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Abstract

The e�ciency of an image compression�synthesis system based on a spline

multi�resolution analysis �MRA	 is investigated� The proposed system uses

a quadratic spline wavelet transform to achieve image compression� Image syn


thesis is accomplished by utilizing the properties of the MRA and the architec


ture of a custom designed display processor� the Di�erence Engine� The latter

is ideally suited to rendering images with polynomial intensity pro
les� such as

those generated by the proposed spline MRA� Based on these properties� an

adaptive image synthesis system is developed which enables one to reduce the

number of instruction cycles required to reproduce images compressed using the

quadratic spline wavelet transform� This adaptive approach is computationally

simple and fairly robust� In addition� there is little overhead involved in its

implementation�
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Chapter �

Introduction

Research in image compression� and data compression in general� has experi


enced something of a renaissance over the last decade� There are sound reasons

for this state of a�airs� not the least of which involves our obsessive desire to

miniaturise� This apparently facetious remark is� in fact� quite relevant� the

quest for greater miniaturisation is motivated by our need to process data more

rapidly�

Image data is playing an increasingly important role in our society� primarily as

a result of the emergence of multimedia applications and services � the World


Wide Web project� which strives for global connectivity and o�ers a hypertext

service� is a point in case� The evolution of a world
spanning network� and the

ever
expanding expectations of its users with regard to multimedia integration�

demand that mechanisms be found to transmit a rapidly increasing volume of

data more e�ciently�

To achieve data reduction� one uses either a lossless or lossy compression scheme

� the former demands that one reconstruct the input data precisley� whereas

the latter approach sacri
ces perfect reconstruction in favour of higher com


pression ratios� The gains that such schemes can produce are dependent on the

type of data� text data must be compressed losslessly� and is thus only amenable

to low compression ratios �of the order ���	� On the other hand� for video

�or sound	 data� one can employ lossy compression techniques� At the most

primitive level� such techniques exploit the correlations between neighbouring

samples� much of the information used to represent an image is redundant�

and can thus be neglected in the encoding� The gains can be be enormous �

�
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around ����� with good reproduction� using techniques such as wavelet or frac


tal compression� For video streams the gains are even more astounding� since

one now has a large measure of temporal redundancy � images do not change

much from frame to frame� The current de
facto standards for image compres


sion are JPEG �for still images	 and MPEG �for compression of video streams	�

These standards are continually being revised and enhanced to accomadate new

advances in compression techniques�

The e�ciency one can achieve when reconstructing such compressed data is of

great importance� Real
time applications� such as teleconferencing� require that

both the encoding and synthesis of the �image�sound	 data be accomplished

quickly� To accomodate these speci
cations� such compression�synthesis sys


tems are normally implemented in hardware� However� this hardware cannot

always produce data at an adequate rate� Thus� any mechanism which could

accelerate this 
nal reconstruction phase would be extremely useful�

This thesis is aimed at developing such a system for image coding� The envis


aged approach employs the �spline	 wavelet transform as the means of image

compression �Chapter �	� The second phase � image synthesis � is based on

the multi
resolution analysis which is associated with the wavelet under con


sideration �Chapter ���	� Multi
resolution analysis enables one to decompose

an image into a sequence images which allow one to better analyse the under


lying structure of the input� The analysis is accomplished in such a way that

adding all these images together returns the input image� By exploiting the

properties of this spline image decomposition and the architecture of a custom

designed VLSI display processor �the Di�erence Engine	� one can achieve both

high compression and improved image synthesis performance �Chapter �	�
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Wavelet Theory

TheWavelet Transform �WT� has attracted a great deal of interest from a wide

variety of disciplines� essentially because it is such a versatile tool for analysis

� of both data and more abstract structures� In general� the WT produces

data which is sparse in the transform domain in the sense that many of the

transform coe�cients are �relatively	 small� this is desirable since the smallest

of these coe�cients may be approximated by zero and ignored in subsequent

computations� However� this property alone could scarcely justify the interest

surrounding the WT and indeed� this transform has some very de
nite advan


tages over other transform methods�

The Fourier Transform �and its derivatives	 only provide information about

global spectral characteristics � a consequence of the sinusoidal transform ker


nel upon which they are based� Since one usually desires information about

local signal features� e�g�� the location of a spike in a time varying signal� these

transforms are of limited use in signal analysis� However� if the sinusoid is mul


tiplied by a windowing function� i�e�� a function which has localised extent or

dies away very rapidly� then the transform provides a frequency analysis of this

windowed piece of the signal� and one can then deduce the nature of local phe


nomena by examining the transform coe�cients� Such a transform is known as

a Short�Time Fourier Transform or STFT� The entire signal can be decomposed

and analyzed in this fashion� the accuracy of our analysis depending on the size

of the windowing function and the constraints imposed on the time�frequency

window by the Uncertainty Principle� when we analyze the frequency spectrum

of a signal with great precision� we loose the ability to accurately determine

the location of corresponding phenomena �a spike in the signal� perhaps	 in the

�
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time domain �and vice
versa	� As the range of time�space over which we wish

to consider the signal grows� the corresponding increase in non
local spectral

information muddies our analysis and we can say progressively less about local

signal features� The problems of localised signal analysis with the STFT are

further exacerbated by an additional constraints on the time
frequency window

� it must be 
xed prior to the analysis� which implies that one must either have

knowledge of the kinds of signals to be investigated �enabling one to choose a

near optimal window for signals in this class	 or risk producing spurious results�

since the STFT will not yield accurate information for frequencies outside the

frequency
band the window was designed to analyze�

The Wavelet Transform� on the other hand� is well suited to the analysis of

signals with arbitrary spectra� being constructed in such a way that its time


frequency window adapts to the local characteristics of the signal� thus permit


ting the study of signals without a priori determination of the window� Since

images generally have widely varying intensity characteristics� it is clear why

the WT has found acceptance amongst those engaged in the analysis of such

signals�

In addition� the multi�resolution structure of the WT it well suited to image

analysis and compression �see� for example� ���� ��� ��� ��� ���	� The concept

of a Multi�Resolution Analysis �MRA� is central to much of wavelet theory �

Section ��� discusses this subject at length�

The following sections provide a simple introduction to the theory underpinning

this dissertation� The primary aim of this chapter is to introduce the essentials

of wavelet theory to the non
specialist� With this in mind� Section ��� provides

a brief explanation of the symbols and notation I employ throughout the rest

of this work� Sections ��� and ��� discuss the Wavelet Transform � the for


mer deals with the continuous version� and the latter introduces the discrete

form� Multi
resolution analysis �in both the �
D and �
D settings	 is covered

in Section ����

Those who are familiar with the issues and concepts involved may omit this

chapter� For the most part� I have referred only to aspects of the theory which

I have actually used� those desiring a more extensive exposition are referred to

��� ����
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��� Mathematical Preliminaries

In the course of reading this dissertation� the reader may encounter unfamil


iar mathematical symbols and concepts� This section introduces the material

required to understand the theory developed later�

It is assumed that the reader is familiar with basic linear algebra� set theory

and the concept of a linear or vector space�

I use the following �standard	 symbols for number systems�

C Complex numbers�

N Natural numbers�

R Real numbers�

Z Integers�

The symbols k�k and h�� �i are used to denote norms and inner products� re


spectively� The dots represent the positions of arguments� The former is a

generalized length measurement and the latter a generalization �to arbitrary

vector spaces	 of the Euclidean dot product� For example� if two elements of a

vector space have a zero inner product� they are considered �orthogonal�� where

orthogonality is interpreted in the most intuitively appropriate way� product

axioms �which I have not included for reasons of economy	� When an inner

product exists on a space U � one may de
ne a norm on the same space as

kuk� � � u� u �� u � U �

The following are common vector spaces which might be encountered�

L��R	 The space of �measurable	 square integrable functions� The concept

of a measure is one that I shall not refer to further� For our purposes�

any function which satis
es
R jf�x	j�dx � � is contained in this space�

where the integral is a Riemann integral� The inner product on this

space is de
ned as hu� vi � R
uvdx� where the overbar denotes complex

conjugation� Thus� our requirement states that kuk �� for membership�

���R	 The space of all square summable sequences� that is a sequence fakgk�Z
is contained in this space if it satis
es the criterion

P
k�Zjakj� ��� That

is� it has a bounded norm� This space is the discrete analogue of L��
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Cm�R	 The space of allm
times continuously di�erentiable functions� That is�

a function belongs to this space if its 
rst m derivatives are continuous�

C��R	 is the space of continuous functions�

Any other spaces I require will be described when they are encountered�

The Fourier transform of an L� function� f�x	� is denoted by �f��	 and is given

by

�f��	 �

Z
e�i�xf�x	dx�

The symbol � is used to denote both continuous and discrete convolution �one

can deduce which easily enough	� The former is given by

�f � g	�x	 �
Z
f�x� t	g�t	dt

and the latter by

�f � g	�i	 �
X
k�Z

fi�kgk�

where the both the integral and sum are assumed to converge�

The idea of a direct sum of two spaces� U� V will be used presently� If the space

W is obtained via a direct sum thenW � U�V � fw � w � u�v� u � U� v � V g�
There is a subtlety here� since � is sometimes used to denote an orthogonal

direct sum� that is� one is which the summand spaces are orthogonal to each

other� When this is not the case� we will use the symbol ���

The operation of closure adds in all the limit points of a space� thus �closing it

up�� This operation is usually denoted by closB� where B is the set w�r�t which

the closure is taken� that is� we take our limits in the set B� For example� if we

are given a 
nite subset �a� b	 of R� then closR�a� b	 � �a� b�� the limiting points

of the open interval have been included�

The notation spanfvi � i �Zg is used to denote the span of the �basis	 vectors�

vi� that is� the space which consists of all possible linear combinations of these

vectors� An alternative notation consists of a pair of angle brackets� thusly�

� vi � i �Z� �

The symbol � is used to denote a tensor product� The tensor product� U � V �

of two spaces� U and V � yields a new space� the elements of which are product

combinations of vectors in the two component spaces�



CHAPTER �� WAVELET THEORY �

The support of a function is the closure of the set of non
zero values it assumes�

for a sequence I will take it to mean the set of sequence indices which have non


zero sequence values associated with them� If a function �sequence	 possesses

compact support� then �technicalities aside	 this set is of 
nite extent �or has

a 
nite number of members	�

To simplify summation formulae� I will often ignore the range subscript� it

usually being the case that our index ranges from �� to ��� Similarly� if

there are no range limits on an integral� one may assume it is taken over the

entire domain�

��� Time�Frequency Analysis

When one takes the Fourier Transform of a signal� the spectral information pro


duced provides a description of the way in which the various sinusoids which

compose the signal contribute� While this is useful� the information which the

Fourier Transform yields is global in nature i�e�� only the global contribution of

each frequency to the entire signal is available� Thus� any transient �and po


tentially important	 occurrences� such as a sudden momentary drop in a fairly

constant time
varying signal� will not be accurately re ected in the analysis per


formed by the FT� one might be able to infer that they occurred by examining

the spectrum� but the location of this event will be highly indeterminate�

The purpose of the STFT is to provide a means of extracting local spectral

data� thus permitting a meaningful analysis of the signal� They achieve this by

windowing o� part of the signal� and performing an analysis on this segment �

hence the name� This windowing is achieved by a so
called window function�

De�nition ��� A function w�t	 � L� is called a window function if t w�t	 �
L�� This window function has a well de�ned centre� t� and radius� !w�

t� � �

kwk�
L�

Z
tjw�t	j�dt

and

!w � �

kwkL�

�Z
�t� t�	�jw�t	j�dt

� �
�
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A well known example of a STFT �with a Gaussian window function	 is the

Gabor Transform� de
ned by

�G�f	��� 	 �

Z
�i�t

f�t	g��t� 	t ����	

where

g��t	 �
�

�
p
��

e�
t�

�� � ����	

Associated with such transforms is a so
called time�frequency window� which

indicates the region in the time
frequency domain about which the transform

yields information� For example� the Gabor window is

�b�p�� b�p
��	 �� � �

�
p
�
� � �

�

�
p
�
�� ����	

Now� to analyze low
frequency phenomena� one would like a window which is

wide in the time domain� since frequency is inversely proportional to period�

Likewise� to e�ectively analyze high
frequency phenomena we would like a nar


row time window� Unfortunately� the time
frequency window is constrained

by a minimum size requirement� as the time window narrows� the frequency

window expands so as not to violate this requirement� and vice versa� That is�

while we might be able to isolate a section of our signal with great precision� we

are simultaneously faced with an increasing amount of frequency information

which garbles the data we really want and mitigates the e�ect of our contracting

time
window� Similarly� as the time
window widens� our frequency information

becomes more accurate� but we are now faced with uncertainty as to which

region of the time
window contains the interesting phenomena which led us to

window the signal in the 
rst place" This is the Uncertainty Principle� it is in


violable and places a lower limit on the accuracy with which we can investigate

a signal�

Nonetheless� provided one has knowledge of the kinds of signals which one is

going to analyze� a good windowing function may be chosen� In particular� the

Gaussian window of the Gabor Transform provides the optimal time
frequency

trade
o� for localised signal analysis� If the signal has widely varying spectral

characteristics� however� any analysis provides by a STFT is going to be less

than satisfactory� the window� once chosen� is static and only suitable for ana


lyzing a particular type of signal� What we desire is a time
frequency window

which adapts to the underlying characteristics of the signal� becoming wider in
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the time domain when analyzing low
frequency phenomena and contracting to

study high
frequency phenomena� This is precisely the kind of behaviour that

the time
frequency window of the Wavelet Transform exhibits�

��� The Integral Wavelet Transform �IWT�

The IWT is de
ned in terms of a special kernel function 	 �in L�	 known as a

wavelet�

De�nition ��� If 	 � L��R	 satis�es the admissibility condition�

C� �

Z j �	��	j�
j�j d� ��� ����	

then 	 is called a basic wavelet�

This requirement enables us to de
ne the Integral Wavelet Transform�

De�nition ��� If we are given a basic wavelet� 	� we may de�ne the Integral

Wavelet Transform� �W�f	�b� a	� of an L� function f as

�W�f	�b� a	 � jaj� �
�

Z
f�t		

�
t� b

a

�
dt� ����	

where a� b � R and f � L��

The overbar denotes complex conjugation� It was included for completeness

� I only use real valued wavelets� The �admissibility condition� is all that is

required to de
ne the IWT� However� one generally wishes to employ a basic

wavelet which has other desirable properties� for example� one for which both

	 and �	 are window functions�

With this additional constraint� the admissibility condition implies thatZ
	�t	 dt � �� ����	

Consequently� 	 will be localised �since it is a window function	 and exhibit a

certain measure of osscilation �Equation ���	 � hence the name �wavelet� �See

Figure ���	�
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Figure ���� A �quadratic spline	 wavelet� See Chapter � for details�

The variables b and a represent time �space	 and frequency �scale	� respectively�

Because 	 is localised in both time and frequency� the IWT is also localised

and gives us information in both domains� within the bounds of the Uncertainty

Principle� In fact� the time
frequency window is

�b� at� � a!�� b� at� � a!��	
�
��

a
� �

a
! ���

��

a
�

�

a
! ��

�
����	

where ��� ! �� and t�� !� are� respectively� the centres and widths of the fre


quency and time windows for the window function� 	�t	� If we identify ��

a with

the frequency variable �� we see that the time�space window narrows for high

frequency �small scale	 phenomena �a � �� a small	 and widens for analysis

of large
scale structures � a large	� Of course� the frequency window simulta


neously dilates or contracts in accordance with the Uncertainty Principle �See

Figure ���	�

Once our manipulations in the transform domain �e�g� thresholding	 are com


plete� we wish to return to our original domain� This is accomplished via an

inverse transform� however� if we permit our variables a� b to be continuous�

this inverse transform involves computing a �n� �	 dimensional integral �if the

function f has n space variables� f�x�� � � � � xn		� The �
D inverse formula is

f�x	 �
�

C�

Z Z
�W�f	�b� a		b�a�x	

da

a�
db� ����	
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Figure ���� The wavelet time
frequency window� The window provides an illustration
of the time�frequency localization of the IWT� When we have a low centre�frequency �the
dots at the centres of the cell� the time window expands to better analyze these large�scale
phenomena� for high centre�frequency� the time window narrows to provide a better analysis
of small scale features� The window area is the same in all cases�

where 	b�a�x	 is de
ned as

	b�a�x	 � jaj� �
�	

�
x� b

a

�
� ����	

Since one generally only considers positive frequencies �scales	� the inverse for


mula may be modi
ed to re ect this� One may also discretize one or the other

of a and b� For details� see ��� pg� ��#����

��� The Discrete Wavelet Transform �DWT�

To ensure computational e�ciency� we discretize both the scale� a and the

time
localization� b� in the following manner� a � ��j � b � k��j � k� j �Z� If
we then de
ne

	j�k�x	 � �j��	��jx� k	� j� k �Z� �����	

we obtain

�W�f	

�
k

�j
�
�

�j

�
�

Z
f�x	f� j

�	��jx� k	gdx � hf� 	j�ki� �����	
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Figure ���� Three wavelet basis elements � corresponding to 	����x	� 	�����x	
and 	�����x	� The wavelet dilation and scaling are such that k	kL� � �

where we have used inner product notation for compactness� From ����	 we

see that the parameter k localizes our transform about �t� � k	��j in the

time�spatial domain�� This is the Discrete Wavelet Transform �DWT	 of an

L��R	 signal� Although our data is generally also discrete� we still employ this

formalism to produce our wavelet coe�cients� as is done in general ��� ��� ����

This is possible since this discretized WT can be shown to be reversible �see

below	� which is all that one requires for a usable transform� Given the general


ity of L� functions� any discrete data we have may be considered as a sampled

version of such function and we may proceed with the DWT outlined above�

Since this transform is invertible� we can regenerate the input �function� and

hence� the original input samples�

There is� in fact� a DWTwhich operates on discrete input data �see� for example�

����	� however� this algorithm has 
lter lengths which become progressively

larger as the scale increases �it is an undecimated wavelet transform�	 This

implies that the 
ltering operations become progressively more expensive the

further down you decompose� this is not desirable in most circumstances�

In order that we may recover our original function from this sampling� we

require that f	j�kgj�k�Zform a Riesz basis ���� This is a less restrictive require


ment than orthogonality of the 	j�k in that it permits us to construct wavelets

which possess certain desirable properties which the latter do not� This will be

expanded upon in Chapter ��

�It should be noted that when � is �anti��symmetric about the origin� t� is zero�
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De�nition ��� The function 	 � L��R	 generates a Riesz basis if the following

two properties are satis�ed�

	� the linear span � 	j�k � j� k �Z� is dense� in L��R	�


� there exist positive constants A and B� � � A 
 B �� such that

Ak fcj�kg k��� 
 k
X
j

X
k

cj�k	j�kk�L� 
 Bk fcj�kg k��� �����	

for all fcj�kg � ���Z�	� where k fcj�kg k��� �
P

j

P
k jcj�kj� ���

If 	 generates a Riesz basis� then there is a unique Riesz basis f	j�kg which is

dual to f	j�kg i�e�

h	j�k� 	l�mi � 
jl � 
km� j� k� l�m �Z� �����	

where 
jk is the Kronecker Delta� being one when its indices are the same and

zero otherwise�

Every f � L� then has the unique series expansion�

f�x	 �
X
j�k

hf� 	j�ki	j�k�x	� �����	

If� in addition� there is a function $	 � L� which generates the dual basis in the

same fashion that 	 generates the Riesz basis f	j�kg� then we may also expand

f�x	 as follows�

f�x	 �
X
j�k

hf� 	j�ki	j�k�x	� �����	

Formulae �����	 and �����	 are inverse transform formulae� These formulae

relate the transform coe�cients to the original function� Property �����	 is

called the bi�orthogonality property and is satis
ed by all wavelets� If a wavelet

is orthogonal it satis
es

h	j�k� 	l�mi � 
jl � 
km� j� k� l�m�Z� �����	

�That is� one can approximate any L� function to arbitrary precision by taking an appro�
priately de�ned linear combination of these basis functions�
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Properties Wavelet Classes
Orthogonal Semi
orthog Bi
orthog

Dual% self
dual yes yes

Compact support% wavelet only wavelet wavelet and dual

Symmetry% no yes yes

Sequences% 
nite truncated 
nite

Table ���� Some comparisons between the three major classes of wavelet� Only
orthogonal wavelets do not possess a separate Dual Wavelet� If the wavelet or dual has
compact support� we can achieve perfect reconstruction� otherwise we must truncate when
we implement� Symmetry is important to reduce distortion when we reconstruct� Orthogonal
wavelets are orthogonal between scales and� within a particular scale� to their translates�
semi�orthogonal wavelets are orthogonal between scales only� bi�orthogonal wavelets are not
restricted by any orthogonality constraints save the bi�orthogonality relation� Equation �	�
���

That is� orthogonal wavelets are self�dual� having 	 � $	� Thus� when one

deals with orthogonal wavelets� the added complexity of having a dual present

is avoided� A wavelet which is orthogonal only between scales �frequencies	 is

called a semi�orthogonal wavelet� this is formalized as follows�

h	j�k� 	l�mi � �� j �� l� j� k� l�m �Z� �����	

Table ��� provides a summary of the properties possessed by these three wavelet

classes�

In some cases� all that one requires is that the reconstruction be stable� in

the sense that small changes in the DWT coe�cients do not lead to large

changes in the reconstruction� If this is true� then one need only insists that

the 	j�k constitute a frame of L��R	� This is a weaker condition than requiring

that they form a Riesz basis� and as such the resulting 	j�k may not possess

certain properties �such as linear independence	 which some wavelet algorithms

require� However� since every Riesz basis is also a frame� any nice properties

which frames possess� are automatically assumed by Riesz bases�

The DWT as outlined above� requires that one generate coe�cients for each

scale� j� Since the number of scales is in
nite� the transform has to be re


worked to enable perfect reconstruction when we perform practical calculations�

This remodeling is achieved by considering the multi
resolution nature of the

transform� I will return to this question after clarifying the ideas behind a

multi
resolution analysis�
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��	 Wavelets and Multi�Resolution Analysis

The concept of a Multi�Resolution Analysis �MRA	 is of fundamental impor


tance to wavelet theory� As the name implies� the notion of resolution occupies

a central role� the analysis decomposes a signal into components of di�ering

frequency� What does one mean by resolution% Intuitively� resolution serves

to quantify the amount of permissable variation in a region� Thus� a high res


olution image has a large amount of variation �detail	 in a region� whereas a

low resolution image is much smoother over this same region� Fourier Analysis

also provides a description of resolution� the frequency components of a signal

provide a measure of the contribution of each �spatial	 frequency component�

Fine detail corresponds to high
frequency information� thus� a high
resolution

signal will contain a large proportion high frequency sinusoids� Removing some

of this detail i�e�� leaving out some of the sinusoids leaves us with a �lower�

resolution� smoother� signal�

These ideas are formalized below� Since we wish to present as simple an in


troduction as possible� we 
rst consider �
D signals before generalizing to �
D

Signals� This also appropriate when one considers the manner in which our �
D

MRA is generated � see Section ������

����� Wavelet Series and Decompositions

In the previous section we saw that every wavelet 	 generates a wavelet decom�

position of f�x	 � L��R	� viz�

f�x	 �
X
j�k

cj�k	j�k�x	� �����	

where the coe�cients of the wavelet basis are are given by the IWT with respect

to $	� If we de
ne the subspaces Wj � closL�span f	j�k � k �Zg � that is� de
ne
scale subspaces or frequency bands� Wj � then we may write

L��R	 �
�X
j

Wj � � � � ��W�� ��W� ��W� �� � � � �����	

That is� every f�x	 � L��R	 has a direct sum decomposition�

f�x	 � � � �g���x	 � g��x	 � g��x	 � � � � � �����	
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with gj � Wj � for all j �Z�
If 	 is an orthogonal �or semi
orthogonal	 wavelet� we have hgl� gji � �� j �� l

where gk � Wk� that is� the subspaces Wj are mutually orthogonal� written as

Wi 
 Wj � i �� j� Then the direct sum in �����	 becomes an orthogonal direct

sum which is written in a similar manner�

L��R	 �
M
j

Wj � � � � �W�� �W� �W� � � � � � �����	

Both orthogonal and semi
orthogonal wavelets generate such orthogonal decom


positions of L��R	 �in both cases the wavelet basis is orthogonal across scales

and hence the scale subspaces are mutually orthogonal	�

One may now de
ne so
called approximation spaces� Vj � which contain the jth

resolution approximations of function in L��R	� in terms of our detail spaces�

Wj as follows�

Vj � � � � ��Wj�� ��Wj��� j �Z �����	

Approximation functions in a lower resolution subspace have had their higher

�spatial	 frequency components removed during the approximation operation

and are consequently less detailed �they have been smoothed	�

These de
nitions ensures that the following properties hold when we have a

valid wavelet ��� pg� ���#�����

�� � � � � V�� � V� � V� � � � � �

�� closL�
�S

jVj

	
� L��R	�

��
T
j Vj � f�g�

�� Vj�� � Vj ��Wj � j �Z�

�� f�x	 � Vj �� f��x	 � Vj��� j �Z�

Property � tells us that an approximation function at a speci
ed resolution is

also contained in all higher resolution approximation spaces� This approxima


tion may be viewed as an input function which does not possess intrinsic detail

at a higher resolution� Thus� the approximation operation projects this func


tion into all the higher resolution spaces� �stripping o�� non
existent detail in

the process�
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Property � states that by combining a su�cient number of detail signals �ele


ments of the detail spaces	 we can approximate our input function to arbitrary

precision� The set union provides us with all the detail spaces and we then

sum the appropriate di�erence signals from each� taking as many as we need

to achieve a prescribed accuracy� The closure operation ensures that we can

generate all of L��R	� since the procedure of adding detail levels only allows one

to approach the input signal� and hence we need to include the limit functions

as well�

Property � is essentially the inverse of Property �� since it strips away detail

rather than adding it� As we consider more of the approximation spaces� the

set intersection becomes smaller and smaller� hence the amount of detail we can

produce becomes progressively less �having fewer subspaces to synthesize our

function from	� In the limit� when we take the intersection of all the Vj �and

this includes those with near in
nitely low resolution	� we are left with no detail

at all� That is� a signal which corresponds to the zero function� possessing no

energy and� consequently� no information�

Property � encapsulates the essence of a MRA� an approximation function is the

sum of a lower
resolution �smoothed	 approximation and the detail di�erence

between them� The former resides in the approximation space� Vj � and the

latter in the detail space� Wj � The formula itself follows immediately from

Equation �����	�

Property � tells us that a function which resides in a particular approximation

space� Vj � also resides in the higher resolution approximation space� Vj��� but

scaled in such a manner that it now re ects the resolution of the latter space�

The factor of two is a consequence of our dyadic resolution speci
cation �i�e�

resolution � �j	�

����� Multi�Resolution Analysis of ��D Signals

Just as the subspaces Wj are generated by the wavelet 	� it may be possible

to 
nd a single function � which generates a Riesz basis f�j�kg of Vj � where

f�j�kg is de
ned in an analogous manner to f	j�kg� If this is possible we have
a Multi�Resolution Analysis of L��R	� satisfying the properties listed above�

De�nition ��� A function � � L��R	� called the scaling function� is said to

generate a MRA if it generates a nested sequence of closed subspaces Vj which
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Figure ���� An example of a �
DMRA� The top�most signal represents our input �taken
from the space V��� Each subsequent �lower� resolution tier consists of an approximation
signal �left� and a detail signal �right�� The detail signal for a particular level is obtained by
di�erencing the current and previous approximation signals�
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satisfy Properties 	�
�� and � of Section 
���	� where

Vj � closL� � �j�k � k �Z�� j �Z
and f���kg forms a Riesz basis of V��

This de
nition emphasizes an important subtlety involved in the construction of

a MRA� the scaling function is assumed to have an identity which is independent

from the existence of a wavelet� Indeed� Equation �����	 shows that the wavelet

is dependent on our choice of scaling function� One has to decide� based on

the particular needs of one�s application� which sequence fpg will describe the
scaling function� For example� the choice of a binomial 
ltering kernel produces

a spline scaling function� the sequence fqgmay then be deduced from additional

constraints enforced by the user as well as those imposed by the choice of fpg�
The detail spaces�Wj � referred to above� constitute additional �useful	 structure

which is imposed on the MRA� the aim is then to 
nd a wavelet which will

generate the bases to construct these spaces� One can always de
ne these

complement spaces� hence� Property �� while not explicitly required for a MRA�

is always assumed to hold�

It is worthwhile mentioning here that the alternative wavelet
MRA convention

has its nested subspaces de
ned such that those with higher indices are nested

in those with lower indices� that is� Vj � Vj��� Naturally� the other properties

must be appropriately adjusted to re ect this� for example� the scale parameter

j is replaced with �j in the expansion of 	j�k�x	� For details on this formalism

the reader is referred to �����

Given that our subspaces fVjg and fWjg are generated by a scaling function

and wavelet� respectively� we wish to utilise the structure of a MRA to 
nd

an algorithm for e�cient calculation of our di�erent resolution approximations�

From Property � in the list above� we are able to approximate our initial func


tion f�x	 as closely as desired by considering its projection� fN � into a subspace

VN with su�cient detail for our purposes �we usually take this to be V�	� Then�

by Property �� this function is expressible as the direct sum of the next lower

resolution approximation and the detail di�erence between them�

fN � fN�� � gN��� fN�� � VN��� gN�� � WN��� �����	

After M iterations of this decomposition� we obtain�

fN � gN�� � gN�� � � � �� gN�M � fN�M � �����	
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We are free to proceed further� but after a point this becomes meaningless

since the useful informational content of the lowest resolution signal may be nil�

Equation �����	 expresses the fact that our Nth level approximation consists of

a low resolution �smoothed	 approximation and a series of di�erent resolution

detail functions� Using this decomposition strategy one is able to derive a

means of calculating the basis coe�cients of both the smoothed and detail

spaces without explicitly referring to either the wavelet or the scaling function

�details in ���� and ��� pg� ���#����	�

Since � � V� and 	 � W� are in V� �by Properties � and �	 and this space has

basis n
���k � �������x� k	 � k �Z

o
there are two sequences fpkg and fqkg � �� such that

��x	 �
X
k

pk���x� k	� �����	

	�x	 �
X
k

qk���x� k	� �x � R� �����	

These formulae are known as two�scale relations �of the scaling function and

wavelet� respectively	� since they relate the functions 	�x	� ��x	 to the scaled

translates of the scaling function� ��x	� Furthermore� since both ���x	 and all

its translates are in V� �they are the unweighted basis elements	 and V� � V� ��W��

one is able to derive the following relationship ��� pg� ���#���� �����

���x� l	 �
X
k

�al��k��x� k	 � bl��k	�x� k	�� l �Z �����	

where the sequences are also in �� ���� This relation is called the decomposi�

tion relation of 	 and �� Given these four sequences� one is able to formulate

decomposition and reconstruction algorithms for the detail and approximation

coe�cients� These algorithms provide a means of implementing the DWT�

Since fj � Vj and gj � Wj � we have the following series representations�

fj�x	 �
X
k

cjk���
jx� k	�

n
cjk

o
k�Z

� �� �����	

gj�x	 �
X
k

djk	��
jx� k	�

n
djk

o
Z
� �� �����	
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where the normalization factor �j�� has been included in the sequence� The su


perscript in the sequence represents the resolution level � it is not an exponent�

In particular� using Equation �����	�

f�x	 � f��x	 � g���x	 � � � �� g�J�x	 � f�J �x	 �����	

�
X
k

d��k 	���k�x	 � � � ��
X
k

d�Jk 	�J�k�x	 �
X
k

c�Jk ��J�k�x	������	

Thus� given the sequences fdjk� j � �� � � � � J� k � Zg and fcJk � k � Zg� we can
reconstruct our input function� by expanding �����	�

The sequence fdjkgk�Zcorresponds directly to the wavelet coe
cients generated

by the DWT �taken w�r�t� the dual wavelet	� the coe�cients fcjkgk�Zencode

the information contained in the wavelet coe�cients for the resolution levels

we do not wish to evaluate� These coe�cients are formally obtained �for the

wavelet series expanded in terms of 	j�k	 as c
j
k �� f� $�j�k �� where $�j�k is gen


erated from a unique dual scaling function� $�� which satis
es the relationship

� $�j�k� 	j�l �� �� j� k� l �Z��� pg� ����� However� I do not use this approach

explicitly� rather than computing integrals� one employs the algorithms intro


duced in ���� to produce the desired transform coe�cients�

The decomposition algorithm is given by�

cj��k �
X
l

al��kc
j
l � �����	

dj��k �
X
l

bl��kd
j
l � �����	

That is� given the basis coe�cients of a smoothed function on resolution level j�

we can use this algorithm to 
nd the approximation and detail detail coe�cients�

fcjkg and fdjkg respectively� for all successive lower resolution levels� When using

this scheme to implement the DWT� one decompose from level � to a particular

level� J � keeping all the wavelet �detail	 coe�cients and discarding all but the

last tier of approximation coe�cients� This provides all the information we

require to reconstruct our input function� This reconstruction is performed by

means of the following reconstruction algorithm�

cjk �
X
l

�pk��lc
j��
l � qk��ld

j��
l �� �����	
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Figure ���� The decomposition process� The diagram represents the �ltering steps that
are involved in the decomposition process� Each box corresponds to a convolution with the
time�reversal of indicated sequence i�e�� fa�kg� The arrows indicate that the output from each
stage is decimated �that is� only even numbered samples are kept�� The low�pass component
is then fed back into the �lter bank and the process is repeated�

Both these algorithms can be recast as convolutions� Equation �����	 in the

decomposition algorithm can be considered as the downsampled �discrete	 con


volution of fa�kg and fcjkg�

The second equation may be viewed similarly �See Figure ���	� One can show

that fakg acts as the impulse response of a low
pass 
lter� while fbkg acts as

the impulse response of a band
pass 
lter�� The 
lter fakg corresponds to a

discrete version of the dual scaling function� whereas the 
lter fbkg may be

considered as the discrete analogue of the dual wavelet�

The reconstruction algorithmperforms a convolution between its sequences only

after upsampling the detail and smoothing coe�cients� i�e�� zeros are placed be


tween consecutive coe�cient values �Figure ���	� As in the previous case� the


lters may also be considered as discrete versions of continuous counterparts�

fpkg corresponds to the scaling function� and fqkg corresponds to the wavelet�

The former is a low
pass 
lter� whereas the latter is band
pass in nature� This

convolutional interpretation means that one can implement these schemes ef


fectively in hardware using FFT
based algorithms�

�Band�pass� because the detail coe
cients represent di�erence information in particular
frequency bands�
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Figure ���� The reconstruction process� To reconstruct the approximation coe
cients
for a particular level from the DWT representation� one again uses a convolutional scheme�
Now however� the input sequences to each stage are upsampled and the outputs are added
together� This process is repeated until all the detail tiers have been used�

����� Multi�Resolution Analysis of ��D Signals

Since we wish to apply these techniques to images� we have to extend the pre


vious results to �
D� There are di�erent methods which one can employ in this

generalization� One may� for example� attempt to 
nd a �
D scaling function�

&�x� y	� which generates a �
D MRA� Vj which satis
es all the appropriate

analogues to our �
D scheme ���� pg� ���#����� This approach provides us with

one �
D wavelet� '�x� y	� however� the extra degree of freedom that �
D space

provides us enables us to have several wavelets underlying our detail spaces� as

the next paragraph illustrates�

However� the most popular method for constructing a MRA of L��R�	� is to

de
ne the space Vj as the tensor product of the space Vj with itself ����� Then

Vj induces a MRA of L��R�	 � Vj � Vj�� with the properties we discussed

before and a scaling function

&j�m�n�x� y	 � �j���jx�m	���jy � n	� m� n �Z� �����	

De
ning Wj to be the orthogonal complement	 of Vj in Vj�� then gives us�

Vj�� � Vj�� � Vj��

� �Vj �Wj	� �Vj �Wj	

� �Vj � Vj	� ��Wj � Vj	� �Vj �Wj	� �Wj �Wj	�

� Vj �Wj �

�����	

�We will use � rather than �� since this is appropriate for the spline�based MRA we will
consider shortly�



CHAPTER �� WAVELET THEORY ��

Figure ���� The 
rst four approximation images in our quadratic Multi

Resolution structure� The resolution decreases clockwise from top left�

So the complementary subspace Wj consists of three pieces� with Riesz Bases�

	j�m�x	�j�n�y	� for �Wj � Vj	� �����	

�j�m�x		j�n�y	� for �Vj �Wj	� �����	

	j�m�x		j�n�y	� for �Wj �Wj	 �����	

These three detail spaces contain the detail lost between two consecutive res


olution approximations� In fact� each space contains the sharp variation �high

frequency	 information of the previous approximation in a particular direction�

Equation �����	 gives the basis for the detail space which detects �represents	

sharp variations in our �
D detail signal which are orientated in the x
direction�

i�e� vertical edges� Similarly� the basis given by �����	 will represent edges in

the horizontal direction� Equation �����	 is the basis for the detail space which

���x� and ��x� may be viewed as the impulse responses of a band� and low�pass �lter�
respectively� The parameter j produces scaled �lters� whereas k allows these �lters to pick
out localised detail information about �t� � k�	�j �
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Figure ���� Third level detail images� These images illustrate the directional sensitivity
of the Wavelet Transform� It decomposes the detail lost between consecutive levels into
images which contain the detail information in the horizontal �top left�� vertical �top right�
and diagonal �bottom� directions� The bases underlying these images are �respectively� the
wavelets �����x� y�� �����x� y� and �����x�y� � cf� Equations �	���� 	��
�	��	��

detects diagonal edges� We now de
ne three �
D wavelets as follows�

'
���x� y	 � ��x		�y	 �����	

'
���x� y	 � 	�x	��y	 �����	

'
���x� y	 � 	�x		�y	� �����	

Then
n
'

i�
j�m�n�x� y	 � �j'


i�
m�n��jx�m� �jy � n	� i � �� �� �� m�n �Z

o
is a Riesz

basis forWj � when we allow the scale parameter j to vary over all integers this

basis is then a basis for L��R�	� As in the �
D case� we can also 
nd a dual

basis� $'

i�
j�m�n which satis
es the bi
orthogonality relationship

h'
m�
k�i�p�

$'

n�
l�j�qi � 
mn
kl
ij
pq� �����	

In our analysis� we will use a �
D L� function� I�x� y	� to represent the in


tensity pro
le of our image� on the understanding that the lattice of points
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Z	Zcontains our image description� We will thus manipulate the image as

if it were in L��R�	� until we wish to produce output� at such time we will

sample I�x� y	 on this integer lattice to produce our pixel values� As explained

earlier� the DWT which is generally employed is de
ned for L��R	 functions�

rather than a discrete data set� Thus� the introduction of an image function�

while apparently out of place in a discrete digital scenario� is in fact quite stan


dard� no mathematical rigour has been sacri
ced� Furthermore� the issue of

e�cient computation of the transform coe�cients has already been dealt with�

the decomposition and reconstruction algorithms ensure that we do not have

to compute integrals at all� I will return to these considerations in the next

chapter� in which a full discussion of the spline
wavelet scheme employed will

be undertaken�

The kth resolution approximation of our image� I�x� y	� is given by

Ik�x� y	 �
X
i�j

ckij&k�i�j�x� y	� �����	

This relationship has the same form as the �
D case � a consequence of the

tensor product technique used to generate the �
D MRA� Similarly� just as we

did in �
D� we may write

Ik���x� y	 � Ik�x� y	 � gk�x� y	� �����	

where gk�x� y	 encodes the detail lost between resolutions k and k � � and is

given by

gk�x� y	 �
�X

i�j�p��

dk

p�
ij '


p�
k�i�j �����	

The �
D decomposition algorithm is a simple extension from the �
D algorithm�

the same sequences are used� but now they occur in product combinations�

cj��kl �
X
m

X
n

am��kan��lc
j
mn �����	

d�
j��
kl �

X
m

X
n

am��kbn��lc
j
mn �����	

d�
j��
kl �

X
m

X
n

bm��kan��lc
j
mn �����	

d�
j��
kl �

X
m

X
n

bm��kbn��lc
j
mn� �����	
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As with the decomposition algorithm� the �
D reconstruction algorithm employs

the same sequences as its �
D counterpart�

cjkm �
P

l

P
p pk��lpm��pc

j��
lp �P

l

P
p pk��lqm��pd�

j��
lp �P

l

P
p qk��lpm��pd�

j��
lp �P

l

P
p qk��lqm��pd�

j��
lp � �����	

Once again� a convolutional interpretation can be attached to these formulae�

however� these �
D convolutions are separable and can thus be implemented

by successive horizontal and vertical 
ltering operations with two �
D 
lters

� a far more economical approach� Our decomposition algorithm proceeds by


ltering the �
D coe�cient matrix� fcijg� along each of its rows� downsampling

each in turn� and then repeating this procedure �with the second 
lter	 on the

resulting columns� The reconstruction algorithm di�ers in that the input �
D

sequence �the detail and approximation coe�cients	 are 
rst upsampled before

the convolutions are applied�

Given the input approximation coe�cients� one can decompose and reconstruct

as desired� the only time we must explicitly concern ourselves with function

evaluations is when we wish to compute our di�erence or approximation im


ages� The former are computed via Equation �����	� and the latter with Equa


tion �����	� The means of determining the input coe�cients� fc�ijg� will be dealt
with in the next chapter�

��
 Concluding Remarks

Having read this chapter� the reader should now have a working knowledge of

the Wavelet Transform and a good understanding of the relationship between

this transform and multi
resolution analysis� The reason for choosing the WT

over a STFT should be apparent� it provides a better analysis of general signals�

In addition� the transform can be described by a series of convolutions� making

it suitable for hardware implementation�

The �
D wavelet scheme is a simple generalization from �
D and is constructed

by means of tensor products� This construction adds a new element� which

was absent in one dimension� directional sensitivity� That is� the �separable	
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lters which characterize the �
D Wavelet Transform� are oriented� they only

pass information which is oriented in the same manner that they are� This

aspect is useful in image analysis� where one might very well wish to extract

features which have a particular orientation� The wavelet MRA is a sub
band


ltering scheme� hence the directional sub
band interpretation of human visual

processing which is associated with these schemes ���� ��� is applicable� These

issues will be discussed in great depth when we deal with the WT in the context

of an image compression scheme� However� before doing this� we must negotiate

a little more theory� viz� that of the semi
orthogonal spline MRA�
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A Spline�Based

Multi�Resolution Analysis

The previous chapter introduced the general theory of multi
resolution analyses

� the function of the following sections is to 
x the particular MRA upon which

the image compression�synthesis algorithms which follow are based� I shall be

using a spline
based semi
orthogonal MRA� independently developed by Chui

��� and Unser ����� This MRA has a number of desirable features�

� It provides a wavelet and scaling function with compact support�

� Closed form or non
iterative expressions are available for all the formulae

employed �compare this with the orthogonal scheme of Daubechies� ���� �

where the scaling function is obtained as the limit of an iterative process	�

� Both the scaling function and the wavelet� as well as their duals� possess

either linear of generalized linear phase� This property� a consequence

of the symmetry possessed by these functions� is also re ected in the

decomposition and reconstruction 
lters� If a 
lter has �generalized	 linear

phase then distortions in the input sequence �perhaps from thresholding

or rounding errors	 are not unduly magni
ed by the 
ltering operation� If

a wavelet is orthogonal and has compact support it cannot possess linear

phase ��� �the exception being the Haar wavelet� which does not provide

a window function and is consequently not well suited to signal analysis	�

� Fast and e�cient algorithms exist to compute the values of the sequences

required� For example� one can use so
called Linear Pascal Triangular Al


��
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gorithms �LPTA�s	 to compute the values of the reconstruction sequences

rapidly� Furthermore� the symmetry of the sequences implies that one

need only compute a subset of all the coe�cients�

� The symmetry of the sequences means that one can use simple symmetric

boundary conditions�

The are� of course� some drawbacks associated with this approach�

� Separate� non
orthogonal dual functions exist�

� These dual functions have in
nite support and� consequently� so do the

decomposition sequences fakg and fbkg� They are in
nite impulse reponse

�IIR	 
lters�

The latter point implies that these in
nite sequences have to be truncated

before implementation � this is� in fact� what I have done� An alternative

approach� which does not involve explicit truncation� was proposed by Unser in

����� rather than truncating the sequences directly� one decomposes the inverse


lter components of these sequences �which are responsible for their having

an IIR	 into a pair of recursive 
lters which can be implemented with very

few arithmetic operations� The stopping condition on the recursion implicitly

encodes the sequence truncation� The details of this approach are given in �����

The 
nal decision as to which MRA scheme one should employ will ultimately

depend on the nature of the application involved� An important consideration

was the fact that the above scheme was based on polynomials� The hardware im


plementation underlying the synthesis algorithms discussed later� achieves op


timal performance when reconstructing polynomials� hence� any scheme based

on polynomials is highly desirable� While there are orthogonal schemes �such

as that of Le Marie� used in ����	 which are also spline
based� the wavelet no

longer possesses compact support� This� in turn� implies that the underlying

decomposition and synthesis 
lters are IIR 
lters and must consequently be

truncated� In contrast� the semi
orthogonal spline approach outlined below�

only requires that the decomposition 
lters be truncated� The decomposition

sequences for both methods decay exponentially and consequently induce simi


lar errors upon truncation� The reconstruction 
lters are very short FIR 
lters�

This implies that reconstruction is very fast with the latter method� which is

desirable when retrieving and reconstructing an encoded image�



CHAPTER �� A SPLINE�BASED MULTI�RESOLUTION ANALYSIS ��

Furthermore� since wavelet compression involves extensive quantization of wavelet

coe�cients� the linear phase characteristics of the spline 
lters is very useful�

The following sections are intended to provide fairly extensive coverage of the

issues surrounding this spline MRA� particularly those concerning implemen


tation� Section ��� and Section ��� provide the theory one needs to utilize the

spline MRA as well as sketching the derivation processes employed to obtain

the decomposition and reconstruction sequences� The issue of boundary condi


tions is extensively addressed in Section ���� A brief comparison between cubic

and quadratic spline schemes is then given in Section ���� Finally� the means of

producing the initial input approximation coe�cients is discussed �Section ���	�

��� Cardinal Splines

A �polynomial	 spline curve consists of polynomial segments which are pieced

together at knot�points with a pre
de
ned level of continuity�

One normally requires that they have at least C� continuity� that is� that the

tangent does not change abruptly when one moves across segment boundaries�

Of course� the degree of the polynomial determines the maximum permissable

smoothness across a knot
point� a linear spline curve cannot possess more than

simple continuity across a join� Spline curves are normally encountered in the

context of data set interpolation� in this case� the knot
points constitute a set

of pairs� f�xi� f�xi		 � i � Z� g through which the interpolant is constrained to

pass� The intervals between the knot
points are smoothly 
lled by the spline

curve� The term knot�sequence is used to mean the set of abcissas correponding

to the knot
points�

If the knot
points are spaced at regular intervals one speaks of a cardinal spline�

The functions which underly the spline MRA are of this kind� The space of

cardinal splines� Sm� contains all cardinal spline functions� of order m�

De�nition ��� For a positive integer m� the space Sm� of cardinal splines of

order m and with knot�sequence Z� is the set of all functions f � Cm�� such

that the restrictions of f to any interval �k� k � �	� k � Z� are in the space of

polynomials of degree at most m� �� �m��� that is

f j
k�k��
 � �m��� k �Z� ����	
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The elements of Sm are expressible as a weighted sum of mth order cardinal

B�splines�

f�x	 �
X

ckNm�x� k	� f � Sm� ����	

The mth order cardinal B
spline is de
ned as

Nm�x	 � �Nm�� �N�	�x	 �

Z �

�
Nm���x� t	dt� m � �� ����	

where

N��x	 � �
���
�x	 �



� if x � ��� �	�

� otherwise�
����	

The cardinal B
splines are thus generated by repeatedly convolving the unit box

with itself� Figure ��� shows some of these functions� The �central limit theorem�

implies that this iterative process converges towards a Gaussian function�

Cardinal B
splines satisfy the following identity� which enables one to compute

their values without resorting to integral formulations�

Nm�x	 �
x

m� �
Nm���x	 �

m� x

m� �
Nm���x� �	� ����	

The following list summarizes some of the properties which B
splines possess�

Compact Support� supp Nm � ���m�� where supp means support�

Positivity� Nm�x	 � �� for � � x � m�

Partition of Unity�
P�

k���Nm�x� k	 � �� for all x�

Symmetry� Nm�
m
� � x	 � Nm�

m
� � x	� x � R�

So� B
splines are symmetric� have compact support and are never negative

in value� They are also easy to compute � Equation ����	� I will return

to the computational advantages of cardinal spline functions when I discuss

implementation of the spline multi
resolution analysis�

��� Cardinal Spline MRA

The cardinal spline spaces Sm have equally spaced integer knot
points� How


ever� if one de
nes the spaces Smj � which contain cardinal splines with knot


points ��jZ� j �Z� then we have the following relationship

� � � � Sm�� � Sm� � Sm� � � � ����	
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Figure ���� Spline scaling functions� The cardinal spline scaling functions are generated
by repeatedly convolving N
�x� with itself�

since any cardinal spline curve de
ned on the knot
sequence �lZis also a car


dinal spline on the 
ner knot
sequence �mZ� when l � m� the converse is�

however� not true� This type of behaviour is precisely what one requires of

a MRA� However� before one can say that the spaces V m
j � Smj constitute a

MRA� one must establish whether the �scaling function� Nm generates a Riesz

basis for V m
� � If this is the case� then the set

f�j��Nm��
jx� k	 � k �Zg

is a Riesz basis for V m
j and we have a valid MRA� satisfying the properties

given in De
nition ���� It turns out that is is indeed so ��� pg� ��#���� Our

scaling function� Nm�x	� must satisfy the two scale relation

Nm�x	 �
X

pmk Nm��x� k	� ����	

as explained in Chapter �� By taking the Fourier transform of both sides of the

equation and matching coe�cients� this sequence is shown to be the binomial


lter �Figure ���	�

pmk �

���

���

��m��

�
m

k

�
for � 
 k 
 m�

� otherwise�

����	

A full characterization of the smoothing spaces� V m
j � generated by these scaling
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Figure ���� The reconstruction sequences fpkg� �A� shows this sequence for the
quadratic case� while �B� provides for the cubic case� The height of the impulse provides the
magnitude of the sequence value at that index� Observe that these sequences have compact
support and are symmetric�

function is given by

Vm
j � ff � Cm�� � L��R	 � f j
 k

�j
� k	�

�j

 � �m��� k �Zg� ����	

This states that functions which are both in L� and satisfy the indicated conti


nuity condition are elements of the jth resolution approximation space� provided

that their restriction to the indicated interval shows that they are polynomials

of degree at most m� �� We see here� that as j becomes smaller� the intervals

over which the function is required to have a uniform polynomial character be


come progressively larger� This explains the smoothed nature of low resolution

approximations to the original function�

Having established the structure of the approximation spaces� one must now

decide on the nature of the detail spaces and their associated wavelets� The

wavelet must satisfy two contraints� in addition to those imposed by the choice

of Nm�x	 as our scaling function�

�� it must be orthogonal across scales and

�� it must have compact support�

The B�wavelet� 	m�x	� has support on ��� �m��� and is given by ��� pg� ���#����

	m�x	 �
�m��X
k��

qkNm��x� k	 �����	

where

qn �
���	n
�m��

mX
l��

�
m

l

�
N�m�n� �� l	� n � �� � � � � �m� �� �����	
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Figure ���� The reconstruction sequences fqkg for the quadratic ��A�	 and cubic
��B�	 cases� The height of the impulse provides the magnitude of the sequence value at that
index� Observe that these sequences have compact support and are symmetric� half�sample
anti�symmetric for �A� and whole�sample symmetric for �B��

This wavelet generates Riesz bases for the detail spaces Wm
j � in the manner

discussed in Chapter �� Figure ��� shows the quadratic and cubic wavelets�

Note that the cubic wavelet is symmetric� whilst the quadratic wavelet is anti


symmetric� These symmetry conditions ensure that the former has linear phase

and the latter� generalized linear phase� For this reason the cubic spline scheme

is normally used� however� in this case a quadratic scheme was preferred� The

motivations for this choice are discussed in Section ����

The derivation of the decomposition sequences fakgk�Zand fbkgk�Zis some


what more di�cult� I will provide an outline of the derivation� those desiring

more information should consult ����

As a 
rst step� one de
nes the following �symbols� �which are modi
ed Z


transforms	

P �z	 � �

�

X
k

pkz
k

Q�z	 � �

�

X
k

qkz
k �����	

where the sequences fpkg and fqkg are the two
scale sequences referred to pre


viously�

The matrix

MP�Q�z	 �
�

P �z	 Q�z	

P ��z	 Q��z	

�
�����	
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Figure ���� Cardinal spline wavelets� The cubic wavelet� ���x� is symmetric� while the
quadratic wavelet� ���x� is anti�symmetric�

is used as a basis for the de
nition of two more complex functions� G�z	 and

H�z	�

G�z	 �
Q��z	

�det MP�Q	�z	

H�z	 �
P ��z	

�det MP�Q	�z	
�����	

where �det M � refers to the determinant of the matrixM � These functions are

de
ned in this manner so that one may produce a simple inverse for the matrix

MP�Q� In fact�

MP�Q�z	M
T
G�H�z	 � I�

MT
G�H�z	MP�Q�z	 � I� jzj � �� �����	

where I is the identity matrix and T represents a matrix transpose� The 
rst

of these equations �the only one referred to subsequently	 is equivalent to the

following pair�

P �z	G�z	 � Q�z	H�z	 � ��

P �z	G��z	 � Q�z	H��z	 � �� jzj � �� �����	



CHAPTER �� A SPLINE�BASED MULTI�RESOLUTION ANALYSIS ��

One may also write the following� when detMP�Q �� � on jzj � �

G�z	 �
�

�

X
k

gkz
k �

H�z	 �
�

�

X
k

hkz
k� �����	

where the sequences are in �� �i�e�� they are absolutely summable	�

Equations �����	 may be restated as follows�

P �z	�G�z	 � G��z	� �Q�z	�H�z	 �H��z	� � ��

P �z	�G�z	�G��z	� � Q�z	�H�z	�H��z	� � �� jzj � �� �����	

When this reformulation is coupled with Equations �����	� one has

P �z	
X
k

g�kz
�k � Q�z	

X
k

h�kz
�k � ��

P �z	
X
k

g�k��z
�k�� � Q�z	

X
k

h�k��z
�k�� � �� jzj � �� �����	

Taking z � e�i��� and multiplying the 
rst equation by ����� 	 and the second

by z ����� 	� one obtains the following relationships�

���
�

�
	 �

X
k

�
g�kz

�kP �z	���
�

�
	 � h�kz

�kQ�z	���
�

�
	
	
�

���
�

�
	e�i��� �

X
k

�
g�k��z

�kP �z	���
�

�
	 � h�k��z

�kQ�z	���
�

�
	
	
� �����	

Now� the two
scale relations for the scaling and wavelet functions are given by

��x	 �
X
k

pk���x� k	�

	�x	 �
X
k

qk���x� k	� �����	

Taking their Fourier transforms� yields ����	 � P �z	����� 	 and
�	��	 � Q�z	����� 	�

Substituting these expressions into the above formulae and taking the inverse

Fourier Transform of both equations then gives

����x	 �
X
k

�g�k��x� k	 � h�k	�x� k		�

����x� �	 �
X
k

�g�k����x� k	 � h�k��	�x� k	 �����	
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n En�z	

� �

� � � z

� � � �z � z�

� � � ��z � ��z� � z�

� � � ��z � ��z� � ��z� � z	

� � � ��z � ���z� � ���z� � ��z	 � z�

� � � ���z � ����z� � ����z� � ����z	 � ���z� � z�

Table ���� Euler
Frobenius polynomials� The �rst seven E�F polynomials� The variable
z � C �

which is equivalent to

���x� l	 �
�

�

X
k

�g�k�l��x� k	 � h�k�l	�x� k		� l �Z� �����	

since the 
rst equation yields the result for even integers and the second for

odd integers� l �as a little algebra will show	� Making the identi
cation an �
�
�g�n and bn � �

�h�n provides us with the decomposition relation referred to

in Chapter �� The decomposition and reconstruction algorithms follow fairly

simply �See Chui ��� pg� ���#����	� Details are given in ��� pg� ���#���� on the

derivation of a wavelet with compact support� This process yields the following

pair of equations

Am�z	 � ��m�� � z	m
E�m���z	

zE�m���z�	
�

Bm�z	 �
���m� �	"

��m
��� z	m

�

zE�m���z�	
� �����	

where Am�z	 �
P

k a
m
k z

�k and Bm�z	 �
P

k a
m
k z

�k � The complex function

E�m���z	 is the Euler�Frobenius polynomial of order �m� ��

E�m���z	 � ��m� �	"
m��X

k��m��

N�m�m� k	zk�m��� �����	

The roots of the Euler
Frobenius polynomials are used to derive values for

the sequences fakg and fbkg� Table ��� provides the 
rst few polynomials� The

roots� 
k� are simple� real and negative and satisfy 
j
�m���j � �� The quotient
zm��

E�m���z

occurs �in one guise or another	 in the both the symbols Am�z	 and

Bm�z	� Hence� if one can deduce the coe�cients of the complex polynomial this

product induces� the values of famj gj�Zand fbmj gj�Zcan be deduced�
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That is� given the Laurent� series

zm��

E�m���z	
�
X
j�Z

�
�m

j zj � jzj � �� �����	

one must 
nd the sequence f�kgk�Z� Since the quotient referred to is not a

�complex	 polynomial when m � �� this sequence has in
nite support for both

the cubic and quadratic schemes�

In ���� the following result is derived�

Lemma ��� Let m be a positive integer and 
j � 

�m

j � j � �� � � � � �m� �� be

the zeroes of E�m���z	 arranged such that


�m�� � 
�m�� � � � � � 
� � ��

If we write

zm��

E�m���z	
�
X
j�Z

�
�m

j zj � jzj � �� �����	

then

�j � �
�m

j �

m��X
k��

�

m��
k

E�
�m���
k	

�


jjj
k � j �Z� �����	

In addition� �j � ��j � for all m�

With this result� one can deduce the values of the decomposition sequences�

fakg� amj � ��m��
�
�

P
l�Zjqm�l��m�j��j��m


l � amm�j � amj �

fbkg� bmk � ���
j��m��
�
�m

P
l�Z

�
m

�l� �m� j � �

�
�
�m

l � bm�m���j � ���	mbmj �

To show how these are produced� I will derive the 
rst result� the second result

is derived similarly�

Am�z	 � ��m�� � z	m
E�m���z	

zE�m���z�	
�����	

�
��m� �	"

�

Q��z	
z�m��

�z�	m��

E�m���z�	
�����	

�����	

�A Laurent series is a complex power series� In this context� the coe
cients of this series
are required to be absolutely summable�
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Now� fromEquations �����	 �the factor of ��� has been included in the sequences

for convenience	� and the quotient discussed above� one has

Q��z	
z�m��

�
X
j

qmj z
j����m���	j and �����	

�z�	m��

E�m���z�	
�

X
l

�lz
��l� �����	

Taking the products indicated above� then yields

Am�z	 �
X
n

X
l

�
��m� �	"

�
jqm�l��m�n��j�l

�
z�n� �����	

which then provides us with the sequence fakgk�Z� The absolute value sign

occurs because ���	jqj � jqj j� The symmetry relations are easily deduced

by substitutition� The decompositions sequences for the quadratic case are

tabulated in an Appendix�

The issue of truncation error will be taken up in section ����

The sequence f�kgk�Zhas further signi
cance� it is the coe�cient sequence

�barring a multiplication	 for the dual wavelet� hence the in
nite support of

this function� The dual wavelet is given by

$	m�x	 �
���	m����m� �	"

�m��

X
k

�
�m

k L

�m

�m ���x�m� �� k	� �	� �����	

where L
�m

�m �x	 is themth order derivative of the �mth order interpolatory spline�

which This function is de
ned as

L�m�x	 � ��m� �	"
X
k

�
�m

k N�m�x�m� k	� �����	

and satis
es L�m�k	 � 
k��� k � Z� Figure ��� shows the quadratic and cubic

dual wavelets�

��� Boundary Conditions

For the wavelet transform to be usable� one must be able to ensure reversibility�

This is achieved by paying careful attention to the boundary conditions �BCs�

one imposes when applying the various wavelet 
lters � these cannot be arbi


trary� but must interact in just the right way if our transform is to be reversible�
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Figure ���� The cubic and quadratic dual wavelets� These functions have in�nite
support but decay exponentially� They also possess the same symmetry as their corresponding
wavelets�

Fortunately� since the 
lters all possess either symmetry of anti
symmetry� one

can use simple symmetric boundary extensions�

Since wavelet boundary conditions pose many problems for implementors� I

have attempted to make their derivation as clear as possible� Two papers

which provided important insights were those of Brislawn ��� and Unser ����� the

former went so far as to enumerate various categories of symmetric boundary

conditions � but only for quadrature mirror 
lters� and the spline
wavelet

tranform does not constitute a quadrature mirror 
lter
bank�

����� Symmetric signal extensions

There are two major classes of signal extensions ����

� those with whole
sample symmetry and

� half
sample symmetry�

Whole
sample sequence extensions have their centre of symmetry on a integral

index� while those with half
sample symmetry are symmetric about a half


integer �index� �See Figure ���	� These extensions may be de
ned so as to

introduce periodicity into the signal� but for reasons of simplicity I do not

perform this periodic extension� I always assume that I will never require more

than one period on either side of the input signal � it would require a very

small image to violate this constraint� the precise size depending on the number

of terms kept in the decomposition sequences�
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HSS WSS

Centre of symmetry Centre of symmetry

Figure ���� Symmetric extensions� The dashed line indicates the centre of symmetry�

HSA WSA

0

Point of Symmetry

Point of Symmetry

Figure ���� Anti
symmetric extensions� The centre of symmetry is indicated by a
dashed line� Observe that WSA forces the sequence to assume the value zero at the point
of symmetry� HSA enforces this zero condition at a half�sample point of symmetry i�e�� an
�index� of the form k � �

� � k �Z�
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De�nition ��� The four basic sequence extensions are

Whole�Sample Symmetric A sequence is whole
sample symmetric �WSS�

about an index k if sk�n � sk�n� for all n�

Whole�Sample Anti�symmetry A sequence is whole
sample anti
symmetric

�WSA� about an index k if sk�n � �sk�n� for all n�

Half�Sample Symmetry A sequence is half
sample symmetric �HSS� about

the �index� k � �
� if sk�n � sk���n� for all n�

Half�Sample Anti�symmetric A sequence is half
sample symmetric �HSS�

about the �index� k � �
� if sk�n � �sk���n� for all n�

Observe that WSA requires that the sequence value at the index about which

the extension takes place be zero �this will have important consequences for the

quadratic spline
wavelet transform	�

A signal may have several points of symmetry� all with di�erent characteristics�

I only consider signals which have symmetry conditions imposed on their end


points � the existence �or not	 of other symmetry points within the signal is

of no consequence� Hence� the analysis will only consider the four basic types

of end�point extension enumerated above�

Suppose that one imposes a speci
c symmetry on a 
nite signal� How does the


lter �which� we will assume� possesses symmetry of its own	 interact with this

extension% That is� what symmetry �if any	 will the resulting signal possess% To

answer this question� one must know how convolution responds to the presence

of symmetry�

Given a signal fskg with symmetry described by sk � sl�k �one can describe any

symmetry by this sort of constraint	 and a 
lter ffkg which satis
es fk � ft�k�
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we have

ak � �s � f	k
�

X
n

sk�nfn

�
X
n

sl�k�nft�n

�
X
n�

sl�t�k�n�fn�

� al�t�k � �����	

�����	

Thus� the centre of symmetry will be at l�t
� and will be either whole
sample

or half
sample in nature depending on whether l � t is divisable by two or

not� Using this relationship� one can enumerate the various permutaions of

signal�
lter symmetry� The complication that arises when implementing the

wavelet 
lter
bank scheme arise from the down
 and up
sampling which occurs�

This will� in general� alter the symmetry relationship� and this must be taken

into account when determining the BCs one is going to apply� The only cases I

considered were those based on cubic and quadratic wavelet 
lters� The signal

sequence may be of arbitrary size � it is not constrained to have a size which

is a power of two� etc�

To ensure a more convenient analysis� the sequences famk g and fbmk g are used�

where amk � am�k and so on� With this change i�e�� using these sequences in place

of the unbarred sequences� the decomposition algorithm corresponds precisely

to 
ltering by famk g or fb
m
k g followed by downsampling� No similar adjustment

is required for the fpmk g and fqmk g sequences� The following symmetries hold�

for an mth order cardinal spline scheme�

pmk � pmm�k

qmk � qm�m���k

amk � am�m�k

b
m
k � b

m
���m��
�k �����	

To determine the BCs� we need only consider a one level decomposition �

the procedure developed can be used for all subsequent levels� The goal is to

ensure that one �or more	 of the symmetry extensions hold after 
ltering and
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down
sampling� This means that one has to select an appropriate input BC� It

is important to realise that some input extensions lead to expansive transforms�

that is� the number of output coe�cients is greater than the number of input

samples� This is undesirable from a compression point of view� Hence� we desire

an input extension which will result in a non
expansive transform�

The boundary conditions depend on the nature of the start and end indices

of the input sequence i�e�� whether they are even or odd� The input BCs I

chose are given in Table ��� and Table ��� and are presented in terms of the

start and end
points of the input sequence and the type of symmetric extension

required� The output values stated represent the new points of symmetry etc�

after 
ltering and decimation� The same boundary conditions are used when

decomposing for each input sequence�

The boundary conditions for reconstruction are simply those resulting from the

previous level�s 
ltering and decimation� They are determined by examining

Table ��� or Table ��� after processing each level�s input sequences� These BCs

must either be stored on re
created� I decided on the latter option� since I wish

to perform compression and storing unnecessary information would be counter


productive� To re
create the BCs� one just simulates the 
lter bank operation�

without actually performing the the 
ltering operations � this requires very

few calculations� This approach is in stark contrast to the method employed

when signals are constrained to have� say� lengths that are a power of two� In

this case� one can deduce the necessary BCs beforehand based on the length of

the input signal� Nontheless� the additional freedom one obtains when using

unrestricted signal sizes more than compensates for this minor inconvenience�

The reconstruction process itself is as follows�

�� retrieve BCs for signal�

�� extend the signal using these BCs

�� upsample the signal�

�� apply the appropriate reconstruction 
lter�

Figure ��� illustrates these ideas with a simple partial decomposition�reconstruction

example�
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A
HSS HSSInput signal

A
HSS HSSInput signal

A
HSS HSSInput signal WSSWSS Filtered Signal

31-2-3 0 4 5 62 7 8-1

B

31-2-3 0 4 5 62 7 8-1

C
HSS

This is the
signal to be

stored WSS

31-2-3 0 4 5 62 7 8-1

HSS

This is the
signal to be

WSSextended
D

31-2-3 0 4 5 62 7 8-1

WSSWSS This signal is now
upsampledE

31-2-3 0 4 5 62 7 8-1

F HSSHSS
Sequence filtered
with interpolative

filter

Figure ���� Partial decomposition and reconstruction� This example illustrates the
ideas referred to above� by working through the �ltering steps for the �quadratic� decomposi�
tion �lter fakg and the reconstruction �lter fpkg� �A� shows the input signal and its extension
�HSS� as required by Table ��	�� This signal is then �ltered with fakg ��B�� and downsam�
pled ��C��� This process would yield the approximation coe
cients for the next level� The
next three diagrams illustrate a partial reconstruction� �D� shows how the stored signal is
extended� with the extension it had after the decomposition phase� This extended signal is
then upsampled ��E�� and �nally �ltered with the �interpolative� �lter� fpkg ��F��� To complete
the process� one would extract the stored detail coe
cients� extend� upsample and �lter them�
in a similar manner� before adding the two resulting signals together�
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Case � Case � Case � case �

Start �s	 Even Even Odd Odd

End �e	 Even Odd Even Odd

Ext Start �in	 HSS HSS HSS HSS

C�O�S Start �in	 s� ��� s� ��� s� ��� s� ���

Ext End �in	 HSS HSS HSS HSS

C�O�S End �in	 e� ��� e� ��� e� ��� e� ���

Ext Start �out	 WSS WSS HSS HSS

C�O�S Start �out	 s��
�

s��
�

s��
� � ��� s��

� � ���

Ext End �out	 WSS HSS WSS HSS

C�O�S End �out	 e��
�

e��
� � ��� e��

�
e��
� � ���

Ext Start �in	 HSS HSS HSS HSS

C�O�S Start �in	 s� ��� s� ��� s� ��� s� ���

Ext End �in	 HSS HSS HSS HSS

C�O�S� End �in	 e� ��� e� ��� e� ��� e� ���

Ext start �out	 HSA HSA WSA WSA

C�O�S� Start �out	 s�	
� � ��� s�	

� � ��� s��
�

s��
�

Ext End �out	 HSA WSA HSA WSA

C�O�S End �out	 e��
� � ��� e��

�
e��
� � ��� e��

�

Table ���� Quadratic Boundary Conditions� The First block provides the boundary
conditions for input and output sequences when �ltering with fa�kg� the second block provides

the same information for fb
�
kg� The abbreviation C�O�S stands for Centre Of Symmetry� while

Ext denotes extension� Those conditions applying to input are quali�ed with �in� and those
associated with output with �out��
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Case � Case � Case � case �

Start �s	 Even Even Odd Odd

End �e	 Even Odd Even Odd

Ext Start �in	 WSS WSS WSS WSS

C�O�S Start �in	 s s s s

Ext End �in	 WSS WSS WSS WSS

C�O�S End �in	 e e e e

Ext Start �out	 WSS WSS HSS HSS

C�O�S Start �out	 s��
�

s��
�

s��
� � ��� s��

� � ���

Ext End �out	 WSS HSS WSS HSS

C�O�S End �out	 e��
�

e��
� � ��� e��

�
e��
� � ���

Ext Start �in	 WSS WSS WSS WSS

C�O�S Start �in	 s s s s

Ext End �in	 WSS WSS WSS WSS

C�O�S� End �in	 e e e e

Ext Start �out	 HSS HSS WSS WSS

C�O�S Start �out	 s�	
� � ��� s�	

� � ��� s��
�

s��
�

Ext End �out	 HSS WSS HSS WSS

C�O�S� End �out	 e��
� � ��� e��

�
e��
� � ��� e��

�

Table ���� Cubic Boundary Conditions� The First block provides the boundary condi�
tions on input and output sequences when �ltering with fa�kg� while the second provides this

information for the �lter fb
�
kg�
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Figure ���� Approximation in the Haar MRA� The MRA generated by N��x� uses
piece�wise constant ���degree� polynomials to approximate functions� Unless the resolution is
high� these approximations are unacceptably blocky�

��� Comparison of Cubic and Quadratic Cardinal

Spline Schemes

The spline MRA conceived by Chui and Unser may be generated by any car


dinal spline scaling function� Nm�x	� However� for practical and theoretical

purposes� some choices of m are undesirable� For example� when we use the

unit pulse� N��x	� as our scaling function� the resulting wavelet� 	� � 	Haar�

does not constitute a window function� and is thus unlikley to be of great use in

signal analysis� The approximation signals generated by this MRA are piece


wise constant approximations to the input function �See Figure ���	 and contain

very sharp transitions� When the wavelet representation is intensively quan


tized� the distortions introduced on reconstruction are likely to possess sharp

boundaries� and as such this scheme would be unsatisfactory in the context of

image compression� However� even MRA�s which possess a higher degree of

inherent smoothness may be unacceptable� While a high order polynomial has

more degrees of freedom and is thus able to produce �better� approximation sig


nals than a lower order scheme� this comes at greater computational expense�

the wavelet and scaling function dilate and this results in longer reconstruction

sequences and� consequently� slower signal reconstruction� Thus� one would like

to strike a balance between smoothness and reconstruction time� The scaling

function N��x	 is certainly preferable to the unit pulse� however� it has only

zeroth order continuity � one would prefer at least C�� The quadratic scal
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ing function� N��x	 is next in line� while the MRA generated by this function

does indeed have the requisite smoothness� there are certain theoretical prob


lems which cause implementors to pass this scheme over in favour one based on

cubic splines�

In the spline formalism� schemes with odd order only possess generalized lin


ear phase rather than linear phase� Since linear phase 
lters are less likely to

magnify quantization errors� one would certainly prefer such a MRA� Nonethe


less� this does not constitute a strong reason for dismissing the quadratic MRA

� others approaches� such as Daubechies compact orthogonal scheme� do not

possess linear or even generalized linear phase and yet they function more than

adequately� A more serious problem is posed by the inability to generate a

�nice� interpolation using a quadratic spline basis� By this I mean that the

quadratic
spline interpolation

I�x� y	 �
X
k

X
l

c�klN��x� k	N��y � k	� �����	

is �ill
posed� on Z	 Z� in the sense that some of the data which one would

require to proceed is not available� This is� most unsatisfactory� since this is

precisely the form we need to start the decomposition algorithm� All is not lost�

however� In the last section of this chapter I discuss a way around this problem�

Assuming� then� that one can produce such a suitable initial interpolation� why

should we choose quadratics over cubics%

Beyond the obvious speed gain �resulting from a decrease in reconstruction 
lter

length	� there is another reason� If one truncates the decomposition sequences

�fakg and fbkg	� as I do� then it turns out� that the quadratic 
lters can bear


ercer truncation than their cubic counterparts� Only after careful examination

of the 
lters did the reason become apparent� The decomposition 
lters must�

not unexepectedly� obey certain pass
band conditions if they are to 
lter out

the right information� It turns out ��� that the follwing conditions must hold

for these 
lters

X
k

amk � ��

X
k

bmk � �� �����	

If these conditions are not �approximately	 satis
ed� the 
lters will not func


tion correctly and they will pass frequencies outside of their intended pass
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(a (b O�
P

a	 O�
P

b	

Quad �� �� ���� ���	

Cubic �� �� ���� ����

Quad �� �� ���� ���	

Cubic �� �� ���� ����

Quad �� �� ���� ���	

Cubic �� �� ���� ����

Quad �� �� ���� ���	

Cubic �� �� ���� ����

Quad �� �� ���� ���	

Cubic �� �� ���� ����

Quad �� �� ���� ���	

Cubic �� �� ���� ����

Table ���� Failure of band
pass conditions� The left�most two columns indicate the
number of a� b coe
cients maintained after truncation� The �nal two columns indicate the
order of magnitude of the error to within which the sequences approach their band�pass
conditions� Equations ����
��

band� Examination of the decomposition 
lter symmetries shows that the cu


bic detail 
lter� fb	kg� possesses a whole
sample centre of symmetry� whilst the

quadratic detail 
lter possesses a half
sample centre of symmetry and is anti


symmetric� While this seems unremarkable� if one progressively takes fewer

terms from each of these sequences� the cubic 
lter fails its pass
band con


dition much more rapidly than the quadratic 
lter� for comparative levels of

truncation �See Table ���	� The reason for this failure lies with the nature of

the symmetries these two 
lters possess� The quadratic 
lter has the struc


ture �� � � ��a��b��c� c� b� a� � � �	 while the cubic 
lter has the has the structure
�� � � � a� b� c� b� a� � � �	� In the former case� provided one truncates about the cen


tre of symmetry� one is guaranteed that the sum will be close to zero � because

of the negative signs� However� in the cubic case this is not so� and at low trun


cations� there are no longer su�cient terms to �nearly	 satisfy this condition�

Figure ���� show the e�ect of this failure� the incorrectly registered frequen


cies add ripples to the signal� I experimented with the cubic 
lter� tweaking

the trailing sequence values in the truncated 
lter until the condition was ap


proximately satis
ed and� as expected� the ripples disappeared� One cannot�

however� apply such arbitrary sequence manipulations and still expect to get

the correct results � modifying the 
lters will introduce distortions of some
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Figure ����� Failure of the cubic 
lters at low truncations� �A� gives the input data�
�B� the 	nd resolution level cubic decomposition approximating the image and �C� the recon�
struction to level 	 after decomposing with the over truncated cubic decomposition sequences�
When the cubic �lters are not over truncated� they result in a reconstruction which has these
sinusoidal ripples smoothed out� Note� the reconstruction sequences are never truncated�

kind� the magnitude and type of this noise depending on the number of coef



cients which are modi
ed� This lack of robustness on the part of the cubic

spline wavelet scheme has evinced surprisingly little comment in the literature�

Another reason for not choosing the cubic scheme arises from the form of in


terpolation I employ � quasi�interpolation� Section ��� reveals a somewhat

startling result� quadratic quasi
interpolation produces a better 
t than cubic

quasi
interpolation" The details are given in that section�

There does not seem to be an overwhelming reason to use cubics� Indeed� the

quadratic scheme seems to o�er some advantages� The use of quadratic curves

has additional computational advantages beyond the obvious� but these related

to our hardware platform� and will only become apparent once the synthesis

algorithms have been discussed� This is deferred until Chapter �

��	 Calculation of Initial Approximation Coe�cients

Before any of the algorithms referred to above can be implemented� one must

produce the initial set of input coe�cients� fc�ijg� Some authors use the input

pixel values for the �
D sequence� This is perfectly acceptable if one only wishes
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to use the MRA coe�cient sequences for something like image compression�

However� if one wishes to compute the various approximation and detail images�

as I do� then one cannot assign the input coe�cients in this manner� Indeed�

these coe�cients must chosen such that they provide the correct weights for the

basis elements �j�k� which we then sum to return the values of our input pixel

values �which are taken to lie on Z	Z� as dicussed previously	� The question

now arises as to how one obtains these coe�cients� given that we do not wish

to use any sort of integral formulation�

We would like to

�� construct a surface which interpolates all the pixel values and

�� determine the expansion coe�cients which describe this surface�

So� we need to 
nd the �
D spline interpolant which passes through our �dis


crete	 pixel data�

X
i�k�Z

c�ik&�l� i�m� k	 � I�l�m	jX�Y � l� m �Z� �����	

where X 	 Y is the domain of our image�

This is equivalent to inverting a large �sparse	 matrix and as such can be fairly

expensive� An cheaper alternative exists� however� if one is prepared to weaken

the interpolatory requirement� That is� rather than requiring true interpolation�

one settles for quasi�interpolation� in which the input data may be arbitrarily

closely approximated� the accuracy of the 
t determining the compuational

load�

In order that we may use a quasi
interpolant we require that the function we

are interpolating by bounded and continuous� This does not present a problem�

the image data is certainly bounded and our pixel values may be considered a

sampling� on Z	Z� of a continuous image function� I�x� y	�

De�nition ��� If a 
�D� symmetric� origin�centred piece�wise polynomial func�

tion &�x� y	 satis�es the Fix
Strang conditions ���

	� �&��� �	 � ��


� D��&���i� ��j	 � �� � �� i� j �Z� j�j 
 � �� � �	�
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then one may de�ne the kth order quasi
interpolant� �QkI	�x� y	� k � Z�� of

I � Cs�R�	 as

�QkI	�x� y	�
X
l

X
m

�
kI	�l�m	&�x� l� y �m	� �����	

The convolutional operator 
k operates on the input image�sequence� I��l�m	� l� m �
Z� and is de�ned by

f�
kI	�i	g� �
 �m� � � �� ���	km � � � � �m� �z �
k times

	 � I��i	� i �Z�� �����	

where 
 � 
i�j�� � � if i� j � �� and � otherwise and

mi�j �



&��� �	� � for i� j � ��

&�i� j	 for i� j �� ��
�����	

This quasi
interpolant has the following properties�

� only local data �the extent of which is determined by the parameter k	 is

used to determine the values of the sequence f�
kI	�i� j	g

� any polynomial of degree � 
 �k � � will be reproduced by this scheme

� the sequence of operators Qk converges to a true interpolation operator�

Q�� as k��� i�e�� �Q�I � I	�l�m	 � �� i�m �Z�

The Fix
Strang conditions are satis
ed by the cardinal splines Nm�x	 and con


sequently also by their tensor products� To use the above scheme� we must

recast it in our framework� In this case

&�x� y	 � Nm�x�
m

�
	Nm�y �

m

�
	 �����	

where the shift is required to centre the cardinal B
spline functions� Equa


tion �����	 then looks like

�QkI	�x� y	 �
X
l

X
n

�
kI	�l� n	Nm�x�
m

�
� l	Nm�y �

m

�
� n	� �����	

What we desire is that �QkI	�x� y	 � I��x� y	 � P
l

P
m c�lnNm�x � l	Nm�y �

m	� From this we can see that� barring the shift in the arguments� the input

approximation coe�cients correspond to the lambda sequences� Of course� one

cannot simply disregard the shift � it forms an integral part of the equation�
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Quadratic Case Mean Standard Deviation jMax Errorj
k � � ���� ���� ��

k � � ���� ���� ��

Cubic Case

k � � ���� ���� ��

k � � ���� ���� ��

Table ���� The error induced by quasi
interpolation of our test image� The
quadratic scheme ensures both a lower projection error and a lower maximum error� The
bene�t of using a higher order quasi�interpolation is clear� even k � 	 provides a considerable
gain over k � 
�

If we are dealing with a scheme for which m
� is an integer� such as the cubic

�m � �	 scheme� one can apply a simple change of variable and include the

shift in the lambda sequences indices�

�QkI	�x� y	 �
X
l

X
m

�
kI	�l�
m

�
� m�

m

�
	Nm�x� l	Nm�y � l	� �����	

We may then make the identi
cation� c�ij � �
kI	�i�
m
� � j �

m
� 	�

However� if the shift is not integral� as is the case for the quadratic scheme

�m � �	� then one cannot do this� The question is� given our desire to use the

quadratic scheme� how do we get around this% I used the following approach�

Since �QkI	�x� y	 � I��x � m
� � y �

m
� 	� we may still match the coe�cients�

provided that we remember that what we are now dealing with is a shifted

version of the input image� This means that all our subsequent approximation

images will also be shifted� in fact� our 
ltering scheme will now generate the

coe�cients for our shifted detail and approximation images� Nontheless� by

evaluating the functions with a negative shift added to the arguments� we can

compute values as we normally would�

In ���� Chui dervies an interesting relationship which quanti
es the interpolation

error which arises when using a quasi
interpolant rather than a true interpolant�

After a few algebraic manipulations� one can deduce the following ��� pg� ���#

�����

max
l�Z

j�Qkf � Jmf	�l	 
 �max
l�Z

f�l	 � min
l�Z

f�l		
�

�
�k��
m � �� �

�

�
and �	 �

�

�
�

�����	

where the sequence ffkgk�Zis bounded�
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Figure ����� Quasi
interpolation Error E�ects� The interpolation error is biased by

	�� �A� gives the quadratic quasi�interpolation �k � 	� of the scan�line� �B� the cubic interpo�
lation �k � 	�� The graph �C� gives the input data� Graph�s �D� and �E� give the interpolation
error for the quadratic and cubic cases� respectively� Observe that the interpolation error for
the cubic scheme is greater than that of the quadratic scheme for the same k�
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The function �Jmf	�x	 is an mth order true interpolant i�e�� it satis
es the

conditions �Jmf	�l	 � f�l	� l � Z� This shows that the maximum quasi


interpolation error is lower when we use quadratics than when we employ cubics

as our underlying spline� One should bear in mind� however� that this estimate

is only valid at the integer knot
points� and consequently cannot be used to

infer that quadratic quasi
interpolation in globally �better� than cubic quasi


interpolation� Table ��� provides some results which quantify this claim while

Figure ���� provides a graph which illustrates both these interpolants� Even

for low order quasi
interpolation� the interpolation error is small� In fact� for

quadratic quasi
interpolation� this error was less than one grey
scale value �for

our test image	 when k � �� Since this image is typical of the sort one would

normally encounter in image processing� there seems to be no need to employ

higher order quasi
interpolation�

��
 Concluding Remarks

Although the cardinal spline MRA has dual functions with in
nite support�

it possesses a host of properties which counterbalance this undesirable aspect�

For example� the wavelet� scaling function and their duals all possess either

linear or generalized linear phase � a property which is absent from non
trivial

orthogonal implementations� There are also simple �analytical	 calculational

procedures to derive the decomposition�reconstruction 
lters as well as the

wavelet and scaling function�

For computational and implementational reasons one desires that the scaling

function be smooth and of low order� Ideally one would like to employ the

quadratic B
spline � however� theoretical problems usually ensure that imple


mentors chooses the cubic scheme� Nonetheless� Section ��� shows that these

theoretical objections are tractable�

Having selected a scaling function� one must produce the initial set of approxi


mation coe�cients� which amounts to solving a large system of linear equations�

The computational overhead may be reduced by using quasi�interpolation� rather

than true interpolation� Although this scheme results in only approximate in


terpolation� it only uses local data to compute each coe�cient� The quasi


interpolant is parameterized to allow control over the locality of the data used�

one may obtain arbitrarily close approximation by increasing this parameter�
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Low order quasi
interpolation is shown to be adequate for our purposes� Fur


thermore� quadratic quasi
interpolation is shown to produce lower interpolation

error than cubic quasi
interpolation at the integer knot
points �pixels	� This

additional bene
t� when coupled with the others already discussed or aluded

to� implies that a quadratic based spline MRA is the ideal choice�

The preceding chapters have established the basis for our image compression

and synthesis algorithms� With the theoretical framework established� we may

now address these issues�



Chapter �

Spline�Wavelet Image

Compression

The study of digital image compression techniques� whether for still or video

images� is an area of research which enjoys a particularly high pro
le� The ad


vent of the information society and the emergence of multi
media applications�

which often include high band
width video services� have resulted in a dramatic

increase in the amount of data which computer systems have to process and

store� Image data �in its raw form	 requires a large amount of storage� in the

region of ��� Kb for a full colour ���
bit	 ���x��� image� When one wishes

to store a large number of such images� the restrictions imposed by limited

resources become acute� Image compression techniques seek to alleviate this

problem� by changing the image representation so that the new form occupies

less space�

This chapter begins by considering the most common methods of achieving

image compression� before moving on to consider the e�cacy of the wavelet

transform as an image coding scheme� Section ��� introduces the concept of

quantization and describes the type �vector quantization	 which was used in

this dissertation� The remaining sections provide an analysis of the compression

results ����	 and brie y discuss an alternative that one might employ to better

exploit the properties of the wavelet transform ����	�

��
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��� Compression Strategies and Standards

The nature of the data to be compressed plays a fundamental role in determining

in the compression ratios� one may achieve� If the data must be precisely

reproduced� that is� the compression must be lossless� then the compression

ratio will seldom exceed ���� Text compression is an example of a source which

must be losslessly compressed�

If� however� one need not reproduce the input precisely� but only a suitably

�close� approximation� then one may achieve signi
cantly higher compression

ratios �� ����	� Image and audio streams provide examples of sources which

can bene
t from such lossy compression techniques� Such methods exploit the

inherent redundancy present in the source� for example� the correlation between

neighbouring pixels in an image� There is much debate concerning the means

of determining the optimal trade
o� between compression and 
delity� that is�

how far one can compress and still have su�cient data to reconstruct an ac


ceptable approximation� In particular� the choice of a 
delity metric is highly

contentious� for ease of computation and mathematical simplicity one usually

seeks to minimize the mean
squared error� implicitly assuming that if the dif


ference between the original and the reconstruction is small under this metric�

that the human visual system �HVS	 will likewise 
nd the artifacts induced by

the compression to be acceptable� This is not� unfortunately� the case since

HVS is an extremely complex system and cannot be so easily quanti
ed� An

interesting case is made by De Vore et al ���� for the use of the L� norm as the

distortion measure which should be minimized� These issues will be touched

upon in this chapter as well as those subsequent to it�

How does one remove the redundant information contained in an image% There

are several accepted techniques� some simple �and less e�ective	 and others

fairly complex� On the simple side of the spectrum� one has Delta Modulation

�DM	 ����� Here one encodes the di�erence between neighbouring pixels� Since

the pixels intensities are �usually	 highly correlated� one can make do with a

much smaller dynamic range for the di�erences� consequently only a small num


ber of bits are needed to encode this data� Unfortunately� if the image data

varies too dramatically� one is faced with slope overload� the intensity di�er


ences exceed the allocated range and the coding scheme no longer accurately

�That is� the ratio input size
output size

�
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represents the input� There are more sophisticated coding techniques� such

as Di�erential Pulse Coded Modulation �DPCM	� which are based on similar

principles� but the compression ratios one can achieve using these methods are

fundamentally limited� and are scarcely better than those available when using

lossless� techniques�

Transform Coding ���� constitutes a far more robust and powerful method of

achieving lossy compression� The image is acted upon by an operator �the

transform	 which serves to decorrelate the input pixel values� The new image�

which only encodes non
redundant information and thus constitutes a more

compact representation� is examined and only relevant pixel values �transform

coe�cients	 are retained� Reconstruction is achieved via an inverse transform�

The success of such a method relies upon the e�cacy of the transform� i�e��

� how well does the transform de
correlate the input and

� are the important �large magnitude	 transformed pixel values clustered

in the new image%

The de
correlationmanifests itself as a decrease in the magnitude of pixel values�

in all but a small region of the image� That is� most of the new pixel values

are near zero� and those which are not� encode the non
redundant information

content of the image� These near
zero regions may be discarded with minimal

distortion in the reconstruction�

The clustering of the pixel values one decides to encode� determines the sim


plicity with which such an encoding may be achieved� Clearly� if these values

always lie within a particular region� one can develop simple coding strate


gies to encode their position� If� on the other hand� the values to be stored

are scattered randomly over the entire image� then one must encode positional

information explicitly and hence su�er a loss in Compressibility�

����� The JPEG� Compression Standard

Having said all this� which transformations are used to e�ect de
correlation%

The current still image compression standard �JPEG	 utilizes the Discrete Co


�DM could be considered a lossless coding method� provided one guarantees that slope
overload will not occur� DPCM uses predictive encoding and this element means that it
constitutes a true lossless scheme�

�Joint Photographic Experts Group
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sine Transform �DCT	 � a derivative of the Discrete Fourier Transform� The

new pixel values specify the relative strengths of the two
dimensional sinu


soids which compose the input image� For most images� these coe�cients are

clustered in a narrow region around the x and y axes� This enables a sim


ple zoning strategy to be used for pixel selection� one always assumes the the

high
magnitude coe�cients lie within a prescribed region� Zonal coding can be

less than satisfactory� since it will not code large coe�cients which fall beyond

its boundaries� A further problem with the DCT used in JPEG� arises from

its block implementation� In order to accelerate the transform computations�

the image is decomposed into small �x� blocks and each block is then coded

i�e�� treated like a separate image� Unfortunately� at high compression ratios

the assumption of independence amongst the blocks fails and so
called blocking

e�ects occur i�e�� noticeable intensity discontinuities between blocks� These can

be treated� to a limited extent� by post
processing� but this adds to the e�ec


tive decompression time and counteracts the computational savings obtained

by blocking� Nonetheless� JPEG remains the method of choice for most im


plementors and is endorsed by ISO� This method produces good results up to

about ���� �����

����� Fractal Image Compression

A new arrival on the compression scene is fractal compression� This technique

uses the mathematics of iterated function systems �IFS	 ��� ��� to compute a

compact representation of the image� The IFS approach describes the image as

a sequence of �
D a�ne �linear	 maps� When these maps are iteratively applied

to an arbitrary input� the 
xed point to which they converge �the �attractor�	

provides an approximation to the input image� Since only the parameters which

characterize this set of maps need be stored� this representation can achieve

fairly high compression ratios � around ���� � without serious degradation�

The word �fractal� arise because the attractor �the decoded image	 is self
similar

at every scale� Of course� digital images �and consequently� the input image	

are not self
similar at every scale� but this aspect is only revealed when one

expands the image� the IFS produces additional self
similar �detail�� This detail

is essentially fractal noise� one cannot create detail the image did not originally

possess �as some advertisers would have us believe	� The usefulness of this zoom

facility of the IFS encoding is thus questionable� since one usually desires to
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investigate a region more thoroughly when performing this action� not to see a

fuzzy �albeit cunningly interpolated	 blow
up�

The major problem confronting this approach is the excessive time required

to produce the IFS maps � several minutes in the case of large images� De


compression time� however� is very rapid � around a few seconds for the same

class of images� The issue of compression artifacts is also somewhat contentious�

Adherents of this approach claim that the blotchy patches introduced at high

compression ratios are preferable to blocking artifacts� This is a highly sub


jective issue and as such one cannot render a meaningful objective decision as

to which is better� Of course� constant advances are occurring and there are

attempts underway to eliminate �or at least ameliorate	 these problems�

����� Sub�Band Coding schemes

Another popular class of methods for achieving compression are sub�band �l�

tering schemes� Such systems apply a series of di�erent 
lters to the input

image and down
sample the output� i�e�� keep every alternate sample� See Fig


ure ���� This decomposes the image into a number of sub
bands which contain

the frequency information 
ltered out by the corresponding 
lter� The method

may be applied iteratively �i�e�� cascaded	 to produce additional decimated sub


bands� provided that some suitable terminating criterion is provided� The size

of the input signal is preserved by such a decomposition� Of course� these 
lters

cannot be chosen arbitrarily and there should be a corresponding set of 
lters

which enable one to perform the reconstruction� This reconstruction starts with

the last level of sub
band coe�cients and proceeds upwards� up
sampling and

adding each level to reproduce the input�

If one wishes to obtain compression� the 
lters must chosen to ensure that the

input image is de
correlated by the 
ltering operations� This de
correlation is

re ected in sparsely populated sub
bands which may then be compactly en


coded� Such an image coding scheme was proposed by Woods and O�Neil in

����� They achieved compression ratios of around ���� with good reproduction�

These results do not imply that one cannot do better than this using such a

scheme� indeed� the wavelet transform may be recast as a sub
band decompo


sition scheme and the results obtained in this case may be substantially higher

�����



CHAPTER �� SPLINE�WAVELET IMAGE COMPRESSION ��

2 2 2 2

Input Image

H1(m,n) H2(m,n) H3(m,n) H4(m,n)

Sub-band 2 Sub-band 3 Sub-band 4Sub-band 1

Figure ���� An example of � sub
band decomposition� Each box represents a 	�D
�ltering of the input �from the previous level� with the indicated �lter� The symbol 	 � is
used to denote 	x	 downsampling of the �lter output�

����� The Laplacian Pyramid

As with all compression schemes� the Laplacian pyramid ��� seeks to eliminate

the redundancy inherent in the input �image	� This is achieved by a series

of 
ltering and decimation operations� in much the same manner as sub
band

coding� However� unlike the latter� the Laplacian pyramid is an implicitly

redundant representation since it contains more pixels than the original image

by a factor of 	
� � The decomposition proceeds as follows�

�� The image is 
ltered with a low
pass 
lter� producing a less detailed ap


proximation�

�� this approximation is the subtracted from the original and the di�erence

is retained�

�� the approximation is then down
sampled and the low
pass 
lter applied

once more�

�� the new di�erence image �produced as before	 is stored and the process

repeated� until the detail left in the down
sampled approximation is suf



ciently uniform�

�� this low
resolution� down
sampled image is then stored� along with the

di�erence images�
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Figure ���� Quadratic spline wavelet transform� The �rst image provides the input
image� while the second provides a � level quadratic spline wavelet transform� Observe that
the coe
cient images have di�erent sizes� in the cubic scheme the sub�bands on a particular
level have the same dimensions�

The information contained in each di�erence signal is highly localised and con


centrated� since only the application of a low
pass 
lter di�erentiated the images

we subtracted� Thus� one need only encode a small subset of the information

in each image as well as the small low
pass image� when contains contrast and

intensity information� So� even though it would seem that one is increasing the

redundancy� the de
correlating e�ect of the construction ensures that one ex


periences a net gain� As with basic sub
band coding� good results are obtained

for compression ratios up to about �����

��� Wavelet Image compression

The wavelet transform may be implemented as a sub
band decomposition ����

���� in this approach one need only compute simple convolutions rather than

evaluating integrals� This formulation was presented in the preceding chapter�

although little was said there concerning the application of the wavelet trans


form to image coding� Figure ��� provides an image as well as its representation

in the transform domain� This representation comprises a sequences of detail

coe�cient images �three for each level of the decomposition	 and a low
pass
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down
sampled approximation coe�cient image�

ffdplijg� fc�Lij g� l � ������ ���� L� p � �� �� �g ����	

The supports of these �
D sequences shrink with lower resolution� consequently�

one requires fewer coe�cients to represent lower resolution approximation and

detail images� The total number of coe�cients is the same as the number of

input pixels�

The wavelet transform detects detail i�e�� sharp intensity variations� such as

those associated with the transition across an edge� Since texture may be viewed

as a collection of edges on an appropriately small scale ����� the WT is also adept

at describing texture� The �detail	 coe�cients provide a measure of the strength

of the variation� Smooth image regions are re ected in the approximation

coe�cients� The multi
scale aspect of the decomposition allows texture�edge

information at di�erent resolutions to be discriminated� One generally discards

very high frequency texture information in favour of higher compression ratios�

The approximation coe�cient sequence fcJijg is normally stored using the full

range of bits that the original image possessed � � bits� in most case� which

corresponds to ��� grey levels� while the detail coe�cients are quantized much

more coarsely�

The highest
resolution level �which has not been smoothed	 will have a large

proportion of non
zero detail coe�cients� but many of these may be ignored

since they correspond to wavelets with small support and the error induced by

their loss will be insigni
cant� In fact� one may go so far as to ignore the whole


rst level detail tier �thus immediately eliminating ��) of the information in

the representation	 � the induced error manifests itself as a slight blurring of

high frequency texture�

Most images produce detail coe�cients which are clustered around prominent

edges� the remaining coe�cients are considerably smaller and� for the most

part� may be discarded� It is this detail coe�cient sparseness which endows the

WT with a high compression potential�

The sub
band structure of the WT means that the transform has a complexity

of O�n	 The �unblocked	 DCT has O�n logn	 complexity � blocking decreases

the overall complexity to O�n	� There are also means of making the inherently

fast wavelet calculations faster� although these methods are dependent on the

particular characteristics of the 
lters ����� Because of the e�ciency with which
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the WT can be performed� one need not resort to blocking the transform�

and consequently blocking artifacts do not occur� Comparative studies �for

example� ����	 have shown that the DWT is also able to retain structure and

reconstructive 
delity at much higher compression ratios than the DCT�

The positions and magnitudes of the coe�cients may be encoded in various

ways� An obvious candidate is run�length coding� in which the runs of a par


ticular coe�cient are recorded along with that coe�cients value� so� ���� ���	

would represent the fact that� moving sequentially along the image rows� ��

coe�cients from the previous non
zero value were zero� There are many vari


ations on this theme� some fairly sophisticated and capable of more compact

representation�

Another alternative� if one is assured of a very small set of non
zero coe�cients�

would be to code the position and magnitude of each non
zero coe�cient in full�

Such a scheme would probably be the best one to use when encoding images

with few edges or textures�

One can also code position values implicitly i�e�� infer the position from the way

in which the magnitude information is stored� This is the method that was

used in this dissertation� The most obvious implicit scheme involves coding

each coe�cient sequentially� row after row� Of course� coding each coe�cient

in full �� bits	 would not result in image compression� However� it turns out

that one can get by without using the full dynamic range for each coe�cient�

Indeed� for those coe�cients which are close to zero� we would like to use zero

bits i�e�� not encode them at all� The decision as to the number of bits to use in

coding coe�cients is called bit�allocation and is usually based on the statistical

properties of the coe�cient sub
band under consideration� Based on such allo


cation strategies� and given that one wishes to achieve a certain pre
speci
ed

compression ratio �i�e�� a pre
speci
ed number of bits to code the entire wavelet

representation	 with the minimum possible distortion� these calculations yield

an estimate of the number of bits which should be used to code each sub
band�

Suppose that one has a certain number of bits with which to encode a  oating

point value� what should the new value be i�e�� how does one quantize this

number%
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��� Quantization

Quantization is the process whereby a value which has a large �possibly in



nite	 dynamic range� is curtailed so as to 
t within the dynamic range of an

alternate representational system� For example� a real number �which has in



nite dynamic range	 must be quantized so that it can 
t within the �� or ��

bit format which a computer allows for such a representation� If the number

exceeds the capacity of the format� it might be truncated to the maximum

value or generate an over ow trap� However� even if the value lies within the

permissable range� the accuracy with which it can be represented is limited�

For example� one cannot specify a fraction such as ��� beyond a prescribed ac


curacy� The quantization process determines which alternative value amongst

the permissable permutations best 
ts the input value�

The values which are associated with the wavelet transform are real values

and if represented in �full� would require several bytes� At best� one would

need the same number of bits as the input pixels possessed to represent each

coe�cient � � bits in this case� However� the accuracy with which one needs

to represent a coe�cient varies from level to level and quite often one can make

do with considerably less accuracy and still maintain a high degree of 
delity�

For example� coe�cients which are near zero might well be left out� implicitly

coding them with zero bits� In addition� a coarse representation �few bits per

coe�cient	 of the detail coe�cients produces errors which are less irritating

to the eye� since these inaccuracies induce small high contrast errors in the

reconstruction� which the HVS is less likely to emphasize�

There are two di�erent approaches to quantizing an input value� uniform and

non
uniform quantization� Uniform quantization divides the permissable range

into a number of uniformly spaced bins or partitions� Any value which falls

within the bounds of a particular bin is �usually	 represented by the mid
point

value of the bin �mid
step quantization	� Non�uniform quantization uses bins

which have varying size� this is useful if one� a priori� knows that a particular

range of values has to be accurately represented while another can be coarsely

quantized� One ensures that the bins are more closely spaced within the former

region�

Rather than representing the quantized value directly� it may be more conve


nient to insert it into a code�book� and to refer to it by an index� which generally
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has fewer bits and is easier to manipulate �if one wishes to� say� perform Hu�


man coding on the quantizer output	� The existence of the code
book adds to

storage requirements� however� if the code
book is static� only one copy need

exist �usually as a separate 
le� which quantizers can reference	� The indices

used in the code
book must have a su�ciently large range to label all the bins

present� Thus� using this approach� an eight bit quantizer would allow ���

distinct indices and hence ��� quantized real values to represent the input�

Using the above approach� one cannot achieve a bit�rate	 of below � bpp� since

one needs at least two bins for quantization to be meaningful� Vector quanti


zation provides a way of bringing the bit
rate below unity�

��� Vector Quantization

If one only employs scalar quantization �discussed above	� then each pixel must

be represented by at least one bit ���� ��� ��� ��� ���� Hence� the upper bound on

the compression ratio is n � �� where n is the number of bits required to represent

the grey
scale values of the input image� However� if one uses a single index

to refer to a block �or vector	 of pixels� the bit
rate can be drawn below unity�

The bins �partitions	 in such a vector quantization �VQ	 scheme are now multi


dimensional� and the means of deciding which vectors should be mapped into a

particular partition becomes decidedly more expensive� One uses a distortion

metric to make this decision� Such a metric compares the vector to be quantized

with all the vectors in the reproduction alphabet �i�e�� the set of representative

vectors for all partitions	 and determines which reproduction vector� and hence

partition� minimizes the distortion �the error induced by quantization	� Just as

with scalar quantization� each reproduction vector resides in a code
book and

has an associated index� Now� however� one can achieve a minimum bit
rate

of �
n bpp when quantizing an n
dimensional vector� Hence� the compression

ratio is determined by the vector dimensionality� n � larger n implies a lower

bit
rate and higher compression�

One cannot simply choose a large n and assume that the quantization will be

satisfactory� Consider the following example� assume that each pixel in the

vector can have �� distinct quantized states �a fairly conservative number	� and

�A measure of compression� given in bits per pixel �bpp�� Since each index encodes a
particular pixel� a quantizer with 	�� partitions� and hence an � bit index� implies a bit�rate
of � bpp�
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assume that the vector is of size �� The number of possible reproduction vectors

is then ��	� This� in turn� implies that the index would have to contain �� bits

to fully represent this range� This results in a bit
rate of ��
	 � � bpp � it

seems that scalar quantization would have been as useful and computationally

cheaper� Nonetheless� if the vectors to be coded �such as n 	 n blocks in an

image	 have a high degree of correlation� this scheme may be e�ectively applied�

since the number of reproduction vectors can then be small�

The performance of the quantizer �as measured by the distortion metric	 will

become increasingly degraded as the dimensionality increases� unless one simul


taneously increases the number of reproduction levels� However� this leads to a

growth in computational time and a decrease in the bit
rate �since each index

now requires more bits to represent it	�

We are faced with two con icting requirements�

� to increase the compression ratio �whilst minimizing the distortion	 and

� to minimize the computational load of the quantization operation�

The optimal resolution of this con ict depends largely on the nature of the data

to be quantized� For image data� the pixel correlation enables one to make do

with a small reproduction alphabet and low bit
rates are attainable� However�

direct image quantization often results in noticeable image blocking� If one

applies VQ to the transformed image� any resulting blocking e�ects are skewed

and distorted by the inverse transform� and are generally less o�ensive to the

eye� One might question the e�cacy of applying VQ to a transformed image�

since the correlation has supposedly been removed� It is perhaps better� to con


sider a transform as a �redundancy extractor�� which gives a new representation

which is non
redundant� in that it does not contain �much	 unnecessary data�

The transformed image still has correlations amongst its coe�cients� but these

are necessary ones �most transforms are continuous� thus there will be know

discontinuities when smooth input data is transformed	�

How does such a system function in practice% In the case of the WT� most detail

coe�cients are clustered around zero and those that are not may be coarsely

quantized� for reasons referred to earlier� Due to this state of a�airs� one can

achieve a low bit
rate using VQ with the wavelet transform ����� Good results

may also be obtained using more general sub
band schemes �����
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Having discussed the basic ideas behind VQ� one would like to construct such a

quantizer� There are many ways of doing this ���� ���� for reasons of simplicity

and computational economy I chose to implement LBG vector quantization�

which is discussed below�

����� The LBG Algorithm

The Linde
Buzo
Gray �LBG	 algorithm ���� provides an interactive method

for constructing a k dimensional vector quantizer with n reproduction levels�

k� n �Z� The distortion metric may be of any kind desired� although for reasons

referred to earlier� I have opted for the mean squared error �MSE	 criterion�

The MSE metric� d�x� �x	� provides a simple measure of the error between the

reproduction vector �x and the input vector x� and is given by

d�x� �x	 �
kX
i��

jxi � �xij�� ����	

The algorithm proceeds from an initial guess and re
nes this guess until a quan


tizer �code
book	 has been designed which produces an average distortion which

is within some speci
ed tolerance� Central to this process� is the introduction

of a representative set of training vectors i�e�� a set of vectors from the input

source �in our case� a large number of transformed pixel blocks	� The source

is assumed to be a random process with an underlying cumulative probability

distribution function �which is unknown	� the training vectors �as represen


tatives of this source	 are used in lieu of explicit distribution information to

�train� the quantizer� There are certain assumptions involved in this iterative

development �the stationarity and ergodicity of the random process	 which in

general will only hold approximately� Nonetheless� it has proven itself practi


cally and is commonly used� In general� the LBG algorithm will converge to a

locally optimal quantizer i�e�� one which does not necessarily minimize global

distortion�

The algorithm is as follows �����

�� Given� the initial reproduction alphabet� A�� a distortion threshold � � ��

the sequence of training vectors� fxj � j � �� � � � � n � �g� and N �the

number of reproduction vectors	� Set D�� �� and m � ��
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�� Find the minimum distortion partition of the training sequence� that is�

using the distortion metric� map the vectors to those reproduction vectors

which minimize the distortion metric�

�� Compute the average distortion of the newly distributed training vectors

w�r�t� the current reproduction alphabet� Am�

Dm �
�

n

n��X
j��

min
y�Am

d�xj� y	� ����	

If Dm���Dm

Dm

 �� stop with the current set of reproduction vectors as your

quantizer� otherwise continue�

�� Find the optimal reproduction alphabet� Am� by taking the centroid of

all the vectors in each partition� S�

�

kSk
X
x�S

x� ����	

where kSk indicates the number of vectors in the partition�

Increment m and return to step ��	�

The generation of the initial alphabet must be accomplished before the algo


rithm is applied� There are two methods suggested for this is ����� uniform

quantization and splitting� The former involves constructing a regular lattice

of k
dimensional points �the initial reproduction vectors	 which contains all the

training vectors� This method does not pay any attention to clustering of the

training vectors� and consequently generates many empty partitions �partitions

into which no vectors are mapped	� Empty partitions often persist once they

have developed and cause the quantizer to lose e�ciency� since they are redun


dant and occupy space which may have been used to quantize the data more


nely� The latter method� splitting� seems to be the method of choice �see�

for example� ����	� and it is the one I used� Splitting requires that the num


ber of reproduction levels be a power of two� An initial one level quantizer is

obtained by taking the centroid of the entire training set� This vector is then

split into two vectors by adding and subtracting a perturbation vector which

has small components� This new two level quantizer is then subjected to the

LBG algorithm and once a suitably low distortion level has been achieved� both

the vectors are then split �by application of the same perturbation vector	 and

fed back into the LBG algorithm� This splitting process is continued until the
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required number of reproduction levels has been reached� This then provides

the initial alphabet upon which the 
nal LBG iteration will be based� This

method generates all lower level quantizers �which are expressible as a power

of two	 and is better able to approximate clustered input data�

An analysis of the performance of the LBG algorithm� with splitting� and ap


plied to the quadratic spline wavelet transform� is presented below�

��	 Analysis of Quadratic Spline�Wavelet Compres�

sion

����� General Discussion

The application of VQ to �bi
orthogonal	 wavelet image compression ���� and

general sub
band coding schemes ���� ��� has produced promising results� In


spired by this work� I decided to apply the technique to the compression of the

spline
wavelet transform sub
bands� Since the articles referred to give incom


plete information as regards the data
sets and certain important aspects of the

splitting procedure� the analysis presented below cannot be used for an accu


rate and objective comparison� nonetheless� I will refer to the results obtained

there when discussing my own� The approach that was taken �the design of

multi
resolution code
books	 is based directly on �����

I did not use a dynamic bit
allocation strategy� the available bit
allocation

options were hard
coded and remained constant for all images� This allowed

for easier analysis of the results� since dynamic bit
allocation �in the context

of VQ	 can results in the application of widely varying sub
band quantizers to

di�erent test images and also increases the compression time �although this is

normally negligible	�

Only �x� and �x� blocks were used to quantize the detail sub
bands �as in

����	 while scalar quantization was used on the approximation sub
band� The

number of levels of the multi
resolution decomposition was a function of the bit


rate desired� high bit
rates did not require the use of more than � levels� while

the lowest bit
rates required a four level decomposition� The number of levels

permitted for detail quantization were� ���� ��� and ���� �i�e�� �
�� bits per

block	� The approximation indices were each coded with eight bits � hence the

need to decompose further� since decreasing the coe�cient support will improve
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compression performance� Figure ��� shows the available bit
allocations� The

positional information for each coe�cient block was implicitly encoded in the

data stream� since the block decomposition of the sub
bands was implemented

sequentially� Blocks which overlapped the sub
band boundaries were coded in

full� using the symmetry extension dictated by the sub
band� This resulted in

a very small decrease in coding e�ciency� The zero coe�cient boundaries of

the quadratic transform sub
bands were not exploited � such manipulations

result in only marginal compression gains and are not worth the e�ort�

Two training set were used for the tests � See Figure ��� and Figure ���� The


rst training set was a collection of some fairly dissimilar images� the second

contained only the heads of men and women� The resulting code
books were

written to disk and occupied between ��Kb ���� level� �x� blocks	 to �� Kb

����� level� �x� blocks	 each�

A problem which became apparent during training� was the small number of

training vectors produced by blocking the lower levels of the wavelet decom


position� each level of the decomposition decreases the number of blocks by a

factor of four� There are two methods that might be used to overcome this

problem

� increase the number of training images

� use the existing vectors to expand the training set�

Increasing the size of the training set is undesirable since one would need a large

number of training images to generate the required number of training blocks

for� say� a ���� level� �x� block quantization of a fourth level sub
band� The

second option involves applying a de
correlating action to the available blocks

so that they may be used as new training vectors� The approach I used was

suggested in ����� the wavelet coe�cients on each level are shifted one index

left� right and diagonally� and each shifted image serves as the source for a new

wavelet decomposition� This shift is supposedly su�cient to de
correlate the

coe�cients and consequently provides us with suitable training vectors� The

method is applied recursively� until the maximumdepth of the decomposition is

reached� This ensures that the number of blocks produced on each level of the

decomposition is the same� thus� one can make do with a small initial training

set�
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Figure ���� Bit
allocation� This table provides a list of the hard�coded quality settings
and the corresponding block sizes for the sub�band quantizers �	 � 	x	 etc�� The bit�rate
decreases monotonically as the compression parameter increases� Hyphens indicate that the
sub�band decomposition was terminated before reaching the corresponding level� Zero entries
mean that no coe
cients from that sub�band were encoded� The approximation coe
cient
sub�band is always scalar�quantized�
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Figure ���� Generic Training Set� The training set used for generic quantization training�
The images shown here have been scaled down�
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Figure ���� Alternate Training Set� This training set was used to examine the e�ects of
subject�speci�c quantizer training� As before� the images shown are not necessarily to scale�



CHAPTER �� SPLINE�WAVELET IMAGE COMPRESSION ��

The splitting process which generates the initial alphabet turned out to be

problematic� When I used an arbitrary �small	 splitting vector and proceeded

as the algorithm dictated� the initial alphabet invariably contained a large num


ber of empty partitions �particularly at lower levels	� These partitions had to

removed� to bolster the performance of the quantizer� I devised a strategy to

try and alleviate this problem �which� based on the articles I have read� does

not seem to be a problem for others	� rather than splitting each and every

partition� only those satisfying some �splitability� criterion are split� After each

iteration of the splitting algorithm� the number of partitions which have still to

be split are determined and the required number are selected� based on their

splitability� and propagated� the others are left untouched� This means that

more than log� n steps might be required� and also introduces a bias into the

generation of the initial alphabet� but this seems inevitable if one wishes to

eliminate empty partitions� The splitability index for each partition is simply

the average distortion of all the vectors that map into that partition� Thus�

partitions which are well represented will not be split� while those which are

coarsely represented will be� This seems to be the most logical choice� the

results are given in the next section� Weighting the splitability based on the

magnitude of the reproduction vector �thus implicitly favouring either smooth

or detailed regions	 proved to be unsatisfactory� One could undoubtedly con


ceive more cunning measures of splitability� but the impact that this would have

on the production of good quantizers is questionable�

The distortionmeasures used to determine reconstruction performance were the

signal
to
noise ratio �SNR	 and the normalized mean squared error �NMSE	�

These were de
ned as

SNR � �� log��

�
var�I	

var�I� R	

�
dB ����	

NMSE � ���
var�I� R	

var�I	
) ����	

where I and R represent the original and reconstructed images� respectively�

and var�L	 denotes the variance of the image L ����� The choice of these 
delity

metrics was based on simplicity� there are some cases in the following results in

which reconstructions with a poor SNR are actually visually more acceptable

than those which have a high SNR� The reconstruction error was taken with

respect to the projected image � this serves to decouple the errors introduced

by quantization from those produced by the input approximation�
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Huffman Detail Coding

Width

Height

Compression Param

Huffman Table

Huffman  Bit Stream

Size of Bit Stream

Approximation Bit Stream

Optional

Bit Stream
Combined Detail /Approx

Size of Bit Stream

Wavelet Magic

0/1  (char)

Height of Input Image (int)

0-15 (char)

Size of Joint Bit Stream (long)

(variable)

(variable)

Width of Input Image  (int)

‘WT’  (2 char)

Figure ���� The format of the compressed wavelet 
le� The dotted lines indicate
that the Hu�man coding of detail block indices is optional� If this option is not chosen� a
single uni�ed bit stream is used for both the detail and approximation blocks� The quality
parameter ���
�� provides an approximately linear increase in the compression ratio� � � best�

� � worst�

The 
le format for the compressed image is presented in Figure ���� Currently�

only pgm 
les �grey
scale	 are compressible� ��
bit ppm images could also

be incorporated by applying the same techniques to each colour component�

Greater compression ratios �for colour images	 could be achieved by converting

the input to YIQ colourspace and downsampling the chrominance components

before applying the encoding techniques�

����� Results and Analysis

This section presents data which quanti
es the performance of the LBG quan


tizers produced under the assumptions discussed above� The test images were

chosen from both within and without the training sets� These test images con


tained varying amounts of texture and smoothness� Some� like �square� did

not contain any texture� �tree�� at the other end of the spectrum� was almost
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exclusively texture�

Figure ��� shows SNR and NMSE vs compression ratio for the images �tree��

�lenna� and �square�� These images were quantized w�r�t� training set one�

that is� �tree� and �square� were in the training set� �lenna� was not� The SNR


gures imply that those images which are highly textured ��tree�	 are not well

reproduced� while those with little or no texture are� The inclusion of a test

image in the training set is no guarantee of good SNR performance� However�

examination of Figure ��� shows that �tree� produces a far more acceptable

reproduction �as measured by the HVS metric	 than �lenna�� this e�ect is known

as �texture
masking�� �Lenna� possesses large smoothish regions and it is here

where quantization noise is readily discerned� A dramatic increase in HVS

distortion of �lenna� occurs when the number of decomposition levels passes two�

This may be partially explained by considering the nature of the quantization

errors induced as a function of level� As one proceeds to lower levels in the multi


resolution pyramid� the support of the wavelet grows from � pixels at level �

�quadratic case	 to �� pixels at level �� Thus� any bad quantization decision

at low levels� will result in a modulation of the corresponding synthesis wavelet

which will consequently fail to sum correctly and produce ripples and blotches

�of level
dependent size	 into the reconstruction� Errors produced in the level

� detail images� are still small enough to be minimally irritating� However� if

the image was highly textured to begin with� these errors may be adequately

masked and the reconstruction may still be acceptable ��tree�	� The degradation

in performance at high compression ratios is also dependent on the block size

which underlies the quantizer �for reasons elucidated earlier	� Unfortunately�

high compression ratios �low bit
rates	 necessitate the introduction of large

��x� in this case	 blocks� which cannot adequately describe the coe�cients

they encode�

The second training set is based exclusively on �the head and shoulders of	

human subjects� The test images used in this case were �tree� and �lenna�

�outside the training set	 and �lee� �inside the training set	� The SNR and

NMSE results are plotted in Figure ���� Once more the acceptability of the

reconstruction for �tree� is belied by the numerical results� The test image �lee��

also performs remarkably well� it is in the training set and has a large region of

black� in which contrast errors do not readily show up �See Figure ����	�

Despite the fact that �lenna� qualitatively falls within the same category as the
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Figure ���� SNR and NMSE 
gures for reconstruction� These images were quantized
with quantizers derived from training set one� Despite a poor SNR� �tree� is by far the most
acceptable visually�
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Figure ���� SNR vs HVS 
delity metric� The compression ratio is 
��
 and the signal�
to�noise ratios are 
��
 dB �lenna� and ��� dB �tree�� Nonetheless� the texture in �tree� serves
to mask the �bad� quantization errors� while �lenna�� despite having a substantially better
SNR� is heavily distorted�

training set� both sets of quantizers produce very similar performance �Fig


ure ����	� It may be that the images� while qualitatively the same i�e�� under

our inherent HVS metric� are not mathematically similar enough to really make

any di�erence�

In general� then� the performance of the spline
wavelet LBG VQ system on

images without an excessively high texture content would seem to be somewhat

unsatisfactory� Certainly� the results achieved by Mathieu et al ���� were not

realised when �semi
orthogonal	 spline wavelets were used� The following might

be cited as possible reasons for this lack of performance�

�� semi
orthogonal wavelets may be inherently unsuited to image compres


sion

�� the means of producing the initial alphabet may be incorrect or inappro


priate�

�� dynamic bit
allocation may be of fundamental importance�

There is no obvious reason why semi
orthogonal wavelets should be any less sat


isfactory than general bi
orthogonal wavelets� the statistical characteristics �at

least those which underly the compressibility	 of all wavelet transforms are very

similar� There is� however� a di�erence between orthogonal and non
orthogonal
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Figure ���� SNR and NMSE 
gures for reconstruction� These results were obtained
using training set two� The �gures are very similar to those obtained using the generic
training set� once more� inspection of the corresponding images revealed that the SNR �gures
are deceptive�
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Figure ����� HVS vs SNR� The image shown here ��lee�� has a preponderance of dark
colours which mask quantization errors� The signal�to�noise and compression ratios are 

��
dB are and 	����
� respectively�

Figure ����� Typical compression results� The left image was compressed to ��	�
 while
the right image was compressed to ����
� The maximum number of reproduction vectors for
each sub�band was 	�� �Figure ���� and no Hu�man coding was used� The SNR�s are 
��	
dB and 
��� dB� respectively� Observe that quantization e�ects are immediately apparent as
soon as a sub�band decomposition of two or more levels is used� in this example� both images
exhibit these artifacts� The quantizers used were generated from the generic training set i�e��
training set one�
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wavelet schemes as regards their compressibility when using a MMSE quantiza


tion scheme� Under an orthogonal wavelet transform the L� norm is preserved�

hence� minimizing the �mean
squared	 quantization error in the transform do


main ensures that one simultaneously minimizes the reconstruction �L�	 error

in the image domain� The fact that non
orthogonal schemes do not possess

this property means that they are generally �sub
optimal� under such a dis


tortion metric� Nonetheless� norm preservation may be assumed provided the

wavelets are �almost� orthogonal� This seems to be the case with bi
orthogonal

compression scheme used in ����� Semi
orthogonal spline wavelets �despite nom


inally being near orthogonal	 do not appear to possess a high enough degree

of orthogonality to successfully employ a simple MMSE quantization rule� The

question of what �visually relevant	 norm might be preserved under such a

transformation is not one I have examined� However� ���� o�ers a method of

working around this problem� one employs a �multi
scale relaxation� algorithm

to minimize the L� error explicitly� rather than performing this minimization

in the transform domain� The alternative is to minimize some other distor


tion measure� such as the L� norm �of the image	� However� if this approach

is taken� one then has to produce the corresponding analytical expressions to

allow the minimization to proceed in the transform domain� which is sometimes

impossible�

I do not believe that the absence of dynamic bit
allocation could account for the

consistently poor results obtained� While performance without �noise
shaping�

will be sub
optimal� this implies a small decrease in coding e�ciency � not the

dismal results produced here �for low bit
rates	�

The issue of initial alphabet generation is one which I 
nd highly unsatisfactory�

One must remember that the quantizers produced by the LBG algorithm are

only guaranteed to minimize distortion locally� it is quite conceivable that the

manner in which the initial alphabet is generated is such that the subsequent

iteration does not converge to a good quantizer� If this is the case� then the

manner in which empty partitions are discarded and new ones chosen is most

likely to be the source of additional distortion�

It would seem that the combination of non
orthogonality and �MMSE	 vector

quantization is highly inappropriate for the lower levels of the spline
wavelet

decomposition� Section ��� describes a method which might be employed to

circumvent these problems�
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����� Hu�man Coding

The detail coe�cients of the wavelet transform have a �generalized Gaussian

distribution�� a property which the block indices �approximately	 retain after

vector quantization ����� Since this implies that the block indices are not ar


bitrarily distributed� one may use an entropy coding to exploit this source of

redundancy� Hu�man coding is such a method and it generally allows one to

approach the entropy of the sequence to be coded� The entropy� H � a measure

of the information contained in the sequence� is given by

H � �
X
i

pi log� pi bpp� ����	

whereX
i

pi � � and pi � �� ����	

Here pi represents the probability of index i occurring� This value is derived

from a histogram of index occurrences�

Many of the transform coding techniques that I examined� follow the quanti


zation phase with some sort of entropy coding� Some go so far as to use the

entropy of the index sequence as an objective measure of the attainable bit


rate for each index� implicitly assuming that a perfect entropy coding follows

quantization� This is not accurate� however� since

�� one can only approach the entropy asymptotically

�� the amount of header information which inevitably accompanies the com


pressed 
le might well be signi
cant

�� for the case of static Hu�man coding� at least� the Hu�man code sequences

must be stored with the 
le� the size of this information depends on the

statistical properties of the sequence� but it averaged about � bytes per

table entry in my implementation � see Table ���� It is quite easy to

produce cases in which additional Hu�man coding actually increases the

size of the compressed 
le�

In addition to this� one has the overhead of performing the encoding and decod


ing� While Hu�man encoding can be done fairly rapidly� the decoding requires

a linear search of all the bit strings and can be comparatively lengthy� Many of
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File Size No
Hu� With
Hu� Table T
Ent A
Ent ) Gain Q
Lvls

lenna ����� ����� ����� ��� ���� ���� � ���

house ����� ����� ���� ��� ���� ���� �� ���

tree ����� ����� ����� ��� ���� ���� 
� ���

hanna ������ ����� ����� ��� ���� ���� � ���

Table ���� Hu�man coding overhead� This table provides some data on the overheads
imposed by static Hu�man coding in the proposed compression scheme� Table denotes the size
of the Hu�man table �in bytes�� T�Ent and A�Ent the theoretical and attained entropies �in
bpp�� Gain is the overall compression gain and Q�Lvls give the max number detail reproduction
levels�

these objections can be overcome� for example� dynamic Hu�man coding allows

one to reconstruct the bit
strings when decoding� rather than having to store

them� although one pays for this with a decrease in coding performance� In

addition� one may use a scheme such as arithmetic coding� which also performs

well and does not have as much accompanying baggage� The size of the header

information depends on the complexity of the encoding� The compression ratios

I cited were based purely on 
le size� since I feel that any information which

is part of the compressed 
le is non
redundant and therefore forms an integral

part of the new representation� Table ��� provides some information which

illustrates these points� It would also be possible to provide an �adaptive� Hu�


man encoding� in the sense that the program could decide whether the entropy

in the coe�cients justi
ed the application of additional entropy coding�

��
 An Alternative Compression Scheme

The above discussion should make it apparent that VQ does not exploit the

wavelet transform �or at least the spline
wavelet transform	 to its full potential�

This failure is� at least in part� due to the manner in which the quantizers are

produced viz� by some sort of learning or training mechanism� In the case

of VQ� the training process �averages� the training set and unless one has a

very high number of reproduction levels� the results are� in general� less than

satisfactory� A far better� approach� in my opinion� would be to consider each

image on its own merits� rather than attempting to extrapolate general image

characteristics from a training set� This is the approach taken by Lewis et al

in �����

One starts at the lowest level of a four level decomposition� by 
rst encoding the

approximation coe�cients with eight bits each� Each �x� coe�cient block in
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each of the �th level detail sub
bands is then considered� The visual threshold

of each block is computed and if that block is considered to be important �its

energy normalized w�r�t� the visual threshold is large enough	 then the block

is encoded� if not� the block is not encoded� Each coe�cient in the block is

coded with a linear mid
step quantizer� the step size of which is determined by

another HVS calculation� Once a block has been transmitted� the � pixel values

which correspond to each of the block�s pixels in the higher
resolution sub
band

�i�e�� the one that was down
sampled	 are considered� They are subjected to

the same sort of HVS thresholding and� if they are deemed important enough�

they are transmitted� This process of checking and transmitting coe�cients

continues recursively� for each sub
band� until all the spawning blocks on level

� have terminated �reached level �	� The encoding process exploits Marr�s

observation that important detail persists over multiple resolution levels � if

an edge exists at level l� it should also exist at level l�� �one level up	 and thus

the higher level blocks which give rise to the block under consideration should

also be considered�

Another bonus for the scheme is that the explicit positional information for each

block may be inferred from its position in the quantized stream� provided the

recursive encoding includes tokens to indicate when a stopping condition �no

transmission	 is reached� Contrast this to VQ� in which every block has to be

coded� Since the quantization is based on characteristics of each image� rather

than projected statistics� the coding should be more robust and can certainly

be called adaptive� The quantization itself is preferable� since each coe�cient is

quantized separately allowing for better reproduction of the coe�cient values�

The coe�cients are Hu�man coded� There will be some overhead in storing

quantizer parameters� but this is minimal� most of the information to describe

the quantizer may be regenerated recursively during reconstruction� since this

information depends only on information already re
created�

Some 
nal observation are in order� Firstly� the method described will result in

an image dependent compression ratio� highly uniform images will fare better

than those with much variation� Secondly� the method was implemented using

the Daubechies order four orthogonal wavelet� which has smaller support than

that of the quadratic spline wavelet� A wavelet with small support ensures that

quantization errors are well localized�
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��� Concluding Comments

Wavelet image compression is capable of producing high compression ratios

whilst maintaining important structural information� The e�ciency with which

the transform can be implemented means that one does not need to apply

image
domain blocking operations� thus eliminating blocking e�ects�

MMSE vector quantization has been successfully used with coding of bi
orthogonal

wavelets� however� the use of a mean
squared error distortion measure would

seem to be inappropriate for the spline
wavelet compression used in this dis


sertation� the poor compression performance can be ascribed� at least in part�

to the non
orthogonality of the transform and the subsequent non
preservation

of the L� norm� This should not be seen as an indication of poor compres


sion potential� provided a suitable mechanism can be found to encode the

necessary �sparse	 information in the transform domain� spline
wavelet coding

should achieve similar performance to it�s orthogonal counterparts� Here it was

the quantization scheme which was inadequate� not the variant of the wavelet

transform employed�

The alternative compression method outlined above seems a more natural and

appropriate means of attaining the desired performance� However� the choice

of an appropriate distortion measure for use in the quantization phase remains

problematic� Despite these objection� it was shown that texture
masking e�ects

may permit the VQ compression scheme described above to remain feasible for

heavily textured images�



Chapter �

The Di�erence Engine and

Image Synthesis

Once the wavelet
encoded image has been decompressed� the array of data val


ues must be converted into a visual representation i�e�� the pixels corresponding

to the reconstructed image must be appropriately illuminated� This phase is

usually accomplished by directly mapping the data values into video memory or

by means of special display processors� which may perform a variety of higher

level pixel manipulations� In both of these cases it is assumed that the value

for each pixel will be explicitly provided by the front
end� This assumption

seems to be axiomatic� This need not� however� be the case� The Di�erence

Engine provides a means of circumventing this requirement� provided that the

scan
line data are restricted to lie on a polynomial of some speci
ed degree� In

this case� all that this display processor requires is a list of the polynomial�s

forward di�erences and initial intensity �hence the name	� Although the full

complement of pixel values is eventually displayed� those which are not speci
ed

can be determined very speedily and without the aid of complex logic�

There are a number of issues which must be considered before such a scheme can

be e�ectively implemented and these will be discussed in the following sections�

Section ��� provides an overview of the Di�erence Engine �DE	� The manner

in which a spline multi
resolution analysis can be used to synthesize an image

on the DE is investigated in Section ���� Section ��� examines methods of

improving the e�ciency of the synthesis procedure� while Section ��� analyses

the performance of the proposed system�

��
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	�� The Di
erence Engine

The Di�erence Engine is the 
nal component in the rendering pipeline of a new

display architecture developed at CWI����� Originally designed to provide rapid

rendering of Phong shaded objects� which have polynomial intensity pro
les ����

this display processor has the ability to interpolate an arbitrary length span of

such pixels with a single instruction� The interpolatory logic is implemented as

a systolic array � each new cycle produces the complete set of values for the

speci
ed span�

An nth degree polynomial span may be speci
ed by a starting point� a set of n

forward di�erences and the width of the span� The nth order forward di�erence

of I�x	 is

�!nI	�x	 � �!n��I	�x� �	� �!n��I	�x	� ����	

where

�!�I	�x	 � I�x	�

Once the required di�erences are computed� using the simple recursive scheme

presented above� the polynomial values at uniformly spaced intervals �Z� in this

case	 may be obtained by using the following simple update rule

�!lI	�x� �	 � �!lI	�x	 � �!l��I	�x	� l � �� � � � � n� �� ����	

for consecutive values of x� The ��ns cycle time of this processor means that one

can perform these calculations with su�cient speed to ensure pixel production

at the display refresh rate�

The proposed architecture does not employ a frame
bu�er� Instead� the image

is represented as a list of primitives and the objects selected from this list are

converted into DE instructions by customized hardware� at a su�cient rate to

provide real
time video display� The complexity of the image determines the

size of the list and consequently the number of instructions which are produced�

The instruction set for the DE is presented in Table ����

There are two important points which should be noted�

�Centrum voor Wiskunde en Informatica� Amsterdam�
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operation description cycles

acc mode Accumulate mode� if enabled negative intensities are
not added to accumulator

�

dis�x�dx	 disable accumulation of intensities from pixel �x� for
�dx� pixels �cleared after next �eval*� command	

�

eval��x�dx�i	 Set pixel �i�e�� accumulator	 from �x� for span of �dx�
directly� disable further additions until next refresh�

�

eval��x�dx�i	 add i to accumulator for span from �x� for �dx� pixels �a

eval��x�dx�i�di	 First order forward di�erence� starting at pixel �x� with
value �i� and increment �di�� for �dx� pixels

�a

eval��x�dx�i�di�ddi	 Second order forward di�erence � like �eval�� except
now �di� is also changed by �ddi� at each step

�a

eval��x�dx�i�di�ddi�dddi	 Third order forward di�erence� like �eval�� mutatis
mutandis

�a

eval n Higher� n� �� order forward di�erences n� �a

nop No operation �
refresh Output accumulator value and clear everything �
setddi�x�dx	 Set �i�e� override	 second di�erenceb at points �x�� for

a span of �dx� pixels in the middle of the next �eval�
command

�

setdi�x�dx�i	 Like �setddi� only it a�ects the lower forward di�erence �
seti�x�dx�i	 Like �setdi� except that this creates a span of

intensities
�

setpddi�x�dx	 Set �i�e� override	 second di�erenceb at points �x��
�x�dx�� �x��dx�� � � � in the middle of the next �eval�
command

�

setpdi�x�dx�i	 Like �setddi� only it a�ects the lower forward di�erence �
setpi�x�dx�i	 Like �setdi� except that this creates a pattern of

intensities
�

Table ���� X Processor Instructions and Their Costs in Cycles
Note� The costs mentioned above are incurred whether a span is � pixel long
or covers the whole width of the scanline�

aThe cost of this operation can be reduced by 
 cycle in future versions
bIf there are higher order di�erences then this sets the highest order di�erence
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� the DE can interpolate arbitrary order polynomials� in time proportional

to the degree �currently n � � cycles for a polynomial of degree n� �	�

� the DE provides a scan
line accumulator�

The DE can interpolate polynomial spans accurately up to a length dependent

on the degree of the polynomial � currently about ���� pixels for a quadratic

and ��� pixels for a cubic� This limit poses no problems� since the image data

can be segmented into several spans if the need arises� which is unlikely if one

uses the quadratic scheme proposed in earlier in this dissertation�

The existence of an intensity accumulator is essential if one wishes to use the

DE for multi
resolution image synthesis� since one then needs to accumulate

several levels of detail for each scan
line� Furthermore� since one would like to

produce the pixel stream as quickly as possible� the 
rst point implies that a

low order polynomial should be selected� These issues will now be taken up�

	�� Multi�resolution Image Synthesis on the Di
er�

ence Engine

The DE provides a means of e�ciently displaying images which are based on

polynomial patches� Thus� if one can 
nd a means of decomposing an arbitrary

input image into a series of polynomial primitives� the DE can put its speed

and architecture to good use and �in appropriate conditions	 provide perfor


mance gains over conventional display hardware� In particular� since only a

small set of pixel values are required to interpolate an arbitrarily� long span�

the computational demands on front
end processor �which must compute the

intensity values	 may be drastically reduced� This is of particular bene
t when

one performs image reconstruction after compression� since the process of com


puting each restored pixel value may be computationally expensive � if the

restored values are constrained to lie on a polynomial one need only compute

su�cient values to determine the forward di�erences� The DE will implicitly�

and at negligible cost� provide the remainder of the pixel values�

But how does one achieve this polynomial segmentation% The means of pro


viding such a decomposition was introduced and developed earlier in this dis


�Note� numerical accuracy eventually becomes an issue�
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sertation� polynomial
spline multi
resolution analysis� It should now be clear

that the semi
orthogonal MRA was chosen for the following reasons�

�� to provide the �reputedly	 high compression ratios of wavelet coding

�� to enable the e�cient synthesis of compressed images on the DE�

The reconstructed image consists of a series of detail images and an approxi


mation image� as discussed in earlier chapters� On level j� the approximation

image satis
es the following relationship

Ij�i� l	j
k�j��k��
�j�� � ��m��� ����	

That is� the restriction of the approximation function� Ij�x� y	� to the cardinal

integer knot
sequence indicated provides us with a polynomial of degree m� �

in two variables� The detail image� gj�x� y	� on level j satis
es a similar rela


tionship� but with j � � substituted for j� Thus one arrives at a segmentation

of the image in terms of polynomial patches �of order m	� Once the bounding

dimensions of a patch have been determined� the �
D polynomial can be inter


polated using successive horizontal sweeps of a �
D forward di�erence scheme�

since the x cross sections of such a �tensor product	 patch are themselves poly


nomials in one variable� One could also employ a scheme based on �
D 
nite

di�erences� but such an approach is rather cumbersome� prone to inaccuracy

and introduces additional overheads � this issue will be taken up in a later

section�

Thus� to recreate an image from its multi
resolution �MR	 decomposition� we

have the following algorithm �for each scan
line	�

�� Determine the size of the polynomial spans

�� For each scan
line in the detail image and approximation image

��� For each span on the scan
line

����� compute the required di�erences

����� compose the appropriate DE instruction to interpolate �j pixels and send�

The pixel values which must be computed are determined from the approxi


mation and detail image formulae presented earlier� The latter� in particular�

is expensive since there are three detail signals involved at each point� Some

comments are in order�
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Firstly� since the goal of the scheme is to achieve more e�cient production

of pixel values by only computing essential information� one does not wish to

compute di�erence information unnecessarily� For an nth degree polynomial we

need n � � pixels to compute the required di�erences� if the spans are of this

length or shorter� one should set each pixel in the scan
line directly �using the

� cycle eval� instruction� cf� Table ���	�

Secondly� although the spans are of length �fj�j��g � � pixels� only the 
rst

�fj�j��g of these are set� the last pixel serves as the starting point for the next

span and is set by the appropriate evaln instruction� Of course� the instruction

which interpolates the last span on the scan
line will set the last pixel�

Thirdly� the full MR synthesis is more expensive than simply setting each pixel

directly� in terms of both pixel evaluation costs and the number of cycles re


quired to interpolate each scan
line� The number of function evaluations re


quired for multi
resolution synthesis of a scan
line is

F �m�L	 � m
jxj

max��L� m	
�m

LX
j��

jxj
max��j��� m	

� ����	

where L � � is the number of levels in the decomposition� jxj is the length of

the scan
line �in pixels	 and m is� as usual� the order� of the polynomial� This

cost function does not tell one anything about the actual computational cost of

each function evaluation� The approximate number of multiplications required	

�a fair indicator of computational complexity	 is

M�m�L	 �
�X

p��

LX
j��

�
mjxj

max��j��� m	

�
W d�p�m� j	�

�
mjxj

max��L� m	

�
W a�m�L	�

����	

where the the weighting functionsW d andW a provide the approximate number

of multiplications required to evaluate a pixel in the detail and approximation

images� respectively� These weights are as follows�

W d�p�m� j	 �



�m���j p � �� �

�m���j p � ��
����	

W a�m� j	 � m���j� ����	

�Recall that an order m polynomial is of degree m� 
�
�This approximation is based on direct evaluation of only necessary pixel values�
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The baseline complexity count �BCC�� the number of multiplications required

to directly determine each pixel on a scan
line� is then

BCC � M���m	 � jxjm�� ����	

However� a � level MR reconstruction would require

M��� m	 � ���jxjm�� ����	

This clearly shows the staggering demands placed on the processor which com


putes the detail�approximation pixel values� However� one should bear in mind

that this estimate is based on direct application of the formulae for the detail

and approximation images� The only optimizations used in these computations

were a	 the calculation of the minimal set of pixel values �those required to

produce the initial di�erences	� b	 the use of pre
initialized lookup tables to

avoid repeated evaluation of the wavelet and scaling function formulae� Closer

inspection of these formulae� however� reveals that they are separable �
D con


volutions with wavelet�scaling function kernels� Hence� if one used optimized

convolution hardware these values could be determined speedily� However� do


ing so would mean that all the pixel values would have to be produced� rather

than just those we need� Nonetheless� since the goal here is to lower the instruc


tion �cycle	 count required to produce an image� this would be the direction

one would probably take�

The number of DE cycles required to produce a scan
line will depend on the

number of evaln instructions which are issued� The Baseline Cost �BC	 is the

number of cycles required to produce �without the use of MR synthesis	 a full

scan
line worth of data� This value is merely jxj� that is� one cycle to set each

pixel �using eval�� cf� Table ���	� Full MR synthesis would require

MRCC�m�L	 � jxj
�
� LX
j��

cj���m
kj���m

�
cL�m
kL�m

�
� �����	

where

cj�m �



�m� �	 if �j � m

��� �	 otherwise�
�����	

and

kj�m �



�j if �j � m

� otherwise�
�����	
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The function MRCC�m�L	 �Multi
Resolution cycle count	 provides an estimate

of the number of cycles required to perform full MR scan
line synthesis� This

number is clearly higher than BC� which implies that it is more economical �in

terms of instruction cycles	 to perform a direct display of the image� rather

than using the full multi
resolution reconstruction�

When L � � and m � �� it requires jxj����

�� cycles to produce a scan
line of

the approximation image� about a third of the time required for the full direct

approach� Of course� this approximation would be unacceptably blurred� unless

the source image did not possess detail on the levels which were ignored �such as

a �high variance	 Gaussian or some simple� smooth� geometric shape	� However�

since such shapes are unlikely to feature prominently amongst the images one

wishes to process� simply displaying the approximation image would not be a

viable alternative �except perhaps� for a simple overview search in a compressed

image database�archive	�

If one added only visually signi
cant detail to the approximation image� then

there is a chance that the cycle cost would remain below the baseline cost� since

many images possess regions in which little variation exists and these could be

exploited to lower the instruction count� In addition� since the computation

of detail pixels is expensive� the fewer one has to compute the more rapidly

the pixel instruction stream can be produced� The issues surrounding such an

approach are now discussed�

	�� Adaptive Synthesis

The cost of computing the full MR synthesis is signi
cantly more expensive than

setting each pixel directly� Nonetheless� the MR scheme can provide savings

�in terms of DE instruction cycles required to interpolate a scan
line	 over the

direct approach� provided it is applied in an intelligent manner� By this� I

means that� rather than blindly applying the reconstruction� a suitable metric

is devised to determine whether such a reconstruction is desirable� The metric

proposed here is simply the cycle count �CC	 � the precise number of cycles

required to interpolate the scan
line using adaptive MR synthesis� The way

such a value is derived will be discussed shortly� The CC provides an immediate

indication of the desirability of using MR synthesis for a particular scan�line�

The emphasis on scan
line measures is not only a consequence of the DE�s



CHAPTER �� THE DIFFERENCE ENGINE AND IMAGE SYNTHESIS ��

architecture� an image may have regions which contain no detail and others

which are highly detailed� If one used a global cycle count� the textured regions

might convince one �through the global CC value	 to use direct reconstruction

on all pixel values� However� use of the scan
line measure would ensure that

these empty regions were 
lled at low cost� while the textured regions were set

directly� The use of such a criterion ensures that the scan
line cycle count never

exceeds the baseline cost � in the worst case� each pixel on the scan
line will

be set directly �requiring jxj cycles	� and one gains no bene
t over conventional

display processors�

There are two methods one can use to produce a viable MR synthesis algorithm�

� adaptive generation of detail information

� merging of instructions

The 
rst of these involves the generation of DE instructions only for those detail

regions which a human subject would perceive as relevant�

Instruction merging is appropriate whenever the splines which comprise the

various approximation�detail images show little variation from span to span�

For example� a scan
line with near uniform intensity could be interpolated in one

cycle using a simple zero
degree polynomial� This would provide a tremendous

gain over issuing set pixel instructions for each pixel in the scan
line� since each

set pixel also requires one clock cycle� One must be careful� however� that the

optimizations made are not too time consuming or lead to inaccuracies� In

particular� since the accumulation of several small pixel values can lead to a

discernable and important output values� it seems prudent that one only apply

such instruction merging to the approximation image and not the consecutive

detail tiers� In any event� if the detail selection functions properly� there should

be no redundancy worth exploiting in the detail images�

����� Adaptive Detail Generation

If the object to be synthesized has little texture or edge information� there will

be few wavelet transform coe�cients and� consequently� little information in

the detail images� Given this scenario� one would like to generate instructions

to produce the small information bearing regions in the detail images only� Of

course� heavily textured images will have few �quiet� regions and will be less
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likely to yield instruction compression using such an approach� In this case�

the CC must re ect this and the default �direct	 construction method should

be invoked�

Assuming� then� that one wishes to perform such an adaptive synthesis opera


tion� how does one do this% The answer� not surprisingly� is to use the decoded

wavelet coe�cients � or more precisely� those which are large� These large

coe�cients will correspond to prominent texture�edge features in the original

image �which is why they were preserved	� Having selected a coe�cient� the

extent of the �
D wavelet basis which that coe�cient weights is determined

�from the expressions for their supports� see Equations �����	������		 and a

structure is built for each scan
line which contains information on the resulting

span extents�

supp'
��
j�k�l � �k�j � �m� k	�j �	 �l�j� ��m� � � l	�j�� �����	

supp'
��
j�k�l � �k�j � ��m� � � k	�j �	 �l�j� �m� l	�j�� �����	

supp'
��
j�k�l � �k�j � ��m� � � k	�j �	 �l�j� ��m� � � l	�j�� �����	

supp&j�k�l � �k�j � �m� k	�j �	 �l�j� �m� l	�j�� �����	

The structure is established in such a way that overlapping basis elements

are merged to produce a single span� where necessary �See Figure ���	� The

structure contains information on the cost of building each scan
line using the

MR approach� it is this informationwhich governs the choice of reconstruction

method for each scan
line� No actual function evaluations occur at this stage�

since one may wish to opt for direct construction� which does not require these

values� If MR reconstruction is selected� based on the CC� then the span lists for

each level are traversed and the appropriate instructions generated� For direct

construction� the level � image is computed from the level � approximation

coe�cients �derived from the inverse wavelet transform	� Since some scan
lines

may require direct synthesis� the approach used is to perform a complete inverse

WT �which can be done quickly	 and to proceed from that point�

����� Instruction Merging

The merging of instructions is dependent on the variation of the di�erences as

one passes across span boundaries� One might also group �instruction demotion�

with this operation i�e�� deciding that the order of a spline segment should be
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Basis Element 1

Basis Element 2

F = a*BE1 + b*BE2

Span A

Span B

Merge(SpanA, SpanB)

Figure ���� Merging of basis elements� When basis functions are summed �to arrive at
the output image� the resulting basis elements generally overlap� In this example� two linear
basis elements are weighted and summed� the extent of the output function is just the union
of the basis element spans� Since many basis coe
cients may be zero� the merging operation
will generally yield a number of disjoint non�zero regions� If MR synthesis is chosen� DE
instructions are produced to generate the non�zero regions intersecting the current scanline�

lowered because the di�erences indicate that it has degenerated into some lower

order polynomial� In this case one could output a lower cost DE instruction�

In the extreme case of a zero
degree polynomial with zero intensity� one would

not output an instruction at all�

The span merge proceeds as follows�

�� Compute the di�erences for the two spans under consideration

�� If the di�erences are the same within the prescribed tolerance

��� Create a new span with starting point of the old one and

the extent of both combined�

else

��� Emit processor instruction to interpolate �accumulated	 span�

�� Fetch next span�

�� If no span available emit last and exit else return to ��

Another reason for only using the span merge on the approximation level is
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that the likelihood of there being mergeable spans is signi
cantly greater �the

image has been low
pass 
ltered	� The possibility of merging instructions is

another reason to employ the MR approach� the only merging one can easily

do when pixels are set directly is zero
degree merging i�e�� merging neighbour


ing pixels with more or less the same value� This is so because the pixel data

may be arbitrarily irregular� unlike the pixel values in the spline MRA which

are constrained to lie on a polynomial of known degree � one can merge very

large spans provided the di�erences are more or less the same� For example�

if one decomposed� say� &� x
����

y
���	 �a very dilated quadratic scaling function"	

the synthesis�merging procedure would ensure that very few instructions were

needed to reproduce this image� The direct approach would have no way of

exploiting the special nature of this test image� and would require many waste


ful operations in reproducing this simple shape� This is� admittedly� a highly

contrived example� but it serves to illustrate the point that the characteristics

of the spline MRA allow one to eliminate this kind of �redundancy� with great

ease�

	�� Results and Discussion

The test images used here were presented in Chapter �� with the exception of

�circle�� �bowl� and �hanna�� Figure ���� In order that one might clearly see the

e�ects of the MR synthesis operation� which depends on the number of large

wavelet coe�cients present on each level� the wavelet compression phase was

simulated by merely zeroing all wavelet coe�cients below a selected threshold�

This threshold was arbitrarily chosen to ensure that most images were well

reconstructed� once a value was selected it was used with all the experimental

images� The proportion of wavelet coe�cients eliminated was recorded� as well

as the e�ects �in terms of cycle reduction	 of the multi
resolution synthesis

and merging� The results� for a � level decomposition� are summarized in

Table ���� For simple� smooth objects or objects with large uniform regions�

the application of MR synthesis without any kind of instruction merging yields

some gain� although not of any particular note� on average a reduction of the

cycle cost by between ��
��)� For �natural� images� which generally contain

a large measure of texture and strong edges� there appears to be no bene
t

in employing direct MR synthesis� However� in both cases� when instruction

merging is applied� the cycle count drops below th BC� For natural images �such
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Figure ���� The test images �circle�� �sugarbowl� and �hanna� �scaled versions	�

as lenna	 this occurs because one exploits inter
pixel redundancy in the merging

process� For simple scenes� the e�ect is very marked� �square� only requires �����

the number of cycles that a direct evaluation of the scene would required� Of

course� this image is is not really representative of the class one would be likely

to use� However� since low inter
pixel variance enables neighbouring pixels to

be merged� and most images possess strong pixel correlation� one should always

be able to achieve cycle compression on the basis of image domain merging

alone i�e�� the kind of merging which takes place when no MR synthesis occurs

�simple zero
order merging	�

From the above results it is clear that the merging operation is central to the
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Gain

Image ) Kept MR only MR�merge Description

Lenna ���� ��� ���� Complex� texture and edges

Model ��� ��� ���� Complex� smoothish � strong edges

hanna ���� ��� ���� Complex� uniform regions� edges � texture

square ��� ��� ���� Simple� uniform regions� sharp edges

circle ��� ���� ���� Simple� uniform� smoothly varying

house ���� ��� ��� Complex� uniform regions� edges � texture

bowl ��� ���� ���� Simple� Phong shaded convex surface

Table ���� Typical MR synthesis results� The results shown here indicate the wide
range of possibilities for improvement when using multi�resolution synthesis� The gain referred
to is given in terms of cycle compression� i�e�� jyjBCP

i
CCi

� where jyj is the number of scan�lines

and CCi is the cycle cost of producing scan�line i using MR synthesis� The �eld �Kept�
refers to the number of wavelet coe
cients retained �by the �compression�� while �MR only�
and �MR�merge� provide data for the case of no post synthesis merging and the case with
merging� respectively�

cycle gains re ected� There are several reasons for this� Most of the images

have sizable uniform regions� which are easily exploited by zero
order merging�

Higher
order span merging is less successful because the complexity inherent

in the images leads to widely varying di�erences across neighbouring spans on

all but the lowest levels� Natural images are generally too complex to allow

any sort of real gain from a pure multi
resolution approach� having too many

wavelet coe�cients at lower levels� However� if the image to be decomposed

consists of polynomial primitives� such as the Phong shaded images referred to

earlier� the gains can become signi
cant since the high resolution detail tiers

may be entirely discarded� In addition� there is ample opportunity for higher

level span merging� resulting from uniform polynomial segments intersecting

several consecutive spans� Since these are precisely the kind of images the DE

was designed to synthesize� the usefulness of MR synthesis and merging should

be evident� Furthermore� Such images will have few wavelet coe�cients and will

not require many detail evaluations� thus lowering the computational burden

and allowing more rapid instruction generation�

Merging is not without its pitfalls� however� In particular� if neighbouring spans

with su�ciently dissimilar di�erences are merged� the resulting interpolation

errors can become acute� This problem is exacerbated by consecutive span

merges� since the resulting span may be very long� The tolerance values used

to determine �equality� were deduced on an ad
hoc empirical basis� although

one could attempt to develop some kind of HVS dependency model� For the
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purposes of the results quoted above� a grey
scale value of � or less was consid


ered to correspond to black �for approximation image merging	� The tolerances

for all the di�erences were set at ����� � a value that did not produce any vi


sually discernable merging errors� These values are tentative and conservative

� the intention was to investigate the potential of merging� not �immediately	

to optimize performance� One can vary the tolerance as a function of the order

of the di�erence� this would form part of an in
depth HVS investigation and

should be considered as future work material�

����� Alternative Architectures

The �
D spline multi
resolution analysis ensures that detail and approximation

images on level j have constant polynomial character over patches with with

support

��fj�j��gk� �fj�j��g�k � �	�	 ��fj�j��gk� �fj�j��g�k � �	�� �����	

The semicolon is used to di�erentiate between the approximation and detail im


ages� respectively� This coherence is not exploited by the synthesis algorithm�

because the DE is inherently one dimensional� One could� however� introduce a

�
D Di�erence Engine i�e�� one which performed interpolation across scan
lines

as well� Of course� the output would still have to be a �
D pixel stream �

one could thus maintain the DE and precede it by some sort of �Y
processor��

which would utilize similar logic to provide scan
line interpolation� The �
D DE

would interpolate a rectangular region given the necessary x and y di�erences

and input intensity �for the top left hand corner of the rectangle	� outputting

a scan
line�s worth of DE instructions after processing every new y value� To

interpolate a quadratic patch� one would need to specify nine di�erences �Ed


win%%%	�

!x� !y � !xy� !yy � !xx� !xxy� !yyx� !xyy � !xyx�

the starting co
ordinates� the starting intensity value and the x and y dimen


sions � �� pieces of information in all� To interpolate a square of size n	n� we
would require �n pieces of interpolation using the DE with quadratic splines�

The gain becomes more signi
cant with larger block sizes� Of course� the

amount of information one has to provide is not the only measure of gain that

should be employed� The number of cycles required to execute the instruction
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would be the real indicator of success� Obviously� for small patches� a straight

DE interpolation would perform better � one could devise some sort of pass

through mechanism� which would allow the previous instruction set to function

in the way it had before� just forwarding the instruction straight to the scan
line

DE�

The major limitation with such a scheme is the rapid build
up of interpolation

error� resulting from the lack of additional precision bits� Quadratic interpo


lation error in �
D grows as O�n�	 � in �
D this would be �Edwin%	 O�n		�

limiting the size of the region one could accurately interpolate �with �� preci


sion bits	 to a square of size ��x��� Of course� one could increase the number

of precision bits� but if the MR decomposition does not proceed beyond j � ��

this would be unnecessary � the patches on this level are of size ��x�� �this

discounts merging operations� though� which could increase the e�ective span

support substantially	� Assuming that the number of precision bits �and the

precision of the input	 were up to the task� one could �in theory	 interpolate the

entire image with one Y
processor instruction �once again� this is a contrived

but illustrative example	� Before one could deliver a meaningful decision as to

the viability of such a scheme� a full analysis would have to be undertaken�

	�	 Concluding Comments

Adaptive multi
resolution synthesis o�ers a means of exploiting the structure

of the wavelet compressed images � or more precisely� the associated MRA �

and the architecture of the Di�erence Engine� While the gains attainable using

this approach depend on the complexity of the image involved� the inclusion

of a span
merging procedure ensures that one can always� achieve some sort of

reduction over the baseline cost� In addition� the kinds of images where one

can expect noteworthy gains are precisely the type which the Di�erence Engine

was designed to render e�ciently� Phong shaded scenes� While the computa


tional overheads involved in direct computation of the various multi
resolution

images seem� at 
rst glance� to be excessive� fast convolution schemes can be

designed �and implemented in hardware	 to ensure that these calculations can

be performed e�ciently�

The decision governing the choice of image synthesis �direct or multi
 resolution	

�Except in extreme pathological cases�
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is made independently for each scan
line� providing a simple but e�ective kind

of image adaptivity� The number of processor cycles required to render a scan


line is bounded above by the baseline cost� under no circumstances will the

BC be exceeded� In addition� to ensure computational e�ciency� no function

evaluations occur until the relevant type of reconstruction has been selected�

The calculations required to make this determination are straightforward and

do not require much CPU time�

The possibility exists to improve rendering performance by exploiting scan
line

coherence i�e�� to introduce a processor which performs rapid �
D interpolation�

While there are many issues which would have to be examined before such a

device could become a reality� the idea certainly bears closer scrutiny�



Chapter �

Second Generation Image

Coding

There are a variety of methods for achieving image compression� ranging from

the exotic to the trivial � some of these were discussed in Chapter �� These

�Classical� image coding schemes are known as �rst generation techniques� In


cluded in this category are �di�erential	 pulse
code modulation� delta modula


tion� predictive coding and transform coding� Such methods make little or no

attempt to use any but the most trivial properties of the human visual system

�HVS	� These techniques may be lossy or lossless� although the latter is more

likely if one is aiming at respectable bit
rates�

Second generation methods are those which are speci
cally designed to exploit

the inadequacies of the HVS� such as its insensitivity to high
frequency noise�

Wavelet sub
band coding� as discussed in ���� ��� ��� falls into this category�

Such compression schemes attempt to simulate the action of visual processing

i�e�� to extract and retain only visually relevant information� Wavelet
based

schemes are not alone is in this regard� Watson ���� has developed another

such scheme� which uses the suggestively named cortex transform to model the

action of the visual cortex� the region of the brain in which visual information

is processed� There are many other examples of HVS models �see� for example�

���� ���	� one might almost say that any worthwhile image compression scheme

will be built around some sort of HVS model� Kunt et al ���� ��� explores this

topic in great detail�

The wavelet compression used in this dissertation was unsatisfactory in that

���
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it failed to achieve its full potential� This can be attributed� at least in part�

to the use of too simple an HVS model� The following sections are aimed at

developing a satisfactory means of exploiting both the redundancy inherent in

the transform and the nature of the HVS to achieve a higher level of com


pression performance� The discussions presented here should be considered as

preliminary to future work�

Section ��� provides a simple introduction to edge detection techniques� The

manner in which edges may be constructed from these points� and e�ciently

represented� is discussed in Section ���� Edge
based image reconstruction is

covered in Section ���� An alternative coding scheme� geared towards the Dif


ference Engine� is suggested in Section ��� � Section ��� presents the results

of some simple investigations into facets of the proposed scheme�


�� The multi�scale edge characterization of images

Their is wide consensus on the important role that edges play in our interpreta


tion of visual information� Marr ���� believes that the brain extracts a skeletal

edge representation of an image as a prelude to higher visual processing �

the so
called primal sketch ���� ���� This belief is clearly evidenced in Marr�s

conjecture� which claims that all the information necessary to fully describe an

image may be extracted from the edge information present on all scales� This

idea is intuitively sensible� images are made up of edges and texture � how


ever� upon closer inspection� texture is subject to the same analysis i�e�� it too

is composed of edge and �texture� information� This process may be repeated

until no additional detail is discernable� Such an edge
map encoding would

seem to o�er a means of obtaining a very compact image code� given the sparse

nature of such a representation� Of course� one 
rst has to extract the edges �

a task which will be examined in the following sections�


�� Edge detection methods

Edge detection is a decidedly non
trivial exercise� Not that the algorithms used

to determine edge points are complex� on the contrary� most are unexpectedly

simple� It is this very simplicity which underlies the major di�culty inherent

in edge detection viz�� which edge points lie on �legitimate� edges and which are
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merely the by
products of computational or image noise% In fact� the problem

may be worse� particularly if one is aiming to develop a compact image code�

In this case� besides the legitimacy issue� the whole question of relevant edge

selection comes to the fore� After all� one does not wish to maintain unnecessary

edge information in such a representation� Unfortunately� the latter problem

is� in general� one which cannot be automated i�e�� it calls for some measure

of subjective judgment� One can attempt to classify edges based on obvious

criteria such as edge length� the average grey
scale value along the edge etc�

but all of these fail under appropriate conditions� Nonetheless� while a general

solution is �presently	 unattainable� one can still use the standard methods to

obtain a generally satisfactory edge decomposition�

Edge detection is a two phase procedure consisting of

�� the determination of edge points and

�� linking these points into edges or contours�

The latter problem will be considered in Section ���� the former is addressed

now� In the following sections the phrase �edge detection� is used rather than

�edge point detection�� since this is the usage most prevalent in the literature�

	���� Standard approaches to edge detection

Before any meaningful attempt can be made to extract the edges from an image�

one must have a clear idea of what an edge is� An edge point is one at which the

intensity undergoes maximum change as one moves in a prescribed direction�

The totality of all such simply� connected points� for the selected direction�

is said to constitute an edge with a direction perpendicular to the direction of

maximum change� �See Figure ���	� This kind of directional edge detection is

accomplished �in the continuous domain	 by taking the directional derivative of

the image function� and checking to see whether the point under consideration

maximizes this function for the given direction� If so� it is a point in the edge

with the prescribed gradient� For example� �I
�x provides a means of detecting

vertical edges�

�By this I mean that an edge point will have a maximum of two other points connected to
it� Naturally� the end point of an edge will only have one neighbouring edge point�
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Gradient Vector
Surface

Edge Contour

Direction of Edge

Figure ���� Edge detection� The directional derivative attains its maximum in the
direction of the gradient vector �which is perpendicular to the surface under consideration��
The edge direction is perpendicular to the direction of this vector� Edge points are located at
the centre of an edge� since this is the point at which the intensity change attains its maximum�

In many cases� however� one wishes to use an edge
detector which is isotropic

i�e�� which does not perform directional edge detection� In this case� one can

use a gradient�based operator� This involves the computation of the magnitude

of the �
D gradient operator� �rI	�x� y	 de
ned as

�rI	�x� y	� �I�x� y	

�x
�i�

�I�x� y	

�y
�j ����	

The magnitude value is then thresholded� and all points above a prescribed

threshold are considered edge points� The problem with this approach is that

of broad edges� all the edge points above the threshold are selected� not only

the maximal ones� This problem can be resolved by edge�thinning techniques

�����

Since the images one works with are composed of discrete samples� the par


tial derivatives have to be replaced with 
nite di�erence approximations� The

precise manner in which the derivatives are approximated determines how suc


cessful the edge detection phase will be� A number of edge detectors ���� have

been developed for images with varying requirements�

An alternative to computing the 
rst �directional	 derivative is to use a second

derivative formulation� In this case� an edge point is one which produces a zero

in the second derivative� rather than maximizing the 
rst derivative ��� ����
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One can use the Laplacian operator�

�r�I	�x� y	� ��I�x� y	

��x
�
��I�x� y	

��y
����	

to provide an isotropic second derivative�

Because the 
nite di�erence operations are sensitive to noise� Canny ��� pre


cedes the gradient operation by Gaussian smoothing� This serves to de
sensitize

the detection process and leads to more accurate edge extraction� Marr and

Hildreth ���� use a similar approach� although in this case the Laplacian for


mulation is used instead of maxima detection� Now however� in keeping with

Marr�s conjecture� the edge detection becomes a multi
scale process� Gaussians

of di�ering variance are used to smooth the image before the detection phase�

important edges are considered to be those which persist over several scales�

The detection and smoothing phases may be combined and treated as one 
l


tering operation� The impulse response of the resulting convolutional operator

then has the shape of a �mexican hat��

	���� Wavelet based edge detection

The connection between wavelet transform coe�cients and edges has been

stressed repeatedly throughout this dissertation� These coe�cients are large

in the vicinity of rapidly changing intensity values� precisely the sort of be


haviour exhibited by edges and texture regions� However� one cannot construct

a wavelet edge detector in an arbitrarymanner� The construction in ���� is based

on a cubic spline wavelet� The scaling function is chosen so that its integral is

unity� the wavelet is obtained from the scaling function by di�erentiation�Z
��x	dx � �� ����	

	�x	 �
d��x	

dx
����	

Since the wavelet transform may be re
written as a convolution ���� and convo


lution �commutes� with di�erentiation� one may write

�W�f	�s� x	 � �f � 	s	�x	 � s
d

dx
�f � �s	�x	 ����	

where s is the scale and �s�x	 � �
s��

x
s 	� Thus� in �
D� the wavelet transform

de
ned w�r�t� to the wavelet 	�x	� is equivalent to a Canny edge detector ���
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�the scaling function assumes the role of the smoothing gaussian	� To 
nd edge

points one searches for wavelet transform maxima� In fact� it is advantageous

to use the modulus of the wavelet transform for this detection� since this detects

only sharp variations in the signal�

The above generalizes in an obvious way to �
D� where we have�
�W��f	�s� x� y	

�W��f	�s� x� y	

�
� s

�
�
�x�f � �s	�x� y	
�
�y �f � �s	�x� y	

�
� sr�f � �s	�x� y	 ����	

with 	��x� y	 �
�	�x�y

�x and 	��x� y	 �

�	�x�y

�y �

Thus� edge point can be detected from the components of �an appropriately

de
ned	 �
D wavelet transform� This formulation has the advantage that the

wavelet transform components also give explicit information about the orien�

tation of the edge ����� The modulus of the component vector serves as an

indication of of edge strength� This information is very useful when attempting

to resolve the di�culties referred to in Section ����


�� Contour coding

If one wishes to derive an image coding scheme based on edges� then detection of

edge points alone is insu�cient� These points must be associated with the edges

to which they belong� in order that one may code these edges� If this is not done

e�ectively� the resulting contours may be highly fragmented� Fragmentation of

contours has two major consequences

Ine�ciency the e�ectiveness of subsequent contour representations is degraded�

Information Loss there may be an unacceptable loss of information� since

short edges are often discarded in favour of a more compact edge coding�

There are a number of situations in which contour coding will be desirable

���� ���� The most obvious is when the image itself consists of line�contours

only � for example� circuit diagrams� iso
surface maps etc� In these cases� the

kind of redundancy in the image makes this sort of coding a natural choice�
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Eight-Connected Contour

Four-Connected Contour

Filling Edge Points

Input Sample

4 0

2 1

6 75

3

BA

Figure ���� Connectivity� A point is a digital image is surrounded by eight neighbours
�A�� Points �� 	� � and � are four� connected to the centre point� Points � through � are
eight�connected to the centre point� The implications of connectedness are easy to see� a
sequence of diagonal points can be easily joined when they have eight�connectedness� When
the contour building algorithm is based on four�connected techniques� however� special ��lling�
points have to be inserted before such a contour can be built� This introduces a small measure
of inaccuracy and makes edges seem thicker �B��

	���� Edge point Connectivity

An edge point may be four�connected or eight�connected� In the former case�

the point may only bind to the four neighbours which are in direct contact with

it� In the latter case� it can also connect to the four points which only touch

it diagonally � Figure ����A	� The choice of connectivity can a�ect both the

accuracy of the contours produced and the amount of processing required to

construct them� If one opts for four
connectivity� then a sequence of diagonal

edge points would not be merged �Figure ����B	� unless �
lling� edge points

were inserted to connect them� An eight
connected chaining scheme would

have no problem with such a sequence of edge points� However� one then has

to do more work� since additional directions have to be searched to determine

potential edge points�
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	���� Edge point chaining

If there are several points to which a given edge point can be connected� some

sort of logic must be invoked to ensure that the most likely candidate is chosen�

There is no fool
proof method of doing this� In general� the only information

available to assist in making this decision is the spatial position and grey
scale

value attached to the edge pixels� Such information is of limited use in a noisy

environment� Clearly� some other means of identifying legitimate edge points

must be employed�

Such a scheme is presented in ����� In this system� candidate points are only

chained if their respective strengths and directions are within a prescribed tol


erance� The magnitude of the wavelet transform is used as the measure of

edge strength� The direction of the �tangent to the	 edge is obtained by noting

that the gradient vector is perpendicular to the edge contour� The direction of

the gradient vector can be easily determined from the wavelet coe�cients �

see Section ������ Thus� by determining the disparity in the direction of the

gradient vectors of the two candidate points� and checking the wavelet magni


tude associated with each point� a choice can be made as to whether they are

logically connected�

A problem which arises in this scheme �and in general	 is that quantization of

edge directions occurs� regardless of whether the edge points are eight
 or four


connected� In other words� while the tangent to the �true� contour may vary

smoothly� the number of edge directions is �generally �
 see ����	 limited to

four or eight� However� since one can only extract approximate edge positions

anyway� this objection is more aesthetic than practical � provided one uses

�
connected chaining� As mentioned above� four
connected chaining imposes

some irritating constraints� Nonetheless� there may be situations in which a

four
connected chaining scheme is preferable�

	���� Edge�Chain coding

Once the edges �or acceptable approximations thereof	 have been extracted�

some means must be found to encode this information in as compact a form as

possible�

The standard approach is contour run�length coding �CRLC	 ���� ���� As the

name suggests� this method steps along the contour� emitting pairs of the form
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Direction

R

L

F

S(1,F)(1,L)(1,F)(1,L)(2,F)

S

S

S(2,F)(1,L)(1,F)(1,L)(1,F)

Figure ���� A four
connected chain code� A contour may be described non�uniquely�
In the �rst diagram� the contour is traversed left to right� while in the second it is traversed
right to left� Three �relative� directions are used� rather than four absolute directions�

�n� dirn	� where n in the number of occurrences of the unit interval in the

direction �dirn�� Of course the starting point of the contour must also be stored�

The directions referred to are relative i�e�� they are given in relation to the

previous contour direction vector� For example� using four
connected chaining�

one would have three relative directions� to go �backwards�� you would start

with a reversed direction vector and proceed as before� See Figure ���� In

many cases� the edge chaining and contour coding are combined in one step�

In this case� edge searching algorithms ���� are employed to resolve ambiguities

�although somewhat contentiously	�

CRLC� and its generalizations �See� for example� ����	� work well for edge seg


ments with long runs� such as those encountered in circuit diagrams� However�

for the arbitrary kinds of edges one is likely to encounter in natural images� the

overhead of storing a number with each direction symbol is likely to cause a loss

of e�ciency �even if one employs an entropy coding to reduce the size of the

data	� An alternative approach is suggested in ���� Rather than coding runs di


rectly� the contour is blocked into into segments of B edge points� The possible

�relative	 directions are enumerated and the direction symbols generated when

traversing the contour are Hu�man coded �Figure ���	� Although this method

will not� in general� achieve the same performance as the algorithm used in �����

it is computationally cheaper and easier to implement� For small block
sizes

the limitations on contour torsion �imposed by the small blocks	 allow rates of

around ��� bits per contour pixel to be attained �using B � �	� This perfor
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B = 1

B = 2

Figure ���� Edge blocks for block sizes B � �� �� When using a four�connected code�
there are

PB

i
� �
i possible blocks codes for a given size B� since a coding scheme based on

B�sized blocks needs all the smaller block codes to deal with contour end�points�

mance is� however� for four
connected contours� For eight
connected contours

there are many more possibilities and coding e�ciency rapidly decreases�


�� Contour reconstruction

The above process generates a series of �compactly	 represented edges or con


tours� These contours may be used as the sole image representation� in which

case one is still able to extract important contextual information �providing

the encoding has not deleted too many edge segments	� Alternatively� some

sort of interpolative method may be used to produce a smoother� more visually

appealing image�

Twomethods will be described here� The 
rst� developed by S� Carlsson ���� uses

only directly available information �i�e gray
scale and geometric information	 to

perform image reconstruction� The second method� that of Mallat and Zhong

����� uses wavelet edge detection and chaining� as discussed above� In addition�

rather exotic use is made of the information contained in the wavelet transform

to enable image reconstruction�
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	���� Carlsson
s approach

The contours extracted in ��� are four
connected �because of the edge chaining

algorithm used	� The edge points themselves are located on half
pixel points�

rather than storing this non
integral value� the grey
scale value is encoded by

keeping the two pixel values which lie on either side of the �virtual� edge point�

The di�erence in these values is a measure of edge strength�

The geometry of the edges is stored using the block coding scheme referred to

above� Grey
scale information �edge strength	 is compressed by exploiting the

slow variation of grey
scale information along a contour� The starting positions

of edges are coded using a form of run
length coding� the distance between

consecutive starting positions is coded� rather than the actual x� y co
ordinates�

These runs are then Hu�man coded�

The contour interpolation is posed as a variational problem� minimize the vari


ation of the surface constrained by the grey
scale values of the contours� This

turns out to be equivalent to solving of a non
linear quadratic PDE ��� pg�

���� A 
nite di�erence equation can be set up and solved via successive over�

relaxation� This is an iterative approach� in which the grey scale values on the

contours �which retain their value throughout	 �di�use� outward to 
ll the re


gions between the contours� In general� eight iterations is su�cient to achieve

an acceptable level of smoothness�

Unless the edge representation is very rich �in which case compression perfor


mance will be degraded	 the image reproduced will su�er from a major loss

of texture information as well as minor� but visually irritating� edge loss� To

overcome this� Carlsson uses Laplacian image coding to code the residual �the

di�erence between the input image and the reconstructed one	� Because much

of the high
frequency information �the strong edges	 has been subtracted from

the image� one can code the residual fairly compactly without sacri
cing intel


ligibility� The price paid for this gain will be the loss of small scale texture�

The overall compression ratios are not particularly noteworthy when good re


production is required� seldom exceeding �����

	���� Multi�scale edge reconstruction

While the method proposed in ���� is conceptually similar to that described in

Section ������ the implementation is radically di�erent� The edge detection and
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chaining algorithms are based on the modulus and direction of the wavelet �gra


dient	 vector� produced by the special two
wavelet transformmentioned earlier�

This approach already serves to distinguish the two methods� the conceptual

correspondence becomes even more hazy when the reconstruction algorithm is

examined�

Taking the message of Marr�s conjecture to heart� Mallat and Zhong derive an

inverse �reconstruction procedure	 based on the multi
scale edge information

extracted� which produces a very close approximation to the original image�

That is� the inverse wavelet transform is modi
ed to deal with the edge repre


sentation�

In their system� a series of angle and modulus images are generated from the

input image� These �images� represent the decomposition of the gradient vector

�the wavelet transform	 into its polar components� The extracted edges have

their geometry encoded using the method introduced in Section ������ To make

the representation e�cient� only the modulus�angle values along edges should

be stored� The modulus values are coded using predictive coding �they are

assumed to vary slowly along the edge	� The angle values are not stored at

all � they are only used in the edge chaining process� To recreate them� the

tangent to the edge curve at each point is approximated �using simple geometry	

and the gradient vector direction is assumed to be perpendicular to that of the

tangent vector� Since the wavelet transform is only taken over a 
nite set of

scales �as discussed previously	 the information at smaller scales will reside in

the approximation image� which is then also part of the representation and

must be stored to enable reconstruction�

Since the detail images are now encoded in the edge representation� some means

must be developed to perform an inverse WT based on this representation�

Analysis of the problem reveals that� in order to perform the inverse transform�

one must 
nd the element� of a sub
space of wavelet transforms� which mini


mizes a smoothness criterion �i�e�� it must minimize a particular �Sobolev� norm

on this sub
space	� It turns out that one can de
ne two projection operators�

PV and P� to determine this element� The former is merely the composition

of the wavelet transform�inverse transform operators� while the latter modi
es

its argument by adding on sections of exponential curves �See the Appendix of

����	� When these projection operators are alternated� using the zero function
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as the initial �point�� the output converges �with a fair degree of certainty�	 to

the desired element of the wavelet sub
space�

When image compression is desired� the edge representation has to be made sig


ni
cantly smaller� In ����� a three level wavelet edge decomposition is used� but

rather than coding the edge maps for all three levels� only the second level map

is retained� This is used to approximate the other two� As in Section ������ edge

culling leads to loss of texture and edge information� The problem is resolved

in much the same way as before � a residue is generated and subjected to an

image compression scheme� Now� however� orthogonal wavelet compression is

applied� a method noted for its texture preservation at fair compression ratios�

Intelligible results are obtained at very high compression ratios �of the order of

�����	� although the image is then of poor quality�


�	 An alternative proposal for edge interpolation

There are a number of problems with the edge reconstruction techniques dis


cussed above� These may be summarized as follows�

Multi�scale edge reconstruction

�� The number of calculations required is excessive� Although the projective

operators are O�n logn	 these operators must be iterated several times in

order to get good convergence� Each iteration requires a wavelet transform

and inverse transform as well as a series of exponential calculations� Run


ning on a reasonably powerful workstation �SGI R���� based Indigo�	

it takes several minutes to complete the recommended eight iterations�

Admittedly� the operations could be made more e�cient� but even if one

could improve performance� the complexity of the calculations makes this

approach unsuitable for real
time hardware implementation�

�� The existence of the approximation image places a fundamental limit on

the achievable compression ratios� This image is required to make the edge

representation complete� given the 
nite nature of the wavelet decompo


sition� There is a tradeo� involved here� the more levels one decomposes�

�Certain approximations are made which a�ect the stability of the convergence� however�
the authors insist that they have yet to encounter an image for which their system would not
function adequately�



CHAPTER 	� SECOND GENERATION IMAGE CODING ���

the smaller the approximation image� but the more sensitive the resulting

wavelet coe�cients are to quantization� It should be remembered that

wavelet coding the residual will introduce another approximation image�

�� It is a non
trivial problem to determine which edges are visually relevant

�for reconstruction	� The more edges one retains� the better the recon


struction� but the less compact the code� This is a problem common to all

such edge representations� It seems best to allow a user
speci
ed thresh


old �on edge length� say	 and experiment until a suitable compromise is

reached�

�� The storage requirements are fairly substantial� since each detail image

is now replaced by an angle image and a modulus image� One can im


prove memory utilization� but this complicates matters� particularly for

hardware implementation�

Edge interpolation

�� The use of a four
connected chaining algorithm leads to the problems

discussed in Section ������

�� The approach used to code the starting positions of edges �a run
length

scheme	 is unsatisfactory� since there is no guarantee that edge starting

points will be nicely distributed across the image� Hu�man coding could

then prove extremely ine�cient� given the overhead of maintaining the

Hu�man table�

�� Without the information provided by the wavelet transform� it is more

di�cult to chain the correct points together�

�� The residual is compressed using a Laplacian compression scheme� rather

than wavelet compression�

From the above one can begin to see what form the alternative approach should

possess� At the very least� the residual should be subjected to wavelet compres


sion� preferably augmented by some sort of HVS image model � the scheme

discussed at the end of Chapter � would ful
ll this requirement�

Since the existence of the approximation image in the multi
scale edge rep


resentation places a fundamental limit on the attainable compressibility� and
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the computations involved in image reconstruction are excessive� the multi


scale compression scheme envisaged in ���� ��� is not viable �for us	� Although

Carlsson�s approach utilizes a very simple edge interpolation scheme� it is also

iterative and multiple sweeps are required before an acceptable approximation

is produced� Ideally� one would like some sort of simple� non
iterative inter


polative technique�

An important part of this new approach� will be the manner in which it pro


duces edge
points and chains them together� From the above� it is clear that

Carlsson�s recommended way of coding chain starting point information is less

than satisfactory� it is not clear that Hu�man coding the sequence of runs

for an arbitrary image will produce a more compact representation� perhaps

it would be best to exclude this aspect of the coding� Wavelet edge chaining

techniques seem more intuitively appealing and accurate� The most important

requirement� however� is that the strong edges are extracted from the image �

even a simple scheme should be able to manage this� Nonetheless� given the

advantages of a wavelet edge detector� it remains the method of choice� In any

event� the existence of the residual image ensures that we will catch any coding

errors which emerge in this stage�

Since the interpolated image will not be used as a stand
alone visual represen


tation� the interpolation does not have to be accurate� However� to ensure that

we do not introduce sharp edges in the residual� the interpolation across edges

must maintain a certain amount of continuity�

An important concern in our case is the manner in which such a compression

scheme would a�ect Di�erence Engine performance� The performance gains

reported earlier were based on the properties of the spline MRA� Unless the in


terpolation scheme also exhibits some sort of polynomial character� these gains

will be sacri
ced� The obvious approach is to settle for a �quadratic	 spline inter


polation scheme� Ideally� one would like to interpolate the region between knot

points �the irregularly spaced contour points	 with a single quadratic patch� but

continuity conditions might not allow this� Nonetheless� it should be possible

to arrive at a simple interpolation �perhaps using Beta splines� because they

are more general	 which will give a near
optimal decomposition� given the lack

of constraints �except at edge points	�

Thus� the proposed scheme should provide the following �more or less	�

� edge point detection �via wavelet transform	
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� edge chaining �using wavelet transform info	

� grey
scale and geometry coding using Carlsson�s approach

� simple �polynomial	 interpolation scheme for an irregular set of knot


points �the contour pixels 	

� compress the residual using the semi
orthogonal wavelet transform� as

before�

The 
nal form of the decomposition�synthesis algorithmwould depend on hard


ware requirements�


�
 Some preliminary tests

As a prelude to deeper investigations� a raster
based edge chaining algorithm�

built around the public domain software of S� Mallat� was developed� The al


gorithm used the wavelet modulus�angle information to decide which points to

chain� The edge chaining was an eight
connected process� however� in order

to use Carlsson�s contour block coding� �for contour geometry	� the increment

list produced was down
graded to a four
 connected increment representation�

which was then coded using a block size of �� The starting points of the edges

were coded in full� No compression was done on the modulus values � the in


tention was to check the e�ectiveness of the wavelet chaining and edge geometry

representation�

The following observations were made�

�� The wavelet edge point detection works well � Figure ����

�� While the chaining is generally acceptable� one must carefully choose the

tolerance between neighbouring angle and modulus values along a con


tour� If the angle tolerance� in particular� is too 
ne� the contour will be

fragmented� However� choosing the value too coarsely allows unwanted

points to be linked into the edge�

�� The edges exhibit the thickness associated with a four
connected coding

scheme�
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Figure ���� Edge point map� The edge points extracted from the second level of the
wavelet decomposition� using the method of ��
��

Figure ���� Extracted edge maps� The edge map on the left has ��� edges� while that
on the on on the right has �
�� A edge length threshold was used for both � the left had
all edges containing only one point removed� All edges with less than six edge points were
removed from the second edge map�
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Figure ���� Scan
line edge chaining� The start and end of the evolving edge are rep�
resented by �S� and �E�� respectively� Since the algorithm proceeds down the screen� only the
directions above the current scan�line need be searched� When an edge point is encountered�
a check is made to see whether it is already linked to an edge� if not it is bound to the
appropriate edge� If an edge segment can be merged with an existing edge� this is done�

�� Various thresholds on contour length and average modulus value along

the contour were tried as a means of culling edges� �See Figure ���	�

The scan
line edge
chaining scheme was based on linked lists �of evolving chain

sections � See Figure ���	 and was a little ine�cient� There was some overhead

involved in �
xing� edge chains to make them suitable for contour block coding�

One could certainly use an eight
connected contour code� although the e�ciency

of Carlsson�s approach would then drop � nonetheless� it is computationally

less demanding than� say� Generalized CRLC ����� so this might be acceptable�

Alternatively� a simpler but less desirable contour coding method might be

chosen�


�� Concluding comments

This 
nal chapter has touched on some ways in which the spline wavelet image

code can be improved� Besides using a more e�ective �HVS	 model to exploit

the redundancy in the wavelet transform� one can employ edge interpolation

techniques to reduce the amount of high
frequency information in the image�
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This information increases the number of wavelet coe�cients and thus decreases

the e�ciency of wavelet compression� All that the edge interpolation need do

is provide a smooth enough transition across edge regions so that subtracting

the input and interpolated versions �to arrive at the lower energy residual	 doe

not introduce any discontinuities at the edge locations � this would defeat the

whole purpose of the scheme� Provided the edge representation is compact�

such a method should yield gains over straight wavelet compression�

Image synthesis involves the reconstruction of the residual �via an inverse

wavelet transform	 and the addition of the regenerated contour image� Given

our desire to use the DE� it seems natural that we opt for an interpolation

method which can use the chip�s architecture � otherwise� we risk losing the

advantages gained from spline MR synthesis� Bearing this in mind� the best

alternative would be a spline interpolation method based on quadratics� The

method should allow easy decomposition into DE instructions and be as gen


eral as possible � Beta splines have variable skew and tension parameters and

would seem to be an ideal candidate for the job�

The above suggestions are only tentative� However� they o�er some direction�

and with su�cient re
nement� they may form the basis for an enhanced com


pression�synthesis scheme�
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Conclusion

The Di�erence Engine provides an alternative image synthesis approach to that

used by most conventional display processors� Using the concept of a spline

multi
resolution analysis �covered fully in Chapter �	 and its associated wavelet

transform� an e�cient image compression�synthesis algorithm was derived to

drive this processor � e�ciency in this context is re ected in the number of

cycles required by the Di�erence Engine to display a spline
wavelet compressed

image� The need for compression was made clear in the Introduction and Chap


ter ��

The compression algorithm is based on a quadratic spline
wavelet � a variant

which has been neglected because of certain implementational complications�

Nonetheless� such a wavelet is preferable to the �more widely used	 cubic spline

wavelet from a computational point of view� It is also more suited to multi


resolution image synthesis than a linear spline wavelet� since quantization er


rors in the latter case are likely to be more visible �as Mach banding	� The

�di�culties� associated with the quadratic scheme are tractable� provided some

algebraic manipulations are undertaken� Spline wavelets per se were chosen

since they are eminently suited to the architecture of the Di�erence Engine�

In addition� the formulation of the approximation and detail spaces in this

system allows for easy generation of DE instructions� something that other

splines schemes �bi
orthogonal� for example	 may not readily permit� Like all

wavelet algorithms� the one used in this work can be re
cast in a convolutional

framework� thus� FFT methods can be used when a hardware implementation

is undertaken� In the proposed scheme� wavelet decompression involves short


lters and is comparatively rapid � an important aspect for the display of

���
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compressed video material�

The synthesis scheme exploits the DE�s architecture and the properties of the

spline multi
resolution analysis� to reduce the number of instructions needed to

produce an image� This is a two phase process� consisting of�

� adaptive image reconstruction using the MRA of the image and�or

� the merging of redundant DE instructions�

Experimentation revealed that most images can be rendered more e�ciently

using a combination of these two methods� A series of low complexity com


putations are performed to determine whether the above operations will result

in a reduction for a given scan
line� If this is not the case� the default dis


play scheme is invoked and the scan
line data is generated as per normal �

hence� no unnecessary function evaluations take place� The calculations which

are used to determine the various detail and approximation images scan be

recast as separable �
D convolutions and implemented in hardware using FFT

processors�

Noteworthy rendering gains were obtained for images with a high degree of

smoothness� Included in this category are Phong
shaded scenes � the DE was

designed to render such images e�eciently� ���� For such smooth images� the

reduction in rendering time can exceed a factor of �� Natural� textured images

typically experience gains of between ��
��) �this is a consequence of naturally

occurring pixel correlations	�

Since the manner in which the wavelet compression scheme was implemented

�wavelet sub
band vector quantization	 did not perform well� some methods

were discussed in the 
nal chapter which give some direction to future e�orts

in this area� These rely more deeply on �second generation� techniques� and as

such hold the promise of higher compression ratios�

The techniques presented in this dissertation enable one to make real gains

in terms of DE instruction throughput �provided the front
end FFT system is

up to the task	 thus increasing the frame rate in video applications� There

is little doubt that� with more extensive investigations and further theoretical

development� the preliminary algorithms presented here could be enhanced to

provide greater generality and better performance�

�The gain will depend on the size of the surface polygons�
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