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Abstract

The low level components of a new raster graphics architecture have proven to have novel uses
in image reconstruction. The display hardware can be regarded as a very fast (11ns per opera-
tion) difference engine that works in two-dimensions. The speed is partly achieved by the use
of custom VLSI components for the most primitive operations and this permits the video rate
reconstruction of images and other signals compressed by encoding them on various polynomial
bases. The paper describes the architecture and its operating parameters.

The results are presented of a feasibility study into the use of the system as an image decom-
pression system. The study also shows that the system can be applied to the decompression of
spline wavelet encoded images.



1 Introduction

A radical reappraisal of the three-dimensional (3-D) interactive raster graphics pipeline has re-
sulted in an experimental architecture for a graphics workstation which is currently being eval-
uated at the CWI. Some of the novel uses of parts of the hardware were not foreseen when the
research project was initiated. In this paper we shall explore these unanticipated spin-offs from
the project.

The principal features of the design for the new raster graphics architecture are:

1. Emphasis on real-time interactive shaded 3-D graphics.

2. Object space methods rather than image space methods are used where possible.

3. Avoids the use of a frame buffer.

4. Uses custom VLSI only at the lowest, most primitive, levels where commercial products are
unlikely to suffice in the near term.

It was these design decisions that lead to a number of interesting consequences that have
made parts of the architecture eminently suited to a a far wider range of problems in computer
graphics and image processing1.

For example, the custom VLSI development that was a major part of the project produced
what is essentially a very fast difference engine (to borrow a term from the 19th century history of
computation). This engine can compute forward differences in parallel over the whole width of
a typical image, taking about 11ns per operation (90 Mhz clock) independently of the length of
the forward difference spans.

In the next section we present a very brief overview of the architecture in terms of its orig-
inal design for producing real-time interactive raster graphics. In Section 3 we show how the
same low-level architecture has applications in the reconstruction of compressed signals, and we
present the results of an initial feasibility study. In Section 4 we introduce wavelets as a new
generalized and promising approach to studying compression and decompression schemes for
sounds and images. In conclusion (Section 5) we summarize our results and point to the some
very promising areas for further research into applications of the hardware under discussion.

2 Overview of the Raster Graphics Architecture

A number of different feedback levels in the image synthesis pipeline can be identified if one
takes a new look at the basics of high quality three-dimensional raster graphics [27]. From the
highest to the lowest level these include:

• Modelling

• Coordinate Transformations

• Viewing Transformation

• Hidden Surface Removal

• Area Primitive Processing

1Without going into a contemplation of the meta-levels of the design process it is interesting to observe that this
generality of application resulted from bottom-up design. The initial top-down design produced an architecture for
raster graphics (only). The bottom-up design that followed concentrated on extracting the lowest common denominator
of primitive operations for synthesizing pixels — a language for manipulating related pixels. This vocabulary can now
be used for expressing other facts about images.
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Visual effects can only be achieved by interaction with the data at each of these levels. A user
interacts exclusively with the visible parts of a 3-D model, but not with pixels since they are too
primitive a kind of object to be of interest to a user. We provided direct access to graphics objects
to support pointing and identification. These actions are considered fundamental because they
underlie every change a user makes in a picture.

Changing pictures form the key to the architecture. Actual pixels are not needed for user
interaction. If we take this observation seriously and ruthlessly pare away other elements we get
a radical prescription for a graphics architecture. One where the visible surfaces of objects are
explicitly identified, and without any mandate for a frame buffer. We believe that our research
shows that such a machine, which harkens back to the calligraphic roots of graphics displays, can
be built [1].
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Figure 1: Functional Elements of Display Architecture.
The Y and X processors together form the display controller. The arrows show how 3-D data are converted
to a stream of pixels. Data structures are indicated by arrows and of these only the 3-D Models and the
2-D Structured Object List are stored. All other data are generated on the fly. The Structured Object List is
updated at the animation or interaction rate, 12–24 times per second, and it is read at the video frame rate,
50–60 cycles. The Scanline Instructions are produced at the video line rate and clocked into the x processor
at the video pixel generation rate.

In the past four years the design has been completed [19], the critical components have been
made [18] and functions simulated in detail [17]. The rest of this section presents an outline of
the architecture. The functional elements of the display architecture are shown in Figure 1. The
major new components follow from the bottom up (right to left in Figure 1):

1. pixel generator (or X processor — Section 2.1).

2. area processor (or Y processor — Section 2.2).

3. hidden surface removal, projection and other higher level functions, that are not discussed
here at all.

Items 1 and 2 together form the display controller. In our architecture the frame buffer is
replaced by a structured list of objects which can be pointed at (at the video frame rate of 50–60
cycles). To this end a powerful VLSI-based hardware block containing a systolic array of proces-
sors produces a full colour pixel stream at video refresh rate. This block is fed with instructions
produced by general purpose microprocessors from the structured object list. The processors are
capable of producing Phong shaded 3-D objects or 2-D textures at this rate. For full colour images
one systolic array is needed for each of the primary colours (red, green and blue)2.

The structured object list contains objects that describe small 2-D surface primitives — things
like triangle meshes, trapezoids or splines outlining characters in various typefaces. The objects
have all the information necessary to render them on the display. The size of the object list does
depend on the complexity of the image. The size of the list is about the same as a conventional
frame buffer, with the advantage that the object list is resolution independent so that the list will
not become larger for higher resolutions. The list is also a much more organized data structure
and can therefore support more sophisticated operations than a simple frame buffer.

2It is equally possible for the processors to implement another colour model internally and use converters on the
output side to produce the required values. Postprocessing of this kind can also detect underflow and overflow and
substitute default output values.
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At higher levels of the architecture the objects become more complex (but also fewer — less
fragmented) to maintain information about light sources, textures and viewing (hidden surface
removal or overlay priorities etc.). Here representations for incremental changes typical for real-
time interaction are favoured. These requirements appear to be satisfiable in the short term
by powerful but “off-the-shelf” parallel hardware. At the lowest level custom components are
needed: these have already been built.

2.1 The Difference Engine

The processor referred to above as the pixel processor or x processor (because it deals with the
scanlines of an image) is actually a difference engine. That is, it can do forward difference cal-
culations at high speed. Any order of forward difference can be done, the limiting factor is the
accumulation of errors during addition and (in real-time applications) the extra cycle time taken
by each higher order. The architecture is tailored to second order forward differences.

The processor is a systolic array with a dedicated processor for each pixel in a scanline3.
Additions (and input) are done to a precision of 36 bits and the top 12 bits are output. So we
basically have data values of 12 bits, say 10 bits magnitude and 1 sign bit and 1 bit to detect
common overflow situations, and 24 precision bits. For quadratic interpolation (second order
forward differences) spans of 212 bits or 4096 pixels wide can be interpolated before the error
becomes noticeable. This is also the maximum addressable pixel and span width allowed for
input. If we use just 9 data bits of the output (i.e., 8 bit values + sign bit) then cubic interpolation
for spans of 512 pixels can be done accurately. Naturally longer spans can always be done by
splitting them into shorter ones which can be done correctly.
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Figure 2: Interpolation on the Difference Engine
The difference engine is implemented as a systolic array of processors: one for each output pixel. For
quadratic interpolation the second differences remain constant and are propagated to all processors within
an active span of pixels (Register C). The first differences (Register B) are changed by the second differences
at each step and the results added to the intensity values (Register A). The results of the interpolation step
are added to an accumulator (Register D) so that multiple interpolation spans may overlap to produce the
final pixel value. For higher order differences the same registers are reused.

The bias towards quadratic interpolation is also seen in the fact that there are 3 internal reg-
isters with which the value I (“intensity”), first difference δI and second difference δδI can be
set at every pixel location. The operation of the difference engine is illustrated in Figure 2. The

3Actually one can have fewer processors provided the number of output pixels are a multiple of the number of pro-
cessors. The processors are then reused for the remaining parts of a scanline, but the normal situation is to have one
processor per pixel in a scanline.
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operation description cycles
acc mode Accumulate mode: if enabled negative intensities are not

added to accumulator
1

dis(x,dx) disable accumulation of intensities from pixel ‘x’ for ‘dx’
pixels (cleared after next ‘eval*’ command)

1

eval0(x,dx,i) Set pixel (i.e., accumulator) from ‘x’ for span of ‘dx’ di-
rectly, disable further additions until next refresh.

1

eval1(x,dx,i) add i to accumulator for span from ‘x’ for ‘dx’ pixels 3a

eval2(x,dx,i,di) First order forward difference, starting at pixel ‘x’ with
value ‘i’ and increment ‘di’, for ‘dx’ pixels

4a

eval3(x,dx,i,di,ddi) Second order forward difference — like ‘eval2’ except now
‘di’ is also changed by ‘ddi’ at each step

5a

eval4(x,dx,i,di,ddi,dddi) Third order forward difference, like ‘eval3’ mutatis mut-
andis

6a

eval n Higher, n− 1, order forward differences n+ 2a

nop No operation 1
refresh Output accumulator value and clear everything 2
setddi(x,dx) Set (i.e, override) second differenceb at points ‘x’, for

a span of ‘dx’ pixels in the middle of the next ‘eval’
command

2

setdi(x,dx,i) Like ‘setddi’ only it affects the lower forward difference 2
seti(x,dx,i) Like ‘setdi’ except that this creates a span of intensities 2
setpddi(x,dx) Set (i.e, override) second differenceb at points ‘x’, ‘x+dx’,

‘x+2dx’, . . . in the middle of the next ‘eval’ command
2

setpdi(x,dx,i) Like ‘setddi’ only it affects the lower forward difference 2
setpi(x,dx,i) Like ‘setdi’ except that this creates a pattern of intensities 2

Table 1: X Processor Instructions and Their Costs in Cycles
Note: The costs mentioned above are incurred whether a span is 1 pixel long or covers the whole
width of the scanline.

aThe cost of this operation can be reduced by 1 cycle in future versions
bIf there are higher order differences then this sets the highest order difference

interpolated intensities are calculated in register A and the contents of A is added to an output
accumulator which can contain the results of a number of previous interpolation spans.

The contents of the accumulator is read out (for display) on receipt of a “refresh” instruction.
Other instructions are listed in Table 1.

Higher order differences are done by reusing the registers. In fact the registers are not needed
to perform forward differences but only so that differences may be set ahead of time by means
of the ‘set’ instructions (see Table 1). It is a way of changing just certain (usually the highest)
differences within an interpolation that is continuous in the lower orders.

To conclude this x processor which was developed as a very specialized pixel generator is
really very general; it is a Difference Engine with:

• Any order forward differences.

• 36-bit numerical accuracy and an 11ns cycle time.

• Any spline interpolation, with constant cost independent of span length.

2.2 ‘Y’ Processor

The information to drive the area or y processor is contained in the Structured Object List (see
Figure 1). It contains the visible areas of the displayed objects and their colouring information.
This processor has the basic task of producing the instructions for the arrays of pixel processors.
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The shading processors operate at the frame refresh rate and go through a complete cycle once
every video frame. Their input data are produced at the interaction or animation rate (between
12 and 24 cycles per second). The output goes to the pixel processors operating at the line refresh
rate.

The task of these processors can also be described as having to change 2-D display information
into 1-D scanline information. The third dimension has been dealt with at an earlier stage by
projection and hidden surface removal. The geometry can be specified solely in terms of (2-D)
display coordinates but (3-D) world coordinates are still needed for the vectors which underlie
the shading calculations.

The edges of the surface primitives (triangles or trapezoids) are simple enough to find. Shad-
ing (in particular Phong shading) and anti-aliasing are more of a challenge. We have to recast the
Phong shading model, but without lapsing into expensive Gouraud shaders or being unable to
deal with all practical situations. Phong shading itself is nothing more (or less) than a very good
practical approximation — it is not an end in itself. In [20] we introduced a method for quadratic
Phong shading via angular interpolation. It has the lowest per pixel cost in time and storage of
any method we are aware of.
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Figure 3: Quadratic Approximation of a Cosine to a Power Used in for Phong Shading
The diagram shows the curve of cosn and the quadratic spline approximation of the same function, here
n = 8 but the approximation is valid for wide range of n. The knot points of the splines are at −x0, −x1, x1

and x0. A Gaussian curve (i.e., a function of the form e−x2
) is shown which has the same value at the points

−x1, 0 and +x1 as the other curves.

Our approach to quadratic Phong shading depends on two major results:

1. A parameterized piecewise quadratic expression for cosn θ— the cosine of an angle θ,−π/2 <
θ < π/2, raised to a power n, 1 ≤ n ≤ 125. The shape of the curve is very similar to a Gaus-
sian (Figure 3).

2. A linear expression in terms of the pixel position, x, on a scanline for the angle θ between
the interpolated normal vector of the surface and the light or highlight vector.

Anti-aliasing in the form of exact area integration is applied. Object space hidden surface
removal preserves the necessary information on pixel coverage. Where pixel coverage gradually
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increases along a scanline this is treated as a linear modulation of the quadratic shading function.
This results in a cubic expression which is passed on to the pixel generator.

The instructions generated by the area processor are thus expressions that describe various
splines that are to be interpolated. An area primitive has been coded in terms of a spline basis.

Two-Dimensional Quadratic Interpolation

It is possible to encode the shading functions of whole trapezoids as 2-D quadratic functions. The
following information is required (although the last few terms may not be necessary):

start value I

y increment of start value δI
δy

2nd differences of the y-increments δ2I
δy2

1st x difference δI
δx

y increment of x difference δ2I
δyδx

2nd x difference δ2I
δx2

y-increments of the 2nd x differences δ3I
δyδx2

2nd differences of y-increments of the x differences δ3I
δy2δx

Needless to say the higher order interpolation puts severe demands on the numerical preci-
sion of the interpolations.

3 Reconstruction of Compressed Signals on a Difference En-
gine.

Clearly the x processor can interpolate any spline (polynomial) curve. Thus any signal that is
expressed in terms of a spline basis can be reconstructed. Not only that, the architecture with its
accumulator allows one to sum over incrementally generated output so that the splines can be
summed over different scales to produce the final image to any required accuracy.

3.1 Simple Compression

Obviously run length encoding is handled by a single instruction — ‘eval0’, see Table 1. One
could also extend the concept to using linearly increasing runs, although the benefit is doubtful.

The intended benefit of compression is to save both space and time, space is saved since
images become smaller and the transmission times also decrease. The cost is of course having
to perform the compression step first and then the decompression. In a number of situations
the most time critical step is decompression, where images have to be viewed in (near) real-
time. The difference engine can greatly assist with this as it can interpret the actual image coding
instructions directly4.

3.2 Expressing an Image in a Multi-Resolution Polynomial Basis

A simple experiment has been run to demonstrate how the difference engine can be used recon-
struct an image expressed in a multi-resolution polynomial basis. The interest of the demon-
stration is to show how reconstruction would work in practice — not (yet) to uncover a new

4Image compression steps are frequently followed by more traditional and well understood data compression algo-
rithms, we do not discuss those here.
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compression technique. The image encoding method will be described below. The results of the
encoding was a stream of x processor instructions that could be truncated at any desired reso-
lution and consisted of full size descriptions of the image at each resolution level. A number of
these are shown in Figure 4. These instructions were interpreted by a fast systolic array simulator
to recreate images which were more or less blurred as desired (see Figures 6–8).

Figure 4: Linear, First, Second and Seventh Quadratic Terms
Individual component images at the various levels of encoding the test image. The image size was 256 by
256 pixels. Clockwise from top left we have: (a) linear term, (b) first parabola, width 256 pixels, (c), second
parabola, and (c) second last parabola of width 4 pixels. The cumulative effect of these summing terms is
shown in Figures 6–8.

A Simple Encoding Algorithm

To illustrate the usefulness of the architecture introduced in Section 2 a multiresolution encoding
of the image was needed. A simple algorithm was developed for test purposes which we believe
illustrate the essential ideas while having a very low computational cost. It works only in 1-D
along scanlines and requires no convolutions5. The image can have any size within the address
range of the x processor.

Since compression was not the objective a very simple basis function was chosen: a parabola
of the form 1−x2 defined on the domain −1 ≤ x < 1. This length is then scaled to spans of width
2n, where 2 ≤ 2n < 2× (width of image-1), n ∈ Z , and translated in steps of 2n where necessary
to tile the whole scanline. There are various small optimizations to possible to handle symmetries
and very short spans. The operation of the algorithm on a single scanline is illustrated in Figure 5,
the steps are as follows:

5The astonishing thing is that this algorithm actually produces a useful image decomposition.
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Figure 5: Encoding A Single Scanline
The diagrams illustrate the situation in encoding a single scanline that contains the eyes from the Figure 6.
The top diagram is the situation where the first parabola is “fitted”. This has a span of width 512, the
parabola of width 1024 would have been needed if the image was just one pixel wider. The lower diagram
shows the results, and the basis functions, of “fitting” spans 512 and 256 pixels wide.
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• The “compression” algorithm first finds the linear trend in a scanline and produces the
instructions which would interpolate that linear term (Figure 4).

• The linear span is subtracted from the input image. This produces the difference image
which is illustrated on the top left in Figure 6.

• Subsequently the first quadratic span whose length is a power of two and whose centre
falls within the image width is chosen, i.e., span length = 2n where 2n−1 describes a pixel
inside the image, see Figure 5. The value of this pixel alone determines the height of the
parabola (no convolutions or other complications).

• As with the linear term, the scaled values of the parabola are subtracted to produce a new
difference image.

• The next span length is half the previous one and the procedure is repeated recursively.
Note that the one pixel whose value was chosen is never changed by higher resolution
(smaller) parabolae.

Results

The results of applying the procedure and then reconstructing the images on the x processor
simulator are illustrated in Figures 6–8. It can be seen that it is possible to decode a low resolution
image directly and that the natural way of reconstructing the image is to build up the output
resolution level by resolution level. In a real-time application one could therefore have graceful
degradation of performance since the display controller could truncate the image being processed
after a certain number of instructions and one would still have a useful image. In some pyramid
systems this is more of a problem since the higher levels of the pyramid (the lower resolutions)
actually are smaller images and need to be expanded for display purposes.

The compression procedure outlined above could be turned into a true compression of the
image by adopting a pyramid compression scheme as outlined in [3] but coding it explicitly in
terms of the basis functions..

One feature of note in our simple coding scheme is that the actual edge information is retained
far too long. This visually important information should really be sent early on with the low
resolution image. Other more sophisticated compression schemes also suffer from this problem.
Thus an important area of investigation is to find compression algorithms that send “important”
information first, not merely low resolution information. One could also conjecture that such
algorithms will also be more efficient as lossy encoders of images destined for viewing by people
(see also Sections 4.3 and 5).

4 Wavelets

Wavelets are a “new” decomposition tool for analysing signals at multiple scales. Multi-resolution
analysis has been around for a long time but recently there has been significant advances both in
unifying old ideas in a single theory and in deriving new results. Indeed a recent introduction to
the topic has referred to a [10]:

. . . this comparative frenzy of research activity . . . which has provided not only a wealth
of new mathematical results, but also a common language and rallying call for re-
searchers in a remarkably wide variety of fields: mathematicians working in har-
monic analysis . . . ; mathematical physicists . . . ; digital signal processors because of
connections with multirate filtering, quadrature mirror filters, and subband coding;
image processors because of applications in pyramidal image representation and com-
pression; researchers in computer vision who have used “scale-space” methods for
some time; researchers in stochastic processes interested in self-similar processes, 1/f
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Figure 6: Image on Parabola Basis, Steps 0–2.
The images on the left are the remainders after the encodings on the right have been subtracted. On the
left images have been scaled so that normalized pixels with the value of -1 are black and +1 are white. On
the right 0 is shown as black and 1 as white, while negative values, which can exist in intermediate images,
are suppressed. The right hand images were executed on a simulation of the difference engine described in
Section 2.1.

10



noise, and fractals; speech processors interested in efficient representation, event ex-
traction, and mimicking the human auditory system. And the list goes on.

Wavelets or “the principles of multiresolution analysis” are still the subject of intense research.
It is however clear that it shows great promise for image compression, see Section 4.3. Indeed this
kind of analysis (as can be seen in the above quote) has quite a long pedigree in image processing
dating back to the early eighties [3, 4, 32]. What we have demonstrated in the previous section
is that that if an image can be expressed in terms of a spline basis then it can be reconstructed
on our image synthesis hardware. In the remainder of this section we would like to show by
referring to the literature on multiresolution analysis, some of which is very recent, that this can
be a very powerful technique.

4.1 Wavelets and Spectral Analysis

This is not a tutorial on wavelets: we simply wish to show the applicability of the field to our
area of application. If we incidentally motivate readers unfamiliar with wavelets to study the
subject then one of the numerous introductions that now exist can be consulted (even in the
popular literature, see [7]). Particularly appropriate for our area of interest are [21, 5], general
introductions can be found in [8, 26, 9] while useful collections of recent papers can be found in
[25, 6, 11] ([6] contains a extensive bibliography).

When the spectrum of a signal is to be obtained by Fourier analysis then all information about
the signal, past and future, −∞ to +∞ in all dimensions, must be available. If the signal is altered
in some small neighbourhood of a point then the whole Fourier spectrum is affected. Considered
another way, if we know that a signal is exactly located as an impulse δ(t − t0) at t0 then its
spectrum is spread out over the whole frequency domain as e−it0ω . Alternatively if we have an
exact frequency then the location of the pure sinusoid is indeterminate. Wavelets offer a general
compromise in this uncertainty relation, instead of basis functions with infinite support like sines
and cosines they use bases with compact support, hence the terms “wavelets” or “ondelettes”.
An analogy are the notes used to score music: they specify a particular tone at a specified time
with various scales of duration.

An early example was the Gabor transform that offered the theoretically optimal combination
of location in frequency and space for a fixed size window of uncertainty. Wavelets have a lower
simultaneous accuracy in the two domains but have other advantages over early approaches.
They automatically zoom in to a high frequency and locate it more accurately and they zoom out
to a wide window to analyse low frequencies more accurately. Another characteristic of wavelets
is that there is not a unique set, in fact there are infinitely many. We shall consider spline wavelets
since they are useful for image compression and are suited to our decompression system.

4.2 Multiresolution Analysis

Wavelet bases are often defined from the data produced by a multiresolution analysis.
A signal f(x) which is “well behaved” in a precise sense (∈ L2) can be approximated at

various resolutions 2j , j ∈ Z . The approximation is achieved by a projection operator Pj which
projects the function to a projection space Vj which has a Riesz basis 2j/2φ(2jx− k) where k ∈ Z
and φ(x) ∈ L2. In this way we obtain a nested sequence of subspaces Vj such that . . . ⊂ V0 ⊂
V1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ L2(Rd). The function φ is known as a scaling function or father
wavelet.

The difference information between two approximations of f(x), Pjf ∈ Vj and Pj+1f ∈ Vj+1

is given by the orthogonal projection Qjf onto the complement Wj of Vj in Vj+1. The spaces Wj

contain the difference between the information at one resolution and the extra information at a
higher resolution in a multiresolution analysis of the function. So we have:

Vj ⊕Wj = Vj+1
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Wj ⊥ Vj

Qjf = Pj+1f − Pjf

These spaces Wj are spanned by the wavelets ψ, which is also known as the mother wavelet or
analysing wavelet. The φ and ψ are related. It can be shown that {pn} and {qn} exist such that:

φ(x) =
∑

k

pkφ(2x − k)

ψ(x) =
∑

k

qkφ(2x− k)

The φ are used for approximations and the ψ for analysing the errors.
Multiresolution analysis can be done in terms of orthogonal or non-orthogonal basis func-

tions. The former are fairly well understood [21]. The most common operations in image analysis
however cannot be cast into the orthogonal wavelet framework. Orthogonal wavelets are com-
plex non-symmetric functions whereas “nice” functions generate non-orthogonal wavelets. For
this reason we will propose an investigation into non-orthogonal wavelets and multiresolution
analysis [14, 15]; see below.

Spline Wavelets

A non-orthogonal class of wavelets can be obtained from the cardinal spline functions. In fact
typical examples of the scaling functions φ introduced above are the cardinal splines illustrated
in Figure 9. A cardinal spline is a polynomial spline with equally spaced simple knots [5, 28, 29].
The advantages of splines are:

1. The standard basis functions are B-splines that are all convolutions of the unit pulse (the
zero order spline in Figure 9).

2. Smooth functions with compact support.

3. Simple analytic forms that are easy to compute and manipulate.

4.3 Wavelet Compression of Images

Many applications of wavelets to image compression have appeared [14, 13, 31, 2, 12]. Some
of the most interesting developments have been the papers by Mallat and colleagues who have
investigated the “adaptive” compression of images where the compression depends on the de-
tection of important features (edges) and building the compression around these [22, 16, 23]. That
this accords with human perceptual predilections can be seen from the ease with which people
recognize line drawings of objects which only show the edge features. These methods were able
to compress the same image as we used in our example (Figure 8) by factors of between 40 and
100 (≈ 0.081 bits per pixel)..

There is a conjecture by David Marr [24] that if one detects all edges at all the scales then one
can reconstruct the image with this information. Wavelets finally allow one to perform this kind
of analysis. In [16] on second generation image coding the point is made that the same features
are called “edges” at one resolution and “textures” at another. Thus if we stop at a particular
resolution level the rest of the information that remains (the error term) can be called textures
and one can use special encoding methods for those, since the human visual system is not so
concerned about the locality of texture elements.
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5 Conclusion

We have shown how image reconstruction on a simple polynomial basis can be performed at
very high speed using the in-house hardware developed at the CWI. The reconstruction time
depends not on the spacing of the knots in the splines (the lengths of the interpolation spans) but
only on the number of knots. An image can be decompressed even at video rates provided that
the number of knots are less than the number of pixels to be generated (by some fixed overhead
per scanline).

This demonstration now opens the way for using this hardware to reconstruct images that
have been coded with a wavelet transform. The wavelet transform is a multiresolution description
of the image that can be decoded to yield more and more accurate reconstructions of an image.
The transform also precisely locates high-frequency features in space and low-frequency signals
in the frequency domain. In fact it is argued [12] that wavelet transforms perform better than the
discrete cosine transform advocated by the JPEG standard, it fits in better with human perceptual
aptitudes and is a more compact coding.

It is interesting to observe that when Phong shaded images are synthesized with this architec-
ture, that is, when it is used as it was intended, one gets a very efficient encoding of the images
in terms of the quadratic6 spline curve of Figure 3. Moreover the splines are exactly aligned with
the edges of the (polygonized) contours in the image. A very efficient single resolution encoding!

It is clear that this use of the architecture for decoding wavelet compressed images will be
a very useful area for future research. It is apparent that non-orthogonal wavelets seem to be
particularly promising. One major area will be adaptive or “intelligent” coding of images that
make use of the techniques developed in low level computer vision. One would detect features
which are “interesting” for human perception and optimize the coding of these. Only then can
the very high compression ratios (¿ 100) looked for be achieved.

Eventually the system might be used for speech decoding [33, 30], finite element analysis and
not just for image decoding. Finally it may be hoped that the investigation into wavelet image
coding techniques may in their turn provide useful spin-offs for image synthesis, one could think
of new ways to do adaptive anti-aliasing and of representing textures.

6Anti-aliasing produces some complications, notably small pieces approximated by cubic polynomials.
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Figure 7: Image on Parabola Basis, Steps 3–5.
For description see the caption of Figure 6.
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Figure 8: Image on Parabola Basis, Steps 6–8.
For description see the caption of Figure 6.
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Figure 9: Examples of Cardinal B-Splines
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