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Abstract 
Object and Constraint Paradigms for Graphics 

Object-oriented techniques are very appropriate for structuring complex designs in computer 
graphics.  The characteristic requirements of graphics have prompted further developments of this 
approach.  The course covers necessary concepts and the extensions needed for their application 
to graphics, as well as the implementations of these ideas.  

There is a comparison of object-oriented and classical approaches to computer graphics.  
General techniques are demonstrated by tackling specific problems in graphics, interaction and 
animation.  The solutions derived are interesting in their own right.  The course shows how 
constraint-based techniques are a useful extension of object-oriented methods.   Recent progress 
is assessed and highlights are presented. 

This course will enable participants to design a graphical system using an object-oriented 
framework and constraint-based techniques.  Practical examples are given to underpin the general 
guide-lines.  Participants who are already familiar with object-oriented programming will learn of 
the extensions that are needed for the successful application of object-oriented techniques to 
graphics.  Participants with less practical experience will become aware of the restrictions of 
current systems and the benefits the extended object-oriented approach has to offer.   

The advances in object-oriented graphics presented at recent workshops on the subject will be 
incorporated in the lectures where appropriate.  Participants will thus be introduced to important 
current topics of research and should be able to follow their progress in future.   

This course is for computer graphics professionals who want state-of-the-art techniques for 
structuring complex graphics systems.   It should also be useful for people who are dissatisfied 
with traditional programming techniques and are interested in new paradigms. It should also serve 
the needs of those familiar with object-oriented techniques who want to extend the basic 
framework for use in computer graphics — anyone who would attend both SIGGRAPH and 
OOPSLA. 

A basic knowledge of programming and techniques in some area of graphics is required.  
Some exposure to object-oriented concepts will be helpful.  This course will most benefit 
participants who are aware of problems with current methods for structuring graphics systems.  It 
covers high-level ideas that are illustrated and motivated with practical examples. 
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imperative object-oriented and the declarative constraint programming paradigms to support 
building interactive graphical user interfaces.  He is implementing a language based on this 
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Other related research at the University of Washington includes hierarchical constraint logic 
programming and constraint-based tools for building user interfaces, such as ThingLab II. 
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Chris Laffra is completing a Ph.D. at Leiden University, The Netherlands.  His research in object-
oriented languages shows their applicability to user-interface design.  He has concluded an 
implementation of the concurrent object-oriented language Procol of which he is co-designer [see 
paper OOPSLA’89].  He is also a co-author of an object-oriented framework for interaction based 
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on delegation instead of inheritance [see paper First Eurographics Workshop on Object-Oriented 
Graphics, Königswinter, 1990]. 

He is currently working for the SERC, Software Engineering Research Centre, in Utrecht, The 
Netherlands.  Related research performed at SERC includes DIGIS, a direct manipulation tool to 
design an interactive direct-manipulation application interactively. He is a joint organizer (with 
Blake) of the Second Eurographics Workshop on Object-Oriented Graphics. 
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integrated office information systems. Wisskirchen is the chairman of the special interest group in 
Graphics Systems within the German scientific and professional computing organization, 
“Gesellschaft für Informatik” (GI). He also coordinates the computer graphics activities of 
Germany’s large-scale national research centres (AGF). Wisskirchen is one of the pioneers in the 
definition of the computer graphics standard GKS. He was  a member of the first editorial 
subgroup, which produced the early specifications for GKS. Wisskirchen received his Ph.D. in 
Mathematics from the University of Bonn in 1969. 

In his book  “Object-Oriented Graphics — From GKS and PHIGS to object-oriented Systems” 
(Springer Verlag, 1990) Wisskirchen shows the potential of object-oriented system, and he builds 
a bridge between traditional systems and the object-oriented approach. 
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3. I Object-Oriented Methods for Graphics. 
1. Complexity 

• geometric detail and structure 
• object transformations 
• dependencies / relations 
• user interface 
• large systems 

2. Why Object-Oriented Methods for Graphics? 
• complexity 
• abstraction 
• intuitive approach ♦ 
• concurrency 
• flexibility 

3. Object-Oriented Graphics 
• object-oriented methods 
• object-oriented user interfaces 
• “object-oriented” 

4. History of Object-Oriented 
• Simula 
• Smalltalk, Objective C, C++, Eiffel 
• Actors 

5. Object-Oriented Methods 
• data abstraction (encapsulation) 
 • class 
 • inheritance / delegation 
• messages 

6. Abstract Data Types (Encapsulation) 
• data 
• messages 
• protocol 
• class is ADT description of instance 

7. Classes and Inheritance 
• inheritance hierarchy — subclass is specialization of superclass 
• multiple inheritance 
• code reuse vs. type relationships 
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8. Delegation 
• forwarding messages to delegates 
• prototypes 
• delegation is dynamic and flexible 

9. Concurrency 
• events happen at same time 
• natural problem decomposition 
• parallel hardware 
• Actors 

10. Object-Oriented Features for Graphics 
• desirable ? 
• important ? 
• consistent and complete ? 
• orthogonal ? 

11. Constraints 
• relationships between graphics objects 
• constraint embodies: 
 • description = declarative, rule 
 • methods = procedural 
• problems with encapsulation 
[Comments of the slides for session II] 

1. Complexity 
The essence of our tutorial! How do we solve the complexity problem imposed by graphics 

systems? Traditional system focus on part-whole hierarchies, and not on inter-“object” 
relationships. Naming of objects is indirect, in OO systems it is not. Principle of “Hidden kernel” 
(functionality, portability, device independence, optimization). Access to data-structure is indirect 
and forms gap between ‘mental model’ and implementation. Interaction and direct manipulation 
is difficult.  

2. Why Object-Oriented Methods for Graphics? 
Object-oriented techniques help reduce complexity by localization of this complexity. They 

provide abstraction by offering abstract data types, and object composition into part-whole 
hierarchies. But, the most important point scored by OO techniques is that they are natural and 
intuitive. Every item in our graphic system, be it a feature being modelled in a CAD system, or a 
rectangle in drawing editor, they all are direct candidates to be promoted into *objects*. They 
have their own representation, attributes, behavior, and way of manipulation. They can be 
composed into other objects to form a higher level component.  
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3. Object-Oriented Graphics 
Diffentiate on different kinds of OO-ness. (i) With OO methods we mean those concepts, such 

as encapsulation, classes, inheritance an so on. These can be implemented in an OO language, but 
can also be provided in a non-OO language. (ii) OO user interfaces that allow direct manipulation 
on “objects” on the screen, using icons and some pointing device. Implementation can be done in 
conventional language, but is more naturally done by using an OO language. (iii) Compare 
MacDraw with MacPaint.  

4. History of Object-Oriented 
Simula is the core of OO-ness. Interesting to note that Simula is a language that was designed 

to support the development of simulation software. If we look at computer graphics, in fact 
everything runs down to being a simulation; Rendering, CAD, animation. If we apply graphics 
we are generally ‘simulating’ the real world, precisely for which purpose Simula was invented. 

Then came Smalltalk, made OO popular in research environments. Graphics kernel, nice user 
interface, windows, MVC. Slow in the beginning, nowadays more efficient implementations. 
Objective-C (NeXT, ICPak), C++, and Eiffel made OO popular in the applied areas. 

Actors is language family developed from AI. Concurrency. Some claim that Actors are not 
OO, but object based; is beyond scope of course. See Wegner, etc. Importance is influence it has 
had on concurrency research in OO languages. 

5. Object-Oriented Methods 
No deep intoduction into OO concept. Only those that are relevant to graphics. See literature 

for more info. Emphasize ADT/encapsulation and inheritance as a flexible construct to enhance 
OO graphics kernels.  

6. Abstract Data Types (Encapsulation) 
Encapsulation of attributes accessed by calling methods = sending messages.  

7. Classes and Inheritance 
Inheritance defines IS-A relationships. Is different from part-whole tree. Emphasize on 

differences between code reuse (implementation aspect) and type relationships (is a modeling 
aspect).  

8. Delegation 
Show delegation is an alternative to inheritance (Liebermann, Stein). Delegation is along the 

lines of part-whole hierarchies, with object delegation responsibilies to specially created delegates 
which form a part of their extended identity. Delegates can be distributed, which is not possible 
when using inheritance. Compare with 1 person leading a company, knowing how to type letters, 
make products, sell them, make luch, etc. On the other hand the company could consist of 1 
manager, and many delegates working for him. If an external contact places some order, the 
manager will set the correct employee to work for him. He might even switch employees, while 
the company stays in the market.  

9. Concurrency 
Yes, concurrency is natural, real live is concurrent in many facets. Concurrency needs to be 

taken with into the design of an OO graphics kernel right from the start. Not as an after thought!  
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10. Object-Oriented Features for Graphics 
For each OO concept that we want to add to the kernel, we have to ask some questions.  

11. Constraints 
Constraint form the glue to combine the building blocks offered by the OO approach. OO is 

good to make abstractions, part-whole trees, specializations, and interactive behavior. Interobject 
relationships (especially geometric relations) are hard to maintain in a imperative environment 
such as  OO systems. More appropriate is the declarative approach offered by constraints. They 
define *what* is to be computed, and not *how* it is to be computed. Special care has to be given 
to the impedance mismatch between encapsulation and constraints.  
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4. II Object-Oriented and Classical Approaches. 
1. Short description: 

Object-Oriented approaches are compared to classical graphics kernel systems, in particular 
the graphics standards GKS and PHIGS. The classical procedure oriented layer model is  
contrasted to object-oriented class libraries. It is shown how graphics output primitives organized 
as  instances of their own class makes  programming easier and better comprehensable. First ideas 
of how to use inheritance for graphics are summarized. 

2. Functionaltiy and goals of the standards GKS&PHIGS 

3. Characteristica of current object-oriented kernels 

4. Strategies to assign attributes 

5. Class library vers. layer model 

6. Editing of output primitives 

7. Use of inheritance 

8. Mutual communication between kernel and application by using call-backs 
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5. III 
Models and Actors. 
Edwin Blake. 
This section shows how an object-oriented approach helps with some of the typical problems 

in programming computer graphics and animation systems:  structures for building, positioning 
and controlling three-dimensional objects.  The mechanism should provide an appropriate 
metaphor for image synthesizers and animation programmers.  The essential idea is to manage 
complexity by hiding irrelevant detail and by re-using code and concepts whenever possible.   

The object-oriented approach simplifies the task of designing complex systems.  When we 
design a system we consider the classes and design class and part hierarchies. 

5.1. 1. Modelling Three-Dimensional Physical Objects. 
In modelling one obviously, and correctly, expects the objects in a three-dimensional 

simulated world to correspond to the objects of the object-oriented system.  There is in fact a very 
good match.  In animation systems the moving objects are often called actors.  These actors are 
objects which can interact with their simulated environment and maintain their identity as the 
animation proceeds. 

Multiple actors of the same type are, in object-oriented programming terms, instances of the 
same class.  The individual objects are given their unique identity by the attributes stored as part 
of their internal state.  Identically modelled pine trees still differ by their position — which is part 
of their state. 

A number of the ideas for modelling objects are based on ThingLab.  This was an early 
successful research application written in Smalltalk (Smalltalk-76) [1;2;3;4].  It is a system for 
simulating physical objects (e.g., geometric shapes, bridges, electrical circuits, documents, 
calculators).  In ThingLab, objects consist of parts.  Multiple class inheritance hierarchies, and 
part-whole hierarchies are used to describe the objects and their interrelations.  Parts are referred 
to symbolically by means of paths that name the nodes to be visited in proceeding down the part 
hierarchy. 

The rest of this section will be an explanation of how class inheritance hierarchies and part-
whole hierarchies are used in modelling.  During the design we are frequently intent on producing 
so-called “abstract” superclasses, these classes are intended to have the general protocol of 
messages for a problem but perhaps not the specific functionality.  The full functionality being 
provided by subclasses which are specified at a later stage. 
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Figure  1.  Accident in the Woods. 

A still from the non-existent animation “Country life ain’t 
everything”.  In Figure 2 these objects are grouped into classes and 
superclasses. 

1.1 Class Hierarchies for Animated Figures. 
Consider the objects in the frame from the accident scene from the (non-existent) animation 

“Country life ain’t everything” in Figure 1.  In object-oriented programming the program design 
problem is largely one of choosing and defining classes.  There are many ways of choosing 
classes and we shall show some ways in which it may be done. 

In modelling the objects in this animation one might choose the classes as indicated in Figure 
2 for the objects.   

If we now consider one of the human (stick-)figures and consider all the classes one might 
choose to animate and render that, then the breakdown given in Figure 3 may result. 
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Movable  
Objects

Visible 
Objects

 
Figure  2.  Classes involved in “Accident in the Woods”. 

The rounded boxes represent classes of objects.  Concrete classes show 
the instances of that class which are used.  Abstract classes, of which 
instances are never created, are indicated by their name. 

 

PositionableObject

ObjectWithParts

Camera

Actor

ActorCollection

Arm 
BigToe 
Chest 
Digit 
Foot 
ForeArm 
Hand 
Leg 
LowerLeg 
MiddlePhalanx 
Person 
Thumb

SimpleActor

NohActor  
Figure  3.  The subclass hierarchy of the class ObjectWithParts. 

These classes are used to model a stick figure. 
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The knowledge required to implement moving figures is factored over a hierarchy of classes.  
As usual the top level class in our sub-hierarchy for creating actors is the most general, abstract, 
and simplest.  This is the class ObjectWithParts; it confers the ability on objects to consist of 
parts.  Subclasses of ObjectWithParts will inherit its message protocol, which is the set of 
messages it can understand, along with any methods implemented for executing the messages. 
Processing is carried on by instances of classes, but no instances of this class are created since it 
is rather abstract. 

The next subclass, PositionableObject, which is also an abstract class, provides the six 
degrees of freedom of objects in space: position and orientation.  The required transformations 
are implemented by instances of the class RevoluteJoint which in turn uses the class 
Quaternion. Any subclass of PositionableObject will be able to implement a modelling 
hierarchy consisting of subassemblies and transformations. 

Instances of the subclass Camera are used to render other actors.  The class Actor confers the 
ability for an object to have a visible appearance but is itself too general to be concrete.  The 
appearance of an Actor depends on the class of object in its appearance ‘slot’ or instance variable.  
For a stick figure this is an instance of the class Stick, but it could be a more complicated 
appearance.  Instances of Stick know how to interact with an instance of Camera for rendering 
and this is all that would be required from more complicated appearances. 

The subclasses of Actor are the actual parts of a figure.  Because a SimpleActor is a terminal 
node in the object hierarchy it has no parts and its inherited capability for parts is disabled. 

Multiple Inheritance. 
In a number of cases one would like to inherit characteristics from multiple super classes.  For 

example, in the first hierarchy (Figure 2) “Movable Objects” are a subclass of “Visible Objects”, 
while in the second (Figure 3) “Camera” is a PositionableObject (= Movable Object) but is not 
normally a Visible Object.  Thus visibility should actually be inherited independently from 
mobility: a case for allowing a class to inherit traits independently from a pool of possibilities. 

Another example is the class of ActorCollection in Figure 3 which combines the features of 
an Actor with those of a collection of objects.  Object-oriented languages often provide 
inadequate support for multiple inheritance and one tends to opt for a single hierarchy and use 
single inheritance . 

1.2 Part-Whole Hierarchies for Physical Objects. 
Using an object-oriented approach to modelling has the advantage that the parts which an 

object possesses need not actually be represented as such in the object.  The internal 
implementation of the object is hidden behind the object’s interface protocol.  The only 
requirement is that the object respond correctly to messages which address the part.  This allows 
great freedom for dealing with special cases.  A particular object is free to possess phantom 
appendages which represent anomalous detail structures that appear occasionally.  

When an object is modelled we get both a class hierarchy and a different kind of hierarchy: the 
part-whole or modelling hierarchy.  A modelling hierarchy records the way complex objects are 
built up out of simpler parts.  When animating natural figures consisting of rigid limbs connected 
by joints it is usual to model a figure as a tree of dependent parts (this is in general not possible 
for artificial objects where mechanical feedback loops necessitate more complicated structures).  

The human body can be modelled as a tree of parts, the root of which is the torso and the parts 
are the chest, head, upper arm, forearm, hands, thigh, lower leg, foot, etc (Figure 4). 
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littleToe 
(Digit)

fourthToe 
(Digit)

middleToe 
(Digit)

secondToe 
(Digit)

bigToe 
(BigToe)

lowerLeg 
(LowerLeg)

leftLeg 
(LeftLeg)

foot 
(Foot)

middlePhalanx 
(MiddlePhalanx)

middlePhalanx 
(MiddlePhalanx)

middlePhalanx 
(MiddlePhalanx)

middlePhalanx 
(MiddlePhalanx)

distalPhalanx 
(SimpleActor)

distalPhalanx 
(SimpleActor)

distalPhalanx 
(SimpleActor)

distalPhalanx 
(SimpleActor)

distalPhalanx 
(SimpleActor)  

Figure  4.  The part hierarchy of the left leg of a stick figure. 
The top name in each box is the part name and the bottom name (in 
parentheses) is the class to which the part belongs.  All the classes are 
a kind of (i.e., subclass of) Actor. 

Deeper into parts and wholes. 
Part-whole analysis is crucial in engineering and technology.  Objects are often described as a 

hierarchy of assemblies and subassemblies. Parts are also met in those branches of computation 
where physical objects are represented, for example, artificial intelligence and computer 
graphics. 

Standard texts on computer graphics discuss “Modelling and the Object Hierarchy”. PHIGS 
(Programmer’s Hierarchical Interactive Graphics System) and GEO++ organize objects in a 
structure or in a group hierarchy (see Chapter V). Both structure hierarchy and object hierarchy, 
as used above, are equivalent to a part hierarchy.  PHIGS also has the concept of inheritance on a 
part hierarchy where attributes of the whole are inherited by the parts. E.g., the legs of the table 
could inherit the colour of the whole.  

We should adopt the policy that information is stored in the part hierarchy at its corresponding 
logical level. Information about the whole is not stored in the parts, information about the parts 
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which is not modified by the whole remains with the parts.  Ideally the whole knows the parts but 
the parts do not know of the whole. 

But, Smalltalk and many other object-oriented languages fail to provide the facility to describe 
objects in terms of their parts.  Or more accurately, when we want to model objects consisting of 
parts in Smalltalk, and many other object-oriented languages, we are confronted with a dilemma: 
either sacrifice the data encapsulation properties of the language or utterly flatten the part-whole 
hierarchy.  For a more complete discussion of these issues and ways of dealing with them see [5], 
or alternatively [6].  

1.3 More Parts and Classes for a Graphics System. 
Up to now we have been talking in terms of building up physical objects.  Parts of course 

occur not just in models of physical objects but throughout a program (Figure 5).  If we wrote a 
simple animation system we would first split it into a user-interface part and the animation 
production system proper.   The animated world would consist of three basic types of objects and 
numerous supporting objects (class names are indicated by capital letters): 

Stage.  The global object which contains all other objects as parts or sub-
parts.  An important part of the Stage is the Clock.  There is only one 
Stage per animation.  The Clock owns a list of all active objects, we 
could call them the list of Frenetics. 

Actor.  An actor is the basic unit of animation.  The actors have a Script 
which is the sequence of actions which they execute.  They have an 
Appearance which determines how they will look on a display.  There 
can be any number of Actors in the world.  Appearances exist for 
every Camera. 

Camera.  The camera takes the Appearance of an Actor and renders it on a 
Segment.  The Segments are submitted to a Window to be displayed.  
Although there can be a number of Cameras the current user interface 
only allows one to be set up.  The Camera owns a number of 
renderers, corresponding to such different algorithms as might be 
required. 
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Stage

Clock

Cameras

Window

Actors

CostumeScripts

List: 
Segments

List: 
Frenetics

List: 
Appearances

Quick Perfect

List: 
Renderers

 
Figure  5.  The part hierarchy of selected classes in the animation system. 

 
All objects which can change over time are subclasses of the abstract superclass 

KineticObject.  So the Stage,  Actors and Cameras are all subclasses of KineticObject. 
We shall emphasize that we need to be able to use many underlying representations together in 

a single animation sequence (see also Section 3, below).  However we can reduce the full load of 
rendering an Actor by only passing relevant information about its appearance at a particular 
instant in time.  This relevant information is encapsulated in the class Appearance (see Figure 6).  
The Appearance is a very important kind of object since it is part of a mechanism which frees us 
from having to rely on a single common primitive for all our representations.  An Appearance is 
an abstract superclass, the real task of interpreting the way an Actor looks to a Segment is 
performed by its subclasses. 
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Moving Actor Camera Frames

Appearance:  
Captures the 
changing Actor 
for the Camera, 
frame by frame.

 
Figure  6.  The Appearance of an Actor mediates between the Camera and the Actor. 

 

5.2. 2. Making the Models Move. 
There are two aspects to modelling animated figures: producing computer representations 

which allow movement and controlling that movement.  The problem of controlling figure 
movements so that they appear realistic is an area of active research to which answers are only 
now appearing.  In developing our chosen representation we shall be very concerned with 
providing an underlying mechanism which allows constraints on movement to be handled 
elegantly. 

At the simplest level we can regard people and animals as being composed of limbs connected 
by revolute joints.  Each part of the hierarchical representation of an object has its own changing 
local coordinate system.  In animation and rendering these coordinate systems have to be related 
to one another and to the world coordinate system. 

Animated figures and robots are governed by constraints on their allowed movements.  
Computer animators note the need for abstraction as a way of dealing with their rather difficult 
problem.  Zeltzer points out how a human figure can be modelled as a tree structure of joints and 
parts.  The parts are embedded in a generalization lattice of attributes, this lattice being supplied 
by some sort of multiple class inheritance hierarchy (in the object-oriented sense) [7].  He 
emphasizes that the complex modelled environment of an animated object has to be structured in 
some way which allows rapid testing for the proximity of objects. 

2.1 Coordinate Transformations. 
Coordinate transformations play a vital role in computer graphics and animation. Scene 

composition, rendering and motion would be impossible without them. 
Each object is modelled in its own coordinate space and is placed in its correct position 

relative to other objects in the environment by means of its own coordinate transformation.  The 
camera is similarly positioned in the modelled environment.  To render three-dimensional models 
of objects on the display they have to be transformed into the camera coordinate space and then 
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projected by a perspective transformation.  The movement of rigid objects is achieved by altering 
their coordinate transformations. 

Each part of the hierarchical representation of an object has its own changing local coordinate 
system (Figure 7).  In animation and rendering these coordinate systems have to be related to one 
another and to the world coordinate system. 

 

= direction 
of z-axis.

1 — upper leg

2 — lower leg

3 — foot

x

y

y

x
y

x  
Figure  7.  The Hierarchy of Local Coordinate Systems.   

This particular hierarchy arises when modelling the left leg of a stick 
figure. Each limb has its own local coordinate system. 

The most general motion of a rigid body in the world coordinate system can be described as 
the combination of a translation of a fixed point in the object combined with a rotation about that 
point.  The most general motion if one point is fixed is just rotation.  Rotations are thus the most 
important transformation when implementing a system of localized coordinates for an animal’s 
limbs (or robot’s for that matter). 

The standard formalism for 3-D computer graphics has tended to be homogeneous 
coordinates.  Hamilton’s quaternions, although rather neglected since the turn of the century [8: 
“musty mathematics”], make a computationally efficient formalism which is also easy to 
understand.  Compared to homogeneous transformation matrices quaternions have fewer 
redundant terms [9]. 

Each limb of the modelled figure has a local transformation quaternion (actually unit 
quaternion) which specifies its rotation with respect to the coordinate system of the limb to which 
it is attached.  It also has a quaternion (actually a vector) which specifies its position relative to 
the origin of that coordinate system.  This vector does not change for most limbs, only those 
which form the root of the hierarchy of coordinates reflect the changing translation of the actor as 
a whole. The synthetic camera requires a similar pair of quaternions. Perspective projection is 
achieved by bringing all objects into the camera coordinate system and then dividing by the 
distance along the viewing direction (invariably the z-axis coordinate). 
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2.2 Quaternions. 
Hamilton’s quaternions were introduced above as a way of representing coordinate 

transformations.  Quaternions consist of a scalar part and a three-dimensional vector part [10, 11, 
12].  Those with the same unit vector part are isomorphic to complex numbers.  Quaternion 
multiplication combines scalar and vector multiplication and is non-commutative in general.  The 
famous formula discovered by Hamilton in 1843 shows the scalar result of multiplying the unit 
vectors: 

i2  =  j2  =  k2  =  –1 

Quaternions represent rotations in terms of the axis of rotation and the angle about that axis.  
The effect of applying a quaternion is far easier to visualize than the more common Euler angles.  
Quaternions represent both the operands (vectors) and operators (rotations and translations) 
uniformly.  Rotations can be combined by multiplying the quaternion representations.  
Quaternions provide a uniform representation of operators and operands; a vector can simply be 
regarded (and implemented) as a quaternion with a zero scalar term. 

In order to illustrate the use of quaternions for rotation consider two unit vectors (u and v) 
with a common origin (see Figure 8).  Let Q be the quaternion which represents the rotation from 
u to v.  Then we can write: 

Q  =  – v u  

Q  =  cos 
θ
2    +   sin 

θ
2  ⊇  n 

where n is the axis of rotation.  The result of applying the rotation Q to the vector u is then v.  
That is: 

v   =  Q u Q -1 

 = Q appliedTo: u 

The details of these manipulations can be found in the references given for those who are 
interested. 
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Axis of Rotation

u

v

θ

 
Figure  8.  Two unit vectors u and v with a common origin. 

The shaded ellipse indicates their common plane, with the axis of 
rotation perpendicular to the plane.  The angle between them is θ. 

2.3 Message Passing and Polymorphism. 
Polymorphism can be used in a number of senses; the meaning is usually that a single external 

operation can be applied to a variety of underlying types.  For example: conventional typed 
programming languages allow the parameters of functions to have only one type.  If this idea was 
strictly applied then addition would require a different function for each type of number and 
generalized routines would be impossible.  Examples of simple polymorphic arithmetic messages 
are: 
 2 + 3.  "Send the message '+' to the SmallInteger 2 with parameter 3" 
 5 * 3.5.  "Send '*' to the SmallInteger 5 with the Float parameter 3.5" 
 2.7 + (1/3) "Send '+' to the Float 2.7 with the Fraction parameter (1/3)" 

 
Polymorphic languages allow for the same functions to accept many different parameter types. 

In object-oriented languages the same messages can be sent to a number of different classes and 
the messages can have any type of argument.  Unlike procedure calls, messages sending allows 
polymorphism without the requiring constant checking of parameter types [13].  The existence of 
class hierarchies must entail a certain polymorphism if related but distinct classes are to 
understand the same messages. 

The conceptual power of inheritance hierarchies derives, at least partly, from the way in which 
they allow automatic but controlled polymorphism for all subclasses.  One largely knows the 
behaviour of an object if one knows the behaviour of its superclass. 

Having polymorphic messages makes it possible to program by extending the language with 
new types. For example, it was very easy to add a new class of number, namely quaternions, to 
Smalltalk.  These quaternions understand exactly the same messages, for multiplication, addition, 
square root, and so forth, as other numbers.  Smalltalk can be said to exhibit “true” polymorphism 
because all objects are uniformly represented and can exhibit uniform behaviour without coercion 
or explicit type checking. 
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C++ does not use message lookup for procedure calls and is statically typed, but it does allow 
operator overloading, i.e., the same operator can have a number of different, but predetermined, 
types of arguments. Quaternions can be implemented just as elegantly as with Smalltalk. 

2.4 Adding Quaternions to Smalltalk. 
The inherent polymorphism of messages (or overloading of operators) in Smalltalk allows 

easy and elegant implementation.   
The normal arithmetic messages can be implemented for quaternions; combined with a few 

coercion messages that is really all that is required to add quaternions as a subclass of numbers.  
Quaternions then become fully integrated in an extended system-wide concept of Number. 

 

Number

Float IntegerFraction

LargeNegativeInteger LargePositiveInteger SmallInteger

Quaternion

 
Figure  9.  The Numerical Classes of Smalltalk showing the addition of the new class 

“Quaternion” in the hierarchy. 
 

We define Quaternions to have four instance variables, called “alpha” for the scalar part and 
“beta, gamma, delta” for the vector part.  We provide all the required messages.  Now if we 
implement quaternions as a subclass of Number then we first implement the normal arithmetic 
messages.  We also need specific methods, for example, to access the various instance variables. 
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class Quaternion

superclass                                          Number

instance variable names                    

accessing

i
 ↑beta
j
 ↑gamma
k
 ↑delta
scalar
    ↑alpha

alpha
beta
gamma
delta

 
Figure  10.  Class definition of Quaternion. 

 
We also need methods to implement the arithmetic messages which all subclasses of Number 

have to understand.  Here are some examples: 
Quaternion methodsFor: 'arithmetic' 
* aQuat  
 "The multiplication rule, where the quaternions Q1 and Q2 are written as  
 (s1, v1) and (s2, v2) in terms of scalar and vector parts, is  
 Q1 o Q2 = (s1s2 - v1.v2 + s1v2 + s2v1 + v1 x v2) " 
 
 | a tempI tempJ tempK| 
 a ♦ aQuat  scalar. 
 tempI ♦ aQuat  i. 
 tempJ ♦ aQuat  j. 
 tempK ♦ aQuat  k. 
 ⎯Quaternion 
  new: alpha * a - (beta * tempI) - (gamma * tempJ) - (delta * tempK) 
  i: alpha * tempI + (a * beta) + (gamma * tempK) - (delta * tempJ) 
  j: alpha * tempJ + (a * gamma) - (beta * tempK) + (delta * tempI) 
  k: alpha * tempK + (a * delta) + (beta * tempJ) - (gamma * tempI) 
+ aQuat  
 ⎯Quaternion 
  new:  alpha + aQuat  scalar 
  i: beta + aQuat  i 
  j: gamma + aQuat  j 
  k: delta + aQuat  k 
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Naturally many more methods have to be defined.  The above are just examples. 

 
Figure  11.  Moving a Foot.   

The new instance of Person is assigned to the variable ‘joe’.  Joe is 
asked to forward messages to its right foot using a non-standard 
compound message [14].  The request is to replace the orientation 
Quaternion by one which has been rotated by 40 degrees about a 
vector along the y-axis.  Notice that the familiar multiplication 
message “*” is also understood by Quaternions. 

A minor complication is having to represent translation and rotation as separate 
transformations.  Once again one can simply define a new class which incorporates both and the 
rest of the system need never know of the true implementation. 

For greater efficiency, unit quaternions, which are used for rotation transformations, are given 
special treatment. This is quite easy in Smalltalk and is transparent to the user.  It is analogous to 
the way small integers are treated in the standard system.  Unit quaternions are declared as a 
subclass of quaternions. 
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The general messages are then handled by the superclass but specialized messages and more 
efficient implementations are dealt with by the subclass.  For example, the inverse of a unit 
quaternion can be found without recourse to division and so this message is re-implemented in 
the subclass. 

2.5 Adding Quaternions to C++. 
In many practical situations C++ is used because it offers advantages of computational 

efficiency over Smalltalk. Like Smalltalk classes and inheritance hierarchies can be defined.  
Compared to C type checking is improved, and inline functions can be defined for greater 
efficiency. 

In general the polymorphism of Smalltalk is provided via three mechanisms in C++: 

Operator Overloading.  This means that the same message with different 
types (or classes) of parameters can be sent to an object provided that 
all the type information is known at compile time. 

Overriding the methods defined by the superclass in the subclass.  This 
mechanism can be used whenever all the types can be determined at 
compile time.   

Virtual Functions.  At run-time a message may be sent to a pointer to an 
object whose class is unknown, provided that the unknown object 
belongs to a class for which the particular message has been declared 
“virtual”.  Such classes must all belong to the same inheritance tree. 

Except for virtual functions then, C++ lacks dynamic binding.  In the case of quaternions the 
lack of dynamic binding does not matter greatly.  Dynamic binding obviates the need for re-
linking when the underlying representation of a type is changed.  It is in the nature of a number 
system like quaternions that the implementation and messages understood does not change very 
often, although new optimizations may occasionally be introduced.   

Dynamic binding also allows a particular place holder (variable name) to contain a number of 
different types of objects.  The binding is made at run time when the variable has been 
instantiated.  Quaternions can reasonably be interchanged only with scalars and vectors and for 
such a limited set of possibilities coercion rules can be drawn up which the C++ compiler will 
then invoke automatically.  It has generally been the case that the types of objects used in 
arithmetic can be determined at compile time. 

The use of automatic coercion does have some hidden snags.  Unless one is careful a lot of 
conversion can happen from unit quaternions to quaternions (this is cheap) and then back again 
(which is expensive since it involves division and square root calculation).  

For a comparison with Smalltalk we give some examples of code for implementing 
Quaternions in C++. 

Classes are defined almost like structures in C (or records in Pascal).  Except that now both 
data and functions are included in the class.  Unlike Smalltalk C++ is much stricter in enforcing 
data encapsulation:  if a method or variable is not declared ‘public’ then it may be accessed from 
the outside.  Generally one first declares the instance variables and the message protocol and then 
defines the methods separately. 
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/* 
 * Quaternion Class Definition 
 */ 
class Quaternion 
{ 
protected:   // 'protected' = only accessed by me or my subclasses 
 float  alpha; 
 float  beta; 
 float  gamma; 
 float  delta; 
 
public:   // 'public' = methods can be accessed by anyone 
 
 /**  Creation messages ('constructors') have the    ** 
  **  same name as the class.         **/ 
 Quaternion( float a = 0);      // Scalar, default 0 
 Quaternion( float b, float c, float d);   // Vector 
 Quaternion( float a, float b, float c, float d); 
 
 /** accessing **/ 
 float i()  { return( beta);};   // Short methods can be  
 float j()  { return( gamma);};   //  declared and defined 
 float k()  { return( delta);};   //  in one. 
 float scalar() { return( alpha);}; 
 
 /** functions **/ 
 /** 'friend' is used for functions (rather than messages).   ** 
  ** A friend function can access protected and private data.  ** 
  ** The suffix '&' is used to indicate an argument passed by  ** 
  ** reference rather than by value.        **/ 
 friend float  norm( Quaternion& ); 
 friend float  arg( Quaternion& ); // etc ... 
 
 friend Quaternion operator+( Quaternion&, Quaternion& ); 
 friend Quaternion operator-( Quaternion& ); 
 friend Quaternion operator-( Quaternion&, Quaternion& ); 
 friend Quaternion operator*( Quaternion&, Quaternion& ); 
 friend Quaternion operator/( Quaternion&, Quaternion& ); 
 friend int     operator==( Quaternion&, Quaternion& ); 
 
 /** The (typical C) operator '+=' is implemented as a    ** 
  ** message (so-called member function).      **/ 
 void operator+=( Quaternion& ); // etc ... 
}; 

 
Having declared our class we can now define the methods.  Some methods are made ‘inline’ 

for greater speed.  First then some inline methods: 
/** arithmetic **/ 
inline Quaternion operator+(  Quaternion& x, Quaternion& y) 
{ 
 return Quaternion( x.alpha + y.alpha, 
   x.beta + y.beta, 
   x.gamma + y.gamma, 
   x.delta + y.delta); 
}; 
 
/** Unary Minus **/ 
inline Quaternion operator-( Quaternion& a) 
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{ 
 return Quaternion( -a.alpha,-a.beta,-a.gamma,-a.delta); 
}; 

 
Multiplication is better declared as an ordinary function.  The parameters are declared to be 

unchanging references (i.e., automatically dereferenced pointers). 
Quaternion operator*( register const Quaternion& x,  
      register const Quaternion& y) 
{ 
 return Quaternion( x.alpha*y.alpha 
    - x.beta*y.beta - x.gamma*y.gamma - x.delta*y.delta, 
  x.alpha*y.beta 
    + x.beta*y.alpha + x.gamma*y.delta - x.delta*y.gamma, 
  x.alpha*y.gamma 
    + x.gamma*y.alpha - x.beta*y.delta + x.delta*y.beta, 
  x.alpha*y.delta  
    + x.delta*y.alpha + x.beta*y.gamma - x.gamma*y.beta); 
}; 
 

5.3. 3. Letting Different Types of Models Live Together and be Rendered. 
There are a number of aspects to computer animation and simulation.  We have to model 

various objects in three dimensions.  We have to make them move.  We have to organize all the 
objects in a system which repeatedly produces the frames of the animation on the screen. 

This section is concerned with managing the large menagerie of actors and other objects that 
make up an animation environment.  The main tool discussed here will be generic lists.  These are 
lists of different objects which nevertheless obey the same basic rules and respond to the same 
messages.  Such lists are made possible by means of polymorphic messages. 

An example: in graphical systems one normally has a large number of different 
representations, or models, being used together.  Each of these representations has to be rendered 
(Figure 12).  The standard solution is to ensure that all models have the same kind of primitive.  
However with polymorphic messages we can use different methods for the representations 
provided that the same message, like render, is understood by all the representations. 
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ActorTypeA
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Background
 

Figure  12.  Polymorphic message ‘render’ being sent by the Camera to render different 
kinds of Actors. 

 
The different Actors all have different internal representations, but all have to be drawn on the 

display.  Thus the Camera merely has to send the message render to all the Actors on the display 
list and the mechanisms of the object-oriented language will ensure that the right methods are 
invoked. 

The classes of a simple animation system were introduced in Section 1.  The objects in an 
animation system are linked by a number of lists.  The three most important ones are: 

• Appearance List.  The Appearances are really delayed messages from 
an Actor to Camera telling how an actor should be rendered.  An 
instance of this list is owned by each Camera. 

• Segment List.  Each Window has a list of Segments ordered according 
to their display priority (depth priority). 

• Frenetic or Kinetic Object List.  Every object which can move is placed 
on a list owned by the Clock.  These objects are updated once for each 
each frame that is rendered. 

3.1 The Animation Processing Cycle. 
Animation processing is centred around the cycle of operations which produce the output 

frames.  At the centre of this processing cycle is a clock object which distributes a tick to all 
objects and which notices when a cycle is complete.  Since this system is implemented on a single 
processor machine synchronization is achieved by distributing the ‘tick’ in some correct 
predetermined order, but the idea is extensible to multi-processor systems.  This order is 
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determined by the order in which objects appear in the KineticObject list mentioned above 
(Figure 13). 

 

End Start

Clock Tick

Actors Tick: 
Update position, send 

Appearance to 
Camera

Cameras Tick: 
Render Appearances on 

screen, update own 
positions

Stage Tick: 
Manage Suspended Actors,  

create backgound Appearance

Appearances 
sent to Camera

 
Figure  13.  The Animation Clock Cycle. 

 
The first objects to receive ‘tick’ are the Cameras.  They then proceed to render the 

Appearances received in the previous cycle.  Then they update their own positions.  This has to 
be done before the Actor’s are activated because temporal priority depends on the relative 
positions and speeds of Camera and Actor. 

Next the Stage receives ‘tick’.  Actually the very first object to be created is the Stage, it owns 
and sets up the Clock and is informed when the Clock has completed processing.  During 
processing the stage maintains a subsidiary list of suspended but not deleted Actors, but the main 
purpose of sending a tick to Stage is to allow it to function as a kind of background actor. 

Finally the Actors receive a ‘tick’, in no particular order.  In response they update their 
position by asking their Script for the next action to be performed.  Once updated their temporal 
priority is calculated w.r.t. each Camera.  The Stage supplies an iterator object which will answer 
with each Camera in turn, when it is interrogated by the Actor. 

For each Camera a new Appearance is created if needed.  The Actor's 3-D state is transformed 
and stored in the Appearance as a 2-D state relative to the Camera.  Each Appearance is then 
submitted to the Camera by placing it on the appropriate list.  This list can reflect the relative 
importance of the Appearances by the order they are kept in. 

There can be numerous kinds of Actors.  These depend on the specific application. 
The Camera takes the Appearances from its appearance list and has them rendered by a 

Renderer.  These renderers can come in many classes depending on their speed and the degree of 
realism they yield. 
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The Renderer returns a Segment which has a screen position and depth priority.  A bounding 
box is also provided to indicate the area of the segment actually used by the image.  These 
Segments are maintained in a depth priority list.  This list provides a simple method of hidden 
surface removal.  Segments are rendered depth first. 

The processing cycle for one frame is now complete and a new one can begin.  The Stage is 
informed of this.  Certain housekeeping such as image recording or user interaction takes place at 
this stage of the cycle. 

3.2 Generic Lists and Dynamic Binding  
In the discussion of the Appearance and KineticObject list we have glossed over a crucial 

point: these lists can contain many different kinds of object.  When a particular object is taken 
from the list we do not know its type beyond the fact that it is either a kind of KineticObject (on 
the Clock’s list) or a kind of Appearance (on the Camera’s list).  Clearly this will be a feature of 
any animation system with many kinds of active objects or any implementation of a priority 
measure which must apply to different kinds of objects. 

It is here that dynamic binding provides the most elegant solution.  We send the same message 
to all objects in the clock queue (i.e. ‘tick’) and the same message to all objects in the Camera 
queue (i.e., ‘scanConvert’).  Then at run-time the system binds the correct function corresponding 
to the type of the object encountered.   

In C++ these functions are known as virtual functions.  In general at least two more virtual 
functions are needed: printOn to print a description of the object on some output stream, for 
debugging and general enquiries.  And a virtual destructor which will clean up behind the object 
if it is deleted. 

A less elegant feature of the generic lists which are used to implement these queues is the way 
they are declared: they are generated by a rather baroque collection of C preprocessor macros.  
Their virtue is that creating a new kind of list is simply a question of naming it. 

5.4. 4. Conclusion  
An object-oriented approach to modelling physical objects requires that two hierarchies be 

built:  a class inheritance hierarchy and a part-whole hierarchy. 
The class inheritance hierarchy proceeds from the simpler, general, abstract super classes, 

down to the concrete, specific subclasses which have the ability to be instantiated as the basic 
objects with which the system is built. 

The part-whole hierarchy is a way of describing a complex object in terms of its basic simpler 
constituents.  The whole acts as a large complex object but as much of the specific capabilities of 
the parts of the whole are implemented in the parts. 

The basic design of an animation system was presented here to illustrate hierarchical object-
oriented methods.  Coordinate transformations were implemented by a new class of number: the 
quaternion.  To get maximum performance the programming language should probably be C++ 
rather than Smalltalk. 

We have given some practical details of how a simple animation system may be set up.  An 
interesting feature was the use of polymorphic messages ( virtual functions in C++) for generic 
lists.  These lists allow us to render objects with different internal representations and so we avoid 
the requirement for a common primitive representation for all our objects.   
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Another feature of note was that the moment by moment appearance of an object was 
abstracted as a kind of Appearance.  This Appearance helped to mediate between the Actors and 
the synthetic Cameras. 

The object-oriented approach is also extensible to the more complex computer animation 
problems which include feedback and constraints between concurrent Actors.   These building 
blocks are presented in other chapters of these notes. 
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6. IV Introduction to Constraints. 
This section introduces the concept of constraints and constraint hierarchies, motivates their 

use, classifies the various approaches in existing systems, and provides the necessary background 
for the demonstrations. 

2. Motivation for Constraints 
 Constraints are a means for declarative programming and thus benefit from all the usual 

advantages of declarative languages: composable functions, clean semantics, definition of the 
result not the process, the system can reason about the program, referential transparency, etc.  
Constraints are traditionally used for the following tasks: maintaining consistency, enforcing 
invariants, describing physically laws for realistic animations, pruning complex search trees. 

3. What are Constraints 
Constraints are multi-directional, system-maintained, relations over one or more domains.  

Formally, a relation is a subset of the cross-product of the domains.  Constraints differ from 
functions because they are multi-directional.  Constraints are system-maintained, thus once they 
are asserted, the programmer or user does not have to worry about/remember to trigger specific 
updates.  The domains are typically real numbers, booleans, sets, etc. although some system allow 
arbitrary domains.  Constraints are typically written as either predicates in a logic or as equations 
(which are really just predicates in a logic).  As we will see later, the semantic definition of the 
predicates can either reside in the domain, e.g., addition over real numbers, or in the constraint, 
e.g., rules or one-step deductions to compute the multiple directions. 

4. Overly Powerful Constraints 
  Constraints can easily be written that describes systems that are very difficult or even 

impossible to solve, e.g. Fermat’s Last Theorem, the Halting Problem, or even the definition of a 
triangle.  Thus the only reasonable way to build (and use) a constraint system, for AI, graphics, 
user-interfaces, or whatever, is to build a restricted constraint system.  A useful system will 
restrict the constraints and/or domains in such a way that not only can they be solved, but that 
they can also represent useful computations. 

5,6,7,8. Some Example Constraint Programs 
  The canonical Celsius-Fahrenheit example [user-interface and computational constraints].  

Orbiting planets and moons [animation and realism constraints]. SEND+MORE=MONEY 
[searching].  Laplace heat transfer [simulation, computation, and realism]. 

9. Classifying Constraint Systems 
  Constraint systems can be classified along a number of axis.  One simple dimension is 

whether they are static or dynamic, i.e., batch or with some notion of change over time.  (Note 
that a system could have a notion of time and still be static because it simply take a set of 
equations describing motion, solve them, and return the result.)  Another dimension is whether 
the system uses the constraints to verify consistency or whether it uses them to enfore 
consistency.  For example, in databases, constraints can be defined to ensure that invalid records 
are not added.  However, if an invalid transaction is attempted, it simply fails---no repair is 
attempted.  In an interactive system, like ThingLab, the constraints are used to return the system 
to a valid state after it becomes invalid (and to do that continuously). Similarly, the most crucial 
dimension is the distinction between the perturbation model and the refinement or solution model.  
In the perturbation model, the variables have initial values, these values are perturbed, and then 
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the constraints are used to find a new set of valid values.  Hopefully, these new values will be 
close to the old values.  The final result is a set of values, one value for each variable.  In the 
refinement or solution model, the variables are initially valueless and the constraints add partial 
information about their values.  Each constraint refines or narrows the set of values that the 
variable can take on.  The final result may be a set of values, but only if there are enough 
constraints.  More likely the final value will be a set of values for each variable, or rather a few 
residual constraints on the variables. 

10,11. More Examples 
  Consider the a ThingLab constraint system: each point has a location, each node has a value.  

When the thermometer is moved, some of the constraints are broken and the system then chooses 
new values for the points and nodes so that the constraints are again enforced.  If, in the case of 
an anchor or constant, there are no new values, then the old value is restored and the user’s input 
is ignored.  On the other hand, consider the Laplace Heat example.  If enough initial conditions 
are given, the interior variables have unique values. However, if the initial conditions are vague 
or incomplete, then the result is a set of equations restricting the values of the variables, but not 
actually assigning them values. 

12. Constraint Hierarchies 
  Constraint hierarchies are a mechanism to reconcile these two approaches, as well as to 

provide a declarative framework for controlling the “operational” behavior of a set of constraints.  
A constraint hierarchy is an ordered sequence of sets of constraints (could be a total order, could 
be a partial order) such that the constraints in set i completely dominate the constraints in set i+1.  
The constraints in the set 0 are special: these are the required constraints.  The remaining 
constraints are weaker and weaker defaults or preferences.  The required constraints accomodate 
the refinement or solution level, and the default constraints accomodate the perturbations. 

13,14,15,16,17,18,19. Constraint Hierarchy Example 
  The example is a simple plus object in ThingLab which has an initial set of values and is 

being editted by the user to a different set of values.  The first slide shows the example and the 
hierarchy with annotations of what each level is used for.  The second slide shows the user 
editting one input.  The third slide shows one potential solution: changing the other input.  The 
fourth slide shows the other, correct, solution: changing the sum.  The fifth slide shows the user 
editting the sum and one solution.  The sixth and seventh slides show two other solutions. 

20. Constraints in Graphical Work 
  When constraints are used in graphics, the solution model is usually insufficient: what one 

wants to display is *a solution* rather than a set of solutions.  After all, the display device can 
only display one solution at a time.  Typically constraints have been used for two things in 
graphics: the realism aspect (for example see MOREMORE), and the user-interface aspect (see 
MOREMORE and others).  The demonstrations that will be shown after lunch are mostly of the 
user-interface type. 
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7. V Object-Oriented Graphics Systems. 
1. Short description 

GEO++ an example of a multi-level graphics systems system is introduced illustrating how a 
thorough investigation of object-oriented techniques leads to a  flexible and powerful system. An 
interactive editing example is described; its realization by direct  object  manipulation is sharply 
contrasted to display list traversal.Inheritance is illustrated by examples showing how a flexible 
system design is supported by this concept. The idea of object-oriented application framework is 
portayed by showing of how internal methods can be overridden to customize predefined 
functionality. 

2. Multi-level part graphics hierarchies. 

3. GEO++ as an example of an object-oriented multi-level graphics system. 

4. Comparison with PHIGS data structure traversal. 

5. Example: assigning attributes to picked objects of a multi-level hierarchy. 

6. Different  use of inheritance for a predefined graphics class library. 
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8. VI Object-Oriented Frameworks for Interaction and Graphics 45
 (L) 
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8.1. VII Constraints, Objects, and Algorithms  
This second section on constraints outlines the historical background, provides references to 

theory papers, and provides working algorithms for solving constraints.  This section also 
describes the complex relations between encapsulated objects and “intrusive” constraints. 

1. Historical Background 
  There is, as yet, no good background introduction to constraints and constraint programming.  

There are a number of traditional, historical, papers.  I suggest Sketchpad and ThingLab as well 
as Sussman and Steele.  The Abelson and Sussman textbook has a section on constraints (section 
3.3.5) and Leler has a book version of his thesis.  The AI literature is full of constraints systems, 
as is much of the user-interface and some of the CAD literature.  Specific recomendations include 
Van Wyk, Gosling, and Olsen. Lately there is a surge in Constraint Logic Programming including 
excellent papers by Cohen and Jaffar, and books by Hentenryck and Saraswatt.  The theory of 
constraint hierarchies is described in a few papers. 

2. Algorithms for Solving Constraints 
 As we mentioned earlier, the key to providing a useful constraint system is a careful 

restriction such that efficient algorithms can be used to compute solutions.  This is made difficult 
by the (apparently) inherently difficult nature of certain problems, e.g., there is no known closed 
form solution for higher-order polynomials.  On this slide we show a number of popular 
constraint solving algorithms---local propagation, graph rewriting, numerical techniques, and 
generate-and-test.  Practical constraint systems use a combination of these techniques, e.g., 
ThingLab, CLP, etc. 

3. Local Propagation is the Simplest Technique 
 Local propagation attempts to order the constraints such that the constraints can be solved in a 

dataflow propagation: one variable at a time.  The Sketchpad and ThingLab systems pioneered 
this technique, and it is now used in a limited way in spreadsheets.  There are two basic 
approaches: propagation of known states, and propagation of degrees of freedom---forward 
versus backwards.  Typically local propagation systems have the definition of the predicates 
within the constraint in the form of one-step deductions, rules, or methods.  This is possible 
because the semantics of local propagation depend only on the structure of the constraint 
network, and not on the semantics of the individual predicates. 

4,5,6,7. Example Known States Propagation 
  This example shows, in four slides, local propagation by choosing a constraint, and then 

another, and then another, and so on. 

8,9,10,11. Example Degrees of Freedom Propagation 
  The same example, but this time using degrees of freedom.  Note that degrees of freedom is 

actually difficult to compute other than completely-free vs. not-at-all-free (e.g., intervals of real 
numbers and complex objects). 

12. Example With Both 
  Both local propagation techniques are useful in situations where local propagation cannot 

completely solve the constraints.  This example shows an example with a cycle, degrees of 
freedom leading away, and known states leading in.  Local propagation has the advantage of 
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being very fast O(n) and the disadvantage of not being able to solve cycles, multiple constraints 
on a single variable (X >= 10, X <= 10), etc. 

13. Planning vs. Run-time 
 Another advantage of using local propagation or other structure-based solving techniques is 

that the constraint solving can be divided into two phases: planning and execution.  This 
separation allows the same plan to be used for multiple data values, e.g., in user interfaces and 
graphics, the same constraints are repeatedly solved as an animation or user interaction 
progresses.  This separation is equivalent to the traditional Algol-style language’s separation 
between compile-time and run-time.  ThingLab used this to compile native code interactions and 
cache them for later use.  The planning vs. run-time separation cannot be used for value-based 
solving techniques such as relaxation or the Guassian elimination described later because the 
steps that these algorithms take is data-dependent.  But these algorithms can be used as 
subroutines within a compiled plan. 

14. Redundant Views 
  Local propagation is very fast and thus desirable, but it cannot deal with cycles 

(circularities).  Thus a number of techniques have been used to get around this limitation.  A 
common one is to provide redundant or multiple views, in other words, alternate ways to compute 
a network.  For example, X*X = Y can be solved X --> Y but not Y --> X.  Thus one adds a 
sqroot(X,Y) predicate and the system can solve it.  Other techniques involve ignore the circularity 
(!) or iterating around the cycle until a fixed point is reached (potentially never).  Neither of these 
solutions is semantically sound and thus violate one of the reasons of using constraints: clean 
semantics that the system can reason about. 

15. Graph Rewriting 
  In a number of systems, when a cycle is discovered, a graph or equation rewriting system (a 

confluent set of rewrite rules) is used to rewrite the cycle into a single constraint.  If the rewrite 
rules are data-independent, the rewrite can be done at compile-time, but if the rewrite rule set 
includes “0 * x ==> 0”, then the rewrite must either be done at run-time (a large performance 
penalty), or appropriate branching code must be produced.  The Leler book includes a sample 
equation rewriter and a small constraint system. Gosling’s system used local propagation and 
rewriting.  Graph rewriting is tailored to the refinement or solving model. 

16. Numerical Solvers 
  In other systems, various numerical algorithms are used for solving cycles. For example, the 

Simplex algorithm is used in CLP(R), and relaxation was used in Sketchpad and ThingLab.  The 
constraint systems of MOREMORE use a mathematically model that considers all constraints to 
be springs and the goal is to find the lowest energy level, and thus the best solution to the 
constraints.  Most numerical solvers use the perturbation model, although some, such as the 
Simplex algorithm, can produce symbolic answers. 

17. Error Functions 
  Speaking of springs and low-energy levels, one must consider how well a constraint is 

satisfied by any of these algorithms.  The local propagation algorithms satisfy a constraint either 
completely or not at all, i.e., they use a boolean satisfied test.  A spring version, on the other hand, 
uses an error metric in the underlying domain, Hooke’s Law in this case, but any other error 
metric could be used: difference, least squares, Euclidean or Manhattan metric, etc.  One can also 
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examine the difference between local error comparisons or global ones.  A global algorithm will 
attempt to minimize the error over all the constraints, whereas a local one will only deal with 
pairs of constraints.  The advantage of a local comparison is that it is efficiently computable, and 
is valid as long as a local minimum is also a global minimum. 

18. Delaying Constraints 
  Typically, numerical solvers cannot deal with higher-order polynomials or trig functions.  

These constraints are solved by delaying them until they become linear or until local propagation 
will work.  For example, X*X = Z would be delayed until X is known. 

19. Generate-And-Test 
  With a finite domain, one can use the standard AI techniques of generate-and-test, alpha-

beta-pruning, truth-maintainance, etc. to examine the space of possible solutions. 

20. One-Way Constraints 
  Constraints are usually multi-directional, however uni-directional (or restricted directional) 

constraints (also known as read-only annotations) are useful in many cases.  For example, 
physical I/O, or certain user interface widgets, or even functions for which the inverse is not 
practically computable.  Local propagation can easily handle one-way constraints, but many of 
the other algorithms cannot.  Some systems even have just one-way constraints, but I consider 
those to be data-flow systems rather than constraint systems because the programmer must 
constantly worry about the directions, rather than concentrating on the behavior and specification. 

21,22. Algorithms for Constraint Hierarchies 
  The traditional constraint algorithms described so far work for “flat” constraint networks, 

i.e., those with a single, required, level of constraints.  A constraint hierarchy introduces an 
additional complexity because it is non-monotonic.  For example, weak X=3, add strong X=5 and 
the solution changes.  Traditional algorithms are based on the strict refinement principle.  Slide 
two shows now the filtering model will adapt flat algorithms to work with hierarchies.  Various 
optimizations are available to improve efficiency, but more specialized knowledge is needed for 
really good results. 

23,24,25,26,27. DeltaBlue 
 The DeltaBlue local propagation algorithm for constraint hierarchies uses the special features 

of local propagation to achieve excellent performance.  The problem is that when a new 
constraint is added to (or an existing one is removed from) a constraint network, which existing 
constraint(s) should be overridden.  Previous systems have either used a full-search of the 
network or some ad-hoc algorithm to determine the constraint.  Some of the measures have 
included the shortest path, LRU, or whatever.  DeltaBlue uses the hierarchies to provide a 
declarative solution to this problem---the weakest constraint is overridden.  But this must be 
found efficiently.  The key is the Walkabout strength, a cache of the weakest upstream strength.  
A pretty picture shows this value.  When a new constraint is added, slides two, three, and four 
show how the constraints are redirected and the new values are computed.  Deleting a constraint 
can be implemented similarly.  Actually, slide five shows how this same technique can be used to 
improve the performance of flat systems. 

28. Constraints and Objects 
  Object-oriented techniques rely on data abstraction and encapsulation, in other words, on 

hiding the implemenation and variables of a class.  Constraint system rely on complete 
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knowledge of the constraint network and the variable domains in order to reason about, plan, and 
optimize solutions.  These two features conflict.  In the past, this situation has been resolved by 
allowing the constraint solver access to the implementation of the objects.  However, this forces 
all implementation to be known at planning time, and thus precludes compile-time planning.  A 
number of other solutions have been proposed: no knowledge, splitting, raising, and adding an 
extra solver.  These techniques are basically mechanisms for adding user-defined constraints over 
user-defined data types to an existing system of primitive constraints (predicates) over primitive 
domains (the built-in ones). 

29. No Knowledge 
  The simplest technique is to prohibit access to the objects.  All constraint solving is done by 

passing messages.  Unfortunately, this also restricts the solver from doing any reasoning, as 
without a complete semantic description of the object, it cannot know what the behavior will be.  
The only behavior possible is a triggering of events---no scheduling, planning, or rewriting is 
possible. 

30. Splitting 
  Splitting involves taking a larger complex constraint and splitting into numerous smaller, 

more primitive ones over the component parts of the object. This can be done in an object-
oriented way within the object using multi-methods.  Splitting creates a large number of primitive 
constraints which may overwhelm the solver.  Split constraint can also have the partial relations 
problem (Point = Point may not be the same as Point.x = Point.x and Point.y = Point.y).  Splitting 
can be redone when the concrete type (the implementation) of the variables changes, and thus it 
can accomodate polymorphism. 

31,32. Raising 
  Whereas splitting reduced the level of abstraction, raising increases it. Raising raises all the 

constraints in the system to the same level of abstraction and then solves the resulting network.  
Note that this will only work with algorithms like local propagation which do not rely on the 
underlying domain.  Raising reduces the number of constraints, but can suffer from the degrees of 
freedom problem shown on slide two. 

33. Adding an Extra Solver 
  A sophisticated solver would use both splitting and raising as well as forward and backward 

propagation and a cycle solver.  However, another technique would be to add a specialized solver 
for the particular class of objects in your program.  For example, you may have algorithms for 
efficiently solving constraints over graphical entities, algorithms better than those in the primitive 
solver, e.g., for intersecting circles or ... 

34. Other Details 
  When actually using one of the constraint systems and algorithms, one typically uses it from 

within another language, either a logic programming one or an Algol-style imperative one.  The 
logic programming versions have a clean semantic interaction (in fact, logic programming a la 
Prolog is just a constraint system over the Herbrand universe), however imperative languages do 
not.  Some of the key issues involve destructive assignment and when to trigger the constraint 
system.  In current systems, triggering the constraints is either done automatically by catching all 
writes, or it is done manually when the programmer requests (similar again to spreadsheets).  Of 
course, one can forget to trigger the solver.  Automatic solving requires more complicated data 
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structures so that all references to constrained variables at all levels in the part-whole hierarchy of 
objects triggers the constraints.  For example, if one constrains the rectangle.origin.x variable, and 
a constraint exists on the rectangle as a whole, the constraint system must recognize this 
connection and be woken up when the sub-variable x is modified. 

35. Summary 
  Constraints must be restricted in some way in order to be efficiently implemented, but these 

restrictions still permit useful computations.  Local propagation is easy to program, and quite 
useful, especially when combined with some other technique to handle the cycles.  Constraint 
hiearchies declarative subsume many of the ad-hoc techniques of earlier systems and are 
efficiently implementable.  Objects present a problem, but some approaches are available. 



9. VIII 
Advanced Techniques 
Edwin Blake 
From the previous chapters it can be seen that there are a number of features which we must treat in 

object-oriented graphics.  Two salient features of an animated figure which we must capture: (a) it is 
composed of parts which depend on each other, and (b), these parts can move subject to various 
constraints.  These same requirements arise again in interactive graphics [xv]. It was pointed out that 
these requirements might imply extensions of object-oriented concepts if we are to retain all the 
conceptual and programming advantages of object-oriented programming.   

There are a number of other areas in which object-oriented concepts could be extended and they 
will be presented in this chapter.  We shall also look at some of the finer points of object-oriented 
programming and discuss possible alternatives to the object-oriented paradigm. 

Section 1 shows how prototypes and delegation can be more useful than class hierarchies if 
numerous changes in the type of an object has to be made.  Section 2 mentions possible extensions to 
allow multiple views of the same object. Section 3 introduces encapsulators which are useful for 
dealing with incomplete objects. We briefly mention the use of objectified messages (or dataflow) in 
object-oriented graphics in Section 4. 

Finally (Section 5) we review declarative languages as an alternative approach to dealing with 
complexity in graphics systems. 

The most important extensions of object-oriented concepts (or “refinements” if you prefer) are 
however the part hierarchy and the introduction of constraints.  The reason they are not further 
mentioned in this final section are both because they are extensively treated in the preceding chapters 
and because they are becoming accepted as standard components of any object-oriented graphics 
system.  This does not mean that the issues are cut and dried: there is still a tension between 
information hiding and access to internal data for addressing the parts of a whole or for modifying 
internal state for constraint satisfaction.  

9.1. 1. Classes versus Prototypes 
Programming in an object-oriented language is a question of designing and implementing classes 

(or their equivalent in prototypes).  A large problem is split into a number of hierarchies of classes. 
Here we can possibly make a distinction between classes and prototypes. Classes are used when the 

system can be mostly designed in advance, when we can categorize most of the types of the objects.  If 
new types appear on the fly (perhaps in CAD or AI applications) then prototypes are more appropriate.  
For further discussion on these issues see [xvi]. 

If an object-oriented language is to be used in situations where new objects of slightly different 
types have to be created frequently then the absence of prototypes and delegation can be regarded as a 
limitation (Smalltalk lacks delegation.  However it is a flexible system and delegation via message 
forwarding may be implemented easily.  See Chapter III and its references). 

We should also distinguish between inheritance for code reuse and inheritance as a formal 
relationship between types.  The former is an implementation issue and the latter is a behavioural 
specification. When we are modelling the world, inheritance in the latter sense is a natural 
consequence of the generalization and specialization of natural forms. Classification of objects (e.g. 
atoms or animals) into related types is a fundamental scientific method. 

9.2. 2. Multiple Views 
In object-oriented systems with data encapsulation a whole can pretend to have parts which are not 

actually stored as such [xvii, “virtual parts”].  Since access to the parts is only via messages the 
responses to these messages can be generated on the fly, rather than stored.  A rectangle can be stored 
in terms of a top-left and bottom-right corner, but it can equally well pretend to have a centre which 
can be read or modified. 
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This allows one to have multiple views of the same object.  A complex number can be accessed as 
a real and imaginary number or as a radius and angle, without regard to the ‘true’ underlying 
representation. 

It is apparent that doing this would have been impossible if we had sacrificed data encapsulation.  
These different names (like “phantom”, or “imaginary”, or “virtual”) for such parts refer purely to an 
implementation issue: to the outside of the object the distinction does not exist. 

Further research in the area of multiple view must first distinguish between the various sense in 
which this word is used: 

1) Masking.  A simple form of multiple views is when we simply mask off 
certain attributes which are irrelevant from a certain point of view and 
switch on others.  We observe an object through a mask, there is no trans-
formation of attributes. 

2) Translation.  A more complex form of multiple views is the translation 
between various ways of representing the same underlying information 
about an object (e.g., the above example of a complex number).  

3) Re-instantiation.  The object is regarded as composed of parts.  Depending 
on the application we want a hierarchy of different parts to be present, or 
the same parts may be in different positions of the hierarchy.  For 
example: consider the position of the generator of a motor car when we 
are interested in the transmission of mechanical power or else when we a 
looking at the electrical system; similar problems arise in CAD in the 
distinction between the geometric structure of the designed object and the 
machining hierarchy.  For complex part-whole hierarchies this ‘re-
composition depending on the query’ is still a difficult research issue (see 
Figure 1). 
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Figure  1.  Multiple Views on PartWhole Hierarchies. 
“.. every mechanic is familiar with the problem of the part you can't buy 
because you can't find it because the manufacturer considers it a part of 
something else”  [xviii]. 
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Other issues which arise in multiple views is the evolution or refinement of an object from one 
view to another.  Recent research by Carré makes use of the a modified multiple inheritance 
mechanism to deal with the first two versions of multiple views and with the evolution of objects 
[xix;xx]. 

9.3. 3. Encapsulators 
An encapsulator provides a transparent, often temporary, interface to an object.  The object is 

surrounded by an encapsulator so that all messages to the object and all replies from the object are 
intercepted by the encapsulator (Figure 2).  This allows pre- and post-processing of messages while 
the encapsulated object remains externally identical to the enclosed object [xxi].  Encapsulators are 
another step in the direction of control over side-effects which we have seen developing out of the 
original idea of data abstraction, progressing through information hiding and encapsulation. 
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Figure  2.  An encapsulator encloses another object. 

An encapsulator intercepts all messages for another object which cannot 
or should not handle them.  The enclosed objects can be incomplete, busy, 
or created only when addressed. 

Encapsulators can be used to implement Futures to manage concurrent synchronization and Delays 
to provide lazy evaluation [xxii] (Encapsulators, Futures and Delays are easily implemented in 
Smalltalk.  The essential idea is that an encapsulator understands no messages and thus all messages 
can be intercepted by the “not understood” method). 

A Future is an encapsulator which encloses the result of a child process which has not yet 
completed execution, messages to this as yet non-existent object are held until execution is completed.  
In the meantime a Future can be passed around as if it is the result. Lazy evaluation is used where 
objects are created only if there is a demand for them, this can provide (conceptually) infinite data 
structures. 

In graphics and particularly CAD incomplete objects are often created. Encapsulators seem to be an 
ideal way of managing such objects. 

9.4. 4. Objectified Messages 
In Smalltalk everything is an object except the messages which are sent between objects.  Many 

extensions to Smalltalk involve intercepting these messages, turning them into objects of some kind, 
manipulating them and sending them somewhere else.  Those are objectified messages.  If this 
approach is carried through we get an Actor system where everything is an object, including messages. 
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Once this is done it is possible to write pure dataflow code.  The nodes of the dataflow graph are 
objects which implement single operations.  These functional objects no longer need any internal state.  
The data tokens which move between the nodes are the objectified messages.   

 

objectified 
message

objectified 
update

 
Figure  3.  Visual Programming via Objectified Messages. 

To interact with control structures graphically the messages which flow 
need to be intercepted and redirected.  The diagram shows the messages 
which move between a scroll bar and a text file being scrolled past a 
window. 

If we mix the object-oriented and declarative (this time dataflow) approaches without restriction 
then we have neither the structuring of object-oriented programming nor the benefits of full referential 
transparency.  But a number of visual programming tools need to link objects to show visually how 
messages will flow and to establish constraints (Figure 3).  For example, a slider can be linked to a 
numerical entry box.  If one is changed then the other is also to be updated.  The link between them 
represents such an objectified message—a two-way path for data flow. 

The use of instances of an Appearance class (see Chapter III) to mediate between animated objects 
and display classes is in reality another example, albeit a limited one, of an objectified message.   

The exploration of the relations between dataflow and object-oriented programming is thus a topic 
of some importance for  interactive computer graphics. 

9.5. 5. Alternatives to Object-Oriented Graphics:  Declarative Languages. 
I would like to give a brief overview of alternative programming abstractions.  This section has to 

establish a fair amount of terminology.  For further details of the terminology the reader is referred to 
[xxiii].  Object-oriented languages are examples of imperative languages.  The way in which they differ 
from other imperative languages (like C or Pascal—collectively called procedural languages)  has 
been extensively discussed in Chapter I.  All imperative languages use a notion of state.  In object-
oriented languages the internal state of the object is hidden.   

The other major class, on a par with imperative, is declarative.  A declarative program specifies the 
relations which have to hold in the results of the computation.  It specifies what is to be computed, not 
how to go about the computation.  The underlying engine has to resolve the constraints on the solution 
in order to produce the answer. 

The complexity of graphical computation can also be ameliorated by declarative methods.  The 
principal benefit of declarative languages is that they shift the burden of deciding how a thing has to 
be done from the programmer to the architecture.  Both functional and logic languages are declarative.  
The need for declarative programming has also been further explored in the chapters on constraints.  A 
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probable development seems to be a further growing together of object-oriented and constraint-based 
programming for graphics [xxiv;xxv]. 

It should also be mentioned that dataflow graphs are essentially declarative.  That is, although most 
procedural language constructs can be translated in dataflow graphs but dataflow execution “has 
distinctly functional semantics” [xxvi]. 

Pure declarative languages employ no side-effects whatsoever and assignment of values to 
variables is impossible.  In object-oriented terms one could say that data is always completely 
encapsulated.  In fact, declarative languages lack a notion of ‘state of computation’. This is in direct 
opposition to the idea of self contained objects which persist over time while their internal 
configuration changes.  This seems to lead to conceptual difficulties when we consider interactive 
graphics and computer animation. 

5.1 Logic Programming. 
The main tenet of logic programming [xxvii] is that an algorithm consists of logic and control.  The 

logic, that is, properties of the problem and its solution, are supplied by the programmer.  The machine 
is responsible for the control, that is, how the solution is computed.  This ideal is not yet achieved.  
Computers generally implement a subset of first order predicate calculus (e.g. Prolog). 

Logic programming can be used for graphics and CAD systems [xxviii].  There are also CAD 
systems which combine logic programming with object-oriented programming [xxix].  This is part of a 
broader effort to unify object-oriented and logic programming [xxx;xxxi].  This can produce an impure 
hybrid language which provides the benefits of both.  It is an open question whether logic is the best 
way to express the relations which exist between graphical objects. 

5.2 Functional Programming. 
Functional programming also provides an abstraction for computer graphics [xxxii;xxxiii;xxxiv;xxxv;xxxvi].  

A few points of contrast and similarity with object-oriented graphics will be given. 
Functional programming derives its power from giving functions first class status [see e.g., xxxvii].  

Functions can be combined and manipulated just like any other object.  Data structures are defined by 
means of constructor functions which make abstract data objects.  Access is only via the operations 
defined on the data objects.  The usefulness of data abstraction has already been mentioned.  
Polymorphism is also emphasized and functional languages are well suited to programming 
concurrency [xxxviii]. 

Pure functional programs are static objects.  The meaning of an expression does not change as 
computation proceeds.  Real objects persist while their configurations and attributes change over time. 
Animation, as the mimicking of three-dimensional physical objects, depends on a notion of state.  We 
have seen that this meshes rather well with the concept of actors and objects in object-oriented 
programming.  In functional graphics the emphasis is shifted to dealing with a sequence of different 
objects related by a sequence of transformations.  This model of computation is found in key frame 
animation, which is mainly used for two-dimensional pictures.  Slater also discusses the fact that 
difficulties arise when using functional languages for programming interaction and when using 
attributes [xxxix]. 

This does not prevent functional programming from being used in practice in time dependent 
situations.  Generally it is possible to “abstract away” the notion of time, and replace it with some idea 
of sequences over infinite lists [xl].  Lazy evaluation (cf Section 3) is an elegant way of coping with 
such infinite structures [xli]. To discover the relation between the figures in the list one refers to the 
functions which constructed them. But the conceptual advantages of functional programs remain 
limited precisely because such programs describe a dynamically changing world as a (conceptually) 
frozen system of infinite sequences. 

Functional programming is evolving, and the final conclusions regarding functional versus object-
oriented approaches to computer animation cannot yet be drawn.  The extent to which a (possibly 
impure [e.g., xlii]) functional approach can be elaborated for three-dimensional animation needs further 
investigation.  On the other hand, object-oriented animation already seems well suited to modelling 
changing objects executing concurrently. 
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9.6. 6. Conclusion. 
Object-oriented methods in graphics and the allied techniques of direct manipulation interfaces 

have established their worth in the field.  It is apparent that object-oriented programming has many 
aspects whose importance varies with the intended application.  Thus we saw that with CAD, where 
objects change incrementally, delegation rather than inheritance might be preferable.  There are areas 
where further research is needed in order to adapt object-oriented programming for computer graphics.   

On the whole the object-oriented approach offers more promise as a basic abstraction for computer 
graphics than its alternatives (functional or logic programming).  This conclusion has even more force 
if one is able to combine some of the advantages of declarative programming with object-oriented 
methods via the use of constraints.  Graphics programming forces the development of appropriate 
paradigms by refusing to be bound by fixed dogmas. 

In a flexible approach to introducing object-oriented methods to graphics one should beware of 
being too easy going.  It is all too easy, but lazy, to regard the discipline of information hiding and 
type hierarchies (for example) as restrictive, instead of regarding them as elegant ways of building 
complex systems.  When problems arise they should be surmounted by means of extensions to the 
object-oriented method which fit in with the general thrust of the approach.  Examples of such 
extensions are the part hierarchies and encapsulators. 
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