
ADAPTIVE SPLINE-WAVELET IMAGE ENCODING AND REAL-TIMESYNTHESISP. C. Marais and E. H. Blake and A. A. M. KuijkCWI, Department of Interactive Systems, Kruislaan 413, 1098 SJ Amsterdam, The Netherlandse-mail: fpatrickm, edwin, fonsg@cwi.nlABSTRACTA wavelet-based image-encoding is described which, whenused in conjunction with the Di�erence Engine (a custom-designed VLSI display processor) allows us to reconstructan image in real-time without the need to set each pixel ex-plicitly. The image is compressed using a quadratic spline-wavelet transform; when reconstructing, an image-adaptiveinstruction generator attempts to produce the minimal in-struction stream to give a good reproduction. The waveletcoe�cients are used to decide which regions of the detailimages should be retained in the multi-resolution analysis(MRA). A decision is made for each scan-line as to whetherit is more economical, in terms of rendering time, to use the`truncated MRA' or to set the pixels directly. The aboveapproach provides a signi�cant gain over standard imagereconstruction/rendering schemes.1. INTRODUCTIONStudies have shown that the wavelet transform [1] o�ers abetter compression/�delity tradeo� than the Discrete Co-sine Transform (DCT)[2]. The complexity of the blockedDCT is of the same order as that of an (unblocked) fastwavelet transform | consequently, blocking is not requiredand blocking artifacts are no longer a problem. Further-more, the multi-resolution structure of the transform allowsfor resolution-dependent coding techniques.The `standard' approach to image synthesis, after suchtransform coding, is to perform an inverse transform, thusproducing the data required for each pixel. However, byrequiring that our image be expressible on a suitably de-�ned (quadratic) spline basis, and using the properties ofthe Di�erence Engine, it is possible to regenerate the im-age, progressively, if this is desired, from a subset of thefull MRA, by examining the transform coe�cients whichunderlie the analysis. This synthesis procedure allows oneto reduce the number of instructions required to render animage, when compared with the direct approach.2. THE WAVELET TRANSFORMA wavelet, 	(x; y), is an L2(R2) function which satis�esZ Z 	(x; y)dxdy = 0 (1)This condition ensures that the wavelet is localized in bothtime and frequency and exhibits a measure of oscillation |

hence the name. The discrete (dyadic) wavelet transform,(W	I)(j; i; l) of an L2(R2) function, I(x; y), with respectto the wavelet 	 is de�ned as(W	I)(j; i; l) = h	j;i;l; Ii; i; j; l 2 Z (2)where h; i denotes the L2 inner product and 	j;i;l(x; y) �2j	(2x� i; 2y� l). For non-orthogonal wavelets, there is acorresponding dual wavelet, ~	, which satis�es the relation-ship h	k;i;p; ~	l;j;qi = �kl�ij�pq: (3)It can be shown that the functions f	j;i;l; j; k; l 2 Zg spanthe space L2(R2) [1]. Hence, any function, I(x; y), in thisspace can be written as a linear combination of such scaledand translated wavelets:I(x; y) = � � �+ g�1(x; y) + g0(x; y) + g1(x; y) + � � � (4)where gj(x; y) =Xi;l dj;il	j;i;l(x; y); j 2 Z: (5)Because of the bi-orthogonality relation, Equation (3), onemay write dj;il = hI; ~	j;i;li; i; j; l 2 Z:3. MULTI-RESOLUTION ANALYSISA multi-resolution analysis (MRA) of L2(R) produces a se-quence of spaces, Vj+1 � Vj �Wj , with Vj � Vj+1. Thespace Wj is the orthogonal complement of Vj in Vj+1. See[3] for a description of MRA and its relation to wavelettransforms.A common method used to generate a 2-D MRA, is totake the tensor product of the corresponding 1-D multi-resolution analysis with itself [1]. This provides one withthree wavelets, 	[p](x; y); p = 1; 2; 3 and a scaling function,�(x; y), all of which are separable 2-D functions:	[1](x; y) = �(x) (y) (6)	[2](x; y) =  (x)�(y) (7)	[3](x; y) =  (x) (y) (8)�(x; y) = �(x)�(y) (9)These wavelets are essentially orientated, resolution-depend-ent band-pass �lters; the scaling function may be viewed asa low-pass �lter. The detail spaces, spanned by each wavelettype, thus contain di�erence information with a speci�c ori-entation only: vertical, horizontal and diagonal.



The multi-resolution pyramid goes o� to in�nity in bothdirections. However, realisable signals are band-limited.Thus, we truncate the representation, discarding all higherlevel information, by `projecting' our input function into aspace which has su�cient detail to represent the sampledsignal | V0 by convention. Similarly, since signals do notalways contain arbitrarily low frequencies, it may be un-necessary to decompose one's signal beyond a certain level.Thus, one has a Jth level multi-resolution decompositionI(x; y) � I0(x; y)= g�1(x; y) + � � �+ g�J(x; y) + I�J (x; y)= �JXl=�1Xi;j 3Xp=1 d[p]l;ij	[p]l;i;j(x; y) +Xi;j c�J;ij��J;i;j(x; y): (10)The wavelet transform is also truncated; the Jth leveldiscrete wavelet transform provides the set of coe�cientsffd[p]l;ijg; fc�J;ijg; i; j 2 Z; l = �1;�2; :::�J ; p = 1; 2; 3g(11)3.1. Semi-Orthogonal Cardinal Spline MRAThe space of cardinal splines of order m, Sm, contains allthose functions expressible as a weighted sum of mth ordercardinal B-splines, Nm(x):f(x) =X ckNm(x� k); f 2 Sm: (12)The values ofNm(x) may be found using the following iden-tity:Nm(x) = xm� 1Nm�1(x) + m� xm� 1Nm�1(x� 1): (13)where N1(x) = �[0;1)(x) = � 1 if x 2 [0; 1);0 otherwise: (14)The spline-based MRA introduced in [3, 4] has Nm(x)as its scaling function.The correspondingmth order spline wavelet,  m(x), hassupport on the interval [0; 2m � 1]. This wavelet is semi-orthogonal, meaning that it is orthogonal to scaled versionsof itself, but not to translates on the same resolution level.These functions satisfy the following two-scale relationshipsNm(x) = mXk=0 pkNm(2x� k); (15) m(x) = 3m�2Xk=0 qkNm(2x� k) (16)The values of these sequences, for the quadratic case, canbe found in [3].

4. CALCULATION OF THE WAVELETCOEFFICIENTSBefore one can use the MRA, a means must be found tocompute the coe�cients of the wavelet transform. To thisend we use the �ltering scheme proposed in [5]. In thecontext of this work, this gives us the following set of sepa-rable convolutional equations for computing the detail andapproximation coe�cients (from the approximation coe�-cients of the previous level):cj�1;kl =Xm Xn am�2kan�2lcj;mn (17)d[1]j�1;kl =Xm Xn am�2kbn�2lcj;mn (18)d[2]j�1;kl =Xm Xn bm�2kan�2lcj;mn (19)d[3]j�1;kl =Xm Xn bm�2kbn�2lcj;mn: (20)To reconstruct the approximation coe�cients (from thoselower down in the analysis), one has the following recon-struction relation:cj;km = PlPt pk�2lpm�2tcj�1;lt +PlPt pk�2lqm�2td[1]j�1;lt +PlPt qk�2lpm�2td[2]j�1;lt +PlPt qk�2lqm�2td[3]j�1;lt: (21)The fakg and fbkg sequences can be found in [6].4.1. Calculation of fc0;i;jgIn order that we can use the �ltering scheme above, onemust �rst generate the initial set of approximation coe�-cients, fc0;ijg | which are the basis coe�cients of the B-spline representation of the input image. If one just wantsto achieve compression, the image samples may be usedas the initial coe�cient values. If, however, one wishes toevaluate the MRA, then these values must be properly com-puted.We use quasi-interpolation [7] to obtain these coe�-cients. Quasi-interpolation is a local interpolation scheme,in which the amount of data used to determine the approxi-mating quasi-interpolant can be limited. In this work a 3x3convolution mask (k = 1, below) was used to determine therequired coe�cients:c0;ij = (�kI)(i; j); i; j 2 Z; I 2 L2(R2): (22)This sequence is computed asf(�kI)(i)g = (��m+� � �+(�1)km � � � � �m| {z }k times )�I0(i); i 2 Z2;(23)where � � �i;j;0 = 1 if i; j = 0; and 0 otherwise andmi;j = � �(0; 0)� 1 for i; j = 0;�(i; j) for i; j 6= 0: (24)



Because the B-splines must be centred [7], �(x; y) = N3(x+3=2)N3(y + 3=2), and the coe�cient values actually repre-sent the shifted image I0(x+ 3=2; y + 3=2). It is importantto remember this shift when evaluating image functions inthe MRA. 5. QUANTIZATIONWe used vector quantization to compress the wavelet en-coded image. The approach of [8] was used: the variouswavelet sub-bands were sub-divided into 2x2 or 4x4 blocks(as determined by the desired compression ratio) and theseblocks were quantized with the previously trained code-books to yield 8-bit indices (thus permitting 256 reproduc-tion levels per sub-band). The LBG algorithm with a min-imum mean-squared error measure was used [9]. The code-book was trained with a collection of disparate images, soas not to introduce any kind of image bias; the test imageswere not in the training sequence. As is done elsewhere, forexample [8, 10], the entropy of the coe�cient sequence isused as a measure of compression i.e., we assume that thequantization is followed by a perfect entropy coding.6. THE DIFFERENCE ENGINEThe Di�erence Engine (DE) is the �nal component in therendering pipeline of a new display architecture developedat CWI [11]. This display processor has the ability to in-terpolate an arbitrary length polynomial span with a sin-gle instruction, in time proportional to the degree of thepolynomial . The forward di�erence interpolatory logic isimplemented as a systolic array | each new cycle producesthe complete set of di�erence values for the speci�ed span.The 11ns cycle time of this processor means that one canperform these calculations with su�cient speed to ensurepixel production at the display refresh rate.There are two important points which should be noted:� the DE can interpolate arbitrary order polynomials,in time proportional to the degree (currently n + 2cycles for a polynomial of degree n� 1).� the DE provides a scan-line accumulator.The existence of an intensity accumulator is essential ifone wishes to use the DE for multi-resolution image syn-thesis, since one then needs to accumulate several levels ofdetail for each scan-line.7. MULTI-RESOLUTION IMAGE SYNTHESISThe various images in the quadratic cardinal spline MRAsatisfy certain very stringent conditions:� They are elements of C1(R2)� The approximation images consist of quadratic patch-es, with support on[2jk; 2j(k + 1)]� [2jk; 2j(k + 1)]; k 2 Z� The detail images also have this property, but oversquares half the size on the resolution level j.
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eval3 --- B setddi --- AFigure 1: The use of setddi.Thus, the image data along a scan-line (on each level) iscomposed of adjacent quadratic segments of the same length.It is a simple matter to compute the di�erences for anysuch polynomial (using the shifted image functions), andto compose the DE instructions which will interpolate thepolynomial scan-line data.If used without care, multi-resolution synthesis can befar more expensive (in terms of DE instruction cycles) thanjust setting each pixel directly, since many instructions mustbe issued to accumulate all the detail information for eachscan-line. If however, only `busy' regions of the detail im-ages are added back to the approximation image, this `trun-cated' MRA can provide signi�cant gains over direct re-construction (i.e., IWT and setting each pixel directly).Wavelet compression should maintain only the most im-portant coe�cients viz. those which will ensure good recon-struction �delity. These retained coe�cients can be used asan indication of `busy' image areas, and the bases whichthey weight can be used to build the truncated MRA. Wedetermine the extents of these bases which intersect the cur-rent scan-line | this information is recorded and used todetermine whether it is more economical (in terms of DEinstruction cycles required) to simply set the pixels in thecurrent scan-line or to render the truncated MRA. If thelatter option is selected, the function evaluations are doneand the tiers of detail are accumulated on top of the ap-proximation signal. If it is less economical (as will be thecase in highly detailed regions), the scan-line pixels are setdirectly.Due to the continuity constraints, and the architectureof the chip, we need only issue one quadratic interpolationinstruction to interpolate the entire approximation scan-line: only the second order di�erences need be changed aswe cross each new span boundary | Figure 1. These canbe computed and set before the interpolation instructionis issued, by using a low cost set-di�erence instruction. Asimilar strategy can be used for detail scan-line segmentsconsisting of several adjacent spans.To improve performance, neighbouring quadratic spansare merged if their di�erences are the same; this reducesthe number of instructions required to interpolate a multi-span segment. However, since this kind of redundancy isonly likely to occur in the approximation image, merging isnot applied to detail scan-line segments. Furthermore, forreasons of e�ciency, the merging procedure is not appliedprior to deciding what kind of synthesis method to employ.Doing so would require additional calculations which wouldbe wasted if direct synthesis were used.



Figure 2: Test Images. The (8-bit grey-scale) images are,from top left, Lenna, House and Sugarbowl.
Figure 3: Typical VQ compression result | 0.82 bpp.8. RESULTS8.1. Wavelet CompressionIt was apparent that the �delity of the reconstructed im-ages left something to be desired, even at modest bit-rates(around 1 bpp) | Figure 3. There are a number of rea-sons for this lack of performance, in particular, the use ofa MMSE distortion metric, which takes no account of edgeinformation and does not guarantee simultaneous minimiza-tion of reconstruction error and transform domain quanti-zation error (since Parseval's identity does not hold in asemi-orthogonal framework). Simple thresholding tests re-vealed that MMSE VQ was not exploiting the redundancyprovided by the wavelet transform e�ectively.8.2. Image SynthesisThe results given below are based on a three level waveletdecomposition in which, rather than applying VQ, the wave-let coe�cients were thresholded and those retained wereused in the MR synthesis calculations. This was done todecouple the compression implementation from the synthe-

sis algorithms, since the former retained too many (unrep-resentative) coe�cients to illustrate the concepts referredto earlier. The thresholding used is adapted to orientationand resolution level and forms part of the new compressionscheme we are investigating. To enable us to quantify thegains produced by MR synthesis, we introduce the GainFactor (GF) | the ratio of the instruction cycles requiredto render the image directly to the number of cycles requiredif adaptation is used. The GF is always � 1:0.Table 1 summarizes the results of this preliminary work.Observe that two sets of data are given: the �rst uses thecurrent cycle costs for the relevant instruction1 while thesecond uses the cycle costs which will be used in subsequentimplementations of the DE.Cycles Lenna House SugarbowlSetddi 2 0 4 62Eval0 1 100 95 33Eval1 3 0 0.5 0.2Eval3 5 0 0.5 4.8GF - 1.23 1.63 3.43MR - No Yes YesCycles Lenna House SugarbowlSetddi 1 1.4 7.6 65.7Eval0 1 97.5 87.0 13.9Eval1 1 1.0 4.7 14.7Eval3 3 0.1 0.7 5.7GF - 1.22 1.57 3.86MR - Yes Yes YesTable 1: Synthesis Results. The �rst four rows of each tablegive the percentages each of the instruction types contributed tothe �nal rendering cost. The �nal row indicates whether multi-resolution synthesis was invoked or not. The same threshold wasemployed with all images. The second table gives the �gureswhen the proposed lower cost instructions are used.There are several things which were evident from our ex-periments. Firstly, the smoothness of an image is directlyrelated to the gains obtainable when using MR synthesis:the more texture the image possess, the less likely MR syn-thesis is to yield any bene�t, unless the texture is highlylocalised. In the latter case, the non-textured scan-linescan still be rendered more cheaply. Secondly, image detailis expensive to render, because a) it is present on multiplelevels of the MRA and b) the quadratic spans are smallerand consequently more instructions are required to interpo-late a scan-line. This is the motivation for truncating theMRA.Images which are themselves composed of splines (suchas the Phong shaded images in [11], of which `Sugarbowl'is an example) will experience greater gains than other(smooth) images. However, the extent of this reduction willdepend on the size of the spline patches of which the image1The interpolation instructions are of the form `evaln', wheren is the order of the polynomial to be interpolated; `eval0'switches o� accumulation of subsequent pixel values at the givenlocation, otherwise acting like an `eval1' | since it is cheaper, itis used for direct reconstruction. The `setddi' instruction can beused to set the second di�erence at a speci�ed point; subsequentinterpolations, passing through this point, will uses this valuerather than the one they had been propagating.



is composed and for most images these are fairly small. TheDE is ideally suited to rendering such images.The images `Sugarbowl' and `House' were both able toderive varying degrees of bene�t from MR synthesis, sincethere were regions in which the intensity data varied slowly.`Lenna' contains a lot of texture; but with lower instructioncosts, it becomes economical to use the MRA on some scan-lines. In highly uniform or smooth images, span mergingon the approximation level can become signi�cant, boostingrendering e�ciency substantially. An extreme example ofthis would be an object on a uniform background; the back-ground would only be present in the approximation imageand could be generated very quickly and e�ciently.For highly textured images, when we are forced to chosedirect reconstruction, we can still gain by merging neigh-bouring pixels; this saves one having to set each pixel indi-vidually. Since pixels are usually correlated, even the mostchaotic of images may bene�t (albeit marginally) from suchmerging. In the examples given above, Lenna experienced aGF of 1.23 from such pixel merging: all neighbouring pixelsalong a scan-line which are within one gray scale of the �rstpixel considered are approximated by this initial value, anda zero-degree polynomial (eval0) of the appropriate lengthis emitted. When using MR synthesis, smooth images canyield very large gains (a GF of > 3 for non-trivial imageslike Sugarbowl). The nature of the smoothness plays animportant role in determining the magnitude of these gainsi.e., is the image actually a spline, or just smoothish? Truespline images can be approximated with fewer resolutionlevels and coe�cients.Although not explicitly indicated in the tables above,the level of the decomposition has a very de�nite a�ect onthe rendering gains one can achieve. If the number of levelsis too low, then one gains nothing in rendering time, sinceshort pixel spans (less than the order of the polynomial)must be set directly. If, on the other hand, the number oflevels is too high, then too much information must be ac-cumulated from the detail tiers and the rendering e�ciencydrops. A three level decomposition appears to be optimal.The DE is able to produce low resolution approximationimages very e�ciently, since the spline patches are thenquite large (the 3rd level approximation of Lenna can berendered in a quarter of the time required to render the fullimage, using the old instruction costs). Progressive trans-mission is possible if the receiver is equipped with a screenbu�er in which incoming information can be accumulated.9. CONCLUSIONAlthough the implementation of the quantization algorithmwas inadequate, the compression potential of the spline WTcan be exploited by a better algorithm. Smooth imagescan be rendered more rapidly using MR synthesis than bydirect reconstruction. Even heavily textured images canbe rendered more e�ciently if zero-degree pixel merging isapplied to exploit pixel correlation.10. FUTURE WORKA better quantization system is currently under develop-ment. Work can be done to improve the usability of the
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