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ABSTRACT

A wavelet-based image-encoding is described which, when
used in conjunction with the Difference Engine (a custom-
designed VLSI display processor) allows us to reconstruct
an image in real-time without the need to set each pixel ex-
plicitly. The image is compressed using a quadratic spline-
wavelet transform; when reconstructing, an image-adaptive
instruction generator attempts to produce the minimal in-
struction stream to give a good reproduction. The wavelet
coefficients are used to decide which regions of the detail
images should be retained in the multi-resolution analysis
(MRA). A decision is made for each scan-line as to whether
it is more economical, in terms of rendering time, to use the
‘truncated MRA’ or to set the pixels directly. The above
approach provides a significant gain over standard image
reconstruction/rendering schemes.

1. INTRODUCTION

Studies have shown that the wavelet transform [1] offers a
better compression/fidelity tradeoff than the Discrete Co-
sine Transform (DCT)[2]. The complexity of the blocked
DCT is of the same order as that of an (unblocked) fast
wavelet transform — consequently, blocking is not required
and blocking artifacts are no longer a problem. Further-
more, the multi-resolution structure of the transform allows
for resolution-dependent coding techniques.

The ‘standard’ approach to image synthesis, after such
transform coding, is to perform an inverse transform, thus
producing the data required for each pixel. However, by
requiring that our image be expressible on a suitably de-
fined (quadratic) spline basis, and using the properties of
the Difference Engine, it is possible to regenerate the im-
age, progressively, if this is desired, from a subset of the
full MRA, by examining the transform coefficients which
underlie the analysis. This synthesis procedure allows one
to reduce the number of instructions required to render an
image, when compared with the direct approach.

2. THE WAVELET TRANSFORM

A wavelet, ¥(z,y), is an L*(R?) function which satisfies

[ [ wtenaeay=o 1)

This condition ensures that the wavelet is localized in both
time and frequency and exhibits a measure of oscillation —

hence the name. The discrete (dyadic) wavelet transform,
(WgI)(5;4,1) of an L*(R?) function, I(z,y), with respect

to the wavelet ¥ is defined as
(WeI)(g;4,1) =

where (,) denotes the L? inner product and W;,; ;(z,y) =
29U (2z — 1,2y — 1). For non-orthogonal wavelets, there is a
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corresponding dual wavelet, \i/, which satisfies the relation-
ship _

(Vs Yisjg) = 6116:50pq. (3)
It can be shown that the functions {V;,i1; j, k,! € Z} span
the space L*(R?) [1]. Hence, any function, I(x,y), in this
space can be written as a linear combination of such scaled
and translated wavelets:

I(may) =

where

A+ g-1(z,y) + g0(2,y) + g1(z,y) + -+ (4)

g:/(wvy) = Zdj;'il\lljzlll($,y), ] € 7. (5)

il
Because of the bi-orthogonality relation, Equation (3), one
may write dj.i = (I, V;.,), i,4,l € Z.

3. MULTI-RESOLUTION ANALYSIS

A multi-resolution analysis (MRA) of L?(IR) produces a se-
quence of spaces, V41 = V; @ W;, with V; C Vj41. The
space W is the orthogonal complement of V; in Vj11. See
[3] for a description of MRA and its relation to wavelet
transforms.

A common method used to generate a 2-D MRA, is to
take the tensor product of the corresponding 1-D multi-
resolution analysis with itself [1]. This provides one with
three wavelets, \I/[p](a:, y), p = 1,2,3 and a scaling function,
®(z,y), all of which are separable 2-D functions:

Wz, y) = ol2)y(y) (6)
W (z,y) = P(a)d(y) (7)
WOz, y) = Pla)p(y) (8)

®(z,y) = o(=)d(y) (9)

These wavelets are essentially orientated, resolution-depend-
ent band-pass filters; the scaling function may be viewed as
alow-pass filter. The detail spaces, spanned by each wavelet
type, thus contain difference information with a specific ori-
entation only: vertical, horizontal and diagonal.



The multi-resolution pyramid goes off to infinity in both
directions. However, realisable signals are band-limited.
Thus, we truncate the representation, discarding all higher
level information, by ‘projecting’ our input function into a
space which has sufficient detail to represent the sampled
signal — Vj by convention. Similarly, since signals do not
always contain arbitrarily low frequencies, it may be un-
necessary to decompose one’s signal beyond a certain level.
Thus, one has a Jth level multi-resolution decomposition

]($7y) = ]0($,y)
g-1(z,y) + -+ g-g(z,y) + I-s(z,y)

—J 3
Z Z Z d[!’]l:ijlljg?i],j(xﬂ y) +
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The wavelet transform is also truncated; the Jth level
discrete wavelet transform provides the set of coefficients

{{d[i’)]l;ij}v {C—J:ij}v i,j €L, =~1,-2,.—J; p= 17273}
(11)
3.1. Semi-Orthogonal Cardinal Spline MRA

The space of cardinal splines of order m, Sy, contains all
those functions expressible as a weighted sum of mth order
cardinal B-splines, Np,(x):

f(a:) = chN'nl(:E — k’), f € Sm. (12)

The values of N,,,,(:IJ) may be found using the following iden-
tity:

m—x

Np—1(z—1). (13)

m—1

1if z€][0,1);

0 otherwise.

Ni(z) = xpo.1)(2) = { (14)

The spline-based MRA introduced in [3, 4] has N,,(z)
as its scaling function.

The corresponding mth order spline wavelet, ¥, (), has
support on the interval [0,2m — 1]. This wavelet is sem:-
orthogonal, meaning that it is orthogonal to scaled versions
of itself, but not to translates on the same resolution level.
These functions satisfy the following two-scale relationships

Nu(z) = > pelNu(2z — k), (15)
S N (22 — k) (16)

k=0

Pm(z) =

The values of these sequences, for the quadratic case, can

be found in [3].

4. CALCULATION OF THE WAVELET
COEFFICIENTS

Before one can use the MRA, a means must be found to
compute the coefficients of the wavelet transform. To this
end we use the filtering scheme proposed in [5]. In the
context of this work, this gives us the following set of sepa-
rable convolutional equations for computing the detail and
approximation coefficients (from the approximation coeffi-
cients of the previous level):

Ci—13kl = Z Z Am—2kAn—21Cjimn (17)
Ay g = Z Z am—2kbn—21Cjmn (18)
dia); 00 = Z Z by —21,an—21C5mn (19)
d[3]j_1;kz = Z Z bm—okbn—21Cj:mn- (20)

To reconstruct the approximation coeficients (from those
lower down in the analysis), one has the following recon-
struction relation:

Cjilem = z, Zt Pl—21Pm—2tCj—131¢ +
2120 Pr—21gm—2tdn); ., +
Do D Ge—2Pm—2edz) g, +
Do D dr—2gm—2edpz); g, (21)

The {ar} and {bi} sequences can be found in [6].

4.1. Calculation of {co;i ;}

In order that we can use the filtering scheme above, one
must first generate the initial set of approximation coeffi-
cients, {co;ij} — which are the basis coefficients of the B-
spline representation of the input image. If one just wants
to achieve compression, the image samples may be used
as the initial coeflicient values. If, however, one wishes to
evaluate the MRA, then these values must be properly com-
puted.

We use quasi-interpolation [7] to obtain these coeffi-
cients. Quasi-interpolation is a local interpolation scheme,
in which the amount of data used to determine the approxi-
mating quasi-interpolant can be limited. In this work a 3x3
convolution mask (k = 1, below) was used to determine the
required coefficients:

coij = ()i 5), 6,5 € Z, T € L*(R).  (22)
This sequence is computed as

{OeD)@)} = (§—m+- -+ (=) mx - xm)«I°(i),1 € Z7,

k times
(23)

where 6 = 6;.5,0 = 1ifi,j = 0, and 0 otherwise and

o ®(0,0) —1 for i,j=0; )
mij = { (i, 5) for i,j # 0. (24)



Because the B-splines must be centred [7], ®(z,y) = N3(z+
3/2)N3(y + 3/2), and the coefficient values actually repre-
sent the shifted image In(z + 3/2,y + 3/2). It is important
to remember this shift when evaluating image functions in

the MRA.

5. QUANTIZATION

We used wector quantization to compress the wavelet en-
coded image. The approach of [8] was used: the various
wavelet sub-bands were sub-divided into 2x2 or 4x4 blocks
(as determined by the desired compression ratio) and these
blocks were quantized with the previously trained code-
books to yield 8-bit indices (thus permitting 256 reproduc-
tion levels per sub-band). The LBG algorithm with a min-
imum mean-squared error measure was used [9]. The code-
book was trained with a collection of disparate images, so
as not to introduce any kind of image bias; the test images
were not in the training sequence. As is done elsewhere, for
example [8, 10], the entropy of the coeflicient sequence is
used as a measure of compression i.e., we assume that the
quantization is followed by a perfect entropy coding.

6. THE DIFFERENCE ENGINE

The Difference Engine (DE) is the final component in the
rendering pipeline of a new display architecture developed
at CWI [11]. This display processor has the ability to in-
terpolate an arbitrary length polynomial span with a sin-
gle instruction, in time proportional to the degree of the
polynomial . The forward difference interpolatory logic is
implemented as a systolic array — each new cycle produces
the complete set of difference values for the specified span.
The 11ns cycle time of this processor means that one can
perform these calculations with sufficient speed to ensure
pixel production at the display refresh rate.

There are two important points which should be noted:

e the DE can interpolate arbitrary order polynomials,
in time proportional to the degree (currently n + 2
cycles for a polynomial of degree n — 1).

e the DE provides a scan-line accumulator.

The existence of an intensity accumulator is essential if
one wishes to use the DE for multi-resolution image syn-
thesis, since one then needs to accumulate several levels of
detail for each scan-line.

7. MULTI-RESOLUTION IMAGE SYNTHESIS

The various images in the quadratic cardinal spline MRA
satisfy certain very stringent conditions:
e They are elements of C*(R?)

e The approximation images consist of quadratic patch-
es, with support on

27k, 2/ (k + 1)) x 27k, 2 (k + 1)), k € Z

e The detail images also have this property, but over
squares half the size on the resolution level j.

Quadratic 1 Quadratic 2

eval3 — B ! setddi - A

eval3; eval3 <=> setddi; eval3

Figure 1: The use of setddi.

Thus, the image data along a scan-line (on each level) is
composed of adjacent quadratic segments of the same length.
It is a simple matter to compute the differences for any
such polynomial (using the shifted image functions), and
to compose the DE instructions which will interpolate the
polynomial scan-line data.

If used without care, multi-resolution synthesis can be
far more expensive (in terms of DE instruction cycles) than
just setting each pixel directly, since many instructions must
be issued to accumulate all the detail information for each
scan-line. If however, only ‘busy’ regions of the detail im-
ages are added back to the approximation image, this ‘trun-
cated” MRA can provide significant gains over direct re-
construction (i.e., IWT and setting each pixel directly).
Wavelet compression should maintain only the most im-
portant coefficients viz. those which will ensure good recon-
struction fidelity. These retained coefficients can be used as
an indication of ‘busy’ image areas, and the bases which
they weight can be used to build the truncated MRA. We
determine the extents of these bases which intersect the cur-
rent scan-line — this information is recorded and used to
determine whether it is more economical (in terms of DE
instruction cycles required) to simply set the pixels in the
current scan-line or to render the truncated MRA. If the
latter option is selected, the function evaluations are done
and the tiers of detail are accumulated on top of the ap-
proximation signal. If it is less economical (as will be the
case in highly detailed regions), the scan-line pixels are set
directly.

Due to the continuity constraints, and the architecture
of the chip, we need only issue one quadratic interpolation
instruction to interpolate the entire approximation scan-
line: only the second order differences need be changed as
we cross each new span boundary — Figure 1. These can
be computed and set before the interpolation instruction
is issued, by using a low cost set-difference instruction. A
similar strategy can be used for detail scan-line segments
consisting of several adjacent spans.

To improve performance, neighbouring quadratic spans
are merged if their differences are the same; this reduces
the number of instructions required to interpolate a multi-
span segment. However, since this kind of redundancy is
only likely to occur in the approximation image, merging is
not applied to detail scan-line segments. Furthermore, for
reasons of efficiency, the merging procedure is not applied
prior to deciding what kind of synthesis method to employ.
Doing so would require additional calculations which would
be wasted if direct synthesis were used.



Figure 2: Test Images. The (8-bit grey-scale) images are,
from top left, Lenna, House and Sugarbowl.

Figure 3: Typical VQ compression result — 0.82 bpp.

8. RESULTS

8.1. Wavelet Compression

It was apparent that the fidelity of the reconstructed im-
ages left something to be desired, even at modest bit-rates
(around 1 bpp) — Figure 3. There are a number of rea-
sons for this lack of performance, in particular, the use of
a MMSE distortion metric, which takes no account of edge
information and does not guarantee simultaneous minimiza-
tion of reconstruction error and transform domain quanti-
zation error (since Parseval’s identity does not hold in a
semi-orthogonal framework). Simple thresholding tests re-
vealed that MMSE VQ was not exploiting the redundancy
provided by the wavelet transform effectively.

8.2. Image Synthesis

The results given below are based on a three level wavelet
decomposition in which, rather than applying VQ, the wave-
let coefficients were thresholded and those retained were
used in the MR synthesis calculations. This was done to
decouple the compression implementation from the synthe-

sis algorithms, since the former retained too many (unrep-
resentative) coefficients to illustrate the concepts referred
to earlier. The thresholding used is adapted to orientation
and resolution level and forms part of the new compression
scheme we are investigating. To enable us to quantify the
gains produced by MR synthesis, we introduce the Gain
Factor (GF) — the ratio of the instruction cycles required
to render the image directly to the number of cycles required
if adaptation is used. The GF is always > 1.0.

Table 1 summarizes the results of this preliminary work.
Observe that two sets of data are given: the first uses the
current cycle costs for the relevant instruction® while the
second uses the cycle costs which will be used in subsequent
implementations of the DE.

Cycles || Lenna | House | Sugarbowl
Setddi 2 0 4 62
Eval0 1 100 95 33
Evall 3 0 0.5 0.2
Eval3 5 0 0.5 4.8
GF - 1.23 1.63 3.43
MR - No Yes Yes
Cycles || Lenna | House | Sugarbowl
Setddi 1 14 7.6 65.7
Eval0 1 97.5 87.0 13.9
Evall 1 1.0 4.7 14.7
Eval3 3 0.1 0.7 5.7
GF - 1.22 1.57 3.86
MR - Yes Yes Yes

Table 1: Synthesis Results. The first four rows of each table
give the percentages each of the instruction types contributed to
the final rendering cost. The final row indicates whether multi-
resolution synthesis was invoked or not. The same threshold was
employed with all images. The second table gives the figures
when the proposed lower cost instructions are used.

There are several things which were evident from our ex-
periments. Firstly, the smoothness of an image is directly
related to the gains obtainable when using MR synthesis:
the more texture the image possess, the less likely MR syn-
thesis is to yield any benefit, unless the texture is highly
localised. In the latter case, the non-textured scan-lines
can still be rendered more cheaply. Secondly, image detail
is expensive to render, because a) it is present on multiple
levels of the MRA and b) the quadratic spans are smaller
and consequently more instructions are required to interpo-
late a scan-line. This is the motivation for truncating the
MRA.

Images which are themselves composed of splines (such
as the Phong shaded images in [11], of which ‘Sugarbowl!’
is an example) will experience greater gains than other
(smooth) images. However, the extent of this reduction will
depend on the size of the spline patches of which the image

IThe interpolation instructions are of the form ‘evaln’, where
n is the order of the polynomial to be interpolated; ‘evalQ’
switches off accumulation of subsequent pixel values at the given
location, otherwise acting like an ‘evall’ — since it is cheaper, it
is used for direct reconstruction. The ‘setddi’ instruction can be
used to set the second difference at a specified point; subsequent
interpolations, passing through this point, will uses this value
rather than the one they had been propagating.



is composed and for most images these are fairly small. The
DE is ideally suited to rendering such images.

The images ‘Sugarbowl” and ‘House’ were both able to
derive varying degrees of benefit from MR synthesis, since
there were regions in which the intensity data varied slowly.
‘Lenna’ contains a lot of texture; but with lower instruction
costs, it becomes economical to use the MRA on some scan-
lines. In highly uniform or smooth images, span merging
on the approximation level can become significant, boosting
rendering efficiency substantially. An extreme example of
this would be an object on a uniform background; the back-
ground would only be present in the approximation image
and could be generated very quickly and efficiently.

For highly textured images, when we are forced to chose
direct reconstruction, we can still gain by merging neigh-
bouring pixels; this saves one having to set each pixel indi-
vidually. Since pixels are usually correlated, even the most
chaotic of images may benefit (albeit marginally) from such
merging. In the examples given above, Lenna experienced a
GF of 1.23 from such pixel merging: all neighbouring pixels
along a scan-line which are within one gray scale of the first
pixel considered are approximated by this initial value, and
a zero-degree polynomial (evalQ) of the appropriate length
is emitted. When using MR synthesis, smooth images can
vield very large gains (a GF of > 3 for non-trivial images
like Sugarbowl). The nature of the smoothness plays an
important role in determining the magnitude of these gains
1.e., is the image actually a spline, or just smoothish? True
spline images can be approximated with fewer resolution
levels and coefficients.

Although not explicitly indicated in the tables above,
the level of the decomposition has a very definite affect on
the rendering gains one can achieve. If the number of levels
is too low, then one gains nothing in rendering time, since
short pixel spans (less than the order of the polynomial)
must be set directly. If, on the other hand, the number of
levels is too high, then too much information must be ac-
cumulated from the detail tiers and the rendering efficiency
drops. A three level decomposition appears to be optimal.

The DE is able to produce low resolution approximation
images very efliciently, since the spline patches are then
quite large (the 3rd level approximation of Lenna can be
rendered in a quarter of the time required to render the full
image, using the old instruction costs). Progressive trans-
mission is possible if the receiver is equipped with a screen
buffer in which incoming information can be accumulated.

9. CONCLUSION

Although the implementation of the quantization algorithm
was inadequate, the compression potential of the spline WT
can be exploited by a better algorithm. Smooth images
can be rendered more rapidly using MR synthesis than by
direct reconstruction. Even heavily textured images can
be rendered more efficiently if zero-degree pixel merging is
applied to exploit pixel correlation.

10. FUTURE WORK

A better quantization system is currently under develop-
ment. Work can be done to improve the usability of the

DE w.r.t. MR synthesis — the DE was not specifically
designed to render this kind of structure. One of the modi-
fications that can be made, is the addition of a screen-wide
accumulator which the DE can access to enable efficient
rendering of progressively transmitted images. Work can
also be done to improve the simple efficiency measures used
— the emphasis here was on rendering performance, which
assumes that the MR data can be produced at an adequate
rate. All the required information can be computed using
parallelised FFT hardware — so on the face of it, this as-
sumption is a reasonable one. Nonetheless, one may desire
a different measure of efficiency.
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