 Costs and Limitations.

The cost of calculating the metric is minimal. It is less than 0.1% of the running time of the

test program. The metric is either based on the perpendicular distance to the object which is

already required for perspective projection or it is based on the square of the 3 coordinates

(the square root is not needed) of the object. In the former case the comparison is with a typ-

ical dimension of the facet and in the latter it is with the square of that dimension.
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More important are the limitations of the recursive method of object synthesis combined

with adaptive detail resolution. The variations in sampling of the underlying function means

that it can only be applied to random self similar structures. If the function is not self similar

at all levels of detail then different sampling densities yield different regimes. For example:

the test function of sine waves produced distinctly different shades at various distances

which depended on the aliasing of detail sampling with function values (see Figure 6.10).

When applied to fractals at low resolutions there was some loss of texture gradients in the

scene. In the absence of other depth cues this tended to flatten the perspective. The filtering

effect of smooth shading would lessen the sharp edges of the facets at such low resolutions

and might compensate to some extent.

§6.5 Conclusion.

The purpose of this chapter was to explore the interaction of the spatial priority metric with a

model which had continuously variable levels of detail. For this purpose a recursive algo-

rithm was developed to synthesize fractals.

Normally, recursive algorithms for generating fractals suffer from the difficulty of communi-

cating between adjacent facets produced from nodes of the recursion tree which are not

neighbours. This communication is needed to ensure consistency between recursions and to

provide (some of) the correlation across detail levels required by fractals. The communica-

tion is also useful in that it eliminates redundant recalculation and can be used to implement

smooth shading of the facets.

This inherent limitation was overcome by means of the auxiliary data structure called a Hor-

izon. The storage requirements were show to be of the same order as the resolution along an

edge in the object coordinates (Corollary 6.2). However, the whole purpose of the spatial

metric is to apply visual resolution limits to the resolution of the objects being modelled.

Therefore the resolution along object edges is also limited (§6.4.1).

The algorithm developed here is believed to be new, certainly the reduction of storage

requirements from the application of the spatial metric appears to be novel.

The spatial metric proved very effective in limiting extraneous detail. For typical views of a

landscape the computational benefits were immense. However it should be borne in mind
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that recursive detail limitation is a very specialized method, and it is the purpose of this

research project as a whole to provide a more general purpose result. As indicated in the pre-

vious chapters the strategy for achieving this lies in deriving a universal measure and then

applying it uniformly to a large number of data representations. This universal application

would not be possible without some form of data abstraction: this is provided by object

oriented programming which is central to the methodology.
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Figure 6.7.��������� Fractal mountain at high resolution. The background was taken
from a file of height fields (generated by the Fourier synthesis method). The
foreground was filled in by means of the recursive subdivision method whenever
there were not enough grid points. The foreground and background seem well
matched (compare with Figure 6.10).
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Figure 6.8.��������� Fractal mountain viewed by two cameras at different resolutions.
The nominal facet sizes in pixels are given in the frame lables (8 & 16). The
same facet size was maintained in spite of increasing distance; both in the given
(Fourier synthesized) landscape and in the generated parts. This same method
was used in Figure 6.7, but at the higher resolution, as intended, the mechanism
cannot be seen.
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Figure 6.9.��������� Still of the process of fractal generation. This is a side view covering
two quadrants, it illustrates how the horizons cause separate random recursions
to match up. The striations on the right foreground are due to the deficiencies of
the midpoint subdivision algorithm. This view emphasizes the problem because
it is along a major midpoint subdivision. It is also possible to pick out the
Fourier synthesized part of the mountain in the background (top third of the
frame) because it lacks such striations..
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Figure 6.10.���������� The fractal generation method applied to a sine wave field, chosen
because it is the antithesis of a fractal surface. This clearly illustrates how the
random midpoint subdivision effect starts up to increase resolution in the fore-
ground, against a predefined background. In the background distinct spatial
aliasing can be observed. The method presented in this chapter is naturally not
meant to be applied to such height fields in such a manner.
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Chapter VII

The Third Experiment:
Priority Based Execution of Motion.

This chapter describes an experimental investigation into the two aspects of the
temporal priority metric: (a) adaptive updating of moving figures according to
their angular speed relative to the viewer and (b) the adaptive breakdown of
three-dimensional motion as perceived by the viewer into its two-dimensional
approximations. There is also an investigation of the trade-offs between tem-
poral and spatial detail. The essential feature of the test was the application of
the dynamic metric to moving objects with a high level of detail, the other
features of a complete animation system were simplified.
An important, apparently novel, result of this experiment was the inversion of
optic flow analysis for the purpose of synthesizing moving images. The simple
animation system produced very encouraging results for the adaptive breakdown
of three-dimensional motion into its ‘‘optic flow’’ components.

§7.1 Moving Figures and the Dynamic Metric.

The viewer centered approach to computer graphics and computer animation is a central

theme of this dissertation. We have been exploring the benefits of regarding animation prob-

lems from the standpoint of the viewer of a scene in the natural environment. The alterna-

tive approach has traditionally been one in which objects and movements are modelled as

realistically as possible (and ignoring the question of what ‘‘realism’’ really means). These

realistic models are then updated and rendered by using the most powerful computing

machines available. The justification for this approach is that, while machines are not yet

powerful enough to achieve the current vision of the Grail, they soon will be.

The viewer centered approach is based on a ‘‘corollary’’ of that argument: existing machines

will never be powerful enough for the tasks our imaginations can set them. The approach

taken here tries to find a methodology which will unify existing tricks of the trade and allow

a systematic exploration of new techniques. The aim is to provide realistic pictures without

a full simulation of ‘‘physical reality’’ (§2.1).

In this chapter we apply a measure of the extent to which the following effects are realistic:

1) Moving images need not always move. Depending on the rate with which an object

moves with respect to the observer we might not need to update its image every frame.
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2) 3-D motion of an object can be replaced by 2-D motion of its image. A precise

analysis is given of those cases where 3-D motion can be replaced by 2-D in-

betweening†.

3) Highly detailed objects need not be rendered in their full detail. We have already seen

how detail decreases when objects recede into the distance (the spatial priority metric),

we will now explore the trade-off which occurs between spatial and temporal detail:

fast moving objects need to be rendered less accurately than slow moving objects.

Actually the above statements are probably not as startling to the reader as they might have

been, since the theoretical foundations were already laid in Chapter 2 and formalized in §4.3

as the temporal priority metric. We are now concerned with an experimental test of the

metric.

The rest of this chapter is as follows: in the next subsection (§7.1.1) we formulate an experi-

ment which will allow us to test and quantify some of the benefits of using the temporal

metric and also uncover its shortcomings. Section 7.2 provides the mathematical algorithms

and precise analysis of using 2-D image motion to replace 3-D object motion in this particu-

lar experiment. It depends on §4.3.

The other theme of this dissertation, object oriented programming, makes its entrance when

we discuss the actual animation system (§7.3). In fact one of the occasionally controversial

features of object oriented languages, dynamic binding, makes a vital contribution to this

system. Lastly there is a presentation and analysis of the results of this experimental imple-

mentation (§7.4), followed by a conclusion.

7.1.1 Formulating a Test of the Temporal Priority Metric.

To test the temporal metric textured objects have to move about in three-dimensions. The

objects should have the high level of spatial detail associated with natural objects. The

implementation should allow rendering of the objects to more than one level of detail

depending on the speed of movement relative to the synthetic camera.
����������������

† ‘‘In-betweening’’ is a technique used in hand drawn animation to create a sequence of frames from a
few key frames. Drawing key frames requires greater skill and more effort than in-between frames.
Initially is was hoped that computers could draw in-between frames automatically from the key
frames. People (even unskilled ones!) apply a great deal of knowledge about relations in the 3-D
world however and this automatic process has largely eluded computer animators. The 3-D informa-
tion had to be made explicit as 3-D models (see §4.3.2)
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A constraint on this experiment was that it be done on existing hardware: a microprocessor

based colour workstation. The fact that there was no existing software for the task allowed a

free hand for us to explore the benefits of using object oriented programming.

The experiment decided on was to model planar but highly textured objects executing sim-

ple movements around a mobile camera. The essential and deciding feature of such an

experimental setup is that it gives highly detailed objects which we can still hope to render

fairly quickly (a frame rate much better than one picture per second). There was also a

secondary benefit: the optic flow effects encountered with planar objects can be made

independent of depth (§4.3 & §7.2). In principle 2nd order optic flow effects are needed to

completely characterize the motion of planar facets, but 1st order effects apply over small

areas. First order optic flow effects are linear transformations of images. The adaptive

rendering of detail was achieved by having a highly accurate, anti-aliased, but slow method

for making these transformations and another, less accurate, but much faster method.

The other features of an animation system, which are not directly relevant to the test of the

dynamic metric, were reduced to their essentials. The user interface was a window and

mouse based system allowing the rapid alteration of experimental conditions and output

parameters. The scripts which the actors followed were the simplest consistent with produc-

ing worthwhile experimental results: incremental translations and rotations over a specified

set of time steps.

In spite of the simplicity all the essential elements needed for an experimental implementa-

tion were gathered: The test consisted of textured planar objects moving about. There were

two ways of rendering the motion which traded speed off against spatial detail. Three-

dimensional motion was mimicked by replacing it with a two-dimensional image motion

when this could be done satisfactorily.

§7.2 Approximating Projected 3-D Motion with Optic Flow Effects.

There are two major questions addressed in this subsection: (a) how exactly does one com-

pute an appropriate two-dimensional transformation of an image from the movement in

three-dimensional space of a planar object; and (b) given the parameters of such a 2-D

transformation how does one effect the change in the visible image corresponding to those

transformations.
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This section depends on sections §2.2.2 and §4.3.3 where Gibson’s idea of optic flow was

first qualitatively introduced and then formulated in terms of its zero, first, second and higher

order effects. To recap briefly: a surface in a given direction may be described by a Taylor’s

series expansion of its distance about that direction. Such a two-dimensional Taylor’s series

first gives the distance in that direction, then the orientation of the tangent plane, then the

curvatures and so on. Movement of the surface can be analysed as movement of the features

in a corresponding Taylor’s expansion as projected onto the image plane. In the case of a

planar object the only non-zero terms in its Taylor series are the distance (zero order) and

orientation of the plane (1st order). The optic flow effects above 2nd order are zero and

there are only two independent 2nd order terms (§7.2.2). More complex surfaces also need

the higher order terms for a complete description.

We first provide a formulation of frame-to-frame coherence which we believe provides new

insight into an old problem (§7.2.1). We then describe how we intend to measure this coher-

ence (our temporal priority metric — §7.2.2) and then how we will apply the results of these

measurements computationally (§7.2.3).

7.2.1 Orders of Frame-to-Frame Coherence.

Frame-to-frame coherence was reviewed in Chapter 1 (§1.3.5). It describes the way in

which one frame of an animation is normally very much like the preceding and succeeding

frame. It follows that if we can identify which parts of an image have changed we need only

alter those parts in the next frame. A clear, applicable, formulation which measures and

predicts frame-to-frame coherence would be very useful for the adaptive updating of moving

figures. We will show that optic flow analysis can be used to provide such a formulation.

From our point of view, frame-to-frame coherence, or adaptive update of moving figures, is

an application of optic flow effects. The more terms in the optic flow expansion which are

negligible the greater the coherence between frames.

In other words, if the displacement remains relatively constant then the zero order optic flow

term is very small and so nothing need be updated. In fact, using the expression for optic

flow expansion we can state this more accurately: if all orders of optic flow effects for a par-

ticular object at a particular frame fall below some threshold then the image from the previ-

ous frame may be reused. The actual threshold used depends on the frame rate and the

display resolution.
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If only the camera is moving, and depending on the size and order of the depth discontin-

uities, the optic flow effects will apply globally over the field of view. Discontinuous

depths (occluding edges) lead to disparities in the lower order optic flow effects, higher

order depth discontinuities (e.g. changes in curvature) lead to higher order optic flow effects.

If parts of a scene are moving independently they are treated separately.

Having formulated frame-to-frame coherence in these terms a natural progression becomes

possible and we can ask questions such as the following:

1. What if all the terms except the zero order optic flow effects are insignificant?

2. What if all the terms except the first two orders are insignificant?

etc

With planar objects one would not go beyond these first two, since the most general case can

only have terms up to 2nd order.

If we adopt the term zero-order frame coherence (which is short for ‘‘frame-to-frame coher-

ence for optic flow effects of zero order and above’’) instead of frame-to-frame coherence,

then we have the following definitions:

Zero order frame coherence: (a.k.a. frame-to-frame coherence) if all orders of optic flow

effects for a particular object at a particular frame fall below some threshold then the

image from the previous frame for that object may be reused.

First order frame coherence: If all orders of optic flow effects, except for the zero order

fall below some threshold then the image of the object from the previous frame may be

reused provided it is translated to its new screen position.

Second order frame coherence: If the optic flow effects for all orders from the second

upwards are negligible then the image of the object from the previous frame may be

reused provided it is subjected to the affine transformation determined by the first

order optic flow effects.

Third order frame coherence: Defined in the same way. All planar objects exhibit this

form of coherence. Third order coherence would allow one to reuse a previous image

provided a transformation which changed from pixel to pixel was applied.
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Clearly we can define higher order frame coherence. Equally clearly these become less use-

ful as the transformations required become more complex. The alternative is to choose

small regions over which only lower order effects reign. If these regions do not coincide

with occluding edges then the separately transformed facets have to be stitched together.

7.2.2 The Temporal Metric: A measure of frame coherence.

The temporal metric is a single concept but can only be crudely approximated by a single

number. As we have seen in the previous subsection the best a single number could tell us is

the highest order of optic flow effect which we cannot ignore.

The basic formulation of the temporal metric is then: an integer, OT , indicating the order of

frame-to-frame coherence, or equivalently, the lowest order optic flow effect which can be

neglected for an object. For the planar objects of the experiment there are four cases:

0. No relative movement, nothing has changed.

1. Translation only in the image plane — zero order effects.

2. Linear transformation in the image plane (shear, rotation, scaling) — first order

effects.

3. Image must be recomputed from underlying 3-D representation — non-uniform

motion, accumulated distortions too high.

For each of cases 1 & 2 there are measures of the extent to which the change has occurred.

In case 1 (translation) this is specified by two numbers and in case 2 (affine transformation)

it is specified by four numbers.

Measure of Image Translation: T 0.

This measure is easily arrived at. It is the projection of the instantaneous velocity vector of

the object on the image plane, v .

Thus the translation temporal metric is:

T 0 = �
� vx, v y

�
� (7.1)

The object motion is analysed in terms of its steady translation V and rotation ΩΩ. In that

case the values of vi (the components of v) are given by Equation 4.13. If we further assume
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that the object is composed of planar facets we can simplify Equation 4.13 further, by elim-

inating the dependence on depth.

y

xrl

O

R

y

x

z

N

image plane

object plane

Z

Zo

Figure 7.1.��������� ‘‘Re-inverted’’ image projection. This figure illustrates the relations
between image and plane which is used in synthesizing pictures.

Consider a plane with normal N which passes through the line of sight (the Z-axis) at Z 0

(Figure 7.1). The equation of the plane is:

R . N = Z 0 Nz (7.2a)

or equivalently:

Z = Z 0 − X
Nz

Nx��� − Y
Nz

N y��� (7.2b)

In terms of coordinates Equation 7.2a can be written as:

Xi Ni = Z 0 N 3 (7.2c)

Substituting the Perspective Projection Equation (Eqn. 4.8) into 7.2c we get:

Z =
xi Ni

l Z 0 N 3������� (7.2d)

The Optic Flow Equation (4.13) can then be written, for the case of the flow induced by a
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plane, as:

r. = vi =
Z 0 N 3

xm Nm Vi
�������� −

l Z 0 N 3

V 3 xm Nm xi
���������� + εimnΩmxn −

l
xi
���ε3mnΩmxn (7.3)

Measure of Linear Image Distortion: T 1

The measure of linear image distortion is slightly more involved. We use Equation 4.16 for

the first partial derivatives w.r.t. image coordinates,
∂xi

∂x. i
���� , of a re-inverted image at a distance

l from the origin:

T 1 =

�
�
�
�
�
� ∂x

∂ y.���
∂x
∂x.���

∂ y
∂ y.���
∂ y
∂x.���

�
�
�
�
�
�

(7.4)

In the case of a planar facet we can again simplify the equations by eliminating the depen-

dence on depth. If we differentiate Equation 7.3 then the 1st order terms of Equation 4.14

become:

∂x j

∂vi���� = l Vi − V 3 xi l Z 0 N 3

N j������� − εijm Ωm +
l
xi��� ε3 jm Ωm (7.5)

−
l

δij���
�
�
� Z 0 N 3

V 3 xm Nm��������� + ε3mn Ωm xn
�
�
�

Instead of using Equation 7.5 directly for the 1st order optic flow effects, we could also sub-

stitute:

Z 2
1���

∂x j

∂Z���� = −
l Z 0 N 3

N j�������

Z
V 3��� =

l Z 0 N 3

V 3 xk Nk��������
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in the right hand side of Equation 4.16, viz:

Z
1
��

�
�
�
�
�
� Z 2

−lV y + yVz����������
∂x
∂Z��� + Ωz +

l
y��Ω y

Z 2

−lVx+xVz���������
∂x
∂Z��� −

Z
Vz��� + 2

l
x��Ω y −

l
y��Ωx

Z 2

−lV y + yVz����������
∂ y
∂Z��� −

Z
Vz��� +

l
x��Ω y − 2

l
y��Ωx

Z 2

−lVx + xVz����������
∂ y
∂Z��� − Ωz −

l
x��Ωx

�
�
�
�
�
�

It can be seen above that
Z
Vz��� occurs on the diagonal. It is therefore a uniform scaling due to

translation along the line of sight. This might not be so clear once the substitution is done.

In any event, by expanding Equation 7.5 or by eliminating Z from Equation 4.16 as sug-

gested above, we get the following:

a =
∂x
∂x.��� = p Vx −

l
p�� Vzx −

l
s�� Vz +

l
2x���Ω y −

l
y��Ωx (7.6a)

b =
∂ y
∂x.��� = q Vx −

l
q�� Vzx − Ωz −

l
x��Ωx (7.6b)

c =
∂x
∂ y.��� = p V y −

l
p�� Vz y + Ωz +

l
y��Ω y (7.6c)

d =
∂ y
∂ y.��� = q V y −

l
q�� Vz y −

l
s�� Vz +

l
x��Ω y −

l
2 y���Ωx (7.6d)

Where we have substituted p =
Z 0 Nz

Nx������ and q =
Z 0 Nz

N y������ , and where s =
Z 0 Nz

r . N������ .

The terms of the first order transformation are not independent of screen position. The func-

tion of the temporal metric will be to indicate whether the terms for the transformation

matrix from the previous frame are still valid.

The second order optic flow effects (Equation 4.15) can be written for a plane as:

∂xk ∂x j

∂2x. i������� =
l

δij���
�
�
�

ε3km Ωm −
Z 0 N 3

V 3 Nk������
�
�
�
+

l
δik���

�
�
�

ε3 jm Ωm −
Z 0 N 3

V 3 N j������
�
�
�

(7.7)
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Using x.xx for
∂x 2
∂2x.
���� , and x.xy for

∂x ∂ y
∂2x.

������ , etc., then the only non-zero terms can be written as:

2
x.xx
��� = y. xy = y. yx =

l
1
��

�
�
�

Ω y −
Z 0 Nz

Vz Nx������
�
�
�

(7.8a)

2
y. yy���� = x.xy = x. yx =

l
1��

�
�
�

− Ωx −
Z 0 Nz

Vz N y������
�
�
�

(7.8b)

The definition of the temporal metric is now essentially complete. There are three related

measures:

1. An indicator of the order of optic flow effect: OT . This summarizes the information so

that basic processing decisions can be made:

(i) no update required,

(ii) translation only,

(iii) distortion + translation,

(iv) recalculation of transformation matrix.

2. A vector measure of screen translation.

3. A transformation matrix for planar facets of the image. The four terms in Equation 7.6

indicate how the transformation of the image changes.

Translation of an image on a display is trivial. The only remaining algorithmic analysis con-

cerns ways of implementing image distortions and rotations.

7.2.3 Two-dimensional Image Transformations.

The general linear (affine) transformations of images (translations, rotations shear etc) can

be achieved by a vector addition, and multiplication by a 2 × 2 matrix. This is the way in

which the results from optic flow analysis was presented: the temporal priority measures T 0

and T 1 result in linear transformations.

In the discussion below we shall refer to source and result images. In the context of imple-

menting optic flow transformations the source image is always the original accurately com-

puted projection of the 3-D planar facet. The result is one of a series of output images
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generated purely on the basis of the source image for as long as the temporal metric indi-

cates that this is feasible.

Translations of images are by far the easiest and cheapest transformation and can be trivially

implemented. Translations by fractional pixel distances would require resampling of the

source image for each result image. This does not seem to be necessary in practice.

Once translations have been performed we are left with the transformations represented by

the same two-dimensional matrix applied to the coordinates of each point in the source

image. It might be convenient to separate this transformation into components which can be

dealt with in different ways: i.e. change in the size in the x and y directions, shear in those

directions and pure rotation.

Since we are going to deal with images on a raster questions about re-sampling and aliasing

will arise. We shall present two fundamentally different approaches. The one approach

deals with fractional pixels and attempts to minimize sampling errors by distributing parts of

a source pixel amongst the destination pixels. The other approach deals only with whole

pixels and reduces temporal aliasing (i.e. flicker) at the expense of spatial resolution.

The whole pixel method is of course a nearest neighbour point sampling technique. It won’t

work very well with large changes in scale [Heckbert, 1986]. The fractional pixel approach

implies low-pass filtering before sampling, this is computationally expensive but should

eliminate aliasing effects. The terminology adopted focuses on the computational aspects of

the problem, which is the prime interest here.

When shearing images the whole pixel method produces pixels which might not be quite

right for their position but no pixels are lost or duplicated. The whole pixel approach can be

used for overall size changes in the images. When the size of the image changes we either

cull or duplicate certain pixels. Particularly with size reduction this can lead to unacceptable

results because certain features in the image may disappear. The alternative is then the frac-

tional pixel resampling approach.

There is another important difference between the two approaches however: the fractional

pixel approach has to examine and interpret pixel values and must be able to combine them.

The whole pixel approach for shearing combined with a duplicate/cull method of size

change is independent of the values of the pixels. This value independence (which is really a

‘type’ independence) is important where the pixel values are themselves isolated points in a
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much bigger colour space. For example, if the pixels are pointers into a colour table then we

cannot in general expect to be able to average the two pointers and come up with a pointer to

the intermediate colour (Figure 7.5 illustrates this).

These simple operations repeated over a large number of pixels make them ideal candidates

for special purpose VLSI or SIMD machines. In fact the routines described below are partly

inspired by algorithms originally intended for the miniDAP (a 32 × 32 SIMD machine)

[Jackson, 1987] or for a special purpose processor [Fant, 1986].

7.2.3.1 Composition of Image Transformations.

The 2 × 2 transformation matrix can be written as a composition of transformations in a

number of ways. The decomposition used depends on the order in which the transforma-

tions are applied. The basic image transformation which leaves its source unchanged is the

unit matrix. This basic transformation is altered by the optic flow equations. The terms a, b,

c, d, below, refer to the basic image transformation as altered by the corresponding terms

from Equation 7.6.

If we first shear in the y direction, then in the x direction, and finally scale the image, the

decomposition is as follows:

�
� c

a
d
b �

� = �
� 0

m
n
0 �

� × �
� 0

1
1
x �

� × �
� y

1
1
0 �

� (7.9)

= �
� n y

m + mx y
n

mx �
�

In the decomposition y is a shear parallel to the y-axis, x is a shear parallel to the x-axis, n

represents a scaling in the y dimension and m a scaling in the x dimension. By identifying

terms we can see that:

n = d

and provided d ≠ 0

y =
d
c�� & m = a −

d
bc��� (7.10)

and provided ad − bc is non-zero

x =
ad − bc

db�������
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If the determinant, ad - bc, is zero then the transformation is singular. This means that the

image need not be treated as a plane. If the transformation is non-singular but d = 0, then we

can rotate the image by ninety degrees and exchange -b for d.

If on the other hand we first apply all the y-direction changes (shear and scaling) and then

the x-direction changes, the decomposition is as follows:

�
� c

a
d
b �

� = �
� 0

e
1
f �

� × �
� g

1
h
0 �

� (7.11)

= �
� g

e + f g
h
f h �

�

In the decomposition g is a shear parallel to the y-axis and h the scaling in that direction, f is

a shear parallel to the x-axis and e the corresponding scaling. Then:

h = d

g = c (7.12)

and provided d ≠ 0

f =
d
b��

e = a −
d
bc���

Similar considerations as in 7.10 regarding d apply to 7.12.

7.2.3.2 Fast, Pixel Preserving Image Transformation: ‘‘QUICK’’

In order to refer to this method of image transformation easily it will be called the ‘‘Quick’’

method. The quick method always moves whole pixels without interpretation, it is thus

independent of the underlying type of the representation. There are four basic kinds of

operation we shall need:

1. Pixel shear (translation) according to position.

2. Shearing of pixels in two dimensions together, without writing out the intermediate

results.

3. Selective pixel duplication to achieve fractional size increases.
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4. Selective pixel culling to achieve fractional decreases in image size.

A common theme to all these transformations is distributing a fraction of an integral set of

operations over an interval. For example, choosing which pixels to duplicate to get 10% size

increase, or which lines to shift for a fractional shear. This has a very efficient solution in

Bresenham’s well known algorithm, which is mainly used for line drawing [e.g. Newman &

Sproull, 1979].

The other problem is combining two shears in two-dimensions. The simplest way would be

to write out the intermediate image and then transform it a second time. However, by trac-

ing the jagged path which an output line follows (Figure 7.2) we can derive a scanline algo-

rithm which produces the sheared image. By duplicating or neglecting selected pixels and

then duplicating or neglecting selected lines we have an efficient and general image transfor-

mation method. The algorithm notionally employed the decomposition of Equation 7.9 but

without writing out any intermediate results.

This algorithm corresponds closely with that described by Braccini & Marino [1980]. How-

ever, it avoids the problem with holes which they describe. The difference lies in the fact

that they allow only traces of the source image which correspond to the diagonal moves of a

chess ‘bishop’, while the algorithm considered here uses 8-connected ‘queen’ moves. The

diagrams clarify why this is necessary.

This algorithm was fully implemented and its combination of features may very well be

unique.

7.2.3.3 Two-Pass, Anti-Aliased Image Transformation: ‘‘PERFECT’’

This image transformation writes out its intermediate results. The pixel values are inter-

preted, which means that colour errors can occur from resampling. For grey level images

however the output is much better, because anti-aliased, than the previous method. For

brevity it will be referred to as the ‘‘Perfect’’ method.

The algorithm interpolates a selected window of input pixels to produce the desired view of

output pixels. The columns of the image are first processed and then the rows of the result-

ing intermediate image. Because of the two pass nature of the algorithm shears can be done

easily for each dimension separately. The ‘‘perfect’’ method is well suited to VLSI imple-

mentations [Fant, 1986], and the reader is referred to Fant’s article for more details. The

decomposition derived in Equations 7.11 and 7.12 apply to this algorithm. Using the
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Bresenham’s Code in Example:  1010101.   
If x-shear were less than y-shear, then source 
scanlines of the following shape could arise:-
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Figure 7.2.��������� Rotation by multiple shearing of an image. The diagram shows the
correspondence between result scanlines and the source image. Note: the inter-
mediate image is purely for illustration, it is not actually produced

decomposition into the shear and scaling components avoids the rather laborious procedure

used by Fant which involved calculating the positions of the four corners of an image.

This algorithm was implemented as an option which can be applied to all images, instead of

the more normal one pass method.

7.2.3.4 Simple Averaging Image Transformation. ‘‘PRETTY’’

Because the two pass algorithm was so slow there was an attempt to produce an intermediate

algorithm. This algorithm is essentially the same as ‘‘Quick’’ except that pixels are not

culled when the image decreases in size. Instead a simple averaging is performed. Succes-

sive pixels which would be discarded are accumulated and averaged with the normal output

pixel of a location.

The algorithm was only used for images which decreased in size. This was the most com-

mon bad case for the ‘‘Quick’’ method.
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§7.3 A Simple Priority Based Animation System.

The basic algorithms for calculating temporal priority in terms of optic flow were presented

in §7.2.2. In the subsequent section (§7.2.3) the algorithms for performing the image

transformations were given. In this section we describe the way in which these algorithms

were implemented and linked up to produce an animation system. Not just any animation

system, but one where the temporal priority of an object determined how it would be pro-

cessed and rendered.

The basic specification for the animation system were determined by the requirements of the

experiment (§7.1.1), that is, to illustrate and provide a simple testbed for the temporal prior-

ity metric. The system was implemented on a SUN-3 colour workstation and embedded in

the standard sun windowing system. The user interface was built up with the toolkit pro-

vided by Sun. The main requirement of the user interface was that experimental parameters

could be altered quickly and easily.

The main programming language was C++, although the interface between the animation

system and the windowing system was written in C.

When it was discovered that a significant proportion of the execution time was spent in the

computer supplied raster operations, a few critical routines were speeded up by the judicious

application of assembly code. This optimization applied to getting images on the screen and

not to the image transformation routines which were all written in C++.

7.3.1 The Parts of the Animation System.

The animation system is thus split between the user interface part and the animation produc-

tion system proper (see Figure 7.3). The animated world consists of three basic types of

objects and numerous supporting objects (class names are indicated by capital letters):

� Stage. The global object which contains all other objects as parts or sub-parts. An

important part of the Stage is the Clock. There is only one Stage per animation.

� Actor. An actor is the basic unit of animation. The actors have a Script which is the

sequence of actions which they execute. They have an Appearance which determines

how they will look on a display. There can be any number of Actors in the world.

Appearances exist for every Camera.

� Camera. The camera takes the Appearance of an Actor and renders it on a Segment.

174



Chapter 7 — Priority Based Execution of Motion

Stage

Clock

List: 
Frenetics

Cameras Actors

List: 
Renderers

Window

List: 
Segments

Script CostumeList: 
Appearances

QUICKPRETTYPERFECT

Figure 7.3.��������� The part hierarchy of selected classes in the animation system.

The Segments are submitted to a Window to be displayed. Although there can be a

number of Cameras the current user interface only allows one to be set up. The Cam-

era owns a number of renderers, Quick, Pretty and Perfect, corresponding to the algo-

rithms discussed above.

These objects are linked by a number of lists. The three most important ones are:

� Appearance List. The temporal priority is embodied, if it is embodied anywhere, by

the list of Appearances ordered according to their temporal priority. An instance of

this list is owned by each Camera.

� Segment List. Each Window has a list of Segments ordered according to their display

priority (depth priority).

� Kinetic Object List. Every object which can move is placed on a list owned by the

Clock. These objects are updated once for each each frame that is rendered.

The actual calculation of the temporal metric is performed by an instance of TimeMetric or

its subclass PlaneMetric. Each Appearance owns one of these objects. The basic class

TimeMetric can only calculate the simple translation temporal metric T 0 and is used with
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actors which cannot move in three-dimensions. The subclass PlaneMetric finds T 1.

7.3.2 The Animation Classes and Processing Cycle.

Up to now we have been talking in terms of the part hierarchy, that is, which object owns

which, how the parts fit together to form the whole. The other side of an object oriented

implementation is the class inheritance hierarchy (Figure 7.4, cf. §3.6.1). All objects which

can change over time are subclasses of the abstract superclass KineticObject. So the Stage,

Actors and Cameras are all subclasses of KineticObject.

Kinetic Object

Actor

Costume Actor

Affine Actor

Stage Camera

Flat Actor

Depth Actor Actor 2D

Figure 7.4.��������� Part of the class hierarchy of the animation system.

Appearance is an abstract superclass, the real task of interpreting the way an Actor looks to a

Segment is performed by its subclasses. The importance of these class hierarchies will

become apparent once we have considered the processing steps which take place during ani-

mation.

Animation processing is centered around the cycle of operations which produce the output

frames. At the center of this processing cycle is a clock object which distributes a ‘tick’ to

all objects and which notices when a cycle is complete. Since this system is implemented on

a single processor machine synchronization is achieved by distributing the ‘tick’ in some

correct predetermined order, but the idea is extensible (see Appendix D). This order is
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determined by the order in which objects appear in the KineticObject list mentioned above.

The first objects to receive ‘tick’ are the Cameras. They then proceed to render the Appear-

ances received in the previous cycle. Then they update their own positions. This has to be

done before the Actor’s are activated because temporal priority depends on the relative posi-

tions and speeds of Camera and Actor.

Next the Stage receives ‘tick’. Actually the very first object to be created is the Stage, it

owns and sets up the Clock and is informed when the Clock has completed processing. Dur-

ing processing the stage maintains a subsidiary list of suspended but not deleted Actors, but

the main purpose of sending a tick to Stage is to allow it to function as a kind of background

actor.

Finally the Actors receive a ‘tick’, in no particular order. In response they update their posi-

tion by asking their Script for the next action to be performed. Once updated their temporal

priority is calculated w.r.t. each Camera. The Stage supplies an iterator object which will

answer with each Camera in turn, when it is interrogated by the Actor.

The vital temporal priority calculation is performed at this stage. For each Camera a new

Appearance is created if needed. The Actor’s 3-D state is transformed and stored in the

Appearance as a 2-D state relative to the Camera. Each Appearance is then submitted to the

Camera by placing it on the appropriate list. This list reflects the temporal priority of the

Appearances by the order they are kept in.

There can be numerous kinds of Actors. The full optic flow calculations are done for

DepthActors. The other actors (AffineActors and FlatActors) allow more direct control over

their transformations and are mainly used for testing and for timing the adaptive updating as-

pect of the experiment.

The Appearances for all these Actors belong to the subclass Picture. It is Pictures which

know about the 2-D textured images (instances of the class Costume).

The Camera takes the Appearances from its appearance list and depending on their temporal

priority has them rendered by a Renderer. These renderers (instances of PerfectPic, Quick-

Pic and PrettyPic) embody the algorithms discussed in §7.2.3. The is also another renderer

not mentioned before which can only translate Appearances.
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The Renderer returns a Segment which has a screen position and depth priority. A bounding

box is also provided to indicate the area of the segment actually used by the image. These

Segments are maintained in a depth priority list. This list provides a simple method of hid-

den surface removal. Segments are rendered depth first.

The processing cycle for one frame is now complete and a new one can begin. The Stage is

informed of this. Certain housekeeping such as image recording or user interaction takes

place at this stage of the cycle.

7.3.3 Generic Lists and Dynamic Binding.

In the discussion of the Appearance and KineticObject list we have glossed over a crucial

point: these lists can contain many different kinds of object. When a particular object is

taken from the list we do not know its type beyond the fact that it is either a kind of Kinet-

icObject (on the Clock’s list) or a kind of Appearance (on the Camera’s list). Clearly this

will be a feature of any animation system with many kinds of active objects or any imple-

mentation of a priority measure which must apply to different kinds of objects.

It is here that dynamic binding provides the most elegant solution. We send the same mes-

sage to all objects in the clock queue (i.e. ‘tick’) and the same message to all objects in the

Camera queue (i.e. ‘scanConvert’). Then at run-time the system binds the correct function

corresponding to the type of the object encountered. In C++ these functions are known as

virtual functions. In general at least two more virtual functions are needed: ‘printOn’ to

print a description of the object on some output stream, for debugging and general enquiries.

And a virtual destructor which will clean up behind the object if it is deleted.

A less elegant feature of the generic lists which are used to implement these queues is the

way they are declared: they are generated by a rather baroque collection of C preprocessor

macros. Their virtue is that creating a new kind of list is simply a question of naming it.

§7.4 Results of Using the Temporal Priority Metric for Animation.

The experiment described in this chapter had a number of different aims which all came

under the single heading of testing the temporal priority metric. The aims may be broadly

divided into three categories:
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1. Adaptive updating depending on relative movement.

2. Replacing three-dimensional motion by two-dimensional linear image transformations

with an error bound.

3. Showing trade-off between spatial and temporal detail.

Generally we were able to obtain promising results, particularly in the first two cases. The

most important result was the ability to mimic three-dimensional motion by two-

dimensional flow effects. However in all cases areas for further investigation were un-

covered. In the first case (adaptive updating) this was because the experiment only really al-

lowed a few levels of adaptation. In the second case (optic flow effects) this is probably be-

cause it is a new technique with many more possibilities than could be examined here. Fi-

nally, trade-off between spatial and temporal detail seems to depend on being able to filter

fast moving images more accurately and yet still display them at high speed.

The results presented here include timings. These timings can be used to indicate the com-

parative worth of the various adaptive detail schemes within this implementation, but there

are no absolute benchmarks for testing speeds. This experiment, unlike the previous one

described in Chapter 6, tests a large range of effects. It shows that the temporal priority

measure can be used to unify some old ideas (adaptive updating, frame-to-frame coherence)

with some newer ideas. The experiments also indicate that the new techniques (optic flow

analysis, detail trade-offs) are practical.

7.4.1 Adaptive Updating.

There are various kinds of adaptive updating available on the system. Firstly images may be

rendered by the ‘‘Quick’’ method or the ‘‘Perfect’’ method. Then if the system detects that

a previously rendered image needs only to be translated on the display no rendering is re-

quired (see Figure 7.6). The previous segment is merely redisplayed in the new position.

Within this three tier system the temporal metric provided an adequate measure of the im-

portance of the objects. The results of various timings conducted are collected in Appendix

C. Even in this simple test there were many variables. For example, an object receding into

the distance becomes smaller and quicker to render and so the transformations which mimic

this effect have an advantage. For this reason the transformations used were all approxi-

mately rotations.
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Table 7.1�������� Summary of timings from Appendix C. The code refers to the codes
used in Appendix C to identify actors. The nominal image size refers to a typi-
cal dimension of the image before transformation. All frame rates have been
rounded to one or two digits of precision.

The other transformation method, ‘‘Pretty’’, produced times almost exactly the same as

‘‘Quick’’ and its visual appearance was also very similar. The most visible aliasing effects

are on the edges of objects and ‘‘Pretty’s’’ simple averaging did little to correct this.

It can be seen from Table 7.1 that being able to decide what the dynamic priority of an ob-

ject is can produce very great speed improvements. The table indicates that the benefit of

avoiding anti-aliasing is much the same for both big and small images (about 10 fold speed

increase). When it comes to doing translation only instead of image transformation the

benefit is much larger with large images ( 5 fold vs double speed-up).

7.4.2 2-D Image Motion Instead of 3-D Object Movement.

The basic results were very encouraging. Three-dimensional motion effects were created in

the absence of any explicit underlying three-dimensional simulation (see Figures 7.7a-f).

For certain extreme distortions the image transformation matrix was not stable enough and

resulted in visibly inaccurate image positioning. However the knowledge of these cases can

be incorporated into the temporal metric.

The timings for these transformations are the same as for the basic image transformation

case given in the previous subsection. The calculations involved are minimal, and many

results are re-used and can be cached from one frame to the next. For example if the three-

dimensional velocity and rotation of the object remain unchanged then only the terms which

depend on image position need be recalculated.

The success of this section of the experiment depends on the conviction that the sequence of

images in (Figure 7.7) represent an example of three-dimensional motion. These images
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represent a way of doing three-dimensional in-betweening on the basis of two-dimensional

transformations.

7.4.3 Trade-off between Spatial and Temporal Detail.

The effect was illustrated with small images rendered by the ‘‘Quick’’ method. When such

images recede into the distance their images get smaller. Thus there is a loss of spatial de-

tail. Normally such images would be filtered to remove the higher frequencies and prevent

aliasing. However the purpose of this investigation was to see if moving such objects at high

speed without filtering would be acceptable. The assumption was that the jagged loss of de-

tail would be associated with high spatial frequencies. This tested the hypothesis that such

high spatial frequencies would be less objectionable in the fast moving image.

The control for this experiment was the same transformation done by the ‘‘Pretty’’ and

‘‘Perfect’’ method. The hypothesis would be proven if the ‘‘Quick’’ method (not spatially

anti-aliased but fast) gave the same visual impression as the other slower, but better anti-

aliased, methods.

The results were reasonable given that a fast play-back of the images could only be achieved

by making them small ( 60 × 60 pixels). The results for both the ‘‘Quick’’ and the ‘‘Pretty’’

methods (i.e. the experiment and the control) seemed very similar.

The problem with the experiment lay in the controls. The ‘‘Perfect’’ method was too slow

to give a real sensation of movement on the present hardware. While the anti-aliasing of the

‘‘Pretty’’ method was not good enough to form the ideal control: a moving anti-aliased im-

age.

In absolute terms the ‘‘Quick’’ method does cause ‘‘boiling’’ and flickering of the moving

images. This experiment was not conclusive in showing that this was less objectionable in

very fast moving images. Further tests of this trade-off will require much faster rendering

techniques.

As a result of this experiment we can conclude that it might be better to look for the benefits

of the trade-off between spatial and temporal detail at an earlier stage in the viewing pipe-

line. In other words, all final images will have to be properly anti-aliased. The benefit of the

trade-off will be that for fast moving objects less detail will have to be calculated for eventu-

al rendering. For example: it can be conjectured that fast motion over the fractal field of the
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previous chapter will allow the recursion depth for fractal calculation to be decreased com-

pared to the static case.

§7.5 Conclusion.

We have presented a coherent analysis of adaptive detail in time for use with animated pic-

tures. This analysis is based on the idea of a temporal priority metric which measures the

visual importance, in a precisely defined sense, of an image to the viewer. This resulted in a

new, extended, formalization of frame-to-frame coherence.

This technique should find application whenever highly detailed objects are subject to mo-

tion which is smooth over a number of frames. For example: a recent application of object

oriented animation to natural environments was Reynolds’ simulation of flocks, herds and

schools of animals [Reynolds, 1987]. The motion of such animals can usefully be rendered

using all the techniques presented above. Although Reynolds ignored wing motion this

could also be allowed for modelling the two wings and the body as separate actors. The cy-

clic nature of wing movement could be incorporated directly into the 2 × 2 image transfor-

mation matrix.

The synthesis of pictures from an optic flow decomposition in particular seems to be new

and quite promising. One area of application would be to bring the possibility of three-

dimensional animation low cost personal workstations which could perform fast two-

dimensional transformations on images. The transformations required are more complex

than the raster operations currently implemented for such machines. A possible architecture

would be some kind of SIMD parallel array processor such as the 32x32 AMT DAP 510

(‘miniDAP’) or special purpose VLSI.
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Figure 7.5.��������� Illustration of colour effects of smoothing pixels in a colour table.
This effect is observed because the actual values of the pixels was manipulated.
The other full colour pictures show the correct colours. (see §7.2.3)
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Figure 7.6: a & b.��������������� Multiple actors executing different motions and being updated
for different frame-to-frame coherence effects: 0 order for the ‘stamp’ and stick
figure, and 1st order for the butterflies and brick.
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Figure 7.7: a-b.������������� Frames from a sequence of distorting two-dimensional pictures
which mimic three-dimensional movement. The sequence comprised many
more frames than the 6 shown over the following figures. The only internal
representation is a planar picture. The images were transformed by the ‘‘Quick’’
algorithm.
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Figure 7.7: c-d.������������� Continuing frames from a sequence of distorting two-dimensional
pictures which mimic three-dimensional movement.
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Figure 7.7: e-f.������������ Concluding frames from a sequence of distorting two-
dimensional pictures which mimic three-dimensional movement.
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Chapter VIII

Conclusion

This chapter summarizes the achievements of the research in the light of the
main goals: the formulation and application of the spatial and temporal priority
metrics. A methodology for designing adaptive detail computer animation sys-
tems, another aim of the research programme, is summarized. Some of the
theoretical results are also reviewed, particularly the work on representing physi-
cal objects in object oriented programming.
The chapter concludes with a number of suggestions for further research.

§8.1 The Main Implications of the Space-Time Priority Metric.

We have defined a collection of priority metrics which measure how much effort should be

expended by a computer animation system in rendering an object. The kinds of objects con-

sidered were explicitly those encountered in nature, since the intricate texture of natural

objects makes them particularly challenging. Nature is the proving ground for any technique

which concerns itself with realism.

As we have seen there are a number of different metrics: the static priority metric which

deals with spatial detail, the temporal priority metric which deals with (various orders of)

dynamic detail, and trade-off relations between the two metrics (summary in §8.1.2).

The theoretical issues involved are summarized separately (§8.1.1): the main contributions

are:

� Distinguishing part hierarchies from type hierarchies and providing an access mechan-

ism for parts which is consistent with data encapsulation principles.

� Refining the notion of a variable detail object to mean those objects which possess an

‘Appearance’. The protocol of this class mediates the adaptive display of an actor by a

camera on the basis of the actor’s static and dynamic priority.

The practical work in this research programme concentrated on applying the priority metrics

to three features of the natural environment (the reasons for this choice are reviewed below

in §8.1.1):

1. Animals — the stick figures of Chapters 3 and 5.
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2. Textured landscapes — the fractal height fields of Chapter 6.

3. Optic flow — Textured planar facets in motion of Chapter 7.

In general these experiments confirmed the main tenets of the thesis:

� The priority metrics could be defined and applied.

� Using a static priority metric reduced processing time because redundant detail was

eliminated at an early stage.

� The static metric reduced storage requirements because the object models were not

enumerated to their full extent. Less intermediate storage was also required during

enumeration.

� For animation the temporal metric allows adaptive updating to be exploited in a con-

sistent and unified manner.

� Frame-to-frame coherence was extended to include various orders of coherence

between objects on successive frames. That is, images of objects could be completely

unchanged, translated in the image, undergo other affine distortions or be subjected to

more complex changes.

� By directly appealing to the optic flow equations, and by making use of the temporal

priority (error) measure the full 3-D rendering of an object could be bypassed by a syn-

thetic camera for a limited number of frames. This process depended only on the pre-

vious image and the ‘‘Appearance’’ and not on the 3-D object model.

� Some indication of the possible trade-offs between spatial and temporal detail was

given.

� The temporal metric reduces intermediate storage requirements by allowing simpler

rendering options to be used. For example, one pass rendering on the basis of 2-D

image rather than full 3-D rendering.

This research programme had the aim of providing a method of tackling the complexity of

representing objects in computer animation. This method has now been provided and

applied. The summary is provided in §8.1.3.
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More broadly speaking, the thesis defended was that it is rewarding to view the representa-

tion of objects in terms of the impression we want to make on the viewer’s senses. The suc-

cess of the priority metrics can be taken to illustrate this benefit. It is hoped that this disser-

tation can contribute to shifting the emphasis of naturalistic animation away from the phy-

sics of objects and towards the mind of the viewer.

8.1.1 Summary of Some Theoretical Issues Explored.

The purpose in defining the priority metrics is to capture the idea that fidelity to reality

depends as much on catering for the needs of human perception as it does on accurate

modelling. The generation of realistic pictures also depends on the characteristics of the

display device and display viewing conditions, since these come between the viewer and the

computer model of the environment. For this reason it is perhaps better to refer to ‘‘observer

conviction’’ rather than to ‘‘realism’’ as the desired quality of pictures.

It was emphasized in Chapter 2 that the human eye is nothing like a camera. It deals with

continually changing arrays of light, it has no shutter, it does not see static images. In a

sense it does not see patterns of light in space: it analyses the incoming sense impressions in

a series of tuned spatio-temporal frequency channels. One can conclude from this that we

need not necessarily be concerned with creating sequences of complete frozen frames for an

animation. Instead we can adaptively update parts of the frame in such a way that the

sequence of distorting images taken as a whole provides the information which the human

senses require.

This research has set itself the aim of measuring properties of an image which are needed to

make those images convincing to the viewer. It has concentrated on adaptive detail in space

and time. The particular metrics used will be discussed below (§8.1.2). It is important for

the purpose of this research that practical measures of detail can be derived from the general

principles and can be applied to a range of data representations.

It is also important though that we establish the general principle of a priority metric which

can be applied to a wide range of objects. In order to do this we defined the metric in terms

of its applicability to a general variable detail abstract data type. This was first done in

Chapter 4 and was then elaborated as the experiments illustrated more of the issues involved.

The central idea here is that an object creates an instance of an ‘‘Appearance’’ type for every

camera in the environment. This Appearance incorporates the current spatio-temporal detail
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level required without explicitly rendering the object. The detail levels required are exactly

the priority metric values.

The ability to define such an Appearance has implications for the modelling of the underly-

ing object — some objects will behave more efficiently than others in this respect. An

Appearance is an encapsulator: the underlying model could have only one level of detail

without preventing its use in this situation. Needless to say the most efficient application of

the priority metric is with objects where an early determination of priority can eliminate

unnecessary computation or reduce storage requirements (see also §8.1.3).

The question then arises of whether the kinds of objects typical to natural scenes would

interact efficiently with the priority metrics. Chapter 2 was partly concerned with establish-

ing some distinguishing features of the appearance of the natural environment. The most

important property was the many, nested, levels of detail and the way these nested levels of

detail distort during motion: the optic flow field. The other important feature of the natural

environment are its animals. From this we decided on the kinds of objects to investigate in

the experimental implementations: textured fields: both static and in motion, and animals.

Chapter 3 presented some results on the implications of modelling physical objects in an

object oriented fashion. We had decided on object oriented programming since it embodied

the principles of data abstraction in close coupling with the notion of a hidden local state.

The hierarchical modelling of objects was shown to be vital in many scientific and engineer-

ing descriptions of objects, and of course it is familiar in computer graphics as the modelling

hierarchy.

We wanted controlled access to the parts of objects which was done in such a way that the

integrity of the whole object was not compromised. This allowed such objects to be incor-

porated into an animation system without violating the principles of information hiding but

also without becoming too unwieldy. It was found that existing approaches to this problem,

where it was recognized at all, had not truly grasped the essential distinction between a

part-hierarchy and a type-hierarchy.

Our contribution then is to recognize this distinction and provide an extension to the normal

message passing syntax of object oriented languages. This extension can be termed ‘‘for-

warding of censored messages’’. It provided controlled access to the hierarchy of parts.
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8.1.2 The Spatial and Temporal Priority Metrics.

The definitions of the spatial and temporal priority metrics have been refined over a number

of steps in this dissertation. The final equations make sense only in their context and will

not be repeated here. The purpose of this subsection is to provide the reader with a cross

reference and guide to the definitions of the priority metrics.

The purpose of the spatial metric is to measure spatial detail so that the importance of (part

of) an object to the image can be determined. The purpose of the temporal metric is to

measure temporal detail for the same reason. The spatial metric is used in both static and

dynamic scenes. The temporal metric applies only to dynamically changing images. The

two measures are not assumed to be independent of one another.

The definition of the meaning of ‘‘detail’’ occupied most of §4.1. The definition involving

Fourier analysis equated ‘‘highly detailed’’ with ‘‘significant energy in high frequencies’’

(§2.3 & §4.1).

The most basic definition of the spatial priority metric is simply that it measures the distance

to the object. The justification that this is in fact a measure of detail is in §4.2. The argu-

ment is essentially that distance shifts the spectrum of an image towards higher spatial fre-

quencies. The same low-pass filtering will still be done however and so more of the detail

will be lost. The question of whether the radial distance to the object, or the perpendicular

distance to the image plane should be measured is addressed in §4.2 and is related to the dis-

cussion of types of perspective found in §2.1.1

This spatial metric can be extended to allow for the fact that the atmosphere actually lowers

the passband of the effective spatial filter applied to more distant objects (§2.2.3 & §4.1.4).

The full spatial metric would combine atmospheric and eye transmission effects (§2.5.2).

The most basic definition of the temporal priority metric is that it measures the relative

angular velocity of an object with respect to the viewer. The faster the object moves the

more often its image has to be updated (§4.3.1). This simple idea can be extended to take

into account the way the image of the object is changing as it moves (§4.3.2). The end result

of this analysis is not a single number but a 2x2 transformation matrix specifying the chang-

ing shear, scale and rotation of planar facets of the image (§4.3.2).

The further generalization of the temporal metric leads to the idea that there are various ord-

ers of frame-to-frame coherence. Images are not just the same or different from one frame to
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the next, they are different according to the kind of affine transformation which relates them.

And if they are not exactly related by an affine transformation then the size of error can be

determined (§7.2.1).

The last question which was addressed was the trade-off between the two metrics. The way

movement changes the spatio-temporal spectrum of an image was discussed in §2.3.5, §2.4.7

and §4.3.3. The effect of movement is to shear the spectrum according to the direction and

speed of the movement. This can cause certain frequencies to be shifted to the extent that

they are filtered out. The spatial detail required from an object which is moving quickly

depends on its velocity (and the orientation of the spatial frequencies — although this is less

important). Using this trade-off implies an efficient way of smoothing crude images

(§7.4.3).

The definitions spatial and temporal metrics have now been reviewed. Details of their appli-

cation can be found in the relevant experimental chapters:

Chapter 5

Spatial metric applied to non-continuous hierarchies.

Chapter 6

Spatial metric applied to continuous hierarchies.

Chapter 7

Temporal metric applied to textured planar facets.

8.1.3 A Method for Managing Complexity in Object Representations.

This subsection summarizes the methodology which was developed for modelling objects in

a natural scene so that their complexity may be controlled. It draws together the experience

gained in Chapters 5, 6 and 7 and depends on the theoretical work of the chapters preceding

those.

The environment model is analysed in terms of the sources of spatial detail and how this

spatial detail is transmitted. The perceived detail of the natural environment was character-

ized in Chapter 2. That chapter also tried to identify relevant detail on the basis of human

visual perception.
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The preferred method for analysis of detail is in terms of a (notional) Fourier analysis of spa-

tial frequencies. The results presented on perception in the environment and on human

vision in artificial viewing conditions can be applied, at least to a first approximation, as spa-

tial and temporal filtering steps. The various rendering steps, both modelled (e.g. atmos-

pheric haze) and real (e.g. raster display) are examined for the way they affect the detail lev-

els. The aim is to arrive at a number which depends only on the synthetic camera and the

modelled object.

The object is modelled in some object oriented animation system. The notion of static

data and separate procedures is discarded in favour of having abstract data types. Access to

the data is always mediated by procedural protocols. The secondary benefit of this is that

this form of modelling is intuitively appealing in simulation and animation. In recognition

of this distinction we shall now switch to calling the objects ‘‘Actors’’. All objects of the

environment are Actors (also in the precise object oriented sense of belonging to a subtype

of the type Actor).

The actor model is extended to include a hierarchy of detail levels. This hierarchy may be

implemented as such or by any other method, probably procedural, which can provide to

correct interface to the spatial priority measure.

The interaction between the Actor and the Camera (which can itself be a kind of actor) is

mediated by an Appearance. This Appearance is the only necessary extra object imposed by

the use of the priority metric. The Appearance is owned by an Actor, which creates one for

every Camera which requests the Actor’s Appearance. The Appearance has access to the

Actor’s current 3-D and 2-D (i.e. image) state. On the basis of the relative positions and

movements of the Camera and the Actor (and any other relevant considerations) it must be

able to calculate the Actor’s spatial and temporal priority.

Once the priority has been calculated the Appearance is submitted to the Camera for even-

tual rendering. If the system only produces static frames then the Appearance does not (in

principle) return to the Actor, but in an animation the temporal priority of an Actor will

depend on the extent to which its Appearance was fully updated in a particular frame. Thus

in an animation system the Actor sends out an Appearance and receives a reply.

The benefit of the priority metrics will depend on the extent to which the calculation of

priority can be done without incurring the cost of rendering.
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Those are the main implications of the priority metrics for modelling objects. The implica-

tions for the Camera model were discussed in the experimental chapters.

§8.2 Future Extensions.

This research has uncovered a rich field of further application as a result of the generaliza-

tion of adaptive detail in space and time. Some proposals below are extensions to work

started in the experimental sections. In §8.2.1 we discuss briefly how the part hierarchy

might be extended to allow for multiple logical views of an object. The next subsection,

§8.2.2, discusses the extension of the discontinuous hierarchy experiment of Chapter 5 in

order to use grey level displays where objects can be faded. The extension of the optic flow

synthesis method is discussed in §8.2.3. If this last proposal is effective then optic flow

could be applied to both animate and inanimate objects in the environment.

The most fully worked out proposal is for a topic which will be very important in the

development of computer animation: parallel processing. This has not been discussed thus

far in this dissertation but in many ways it is a natural application for the part hierarchy and

the spatial priority metric. The abstract class of Appearances discussed in the previous sub-

sections once more performs an important role.

The extension of the spatial detail metric in this dynamic environment might seem surpris-

ing. The metric in fact becomes more of an active/inactive indicator for each actor. A

detailed design of a parallel processing animation system which deals with the same stick

figures of Chapters 3 and 5 is attached as Appendix D.

8.2.1 Extensions To The Part-Whole Hierarchy: Multiple Views.

The part-whole hierarchy which was developed in Chapter 3 can be extended to allow multi-

ple views on the same object. The Appearance of an Actor, which allows it to be rendered in

a number of ways, literally provides multiple views of the same Actor. The idea is to allow

multiple views of any aspect of an object.

It has been argued that using message forwarding and prototypes one can easily implement

multiple representations of knowledge [LaLonde, Thomas & Pugh, 1986]. This can also be

achieved with part hierarchies by extending the idea of virtual parts (§3.6.2.1). For example:

consider a point defined in either Cartesian coordinates or in polar coordinates. If we wish

to implement both views then the polar coordinates can always be calculated from the
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Cartesian coordinates, even though only one set of attributes are stored. If the alternative

views are very different then extra parts can be stored to represent them [‘‘perspectives’’,

Stefik & Bobrow, 1985]. The internal mechanisms of the whole can ensure that the parts

remain in correspondence.

Multiple views are used in certain kinds of knowledge representation. In §3.3.1.6 we men-

tioned Kay’s observer language. Philosophers [e.g., Pirsig 1974] emphasize that the division

into parts is arbitrary and depends on the purpose of the analysis. It does seem that a small

number of alternate views (e.g., polar vs. Cartesian coordinates) can be accommodated, but

whether it is a general extensible mechanism requires further investigation.

8.2.2 Extensions For Discontinuous Detail: Fading small parts.

The stick figure implementation was done on a standard Smalltalk system. Such systems

lack colour or grey levels. Recently colour versions of Smalltalk have become available

[Miranda, 1987]. In this section we discuss how such a shaded display might be exploited.

To get some idea of how the loss of spatial detail affects a very simple model the two-

dimensional Fourier transform of an image of a stick was manipulated. The higher spa-

tial frequencies were attenuated according to some plausible model (exponential drop-off in

fact) and the result transformed back into the spatial domain. The intention being merely to

get some feel for what is happening.

The sequence of pictures (Figure 8.1.) show a stick which is filtered in a number of ways to

reduce its higher frequencies. The stick becomes more diffuse and the boundaries ill

defined. It should be borne in mind that in nature this blurring is caused by the object reced-

ing in the distance and so it should be simultaneously getting smaller. It is this blurring and

decrease in size which we use with the priority metric.

Representing the various stages of such a transition is possible but expensive. Because the

stick is also getting smaller and smaller it might be possible to make use of the trade-off

between small detail features and intensity. That is, such a stick could also simply be slowly

faded on a shaded display. We would then actually be maintaining the detail but decreasing

the intensity of a small object. This ought to be reduce the abruptness of changes of detail as

an object drops out of resolution. The degree to which an object is to be faded can depend

on the priority.
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Figure 8.1.��������� Filtering high frequencies of a ‘‘stick’’. The original shape and
transform are on the left, next are filter contours and resulting filtered images.
The top row is in the frequency domain and the bottom in the spatial domain.

If we had a display which lacked grey levels but which had a high frame rate it ought to be

possible to create the same effect by rapidly jumping between the various levels of detail

during a transition!

8.2.3 Further Work on Optic Flow Synthesis.

A major contribution of this research project has been the synthesis of three-dimensional

animation by means of optic flow decomposition. In the experimental test of Chapter 7 the

approach was tried on objects consisting of individual, textured, planar facets. The approach

can clearly be extended to allow for objects consisting of a few connected facets, simply by

treating these parts as separate objects for the purpose of object flow analysis.

Optic flow analysis can also be performed on surfaces built up out of connected, flexing,

polygonal facets [Koenderink & van Doorn, 1986]. Investigating the possibilities of syn-

thesizing optic flow for such surfaces would be a very useful extension of the work presented

in Chapter 7.

197



Chapter 8 — Conclusion

Another possibility would be to use 2nd order optic flow effects. These optic flow effects

completely account for the uniform motion of planar facets, and provide a finite area of con-

vergence for quadric surfaces. Using such transformations would require efficient non-linear

image transformation routines.

The points mentioned above are further extensions of the use of local features of the optic

flow. But as we pointed out in §2.2.2 there are also global features of the optic flow. These

are concerned with the overall patterns of the flow lines. The shape of the global optic flow

field is independent of the spatial layout, it is the values which depend on the actual objects

involved.

It might be possible therefore to combine the knowledge of spatial coherence of the environ-

ment with the properties of the global flow field in order to predict the way the appearance of

the environment will change when the observer moves through it.

An interesting extension of the optic flow synthesis method would be to use local flow syn-

thesis for the animals in the environment, one major class of objects we identified in §2.2,

and global flow synthesis for the rest of the environment. The global flow transformations

would arise due to observer motion.

The global flow field consists of piece-wise smooth regions separated by discontinuities.

These discontinuities have to be identified beforehand. One major source of such discon-

tinuities are the occluding edges in the environment.

Consider rendering the fractal landscape from Chapter 6 as it changes due to camera motion.

We would need to identify the occluding edges to some level of detail and find some method

of ‘‘stitching’’ together the piece-wise smooth regions thereby detected.

To detect the occluding edges is simple: a popular method for hidden surface removal on

height fields is the floating horizon method (§6.2.2). This method proceeds by identifying

the current occluding edge while rendering the landscape, starting from the viewer and

proceeding into the distance. It would seem ideally suited for optic flow synthesis using glo-

bal effects.

The animation of observer motion over a height field could begin by rendering the scene as

usual from the three-dimensional data. A record would have to be kept of the connected

regions bounded by occluding edges. The next frames could then apply the optic flow
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distortion to these regions. Some sort of error measure would eventually force a return to

full three-dimensional rendering.

The difficulty with this method is dealing with occluding edges once a few optic flow steps

have occurred: exactly how do the edges get joined up? Another problem might be that the

fractal surfaces are so rough that there are very many small areas of coherence rather than a

few large ones. In this case the horizons could be calculated at lower resolution levels.

Clearly the application of global optic flow synthesis requires further work.
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Implementing a Part-Whole Hierarchy in Smalltalk.

§A.1 Overview.

We assume that the Smalltalk has been extended to allow multiple inheritance [Borning &

Ingalls, 1982]. This provides the changes to the parser which allows compound messages

and the basic modification to the class Object’s instance method for the message

“doesNotUnderstand:”. This sends a message to the class of the receiver with the selector

“tr yCopyingCodeFor :”.

The class method “tryCopyingCodeFor:” is the one we override in the super (meta) class of

all objects which are to have parts. If the message sent was not compound or was sent as

part of the multiple inheritance implementation we treat it as before. If it is a compound

selector and the prefix starts with a lower case letter (excluding “super” and “all”) we com-

pile a message forwarder.

The message forwarder is simply a method which has as selector the complete compound

message with all the keywords and arguments. The method sends the prefix to self and then

the rest of the compound message. The answer of the method is that result. For example:

To forward:

joe leftLeg.lowerLeg.foot

the method is:

↑self leftLeg lowerLeg.foot

These methods are synthesized and compiled without saving the source code. They are clas-

sified as ‘message forwarders’ for access in the browser, this is not essential but then for-

warders are invisible to the programmer. The appropriate class methods are

“compileUnchecked:” and “organization classify:under:”.

The remaining class methods are equally simple. These are methods to compile code to

access parts (instance variables) by name automatically. In this case it is useful to save the

source code, since fast compilation is no longer important. A dictionary which associates

instance variable names with default classes should also be created. This dictionary can be
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used when parts belonging to a whole have to be instantiated.
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Timings of the Continuous Spatial Metric Experiment.

§B.1 Introduction.

This appendix contains the times taken to render a particular fractal at three image sizes:

256x256, 512x512 and 1024x1024. The times are given at variable facet sizes in the adap-

tive detail case or else for various fixed recursion depths. With adaptive detail the facet size

and the maximum recursion depth is given, otherwise “fix” is placed in the facet size column

and the entry in the recursion depth column is the fixed recursion depth. The “Levels gener-

ated” refers to the data generated by the midpoint subdivision method, the upper levels of the

fractal having been synthesized by the 1/f Fourier filtering technique.

Batched rendering meant that the image was generated in memory and displayed only when

it was complete. Non-batched rendering meant that the image was rendered (incrementally)

whenever the area generated exceded some threshold. The associated overhead was only

significant at low resolutions. The times are cpu seconds for user and system time. These

results are summarized and analysed in §6.4.

§B.2 Image Size: 256x256.

Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

1 11 3  n 527.38 14.88 17

2 10 2  n 159.00 10.68 16

4 9 1 y 45.22 3.84 20

4 9 1 n 45.38 4.18 15

8 8 - y 12.86 1.74 19

8 8 - n 15.88 1.88 14

16 7 - y  3.60 0.92 18

16 7 - n  4.66 0.62 13
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Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

fix 7 - y 28.98 2.84 50

fix 8 - y 102.32 11.68 47

fix 9 1 y 318.40 10.56 44

fix 9 1 n 318.38 11.16 43

fix 9 1 n 346.28 11.96† 42

fix 10 2 y 1156.56 17.82 39

fix 11 3 n 4250.82 27.74 36

fix 12 4 n 15668.00 64.70 31

§B.3 Image Size: 512x512.

Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

1 12 4  y 2072.22 13.04 94

1 12 4  y 2105.84 15.76 93

1 12 4  y 2124.70 20.96 55

2 11 3  y 615.38 12.90 92

2 11 3  y 626.42 15.58 56

2 11 3  y 640.56 15.36 90

2 11 3  y 655.80 16.22 91

2 11 3  n 592.48 10.90 12

3 11 3  y 278.04 11.82 88

3 11 3  y 283.32 13.14 87

3 11 3  y 287.26 13.40 89

4 10 2  y 171.02 9.78 86

4 10 2  y 171.60 8.58 57

4 10 2  y 174.96 10.24 85

4 10 2  y 178.32 9.94 84

4 10 2  y 179.36 8.42 29

† Compiled code was not optimized.
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Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

4 10 2  n 169.08 8.40 11

6 10 2  y 76.80 5.98 83

6 10 2  y 77.40 6.20 81

6 10 2  y 82.32 6.40 82

8 9 1 y 47.62 3.78 23

8 9 1 y 47.78 3.72 58

8 9 1 y 49.12 4.30 79

8 9 1 y 49.92 4.26 78

8 9 1 y 50.62 3.92 80

8 9 1 y 51.04 3.72 28

8 9 1 n 49.50 4.00 10

10 9 1 y 32.62 3.32 75

10 9 1 y 33.16 3.16 77

10 9 1 y 33.18 3.10 76

12 9 1 y 23.04 2.60 72

12 9 1 y 23.66 2.78 73

12 9 1 y 23.70 3.18 74

16 8 - y 14.00 1.76 22

16 8 - y 15.06 2.00 70

16 8 - y 15.22 1.92 71

16 8 - y 15.40 1.76 69

16 8 - y 15.50 1.64 59

16 8 - y 15.34 1.82 27

16 8 - n 17.90 1.52 9

20 8 - y  9.48 1.30 67

20 8 - y  9.50 1.02 68

20 8 - y 10.68 1.24 66

24 8 - y  6.74 0.96 63

24 8 - y  7.02 0.70 64

24 8 - y  7.10 1.04 65

32 7 - y  4.46 0.72 61
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Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

32 7 - y  4.48 0.68 62

32 7 - y  4.64 0.52 60

32 7 - y  4.66 0.38 21

32 7 - n  7.22 0.82 4

fix 7 - y 30.30 2.88 49

fix 8 - y 113.74 12.32 46

fix 9 1 y 402.62 14.74 41

fix 10 2 y 1303.32 15.94 38

fix 11 3 n 4487.90 31.08 35

fix 12 4 n 15978.60 47.70 33

§B.4 Image Size: 1024x1024.

Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

1 14 6  n 7926.30 14.04 51

2 12 4  y 2353.26 16.54 52

4 11 3  y 680.26 14.40 53

4 11 3  n 640.54 11.14 8

8 10 2  y 192.28 9.72 54

8 10 2  n 181.96 9.42 7

8 10 2  n 182.80 8.66 3

16 9 1 y 52.04 3.50 26

16 9 1 n 53.72 3.98 ?

16 9 1 n 55.48 3.66 2

32 8 - y 16.04 1.66 25

32 8 - n 18.98 2.04 1

32 8 - n 19.26 1.94 5

64 7 - y  5.64 0.52 24

fix 7 - y 33.84 2.80 48
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Times (sec)

User System

Facet size Recursion

depth

Levels gen-

erated

Batched

rendering

Ref. num-

ber

fix 8 - y 118.02 11.40 45

fix 9 1 y 426.82 13.42 40

fix 10 2 y 1526.06 18.90 37

fix 11 3 n 4826.40 12.96 34

fix 12 4 n 16925.52 51.98 32

fix 13 5 n 62538.24 125.58 30
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Timings of the Dynamic Metric Experiment.

§C.1 Introduction.

Timing the performance of the animation system is complicated by the fact that there are so

many options possible. The timings presented here are intended mainly to illustrate the

effects of the various adaptive operations which take place. The same basic movement is

executed for various rendering options.

Even so there are many variables which have to be held fixed. In all of the cases below only

one actor was active at a time. The same action was performed for the full time of the test.

These results are summarized and analysed in §7.4. The parameters which were varied

were:

1. The actor.

2. The 2-D transformation and rendering algorithm.

3. The transformation applied.

§C.2 Timings.

To avoid clutter in the table of timings blank entries are used in the first five columns to indi-

cate parameters which are unchanged from the previous row. The columns are:

Actor

Symbol Actors. Basic Size.

bc Butterfly cut-out 224x184

bf Butterfly in square frame 250x200

fd Flow diagram drawing 75x74
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Rendering Option

Symbol Rendering Option

Q “Quick” — one pass image transformation.

QP “Pretty” — one pass but with simple averaging for size decrease

P “Perfect” — two pass anti-aliased, only one shear implemented

Transformation

Symbol Transformation Matrix

o none, pure translation, ⎛
⎝

1
0

0
1

⎞
⎠

a ⎛
⎝

1. 01
−0. 01

0. 01
1

⎞
⎠

b ⎛
⎝

1
0

0. 01
1

⎞
⎠

c ⎛
⎝

1
0. 01

−0. 01
1. 01

⎞
⎠

d ⎛
⎝

1. 01
0

0. 01
1

⎞
⎠

e ⎛
⎝

0. 99
0. 01

0
1

⎞
⎠

Initial — The initial field indicates when a particular set of timings incurred the system ini-

tialization overhead, this happens the first time a camera is activated.

Frame Count — The number of frames produced during the run.

Times — The total time (in cpu seconds ≈ elapsed time) for the frames as well as the average

time for a single frame. The avarage is taken over all comparable timings.

Frame Rate — The number of frames produced per second on average.

Reference Number — A number which uniquely identifies the experiment.
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Times (sec)

Total Average

Actor Render

option

Trans-

form

Initial Frame

count

Frame

Rate

Ref.

number

bc Q o y 300 20.42 .0681 14.7 1

n 16.82 2

17.30 3

17.32 4

17.32 .0573 17.5 5

a y  107.58 .3586 2.8 10

a 105.04 6

105.84 7

105.50 8

105.72 9

n 105.74 11

105.50 12

105.56 .3519 2.8 13

o y 100 8.86 .0886 11.3 14

n 6.12 15

6.10 16

6.18 17

6.08 18

6.12 .0612 16.3 19

a y  33.00 .3300 3.0 20

n 32.58 21

32.54 22

32.54 23

32.58 .3256 3.1 24

P o y 8.94 .0894 11.2 25

n 6.40 26

6.14 27

6.08 .0621 16.1 28

P b y 257.42 2.57 0.39 29

263.50 30
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Times (sec)

Total Average

Actor Render

option

Trans-

form

Initial Frame

count

Frame

Rate

Ref.

number

263.74 2.64 0.38 31

c 209.02 2.09 0.48 32

d 256.80 33

256.82 34

263.64 2.59 0.39 35

bf Q o y 300 29.74 .0991 10.1 36

n 25.94 37

25.82 38

25.96 39

25.88 .0863 11.6 40

d 104.36 41

104.32 42

104.44 43

104.28 .3478 2.9 44

e 36.76 45

37.16 46

37.06 .1233 8.1 47

QP 37.42 48

37.20 49

37.18 50

37.10 .1241 8.1 51

fd Q o y  5.18 .0173 57.9 52

n 4.78 53

4.76 54

4.88 .0160 62.4 55

b 9.06 56

9.10 57

9.10 58

8.94 59

8.98 60
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Times (sec)

Total Average

Actor Render

option

Trans-

form

Initial Frame

count

Frame

Rate

Ref.

number

9.16 61

9.04 62

8.84 63

9.02 64

8.94 .0301 33.3 65

P 97.04 66

97.52 67

97.50 68

97.62 .3247 3.1 69
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Concurrent Object Oriented Animation.

§D.1 Concurrent Object Oriented Animation: A Research Proposal.

In computer animation the object oriented approach has already been shown to be an excel-

lent way of dealing with the complexity of programming and modelling such large simula-

tion systems. Moreover it appears to be naturally conducive to a parallel processing imple-

mentation which should lead to a much needed increase in processing speed.

We giv e the functional design of an experimental system for animating stick figures and

cameras modelled as independent processes. Each part of a figure is represented by an inde-

pendent actor (or process-object). Attention is given to coordinating and controlling the ani-

mation: in this area further research is particularly required.

D.1.1 Part Hierarchies and Parallel Processing.

The assembly of whole objects from their parts was extensively discussed in Chapter 3. For

our present purposes we refer to the part-whole hierarchy as a general abstraction for incor-

porating the notion of “an object made up of active parts which are related via constraints.”

(§3.2).

Events in nature happen at the same time. Simulating such an environment requires concur-

rent execution of the objects representing elements of this environment, at least in principle.

Thus, provided we have a formalism which accommodates it, concurrency is the natural and

simple way of describing animation (or any other kind of simulation).

Part hierarchies provide better control over access to the parts than is found in many object

oriented languages. This controlled access to names provides a way of breaking up a a sin-

gle global name space into separate domains which is very useful in allowing different pro-

cesses to function independently in a concurrent environment. There is only a single univer-

sal name, the “world”. All actors are part of the world. All other parts are named by symbols

which refer to their relative position in some part-whole hierarchy.
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§D.2 Controlling Figure Animation.

There are two aspects to modelling animated figures: producing computer representations

which allow movement and controlling that movement. The first problem has already been

addressed in Chapters 3 and 5, which were concerned with the appearance of moving figures

at various levels of detail. The problem of controlling figure movements is related to the

problem of modelling motion subject to various constraints.

There are two principal ways of controlling three-dimensional animated figures:

Firstly, we can choose to drive the animation from an external script which specifies every

movement explicitly.

Secondly, we can indicate constraints which apply to the objects and the provide a broad out-

line of the configurations required and then depend on the system to provide the com-

plete configuration.

With the first approach the animator has complete control and freedom at the expense of

having to be concerned with every detail of the animation. The essential feature from the

programming point of view is that there is no feedback between elements of the modelled

environment: control is strictly top down. The central task of such an animation system is to

provide access to all parts of the environment and to determine when all the processes in the

simulation have completed there tasks. This access is used to distribute instructions to the

objects and to inform them of clock ticks. The objects are also asked to return their relative

positions when the rendering process traverses the modelled environment and when the user

attempts to pick a displayed object for some input operation.

In the second approach we are conducting a much more realistic simulation of some imagi-

nary world. The animator is freed from having to concentrate on mundane tasks at the

expense of having to learn about a somewhat more complicated system and not having the

same total freedom to manipulate objects. From the programming point of view there is

mutual feedback between objects in the environment. In addition to the operations specified

above, some mechanism must exist to detect interactions between objects (collisions or rela-

tively constrained movements). As a result of such an interaction objects may need to com-

municate with other objects in order to adjust their configurations. Since any object can set

off a new spurt of activity in the system it is somewhat more difficult to detect termination of

a frame generation cycle.
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§D.3 A System for Concurrent Figure Animation without Feedback.

The existing design of a part hierarchy for animated figures can readily be mapped onto a

parallel processing paradigm. The priority metric which governs the levels detail visible to a

particular camera can effectively be used to limit the number of process activations.

We construct a stick figure as before out of a hierarchy of parts. Each part can be accessed

only via the whole of which it forms a part. The only difference is that each part now

executes as an independent process. The part-whole hierarchy thus becomes a useful

addressing hierarchy for accessing the processes.

An important object which every Actor and the world possesses is an instance of a kind of

Appearance (see §8.1.3). There is a Camera which renders the world and its elements. Each

Camera has a buffered input queue over which the Actors send their Appearances to the

Camera. The world also has a clock which synchronizes all Actors and the Cameras at every

time step.

Each Actor has to be able to accept instructions which it executes at each clock tick. These

instructions apply for a variable number of ticks. In the simplest case new instructions are

issued at every tick.

The Actors concurrently execute their instructions for a particular time step. The world (or

clock) has to detect when all Actors have completed their actions and are ready for the next

tick. Before another tick can be sent the scene has to be rendered by any Cameras which are

active.

Further details of this approach is found in subsection below, which describes how the

Smalltalk implementation handles the clock cycle.

D.3.1 A Concurrent Smalltalk Animation System.

In order to build a concurrent Smalltalk animation system the language has to be extended so

that the objects become more like Actors. This can be done by placing objects in separate

processes and then surrounding these processes by encapsulators which forward messages

and wait for replies from these processes.

If the parts which make up a figure are encased in encapsulators which turn them into actor-

objects then the part hierarchy (§3.4) becomes a process naming hierarchy. The processes do
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not have global names nor are pointers needed. Instead symbolic paths can name the pro-

cesses.

This does not apply to the “standard” Smalltalk objects like numbers. However since these

are relatively unchanging or else independent from processor to processor it should be possi-

ble to implement the global name space for these objects via local copies for each processor.

Animation Clock Cycle.

The control of the concurrently executing Actors and their coordination with the rendering

process (or synthetic camera) is a prime problem. In the case of Actors operating without

mutual feedback the following “algorithm” is proposed:

Let each top-level Actor be registered with the world object (the parts of the Actors are not

directly visible to the world). Each Camera is also registered with the world. We assume

that at least one Camera is active.

At each clock tick the world distributes the tick to each top-level Actor and the Cameras.

The Actors distribute the tick instruction to all their parts before proceeding with their own

activities for the particular time step. This distribution naturally terminates at the bottom of

the part hierarchy. Once its own actions are complete an Actor blocks on an unbuffered

channel awaiting instructions or the next tick from its owner.

The world requests the relative position (transformation) of each Camera and the name of

buffered queue on which it will be receiving the Appearances of the various Actors. The

world informs each Camera of the number of Actors at the top level and passes its own

Appearance which has been transformed to reflect the relative position of the Camera.

The transformation and queue name as well as level number is then passed to each Actor.

The Actor concatenates its own coordinate transformation to the transformation it receives.

The Actor first tells the Camera its level number and the effective number of parts at that

level. The new transformation, queue name and an incremented level number is then passed

on to those parts.

This rendering traversal stops when there are no more effective dependent parts. For a par-

ticular Camera an Actor can decide that it has no more parts which would be visible due to

the distance of the Camera (the spatial priority metric). Such an Actor would then assume

its “leaf appearance” rather than the normal appearance which it has when it is a node in a

215



Appendix D — Concurrent Object Oriented Animation

continuing hierarchy. The Actor then transforms its own Appearance for the Camera and

passes that on to the buffered queue.

The world now blocks awaiting signals from all the Cameras to indicate completion of the

rendering process. Each Camera keeps track of the number of Actors at each hierarchical

level. It accepts Appearances as they come and updates the total number of Actors at each

level and the number of Appearances so far received at each level. The Camera can there-

fore detect when it has rendered all possible Appearances for all levels.

The Camera has to scan convert the Appearances and perform hidden surface removal, pre-

sumably in some concurrent fashion. If the Camera used some kind of parallel depth-buffer

where different processes dealt with different depths then all that is required is that several

queues be handed out which are labeled with the range of depths they accept. The Appear-

ances will know which queues to enter.

The world deals with user interaction. If necessary it passes the interaction instructions on to

the other parts of the animation. Once all Cameras have signalled completion and all

instructions have been sent, the world can distribute the next tick and so a new cycle will

begin.

§D.4 A System for Concurrent Figure Animation with Feedback.

As pointed out before, providing the animator with ways of specifying movement at a level

where each joint coordinate is not explicitly provided for modification is an area of active

research. The basic requirements for providing such a facility is (1) a knowledge base for

dealing with eventualities which occur, (2) some way of sensing interactions between objects

and (3) a way of allowing objects to change their behaviour based on the implications of

what has been sensed. That is, we need intelligent internal feedback.

When we are running multiple independent processors it is also important to be able to

detect when the parts of the scene have completed their interactions and can be rendered on

the display. The complication being of course that with feedback between elements of the

environment a single object which has not terminated can trigger off all the other processes

into further action.

The way to realize such a high level of control is build a constraint based animation system

[Borning, 1979 & Nicol, 1984]. Such constraint based systems lend themselves to an almost
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declarative style of programming: the user is concerned with stating the (geometric) relations

which develop over time and the system sees to it that these do obtain.

The part-whole hierarchy enables us to build a system of constraints between Actors and to

detect when processing has terminated. Recall that messages to parts can be intercepted by

owning objects. These messages contain the names of the parts all the way down a part hier-

archy. A constraint is then a method which intercepts messages referring to a certain

sequence of part names [called paths - Borning, 1979]. The parts are therefore referred to

symbolically. There is no need for pointers (or absolute references) to be handed out. Main-

tain absolute names or pointers is very difficult with independent concurrent processes.

To detect termination the following algorithm is suggested:

Whenever a an extremity (a leaf of the part hierarchy) becomes quiescent it informs its

owning object that it is now “locked”. When all the parts of non-leaf parts become qui-

escent and the part itself has completed processing the whole subtree can be declared

locked. This locked state propogates upward in the part hierarchy.

Any message to any of the lower nodes must come via an active part higher up and as

the message goes down to the destination part it can unlock the parts of the subtree.

Once all the root Actors in the world object are locked then the processing for that par-

ticular time step must be complete and rendering can begin. As soon as a part has been

rendered it can again begin sending and receiving messages and so proceed to the next

time step.

§D.5 Conclusion.

The basic design of a concurrent animation system without internal feedback between the

elements of the animation has been presented. The approach adopted simplifies program-

ming complexity while at the same time speeding up the computer processing by the use of

concurrency.

The novel features of the design included the use of part hierarchies to manage the name

space of the concurrent processes. This allows access to any process without requiring a

global name space. Another new feature is the use of the spatial priority metric to reduce

the number of process activations. The detection of termination was assisted by the same

217



Appendix D — Concurrent Object Oriented Animation

general abstraction used to implement the system of priority metrics, namely the Appearance

type.

The approach also seems to be extensible to the more complex computer animation problems

which include feedback and constraints between Actors.
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Mason, Paris, 1970

Eklundh, J.O. & Kjelldahl, L. (1985) Computers & Graphics 9 339-349
‘‘Computer graphics and computer vision — some unifying and discriminating
features.’’

221



Bibliography

Fant, K.M. (1986) IEEE Computer Graphics & Applications 6, 1 71-80
‘‘A nonaliasing, real-time spatial transform technique.’’

Fikes, R. & Kehler, T. (1985) Comm.ACM 28 904-920
‘‘The role of frame-based representation in reasoning.’’

Fiorentini, A. (1972) in: Jameson, D. & Hurvich L.M. (ed) Handbook of Sensory Phy-
siology. Vol.VII/4 Visual Psychophysics. Springer, Berlin. 188-201
‘‘Mach band phenomena.’’

Fisher, S.S., McGeevy, M., Humphries, J. & Robinett, W. (1987) in: Crow, F. & Pizer,
S.M. (ed) Proceedings of 1986 Workshop on Interactive 3D Graphics. ACM, New
York. 77-87
‘‘Virtual environment display system.’’
(Chapel Hill, NC, Oct 1986)

Foley, J.D. & van Dam, A. (1982) Fundamentals of Interactive Computer Graphics.
Addison-Wesley, Reading, Massachusetts.

Forrest, A.R. (1985) in: Earnshaw, R.A. (ed) NATO ASI Series. Fundamental Algorithms
for Computer Graphics. Springer, Berlin. 113-134
‘‘Antialiasing in practice.’’

Fournier, A., Fussell, D. & Carpenter, L. (1982) Comm.ACM 25, 6 371-384
‘‘Computer rendering of stochastic models.’’
Comments in Comm.ACM vol. 25 no. 8 pp. 583-584

Fredkin, E. (1960) Comm.ACM 3, 9 490-499
‘‘Trie memory.’’

Fuchs, H., Abram, G.D. & Grant, E.D. (1983) SIGGRAPH’83: Computer Graphics 17, 3
65-72
‘‘Near real-time shaded display of rigid objects.’’

Fuchs, H., Kedem, Z.M. & Naylor, B. (1980) SIGGRAPH’80: Computer Graphics 14, 3
124-133
‘‘On visible surface generation by a priori tree structures.’’

Fujimoto, A., Tanaka, T. & Iwata, K. (1986) IEEE Computer Graphics & Applications
6, 4 16-26
‘‘ARTS: accelerated ray-tracing system.’’

Gabor, D. (1946) J.Inst.Elect.Eng 93 429-457
‘‘Theory of communication.’’

Gibson, J.J. (1979) The Ecological Approach to Visual Perception. Houghton Mifflin co,
Boston.

Glassner, A.S. (1984) IEEE Computer Graphics & Applications 4, 10 15-22
‘‘Space subdivision for fast ray tracing.’’

Glassner, A.S. (1986) SIGGRAPH’86: Computer Graphics 20, 4 297-306
‘‘Adaptive precision in texture mapping.’’

Goldberg, A. & Robson, D. (1983) Smalltalk-80: the language and its implementation.
Addison-Wesley, Reading, Massachusetts.

Goldsmith, J. & Salmon, J. (1987) IEEE Computer Graphics & Applications 7, 5 14-20
‘‘Automatic creation of object hierarchies for ray tracing.’’

Goldstein, H. (1980) Classical Mechanics. Addison-Wesley, Reading, MA. (2nd edition)

222



Bibliography

Gordon, J.I. & Johnson, R.W. (1984) Applied Optics 23 3363-3372
‘‘Equilibrium radiance model applications and comparisons to atmospheric measure-
ments and Rayleigh models.’’

Gorraiz, J. & Horvath, H. (1983) Applied Optics 22 3684-3688
‘‘Influence of nonuniform ground reflectance on horizontal visibility.’’

Greenberg, D.P. (1988) Comm.ACM 31 123-129,151
‘‘Coons award lecture.’’

Haber, R.N. (1983) in: Beck, J., Hope, B. & Rozenfeld, A. (ed) Human and Machine
Vision. Academic Press, New York. 157-235
‘‘Stimulus information and processing mechanisms in visual space perception.’’

Hall, E.L. (1979) Computer Image Processing and Recognition. Academic Press, New
York.

Halstead, R.H. (1985) ACM Trans.Programming Languages and Systems 7, 4 501-538
‘‘Multilisp: A language for concurrent symbolic computation.’’

Hamilton, W.R. (1969) Vol.1 Elements of Quaternions. Chelsea Publishing Co, New
York. (3rd edition)

Haruyama, S. & Barsky, B.A. (1984) IEEE Computer Graphics & Applications 4, 3
7-19
‘‘Using stochastic modeling for texture generation.’’

Heckbert, P.S. (1986) IEEE Computer Graphics & Applications 6, 11 56-67
‘‘Survey of texture mapping.’’

Hegron, G. (1987) Eurographics’87. Elsevier, Amsterdam. 529-542
‘‘Dynamic management of 3D scenes.’’

Henderson, P. (1982) Symposium on Lisp & Functional Programming. 9pp
‘‘Functional geometry.’’

Hubel, D.G. & Wiesel, T.N. (1962) J.Physiol.(Lond.) 160 106-154
‘‘Receptive fields, binocular interaction, and functional architecture in the cat’s visual
cortex.’’

Hubschman, H. & Zucker, S.W. (1982) ACM Trans.Graphics 1, 2 129-162
‘‘Frame-to-frame coherence and the hidden surface computation: Constraints for a
convex world.’’
also in SIGGRAPH’81

Hunter, G.M. & Steiglitz, K. (1979a) Computer Graphics & Im.Proc. 10 289-296
‘‘Linear transformation of pictures represented by quad trees.’’

Hunter, G.M. & Steiglitz, K. (1979b) IEEE Trans.Pat.Anal.Mach.Intel. 1, 2 145-153
‘‘Operations on images using quad trees.’’

Ingalls, D.H.H. (1986) OOPSLA’86: SIGPLAN Notices 21, 11 347-349
‘‘A simple technique for handling multiple polymorphism.’’

Jackins, C.L. & Tanimoto, S.L. (1980) Computer Graphics & Im.Proc. 14 249-270
‘‘Oct-trees and their use in representing three-dimensional objects.’’

Jackson, T. (1987) Graphics and Image Processing Algorithms for the miniDAP. Dept.
Computer Science & Statistics, Queen Mary College, London University, London.
BSc. Project Report

223



Bibliography

Jansen, F.W. (1986) in: L.R.A. Kessener, Peter, F.J. & van Lierop, M.L.P. (ed) Data
Structures for Raster Graphics. Springer-Verlag, Berlin. 57-73
‘‘Data structures for ray tracing.’’

Johansson, G. (1978) in: Held, R., Leibowitz, H.W. & Tueber, H. (ed) Handbook of Sen-
sory Physiology. Vol.VIII Perception. Springer, Berlin. 655-673
‘‘Visual event perception.’’

Kahn, K.M. (1976) User-oriented design of interactive graphics systems
(ACM/SIGGRAPH workshop). 37-43
‘‘An actor-based computer animation language.’’

Kajiya, J.T. & von Herzen, B.P. (1984) SIGGRAPH’84: Computer Graphics 18, 3
165-174
‘‘Ray tracing volume densities.’’

Kaufman, Y.J. (1981) Applied Optics 20, 9 1525-1531
‘‘Combined eye-atmosphere visibility model.’’

Kaufman, Y.J. (1984) Applied Optics 23 4164-4172
‘‘Atmospheric effect on spatial resolution of surface imagery.’’

Kay, A.C. (1977) Scientific American 237, September 230-244
‘‘Microelectronics and the personal computer.’’

Kay, T.L. & Kajiya, J.T. (1986) SIGGRAPH’86: Computer Graphics 20, 4 269-278
‘‘Ray tracing complex scenes.’’

Koenderink, J.J. (1986) Vision Research 26, 1 161-180
‘‘Optic flow.’’

Koenderink, J.J. & van Doorn, A.J. (1975) Optica Acta 22, 9 773-791
‘‘Invariant properties of the motion parallax field due to the movement of rigid bodies
relative to an observer.’’

Koenderink, J.J. & van Doorn, A.J. (1986) J.Opt.Soc.Am.A 3, 2 242-249
‘‘Depth and shape from differential perspective in the presence of bending deforma-
tions.’’

Kolers, P.A. (1984) Computer Graphics 18, 1 12-16
‘‘Motion from continuous or discontinuous arrangements.’’

Korein, J.U. & Badler, N.I. (1983) SIGGRAPH’83: Computer Graphics 17, 3 377-388
‘‘Temporal anti-aliasing in computer generated animation.’’

LaLonde, W.R., Thomas, D.A. & Pugh, J.R. (1986) OOPSLA’86: SIGPLAN Notices 21,
11 322-330
‘‘An exemplar based Smalltalk.’’

Lasseter, J. (1987) SIGGRAPH’87: Computer Graphics 21, 4 35-44
‘‘Principles of traditional animation applied to 3D computer animation.’’

Lee, D.N. (1980) Phil.Trans.R.Soc.Lond.B 290 169-179
‘‘The optic flow field: the foundation of vision.’’

Lee, M.E., Redner, R.A. & Uselton, S.P. (1985) SIGGRAPH’85: Computer Graphics 19,
3 61-67
‘‘Statistically optimized sampling for distributed ray tracing.’’

Li, Shu-Xiang & Loew, M.H. (1987a) Comm.ACM 30 627-631
‘‘Adjacency detection using quadcodes.’’

224



Bibliography

Li, Shu-Xiang & Loew, M.H. (1987b) Comm.ACM 30 621-626
‘‘The quadcode and its arithmetic.’’

Lieberman, H. (1986) OOPSLA’86: SIGPLAN Notices 21, 11 214-223
‘‘Using prototypical objects to implement shared behavior in object-oriented sys-
tems.’’

MacCurdy, E. (1954) Vol.II The Notebooks of Leonardo da Vinci. The Reprint Society,
London. (reprint of 1938 edition)

MacKay, D.M. (1981) Nature 289 117-118
‘‘Strife over visual cortical function.’’

Magnenat-Thalmann, N. & Thalmann, D. (1985) Computer Animation: Theory and Prac-
tice. Springer-Verlag, Tokyo.

Magnenat-Thalmann, N. & Thalmann, D. (1987) IEEE Computer Graphics & Applica-
tions 7, 8 27-44
‘‘An indexed bibliography on image synthesis.’’

Mandelbrot, B.B. (1982a) Comm.ACM 25, 8 581-583
‘‘Comment on computer rendering of of fractal stochastic models.’’

Mandelbrot, B.B. (1982b) The Fractal Geometry of Nature. Freeman, New York.
Mandelbrot, B.B. (1983) Handout distributed at SIGGRAPH’83, Detroit, MI 5pp

‘‘Remarks on computer rendering of fractal stochastic models.’’
Marr, D. & Hildreth, E. (1980) Proc.R.Soc.Lond.B 207 187-217

‘‘Theory of edge detection.’’
Marr, D. & Nishihara, H.K. (1978) Proc.R.Soc.Lond.B 200 269-294

‘‘Representation and recognition of the spatial organization of three-dimensional
shapes.’’

Marr, D. & Vaina, L. (1982) Proc.R.Soc.Lond.B 214 501-524
‘‘Representation and recognition of the movements of shapes.’’

Mastin, G.A., Watterberg, P.A. & Mareda, J.F. (1987) IEEE Computer Graphics &
Applications 7, 3 16-23
‘‘Fourier synthesis of ocean scenes.’’

Maturana, H.R. & Varela, F.J. (1988) The Tree of Knowledge: The Biological Roots of
Human Understanding. Shambhala, Boston. Original title: El árbol del conocimiento.
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