
Experience with a Di�erence Engine for Graphics

A�A�M� Kuijk� E�H� Blake�� and E�H� Ste�ensy

CWI� Department of Interactive Systems

Kruislaan ����

��	
 SJ Amsterdam� The Netherlands�

Email� Fons�Kuijk�cwi�nl

Abstract

The prototype of a novel raster graphics architecture
has now become operational� The display hardware
can be regarded as a very fast di�erence engine that
works in two�dimensions� The speed is partly achieved
by the use of custom VLSI components for the lowest
level primitive operations and this permits the video
rate reconstruction of images and other signals com�
pressed by encoding them on various polynomial bases�
A novel feature of the architecture is that it avoids the
use of a frame bu�er�

The paper describes our experience with the new
hardware in terms of positive and negative performance
aspects� We discuss the architecture and its operating
parameters� Another part of the paper evaluates our ex�
perience of hardware development in an academic set�
ting� We believe there are signi�cant lessons here for
graphics researchers who might want to develop their
own systems�

� Introduction

A radical reappraisal of the three�dimensional ���D�
interactive raster graphics pipeline has resulted in an
experimental architecture for a graphics workstation
which is being evaluated at the CWI� A working proto�
type has now been built� This paper reviews the design
and presents our �rst experiences�

The principal features of the design for the new raster
graphics architecture are	

�Guest researcher at the CWI from the Department of Com�
puter Science� University of Cape Town� Rondebosch� ����� South
Africa

yElectronics design engineer� University of Amsterdam� Fac�
ulty of Mathematics and Computer Science� Kruislaan ���� ��	

SJ Amsterdam

� Emphasis on real�time interactive shaded ��D
graphics�

�� Object space methods rather than image space
methods are used where possible�

�� Avoid the use of a frame bu�er�

�� Use of custom VLSI only at the lowest
 most primi�
tive
 levels where commercial products are unlikely
to su�ce in the near term�

A working prototype system that has been built pro�
vides further insight into the operation of the heart of
the system	 the custom VLSI di�erence engine� Pre�
vious papers over the past four years have traced the
completion of the design speci�cation ���
 the implemen�
tation of critical components ��� and detailed simulation
of functions ���� A novel use of parts of the hardware
that was not foreseen when the research project was
initiated has been its use for decompression of images
encoded on a spline wavelet basis ����

The next section is an overview of the architecture for
producing real�time interactive raster graphics� Section
� details the design and implementation of the proto�
type system� The next section ��� presents the �rst
results of using the prototype system� Finally a conclu�
sion tries to draw out some of the lessons learned�

� Overview of the Raster

Graphics Architecture

A number of di�erent feedback levels in the image syn�
thesis pipeline can be identi�ed if one takes a new look
at the basics of high quality three�dimensional ���D�
raster graphics ���� From the highest to the lowest level
these include	

� Modelling

� Coordinate Transformations

� Viewing Transformation

� Hidden Surface Removal

� Area Primitive Processing

Visual e�ects can only be achieved by interaction
with the data at each of these levels� A user inter�
acts exclusively with the visible parts of a ��D model

but not with pixels since they are too primitive a kind
of object to be of interest to a user� We provided di�
rect access to graphics objects to support pointing and
identi�cation� These actions are considered fundamen�
tal because they underlie every change a user makes in
a picture�
Changing pictures form the key to the architecture�

Actual pixels are not needed for user interaction� If
we take this observation seriously and ruthlessly pare
away other elements we get a radical prescription for a
graphics architecture� One where the visible surfaces of
objects are explicitly identi�ed
 and without any man�
date for a frame bu�er� We have thus built a machine
that hearkens back to the calligraphic roots of graphics
displays and at its heart is a processor which echoes the
original Di�erence Engine of Babbage�

3-D Remove Hidden
Surfaces

Project,
Structured
Object List

2-D
Area

Interpolation

‘Y’ Proc. 0-D
Scanline

Instructions

1-D
Spline

Interpolation

‘X’ Proc.
Pixels

to Display

Figure
	 Functional Elements of Display Architecture�
The Y and X processors together form the display controller�
The arrows show how ��D data are converted to a stream
of pixels� Data structures are indicated by arrows and of
these only the ��D Models and the ��D Structured Object
List are stored� All other data are generated on the �y�
The Structured Object List is updated at the animation or
interaction rate� ��	�
 times per second� and it is read at the
video frame rate� ��	
� cycles� The Scanline Instructions
are produced at the video line rate and clocked into the
X processor at the video pixel generation rate�

The functional elements of the display architecture
are shown in Figure
� The major new components
follow from the bottom up �right to left in Figure
�	

� pixel generator �Di�erence Engine or X processor
� Section ��
��

�� area processor �Y processor � Section �����

�� hidden surface removal
 projection and other
higher level functions
 that are not discussed here
at all�

Items
 and � together form the display controller
shown in Figure �� In our architecture the frame bu�er
is replaced by a structured list of objects which can be
pointed at �at the video frame rate of ����� cycles��
At this lowest level of the architecture custom compo�
nents are needed	 these have already been built� The
display controller � a powerful VLSI�based hardware
block containing a systolic array of processors � pro�
duces a full colour pixel stream at video refresh rate�
This block is fed with instructions produced by general
purpose microprocessors from the structured object list�
The processors are capable of producing Phong shaded
��D objects or ��D textures at this video frame rate�
For full colour images one systolic array is needed for
each of the primary colours �red
 green and blue��

pixel
stream

scanline commands

y-processors

visible objects

x-processors

video. . . .

. . . .

DAC

Display Controller

Figure �	 Block Diagram of the Display Controller

The structured object list contains objects that de�
scribe small ��D surface primitives � things like trian�
gle meshes
 trapezoids or splines outlining characters in
various typefaces� The objects have all the information
necessary to render them on the display� The size of the
object list does depend on the complexity of the image�
The size of the list is about the same as a conventional
frame bu�er
 with the advantage that the object list is
resolution independent so that the list will not become
larger for higher resolutions� The list is also a much
more organized data structure and can therefore sup�
port more sophisticated operations than a simple frame
bu�er� It has to be updated � or produced � at a rate
su�cient for animation or interaction
 i�e�

���� times
per second�

At higher levels of the architecture the objects be�
come more complex �but also fewer � less fragmented�
to maintain information about light sources
 textures
and viewing �hidden surface removal or overlay priori�
ties etc��� Here representations for incremental changes
typical for real�time interaction are favoured� The hard�
ware requirements for the operations on this level ap�
pear to be satis�able in the short term by powerful but
�o��the�shelf� parallel hardware�

�

��� The Di�erence Engine

The processor referred to above as the pixel processor
or X processor �because it deals with the scanlines of an
image� is actually a di�erence engine� That is
 it can
do forward di�erence calculations at high speed� Any
order of forward di�erence can be done
 the limiting
factor is the accumulation of errors during addition and
�in real�time applications� the extra cycle time taken
by each higher order� The architecture is tailored to
second order forward di�erences�

The processor is a systolic array with a dedicated
processor for each pixel in a scanline� Additions �and
input� are done to a precision of �� bits and the top

� bits are output� So we basically have data values
of
� bits
 say
� bits magnitude and
 sign bit and

bit to detect common over�ow situations
 and �� pre�
cision bits� For quadratic interpolation �second order
forward di�erences� spans of ��� bits � i�e�
 ���� pixels
wide � can be interpolated before the error becomes
noticeable� This is also the maximum addressable pixel
and span width allowed for input� If we use just � data
bits of the output �i�e�
 � bit values � sign bit� then
cubic interpolation for spans of �
� pixels can be done
accurately� Naturally longer spans can always be done
by splitting them into shorter ones which can be done
correctly�

A B C

-1

mux
D

+

+

+

pixel bus

data bus

instruction bus

Buf

Buf

36

12

12

12
12
12

12
12
12

12
12
12

12

mux

control
unit

protect
flags

mux
12

mux

Figure �	 Register level architecture of the X processor�
The arrows indicate the directions for read�write access� To
allow for pipelined block carry addition� the data bus and
the �
 bit registers are subdivided in three �� bit sections�
in the �gure indicated by di�erent shades of grey�

The bias towards quadratic interpolation is also seen
in the fact that there are � internal registers with which
the value I ��intensity��
 �rst di�erence �I and second
di�erence ��I can be set at every pixel location �see
Figure ��� The operation of the di�erence engine is
illustrated in Figure �� The interpolated intensities are
calculated in register A and the contents of A is added
to an output accumulator �D� which can contain the
results of a number of previous interpolation spans�

The
� most signi�cant bits of the content of the ac�
cumulator are read out �for display� on receipt of a
�refresh� instruction� Other instructions are listed in
Table
�
Higher order di�erences are done by reusing the regis�

ters� In fact
 since the result of each step of the forward
di�erencing is communicated to the neighbouring pro�
cessor
 the registers are not needed to perform forward
di�erences but only so that di�erences may be set ahead
of time by means of the �set� instructions �see Table
��
It is a way of changing just certain �usually the highest�
di�erences within an interpolation that is continuous in
the lower orders�

+ + + + ++ + + + + +

+ + + + ++

Pixel

+ + + + +

+ + + + + + + + + + +

C

B

A

D

ΔΔ

Δ

I

Figure �	 Interpolation on the Di�erence Engine�
The di�erence engine is implemented as a systolic array of
processors� one for each output pixel� For quadratic in�
terpolation the second di�erences remain constant and are
propagated to all processors within an active span of pixels
�Register C�� The �rst di�erences �Register B� are changed
by the second di�erences at each step and the results added
to the intensity values �Register A�� The results of the in�
terpolation step are added to an accumulator �Register D�
so that multiple interpolation spans may overlap to produce
the �nal pixel value� For higher order di�erences the same
registers are reused�

To conclude	 this X processor
 which was developed
as a very specialized pixel generator is really very gen�
eral� it is a Di�erence Engine with	

� Any order forward di�erences�

� ���bit numerical accuracy and an

ns cycle time�

� Any spline interpolation
 with constant cost inde�
pendent of span length�

��� �Y� Processor

The information to drive the area or Y processor is con�
tained in the Structured Object List �see Figure
�� It
contains the visible areas of the displayed objects and
their colouring information� This processor has the ba�
sic task of producing the instructions for the Di�erence
Engine�

�

operation description cycles
acc mode Accumulate mode� if

enabled negative intensities are
not added to accumulator

�

dis�x�dx
 disable accumulation of intensi�
ties from pixel �x� for �dx� pix�
els �cleared after next �eval��
command

�

eval��x�dx�i
 Set pixel �i�e�� accumulator

from �x� for span of �dx� directly�
disable further additions until
next refresh�

�

eval��x�dx�i
 add i to accumulator for span
from �x� for �dx� pixels

�a

eval��x�dx�i�di
 First order forward di�erence�
starting at pixel �x� with value �i�
and increment �di�� for �dx� pixels

�a

eval��x�dx�i�di�ddi
 Second order forward di�erence
� like �eval�� except now �di�
is also changed by �ddi� at each
step

�a

evaln�x�dx�i�di����
 Higher� n � �� order forward
di�erences� like �eval�� mutatis

mutandis

n� �a

nop No operation �
refresh Output accumulator value and

clear everything
�

setddi�x�dx
 Set �i�e�� override
 sec�
ond di�erenceb at points �x�� for
a span of �dx� pixels in the mid�
dle of the next �eval� command

�

setdi�x�dx�i
 Like �setddi� only it a�ects the
lower forward di�erence

�

seti�x�dx�i
 Like �setdi� except that this cre�
ates a span of intensities

�

setpddi�x�dx
 Set �i�e�� override
 second
di�erenceb at points �x�� �x�dx��
�x��dx�� � � � in the middle of the
next �eval� command

�

setpdi�x�dx�i
 Like �setddi� only it a�ects the
lower forward di�erence

�

setpi�x�dx�i
 Like �setdi� except that this cre�
ates a pattern of intensities

�

Table
	 X Processor Instructions and Their Costs in
Cycles� Or identically� the number of �atomic� instruc�
tions that make up the above �macro� instructions� see Sec�
tion ������ Note� The costs mentioned above are incurred
whether a span is � pixel long or covers the whole width of
the scanline�

aThe cost of this operation can be reduced by � cycle in future
versions

bIf there are higher order di�erences then this sets the highest
order di�erence

The Y processors operate at the frame refresh rate
and go through a complete cycle once every video frame�
Their input data are produced at the interaction or ani�
mation rate �between
� and �� cycles per second�� The
output goes to the Di�erence Engine operating at the
line refresh rate�
The task of these Y processors can also be described

as having to change ��D display information into
�D
scanline information� The third dimension has been
dealt with at an earlier stage by projection and hidden

surface removal� The geometry can be speci�ed solely
in terms of ���D� display coordinates but ���D� world
coordinates are still needed for the vectors which un�
derlie the shading calculations�

The edges of the surface primitives �triangles or
trapezoids� are simple enough to �nd� Shading �in par�
ticular Phong shading� and anti�aliasing are more of a
challenge� We have to recast the Phong shading model

but without lapsing into expensive Gouraud shaders or
being unable to deal with all practical situations� Phong
shading itself is nothing more �or less� than a very good
practical approximation � it is not an end in itself� In
��� we introduced a method for quadratic Phong shad�
ing via angular interpolation� It has the lowest per pixel
cost in time and storage of any method we are aware
of�

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

cos^8
cos^8 approx

Gaussian
-x0
-x1
x1
x0

Figure �	 Quadratic Approximation of a Cosine to a
Power Used in for Phong Shading
The diagram shows the curve of cosn and the quadratic
spline approximation of the same function� here n � � but
the approximation is valid for wide range of n� The knot
points of the splines are at �x�� �x�� x� and x�� A Gaus�

sian curve �i�e�� a function of the form e
�x� � is shown which

has the same value at the points �x�� � and �x� as the
other curves�

Our approach to quadratic Phong shading depends
on two major results	

� A parameterized piecewise quadratic expression for
cosn � � the cosine of an angle ������ � � � ���

raised to a power n�
 � n �
��� The shape of the
curve is very similar to a Gaussian �Figure ���

�� A linear expression in terms of the pixel position

x
 on a scanline for the angle � between the inter�
polated normal vector of the surface and the light
or highlight vector�

Anti�aliasing in the form of exact area integration is
applied� Object space hidden surface removal preserves
the necessary information on pixel coverage� Where
pixel coverage gradually increases along a scanline this

�

is treated as a linear modulation of the quadratic shad�
ing function� This results in a cubic expression which
is passed on to the pixel generator�
The instructions generated by the area processor are

thus expressions that describe various splines that are
to be interpolated� An area primitive has been coded
in terms of a spline basis� It is possible to encode the
shading functions of whole trapezoids as ��D quadratic
functions�

� The Prototype Di�erence En�

gine System

To demonstrate the feasibility of this new approach we
have built a prototype system� We implemented the
Di�erence Engine in full custom VLSI� This is the tech�
nologically most challenging part of the architecture�
The other components were implemented with standard
components
 necessitating some compromiseswith over�
all system performance� In the prototype the instruc�
tions for the Di�erence Engine are stored in a bu�er

rather than being generated in real�time by Y proces�
sors� As illustrated in Figure �
 the prototype system
comprises the following three sub�systems	

� a SUN �
�� Workstation

� an INMOS B��� B��� Graphics system

� the Di�erence Engine�

The SUN workstation serves as a host computer on
which program development is done
 data is stored and
via which the graphics display system communicates
with the rest of the world�
The INMOS Graphics system consists of two trans�

puter based modules �TRAMS�
 the frame bu�er
IMS B��� and the display card IMS B��� �see Figures �
and ��� In the frame bu�er of the IMS B��� the in�
structions to be executed by the Di�erence Engine are
stored in an encoded format� This instruction store is
accessible via a T��� transputer which can either re�
ceive instructions from the SUN workstation or gener�
ate them locally� Data from the host is transferred via
a transputer link� The instructions in the instruction
store ��frame bu�er�� are decoded and send to the �rst
processor of the Di�erence Engine from where it is pro�
cessed by the processor array� At the end of the array

the pixels generated on the basis of the stored instruc�
tions are presented to the IMS B��� display board and
displayed on a monitor�
The INMOSmodules were selected to drive the Di�er�

ence Engine because they met our needs with respect to
functionality� Unfortunately they did not meet our re�
quirements with respect to performance� The maximum
throughput rate of the ���bit pixel�bus interconnecting

XP720

Mapper

Clock
generator

Pixelbus
in

Pixelbus
out

Unpacking
and
configuration
circuit

CLK1
CLK2

instructions pixeldata

CLK

packed
instructions

IMS B408 IMS B409

other signals

sysready

IMS B408
framebuffer

IMS B409
display board

XP720
processor
array

monitor

SUN 4/100
Workstation

Transputer link TRANSPUTER
cluster

instructions pixel data video signal

Ethernet

Figure �	 Block diagram of the prototype Di�erence
Engine System� A frame store module is used to store
instructions for the Di�erence Engine� These �encoded� in�
structions are put on the interrupted pixel bus� decoded by
the Mapper and send to the X processor array of the Dif�
ference Engine� which produces the pixels that are inserted
on the other side of the interrupted pixel bus� ready to be
displayed�

T800

Address
Generator

1.25 Mbyte
Dual Port RAM

1 Mbyte
DRAM

Pixel
Port

Processor
bus

Timing Pixel
bus

Figure �	 Block diagram of the IMS B��� Frame Store
Module�

�

T222

Pixel bus A

Video
Timing

Generator

Pixel
mux

IMS
G176
(DAC)

R G B

Pixel bus B

Pixel
mux

IMS
G176
(DAC)

R G B

Pixel bus C

Pixel
mux

IMS
G176
(DAC)

R G B

BLANK

pixel bus
control

clocks

Processor
bus

Figure �	 Block diagram of the IMS B��� Display Mod�
ule�

the B��� and B��� is �� Mhz� This is below the po�
tential ���bit �� Mhz input capacity of the Di�erence
Engine� The Display Module only has � bit DAC�s

whereas the output pixels are
��bits deep �per colour��
These compromises did not a�ect the usefulness of

the prototype for demonstrating the feasibility of the
architecture� They enabled low cost hardware testing
without the delay of building special modules�

��� Board Level Implementation of the
Di�erence Engine

The pixel bus between the INMOS modules is �� bit
wide
 while the Di�erence Engine needs a � bits instruc�
tion and a �� bits data word� This requires a mapping
scheme between the pixel bus and the �rst X processor
to expand the width� The X processor has �� �atomic�
instructions that make up the
� instructions indicated
in Table
 �including the NOP instruction�
 so we can
include a look up table between the pixelbus and the
X processor and use a ��bit index to refer to the ap�
propriate
� bit atomic instruction� This leaves us with
�� bits available for the data word� This �� bit word
has to be mapped onto the �� bits of the two di�erent
data formats of the Di�erence Engine� One of the two
types of data formats is a �� bit intensity value
 the
other type is a
� bit pixel address
 a
� bit pixel�span
value and a
� bit intensity value �used by the Eval�
instruction only��
In this prototype system
 both types of instructions

can do with ��
��
� bits for the operand
 exactly what
is available if the
� bits for the instructions are pro�
duced by means of a look up table�
In Figure � it is illustrated how the data from the

instruction store is unpacked before it is send to the
Di�erence Engine� Extension of the �� bits stored in the
frame bu�er for intensity values to the �� bit intensity
value required by the Di�erence Engine is achieved by

padding the four lower bits to zero
 and extending the
sign bit to the upper � bits� Extension of the
� bit
pixel address and
� bit pixel�span value stored in the
frame bu�er to a
� bit pixel address and a
� bit pixel�
span value is achieved by padding the two upper bits
of both parts with zero� Of the remaining � bits
 the
sign bit is extended to the upper � bits to result in the

� bit intensity value needed for the Eval� instruction�

12 bit
CMD XdX(I)

12 bit 12 bit 12 bit

5 bit 7bit 10 bit 10 bit

12 bit
CMD I/dI/ddI

36 bit

5 bit 27 bit

Figure �	 Expansion for instructions that specify X and
dX �top� and instructions that specify an intensity �bot�
tom��

In the following subsections we will discuss the cir�
cuitry we needed to add to the B��� B��� system in
order to be able to drive the Di�erence Engine�

����� Input Circuit

The elements of the input circuit are shown in a block
diagram �Figure
��� The input circuit consists of an
instruction look up table
 a data mapper
 a delay circuit
and a con�guration circuit�
The instruction look�up table is build with one pal

the GAL P��CV��� The look�up table has one extra
output signal
 Type
 indicating the type of the instruc�
tion� This signal is used in the mapper circuit to be
able to handle the two di�erent types of data formats
appropriately�
The data mapper is build with three Lattice GAL

��CV�� pal�s� The input to the mapper circuit are Type
and �� bits from the pixel bus which are mapped to ��
bits data word as described above� For each of the three

� bit parts of the data port one pal is used�
Following the data mapper we �nd an input delay

circuit� This delay circuit serves to delay certain bits
of each of the three
� bit sections by one or two clock
cycles� By skewing of the
� bit data words
 the
� bit
adders can be pipelined which allows them to operate
at the required maximum speed of

 ns ���� The delay
circuit is build with GAL P��CV�� pal�s�
A fully con�gured Di�erence Engine prototype con�

sists of �� IC�s housing � processors each� With this

�

Instruction look-up table

5

10

10

12

7

Type

IMS B408
pixel port

Cin[12:1]

notD[26:20]

notD[31:27]

notD[9:0]

notD[19:8]

SysReady

first
XP9

Init

Token

Token_clk
notD[1:0]

Ain[1]

Ain[2]

Dataword mapper

2

1

2 clk delay

5

4

3

Data_in
high group

1

2 clk delay

5

4

3

Data_in
low group

1

2 clk delay

5

4

3

Data_in
mid group

Ain[15:4]gnd

Ain[3] Test_in

Ain[16]connected to Din[36]

maplow

clut

mapmid

maphigh

Configuration
circuit

Clock delay
circuit

gnd

Pixel in

Sign in

Token input

Token clock

ocpd

notFieldSync
notEarlyBlank

Figure
�	 Block diagram of the input circuit�

number of processors it is not unlikely that some of
the chips may have processors that are defective but
are still capable of passing on the data� By switching
o� defective processors
 we can still make use of these
�somewhat� defective chips�
To switch o� defective processors we can activate a

con�guration circuit that is then driven by the data put
on the pixel bus�

����� Clock Circuit

The Di�erence Engine is clocked by a four�phase clock
�two phase pulses and their inverse�� In Figure

 the
timing of these clock pulses is shown� At the time of de�
sign of the test system
 little was known about the exact
parameters of the timing� A mere indication of the re�
quired pulse widths and intervals were given as result of
some tests and analysis of the chip design� These tests
already made clear that timing was critical and that the
values given were too uncertain to design a �xed phase
clock circuit� The appropriate clock timing could there�
fore only be established by tuning the clock parameters
in a populated �or even partly populated� prototype�
As a consequence of this we needed a clock circuit of
which the width and phases are fully programmable�
Such a circuit has been build using Analog Devices

AD�	�� programmable delay generators �PDG�� As is
shown in Figure
�
 two such programmable delay gen�
erators drive one D��ip��op �a ���
	 JK�� One PDG
will set the output of the �ip��op after a programmed
delay of t�
 the second PDG will reset the �ip��op after
a programmed delay of t�� This creates a programmed

Tcw

Tno1

Tno2

Tp2h

Tp1h

CLK1

CLK2

D_in
Com_in

D_out
Com_out

T2h T1s

Figure

	 Timing diagram of the two phase processor
clock�

pulse width of t� � t�� These two PDG�s are triggered
by means of a PDG which in turn is triggered by the
clock signal of the B��� B��� pixelbus� In this way we
can shift the clock pulse thus obtained relative to the
clock of the pixelbus� By using two of these circuits

we produce the fully programmable
 two phase clock�
Inverse phases are obtained by using the inverse output
of the two D��ip��ops�

TTL

ECL

Pixelclock
D[7:0]

Trigger

Reset

Latch

Rset-5.2V

Q

AD9500 J
K

Q
Q

CP

SR

+5.0V

-5.2V
TTL

ECL

10135
10125

10124

-5.2V

to clock distributionD[7:0]

Trigger

Reset

Latch

Rset-5.2V

Q

AD9500

D[7:0]

Trigger

Reset

Latch

Rset-5.2V

Q

AD9500

Latch

Figure
�	 Block diagram of one of the two identical
programmable pulse width clock generators�

The delay of the AD�	�� is set by an ��bit value

which is provided by two hexadecimal rotary switches

and latched manually by pressing a switch� The reso�
lution of the delay can be set between
� ps and
� �s
by means of an external resistor and capacitor� With
Rset being
�� ! and Cset not connected we obtain a
maxim delay of ���� ns with a resolution of ��� ns�
The TRIGGER and RESET of the PDG�s expect di�er�

ential ECL signal levels
 so that TTL ECL conversion
and visa versa is necessary� The delay setting however
is TTL compatible�
The prototype system is implemented on multi�layer

printed circuit boards� Two of the layers
 serve for dis�
tribution of the power �a ��V and a ground plane��
The clock circuit required a separated ground plane and

�

��V
 ��V plane� The AD�	�� programmable delay gen�
erator is an analogue device that turned out to be rather
sensitive to even small variations in the power as caused
by switching of other digital components� Therefore
 we
had to make use of a separate power supply to avoid un�
stable operation of the clock generator�

����� Output Circuit

In ��
�
 we indicated that a delay circuit was needed to
skew certain bits of the input data with one and two
clock cycles� As a result we also need an output circuit
to unskew the pixel values that leave the last processor
of the processor array �see Figure
��� The delay circuit
that does this is build using ��AS	�� registers� The
output is bu�ered by ��AS��� bu�ers and terminated
conform the pixel bus speci�cations�

Last XP9 processor IMS B09
Pixel port

Aout[15:11]

Aout[6:4]

Aout[11:7] 1 clk delay

2 clk delay

notD[11:8]

notD[2:0]

notD[7:3]

Figure
�	 Block diagram of the output delay circuit�

��� Physical Design

The logical design of the system looks deceptively sim�
ple� The main di�culties with the hardware implemen�
tation arise simply from the size of the overall system	
a system which houses a pipeline of ��� processors� The
size of the system is determined primarily by the chip
carrier in which the X processors are housed� This chip
carrier is a
�� pin

� �
�
 pin grid array �PGA��
Building the pipeline with PGA�s mounted �at on a
printed circuit board
 would imply that the pipeline
would have to be spread out over several boards� In
a normal bus based system such as the VME bus
 this
does not have to be a problem� However in this system

each X processor is synchronously clocked� Building the
pipeline as a bussed system would make the clock lines
unworkably long� On the other hand
 providing each
board with its own clock circuit would make synchro�
nization between the boards too complex� Hence
 it is
important to reduce the distance covered by the pro�
cessor pipeline and thereby to shorten the length of the
clock lines as much as possible�

����� Board Layout

A workable solution was found by placing two X proces�
sor IC�s on a small multi�layered printed circuit board�

A motherboard contains � � �� slots to house maxi�
mally �� of these two�chip processor boards� This moth�
erboard also houses the clock generator
 the data map�
per
 the con�guration circuit
 and the in� and output
delay circuits� The layout of this multi�layered printed
circuit board is shown in Figure
�� Two connectors
that connect to both ends of the interrupted pixel bus
are situated on the front edge of the board
 while a
power connector is placed at the rear edge�

The length of the pipeline is minimized by using con�
nectors with four rows of pins� Two adjacent rows are
used for the input section
 while the other two rows are
used for the output section� By choosing each input
pin opposite to the position of the related output pin

the pins of neighbouring connectors can be connected
via a straight line so that no board space is used up
by detours or crossing of lines� The connectors for the
processor boards are placed as close as possible to each
other� The limiting factor is the height of the PGA
socket used on the processor boards� The space needed
for routing of the interconnections of the X processors
has been kept entirely on the two�chip processor boards�

A further reduction of the extent of the processor
pipeline has been obtained by breaking up the pipeline
in two sections as is shown in Figure
�� The clock lines
can be found in the space between these two sections�
This layout reduces the length of the clock lines � and
thereby the propagation delay � by half� The length
of the four clock lines is ��� mm each
 which
 given the
clock rate
 can be considered as being rather long� Driv�
ing wires of this length at �� Mhz does not have to be
a problem as long as the usual termination techniques
are applied�

X-processor slots 1-20

X-processor slots 21-40

clock buffers

clock generator

IMS B409

IMS B408

Mapper,configuration
and clock delay circuit

clock in
four phase
clock out

ECL

TTL

+5V
gnd
-5V

led
indicators

Power connector

Figure
�	 Layout of the mother board of the Di�erence
Engine� This board houses the auxiliary circuitry needed
for the processor array� The processors themselves can be
found on daughter boards inserted in
� slots�

�

The setup of the system makes it possible to bypass
empty slots and run the system with even a partly pop�
ulated system� Any of the processor boards can be re�
placed by an adapter card
 via which the data stream
through the system can be monitored by means of a
logic analizer� This is also supported by the �exible
con�gurability of the system�

����� Clock distribution

At the time of design of the system
 the electrical speci�
�cations of the individual processor chips were not fully
known
 so that calculation of the fan�in fan�out of the
clock lines was not possible� To avoid fan�out problems
by the driving bu�er and avoid driving too much ca�
pacitance �which would lead to degrading rise and fall
times�
 we decided to bu�er the clock lines for each sep�
arate two�chip processor board� Note that there is a po�
tential problem involved in this approach� A bu�er like
the ��AS��� can have a skew � i�e�
 a di�erence of prop�
agation delay between any two outputs of the device �
of � ns� Such a skew is unacceptable regarding the min�
imum time interval between the two clock phases �min�
� ns� and the set up times between two X processors in
the pipeline� To overcome this
 we would be forced to
reduce the system�s clock frequency�
Therefore we make use of ��FCT��	 clock bu�ers�

The length of the wires between the bu�er and the clock
pins on the processor board ranges from ��� to ��� inch�
All clock lines are terminated by parallel termination
resistors�
Each clock driver consists of two banks of drivers�

Each bank drives �ve outputs from one TTL compati�
ble CMOS input
 divided over the eight sections of the
processor pipeline� The skew between each section due
to propagation delay on the clock lines is depended on
the length between the points where the signal is con�
nected to the main clock line� For this board the typical
delay on a wire is ��
� ns per inch� The maximum dis�
tance between the connections is
�
 inch which relates
to ��
�� ns delay between each section� Such a skew
delay is insigni�cant�
As we can see in Figure
� the clock generator is rel�

atively far away from the processor array� This also
implies that we have to deal with relatively long clock
lines� For this reason the ECL TTL converter is posi�
tioned at the beginning of the �clock distribution high�
way� between the two sections of the processor array
rather than near the clock generator circuit itself� Nat�
urally the ECL wires are terminated as usual for ECL�

� Results

This section discusses what we have achieved with our
prototype system� In summary	 we have been able to

demonstrate the concept but the realities of undertak�
ing such an ambitious task in an academic setting has
caused several problems�
The development of simulators was done in parallel

with hardware speci�cation and not prior to such spec�
i�cation� This reduced the delay in getting feedback on
the feasibility implementing ideas in hardware from our
VLSI designers but meant that proper simulation of the
system was occasionally neglected� The experience with
simulators is discussed in Section ��
� One useful pur�
pose of the simulatorwas that it served as a communica�
tion tool between the architecture designers speci�ers
at the CWI and the VLSI design implementation team�

��� Simulation Results

Apart from the detailed simulation of the VLSI design
by the custom VLSI implementors a couple of other
simulators of the Di�erence Engine were built	

� The structural level simulator
 and

�� the functional level simulator�

The di�erent simulators are characterized by di�er�
ent accuracy performance trade�o�s� When we refer to
simulators we mean software systems that not only im�
plement our algorithms but re�ect some features of the
hardware and its limitations� At the very least the com�
munication with the simulator is in terms of the same
instruction set as the hardware system� In this sense
simulators were build for the di�erence engine� Other
components of the architecture were simulated at an
algorithmic level�

Structural Level Simulator

In a layered set of graphics hardware simulators
 a struc�
tural level simulator was build to simulate the operation
of the Di�erence Engine before is was actually available
in VLSI���� This simulator bridges the gap between
hardware �delity on the one side
 and su�cient per�
formance to visualize graphics algorithms on the other�
We needed such a simulator to validate the hardware
design
 and to visualize the result of the software that
should run on it� On the one hand
 the applications pro�
grammer must be able to verify that the output from a
shading algorithm will be accurate on the target hard�
ware� On the other hand
 the hardware specialist must
be able to trace the data and commands as they pass
through the simulated hardware
 and be able to inter�
rogate the state of any part of the system at any stage�
It is this combination of interests that makes this level
of simulation a useful adjunct in dealing with one of
the problems which crop up in hardware design	 the
communication between applications programmers and
hardware specialists�

�

Algorithmically
 the simulator was used to test rou�
tines implementing angular interpolated shading
 as
well as those for anti aliasing via exact area integration�
The simulator is the only medium
 short or the hard�
ware itself
 which o�ers su�cient numerical accuracy to
compute the pixel intensities� With it
 we veri�ed that
the hardware could execute the graphics algorithms cor�
rectly and that the limitations on numerical accuracy
and range were graphically acceptable�
The simulator revealed several errors in the hardware

documentation� The simulator allowed us to explicitly
describe our observations
 ask the appropriate ques�
tions
 and interpret the answers to resolve the errors�
All were attributed to errors in the documentation�
By testing sequences of instructions rather than test�

ing the functionality of individual hardware instruc�
tions
 we can observe the relationships �and problems�
which arise only among multiple commands� The simu�
lator has served as a liaison between software and hard�
ware engineers� It has been used to formulate and spec�
ify questions about the hardware before asked of the
hardware designers� and to evaluate their answers� A
number of non�trivial ambiguities have been resolved
this way�

Functional Level Simulator

The functional level simulator was optimized for speed�
The simulator accepted the same instruction set as the
Di�erence Engine but employed instruction codings and
word sizes appropriate for fast execution on workstation
platforms�
Such simulators were useful for exploring high level

ideas and testing collections of instruction datasets to
compare their output to the prototype system�
The investigation of wavelet image decoding was done

exclusively on the functional level simulator �see Sec�
tion ����� Alternative shading algorithms were also ini�
tially veri�ed on this type of simulator�

��� Documentation

This project has been subject to a number of delays�
This is in part due to the imperfect standards of doc�
umentation of the subsystems� In many cases the doc�
umentation was so unreliable �or lacking� that only an
experimental investigation of the hardware could pro�
duce �rm answers�
Apart from urging better documentation we would

also strongly suggest the use of software simulators as
a documentation and communication tool� We found
that di�erent team members �engineers
 computer sci�
entists
 research managers� had very di�erent communi�
cation styles but the concrete results of an understand�
able simulation system can form a powerful persuasive
documentation tool�

��� Design Lessons

In a multi�discipline project like this
 the di�erent
�worlds� of application programmers and technicians
was foreseen� It was somewhat naively expected that
VLSI designers would � by nature � anticipate on
the problems board�level system designers have to solve�
This turned out to be not the case� For instance
 the
extreme demands imposed on the board�level design by
the complex two phase bipolar clock signals required by
the processor array caused many headaches� Given that
the �nal prototype could not run at full speed anyway
�see Section ���� it might have been a better decision to
create a prototype VLSI system which had the ultimate
potential to run at

 ns speed but which had a simpler
clock signal in the �rst stage of implementation�
The chip carrier is a PGA� The pin assignment of the

PGA should have been arranged di�erently to accomo�
date routing of interconnections �in fact
 for chips that
have to be interconnected in a pipeline fashion a DIP
would have been an even much better choice��
The speed requirements of the system are met by

means of pipelining� For this
 the data �owing through
the array had to be skewed �see Section ��
�
�� At �rst
sight it seems to make sense to skew data that enters
the pipeline and unskew data that comes out� However
in doing so
 monitoring data that travels through the
pipeline becomes more complicated�� By performing
these skew and unskew operations on chip we would in�
troduce an insigni�cant delay of ����� ns� This would
have helped the board level designer and would also
simplify maintenance of the system�
These imperfections did not preclude a successful im�

plementation of the prototpe Di�erence Engine� How�
ever
 they did cause annoyance and a signi�cant delay
in the project� It is worth it to invest some time to
avoid these type of mismatches� This would not have
prevented the following errors which are of a more seri�
ous nature�
One of these serious errors is an error in carry prop�

agation� As it seems
 the carry of the addition of the
middle
� bit bytes is propagated to the second least
signi�cant bit of the highest
� bit byte� Fortunately
a compensation for this error could be found
 but how
this could possibly escape detection in the lowest level
simulation is not clear yet�
The lowest level simulation demonstrated that the

individual processors could run at the speed required
for high resolution systems �i�e�
 at a throughput rate
of �

 ns�� By being focussed on the timing charac�
teristics of the individual processors
 it was overlooked
that the characteristics of the bond�pads � of which
the design was taken out of a library � did not meet

�Note� The system operates on �� bit �words� subdivided in
�� �� bit �bytes�� Each of these �� bit �bytes� comes in one ��
one � and one � bit �nibble��

�

the requirements�

��� Prototype Performance

We consider the implementation of the prototype Di�er�
ence Engine as being a success	 the prototype can pro�
duce pictures on a CRT display directly from instruc�
tions and without bu�ering images in a frame bu�er�
Due to the characteristics of the bond�pads we were
forced to reduce the pixel clock to �� MHz� This is
su�cient to drive a ������� display�

The prototype was build to demonstrate the feasi�
bility of the architecture by displaying static images�
Given the characteristics of the B��� that drives the Dif�
ference Engine
 it should be clear that we cannot expect
an outstanding dynamics behaviour of this prototype
implementation� Nevertheless
 we have some applica�
tions in which frame rates of about �� Hz is obtained�
This demonstrates the main objective of the architec�
ture described in Section �	 due to a structured object
list it can at times be su�cient to change just a few
bytes in the instruction bu�er�

��	 Reconstruction of Encoded Signals
on a Di�erence Engine

The X processor can interpolate any spline �polynomial�
curve� Thus any signal that is expressed in terms of a
spline basis can be reconstructed� Not only that
 the
architecture with its accumulator allows one to sum over
incrementally generated output so that the splines can
be summed over di�erent scales to produce the �nal
image to any required accuracy�

The reconstruction time depends not on the spacing
of the knots in the splines �the lengths of the interpola�
tion spans� but only on the number of knots� An image
can be decompressed even at video rates provided that
the number of knots are less than the number of pixels
to be generated �by some �xed overhead per scanline��

This has opened the way for using this hardware
to reconstruct images that have been coded with a
wavelet transform� The wavelet transform is a mul�
tiresolution description of the image that can be de�
coded to yield more and more accurate reconstructions
of an image� The transform also precisely locates high�
frequency features in space and low�frequency signals
in the frequency domain� In fact it is argued �
� that
wavelet transforms perform better than the discrete co�
sine transform advocated by the JPEG standard
 it �ts
in better with humanperceptual aptitudes and is a more
compact coding�

For a detailed discussion of the use of this system for
wavelet reconstruction see ����

� Conclusion

The design decisions made in the project lead to a num�
ber of interesting consequences that have made parts of
the architecture eminently suited to a far wider range of
problems in computer graphics and image processing��
The Di�erence Engine described in this paper is de�
signed based on the notion that rasterisation involves
relatively simple operations repeated numerous times�
For tasks like this
 an implementation in VLSI of highly
parallel relatively simple elements can compete with
even the last generation of general purpose processors�
In spite of several �mismatches� described in Sec�

tion ��� we have demonstrated that a Di�erence Engine
for Graphics is technically feasible� It is now up to us
to demonstrate that we know how to make use of an
architecture like this for dynamic graphics applications�
In order to do so we will have to build the next layer of
the architecture
 i�e�
 the Y processor level�

	�� Lessons in Making things work in an
Academic Environment

In retrospect
 we consider ourselves lucky that the pro�
totype Di�erence Engine could be made to work at all�
It is now clear that we have to reduce the �luck��factor
and pay more attention to simulation on di�erent ab�
straction levels� Also it turned out to be essential to
force people to pay attention on documentation� Espe�
cially in a multi�disciplinary project these issues are too
important to be overlooked�
In an academic environment we oftern have to work

with people that can work on a project for a limited
amount of time� Usually the budget is limited so that
projects take longer than would be desirable� One
should be aware that PhD students that may have a
position for four years or so can be used about half of
that time	 they have a thesis to write as well� This
again illustrates the need for good documentation� It
should be possible for successors to pick up where others
have left�
All in all one should realize that it is di�cult to start

up an ambitious project in an academic envirionment�

	�� Future Work

As mentioned in the above we will now have to focus on
the higher level of the architecture� The basic require�
ments at these levels can be ful�lled by �of�the�shelf�

�Without going into a contemplation of the meta�levels of the
design process it is interesting to observe that this generality of
application resulted from bottom�up design� The initial top�down
design produced an architecture for raster graphics �only
� The
bottom�up design that followed concentrated on extracting the
lowest commondenominatorof primitiveoperations for synthesiz�
ing pixels � a language for manipulating related pixels� This vo�
cabulary can now be used for expressing other facts about images�

hardware� We may have to design a bus arbitration
unit to connect a set of Y processors to the Di�erence
Engine�
By now we have gained experience in using the Dif�

ference Engine in its current form� By working with it

we came up with several ideas to improve the perfor�
mance of the system� Also the study on reconstruction
of encoded signals mentioned in Section ��� gave ideas
of how to make the system more general by adapting
the instruction set�
In its current form the Di�erence Engine can generate

a limited type of textures only� We certainly will pay
attention to this in forthcoming versions of the system�

Acknowledgement

We thank prof� L�O� Herzberger �University of Amster�
dam� for providing the facilities and manpower to help
build the prototype� Also we would like to thank STW
for their support for this project
 especially with re�
spect to the budget� We also acknowledge Patric Marais
�guest researcher from the University of Capetown� for
his work with respect to wavelet�based image recon�
struction�

References

�
� Desarte� P�� Macq� B�� and Slock� D� T� M�

Signal�adapted multiresolution transform for image
coding� IEEE Trans� Information Theory ��
 �
�March
����
 �������� Special Issue on Wavelet
Transforms and Multiresolution Signal Analysis�

��� Guravage� M� A�� Blake� E� H�� and Kuijk� A�

A� M� Xinposse	 Structural simulation for graphics
hardware� In Rendering� Visualization and Rasteri�
zation Hardware
 A� Kaufman
 Ed� Springer�Verlag

Berlin

���
 pp� ��
�� Record of the Sixth Eu�
rographics Workshop on Graphics Hardware

��
September
��

 Vienna
 Austria�

��� Jayasinghe� J� A� K� S�� Karagiannis� G��

Moelaert El�Hadidy� F�� Herrmann� O� E��

and Smit� J� Two�level pipelined systolic array
graphics engine� IEEE Journal of Solid�State Cir�
cuits �	
 � �
��
�
 �������� Revised version of paper
by the same title in Proceedings IEEE
��� Cus�
tom Integrated Circuits Conference
 Boston
 Mas�
sachusetts� pp�
����
�
������

��� Jayasinghe� J� A� K� S�� Kuijk� A� A� M��

and Spaanenburg� L� A display controller for
an object�level frame store system� In Advances in
Computer Graphics Hardware� III
 A� A� M� Kuijk

Ed� Springer�Verlag
 Berlin

���
 pp�
�
�
���

��� Kuijk� A� A� M�� and Blake� E� H� Faster phong
shading via angular interpolation� Computer Graph�
ics Forum �
 � �
����� Please note that on p� ��

the de�nitions of a and b should be swapped�

��� Marais� P� C�� Blake� E� H�� and Kuijk�

A� A� M� Adaptive spline�wavelet image encod�
ing and real�time synthesis� In Proceedings of the
IEEE International Conference on Image Process�
ing
ICIP��
 �
����� To appear�

��� ten Hagen� P� J� W�� Kuijk� A� A� M�� and

Trienekens� C� G� Display architecture for
vlsi�based graphics workstations� In Advances in
Computer Graphics Hardware� I
 W� Strasser
 Ed�
Springer�Verlag
 Berlin

����

�

