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This dissertation is on the development of an interactive raster graphics system for
CAD-type of applications which inherently supports direct manipulation of three-
dimensional objects. This feature in particular serves to help the user to understand
the three-dimensional geometry of virtual objects as if these objects could be
observed and manipulated in the real world.

A graphics system is an essential and conceptually separable part of a
workstation. It is a key element for the so-called user interface via which interaction
between the application program and the user takes place. The success of the user
interface concept and the increased capabilities of workstations stimulated more
visually oriented communication. However, each new generation of workstations is
expected to be able to handle an increased amount of data and facilitate more
demanding visualisation and interaction techniques. This forms the motivation for
continuous research on interactive three-dimensional graphics systems for
workstations.

The aim of the research described in this dissertation has been to develop a new
architecture for an interactive graphics workstation, targeted for displaying three-
dimensional polygonal models. Interactivity of a graphics system can be improved
by speeding-up the image generation pipeline and/or by reducing the amount of
calculation needed to generate successive frames. We concentrated on the latter and
found that standard implementations of the image generation pipeline do not provide
sufficient functionality for interactive applications.

We concluded that the amount of calculation can be kept low by providing
precisely that functionality required for interaction. We state that a layered structure
and a consistent raster independent object-space approach are key elements of a
more appropriate architecture. The layered structure of the system we propose
allows us to make optimal use of incremental algorithms. However, a consequence
of this approach is that we have to make use of less common image generation
algorithms and non-standard image generation hardware.

For instance, the raster independent object-space paradigm implies that the
system requires object-space hidden surface removal. We found that object-space
hidden surface removal algorithms can confine update activities needed for
incremental changes to just those objects of which the visibility is changed.

Another consequence is that there is no mandate for a frame buffer. At high
update rates a frame buffer becomes a bottleneck and does not bring any extra
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functionality for interaction. (For a user, the smallest pick primitive is a visible
object, not a pixel.) Leaving out a frame buffer implies that the display controller
has to produce the pixels of fully shaded primitives — that may even be illuminated
by multiple light sources — at a rate of about 80 Mhz, depending on resolution.

We came up with a two-tier modular structured display controller. A high
quality illumination model was formulated that maps directly onto this architecture.
Worth noting is that the functionality of the custom modules of the display
controller is based on an abstraction of the fundamental aspects of image generation.
As a result of this, the architecture does not restrict to a specific type of primitive or
a specific type of rendering. Even more so, the architecture has proven to be useful
for image reconstruction as well [Marais93].
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1
Introduction

Synopsis.
Communication between a computer and a user is one of the fundamental issues in the
discipline of computing. In this chapter the role that interactive graphics plays in
human-computer communication is highlighted. The design of interactive graphics
systems should not be focussed on computing resources alone, since this often leads to
inefficient brute force systems that lack the flexibility required for high speed
interaction. This notion triggered the proposal of a research project named ‘‘A new
Architecture for Interactive Raster Graphics based on VLSI’’. The objectives and the
context of this project are described. Subsequently the outline of the dissertation is
sketched.���������������������
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1.1. Graphics and Human-Computer Communication

"This area deals with efficient transfer of information between humans and computers
and with information structures that reflect human conceptualisation. Fundamental
questions include: What are efficient methods of representing objects and
automatically creating pictures for viewing? What are effective methods for receiving
input or presenting output? How can the risk of misperception and subsequent
human error be minimised? How can graphics and other tools be used to understand
physical phenomena through information stored in data sets?" [Denning89]

This quote refers to the area of Human-Computer Communication. It is one of the
nine subareas of the discipline of computing identified in the Report of the ACM
Task Force on the Core of Computer Science [Denning89]. The fundamental
questions mentioned in this quote illustrate the significance of pictures as an
information transfer medium from computers to humans.

The important role visual information exchange plays in Human-Computer
Communication is justified by the characteristics of human vision. The human
visual system is a most powerful image cognition machine that is able to perceive,
analyse, classify and evaluate a great deal of information in real-time [Groβ91].
The processing power of today’s super computing systems does not even come near
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to the processing power of the human visual system. The human visual system has a
high input bandwidth, a well developed ability to recognise patterns and dynamic
changes, and an adequate three-dimensional reconstruction capability. Thus,
communication via pictures is a natural and powerful way to present information to
people.

"Interactive computer graphics thus permits extensive, high-bandwidth user-
computer interaction. This significantly enhances our our ability to understand data,
to perceive trends, and to visualise real or imaginary objects — indeed, to create
‘‘virtual worlds’’ that we can explore from arbitrary points of view. By making
communication more efficient, graphics makes possible higher-quality and more
precise results or products, greater productivity, and lower analysis and design
costs." [Foley90]

A graphics system 1) gives access to this high performance computer-to-user
communication channel by providing the facilities for a computer application to
generate pictures. Hardware facilities for graphics based human-computer
communication — a high resolution display and a fair amount of computing
resources — are standard features of today’s desk-top workstations.

The raster graphics system became a key element of the user interface via which
interaction of the application program and the user takes place. The ‘desk-top
metaphor’ is an example of a first generation 2D graphics user interface. It allows
the user to manipulate electronic documents and folders via windows on the screen
much like the user is used to handle hardcopy documents and folders on his desk.
These first generation window systems clearly demonstrated the efficiency of direct
manipulation and other types of visualised interactive control of computer
applications. This successful debut created a demand that positively influenced the
evolution in workstation technology we saw in the last decade. In turn, the
increasing performance of workstations triggered a demand for higher level and
more demanding interaction. As a result we find that today the imperative need for
high speed interactive computer graphics is discerned.

"Computer graphics has always been an expensive proposition and its users a
demanding, unsatisfied lot — the picture never got on the screen fast enough, or later,
never moved fast enough once it got on the screen, and then, the picture was never
sharp enough, never realistic enough." [Fuchs88]

Nowadays, an almost standard requirement is that a workstation should be able to
render realistic pictures of user manipulable three-dimensional objects in real-time.
Realistic pictures involve high resolution display systems and advanced shading
models. Rendering this type of highly complex models ( > 100K coordinates) in

������������������������������������������������������������������������������������������������������������������
1) In this dissertation the concept ‘graphics system’ is taken to be an abstraction; in this view
a graphics system may share resources with the application and the term graphics system
relates to both hardware and software elements.
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real-time (typically < 0.1 seconds) takes considerably more computing resources
than offered by present day workstations.

The need for realistic graphics and highly interactive systems, however, is
growing in application areas such as design, engineering, scientific visualisation,
real-time control systems, simulation, animation and interactive education systems.
As a result of experiments with visualisation techniques and an increased
understanding of the characteristics of visual perception the added value of
dynamically varying pictures has been shown.

Based on these trends it is to be expected that visual communication will
continue to play a leading role in human-computer communication. To satisfy the
‘demanding, unsatisfied lot’, it is not sufficient to rely on developments in hardware
technologies alone. In fact these developments put extra strain on graphics systems
designers, since increased capabilities of computing systems increase the complexity
of applications and consequently increase the demand on performance of graphics
systems even more. This justifies the ongoing research effort on interactive graphics
systems.

1.2. Background

Within the CWI department of Interactive Systems, research has been focussed on
fundamental problems occurring in communication between a computer system and
the real world, and on the design and construction of systems that provide the
mechanism for this communication.

For the group Computer Graphics — one of the three research groups within the
department — communication by means of pictures has been and still is the leading
theme. This group has a long tradition in research on structuring of information
describing pictures. Throughout the years, this resulted in the design of ILP
(Intermediate Language for Pictures) [Hagen80], involvement in the design of GKS
(Graphical Kernel System) [ISO85b] and research activities for a STW funded
project titled ‘‘Raster Graphics Facilities’’ (NWI14.0130).

Within the department of Interactive Systems, a closely related research theme
— human computer interaction — was undertaken to improve basic support for
interaction in graphics systems. This research included aspects like control flow,
interaction techniques, resource management and graphics support. It resulted in the
development of DICE (DIalogue CEll system), a user interface management system
[Schouten90].

In the course of these projects it became apparent that the characteristics of
ergonomically acceptable user interfaces are correlated to the characteristics of the
underlying hardware. From a user interface implementor’s perspective, existing
architectures rarely facilitate the appropriate feedback mechanisms in a natural way.
This is due to the fact that hardware architectures of current generation 3D raster
graphics systems scarcely differ from architectures of 2D raster graphics systems.
Systems may be equipped with Z-buffer hardware or transformation coprocessors,
however, that does not imply that the evolution to genuine 3D architectures is
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completed. One can state that architectures of today’s systems and the algorithms
used are too much image ( = 2D) oriented. Genuine 3D architectures will have to
be different. In a sense the success of existing raster graphics systems seems to turn
against itself: it is hard to change directions 2). It is also hard to fulfill the diversity
of interaction requirements of the numerous types of applications we find today.
Most existing ‘high end’ graphics systems are too specific and lack the flexibility
required for high speed interaction. This lack of flexibility is manifest in both the
static nature of the application interface and the static semantics of the image
generation pipeline.

Even the most successful graphics systems provide a fixed collection of
primitives, attributes, and storage schemes. A static application interface leads to
tedious specifications for those applications that use primitives which do not fall in a
system’s fixed collection. A lengthy decomposition process must be done by the
application in order to use the primitives available in a graphics package. Not only
does this make the application more complex, it also degrades the interactive
behaviour of the system in case the decomposition becomes part of the interaction
process.

All graphics systems define a pipeline through which a primitive passes when it
is rendered. The attribute binding and storage of intermediate representations are
fixed by the static semantics of the pipeline. Facilities may be provided to access
the pipeline at intermediate stages, but this does not guarantee that the amount of
calculation involved in interaction tasks are minimised. Intermediate
representations may for instance force recalculation of geometric aspects of the
primitive in situations where only attributes have been changed. This suggests a
reappraisal of the 3D raster graphics pipeline and of the representation of the
primitives that pass the pipeline.

This is the setting from which a project proposal emerged. The objective of the
proposal, titled ‘‘A new Architecture for Interactive Raster Graphics based on
VLSI’’, was the design and realisation of an experimental interactive 3D graphics
system. The research focuses mainly on the semantics of the image generation
pipeline. The project would familiarise us with less academic but weighty issues of
hardware design and at the same time produce a competitive system which would
enable further experiments on interaction techniques.

������������������������������������������������������������������������������������������������������������������
2) The ‘‘2D trap’’ is being dug deeper and deeper. Adding 3D to a 2D frame buffer was
easiest via the Z-buffer. Then came the A-buffer. Finally everything became texture
mapping — even the light calculations. The grave has been dug, the coffin is being lowered.
It, must be admitted, is a very pretty and realistic coffin and the wisps of mist around the
graveyard are very well done. But we want to start out in 3D (i.e., no flat tree bitmaps that
are directed towards the viewpoint).
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1.3. Towards a New Architecture

The STW 3) funded project ‘‘A new Architecture for Interactive Raster Graphics
based on VLSI’’ (CWI79.1249) has been assigned to the CWI from September 1986
up to April 1993. The project involved the design and implementation of a
prototype highly interactive raster graphics workstation. This dissertation covers
parts of the work done for this STW funded project. A research group from the
Laboratory for Network Theory of the University of Twente participated in this
project, in particular for the design of the VLSI components. In a later stage people
from the faculty of Mathematics and Computer Science from the University of
Amsterdam succeeded in integrating the VLSI components in a test environment.

Central to the approach of the project is an explicit concern about the underlying
data structures used to represent geometric objects. This originates from the
conviction that only through careful design of appropriate graphic data structures
and algorithms one can profitably map software tasks into hardware, specifically
into VLSI. These data structures have to be simple to be useful for implementation
in VLSI. The same strategy that produced the RISC revolution should be applied
here: first analyse, then strive for simplicity.

In the view of this project, interaction is facilitated by exploiting an optimised
architecture of the image generation pipeline, associated by a new type of graphics
primitive, introduced in [Hagen86b]. The primitive envisioned, named pattern,
describes the visual aspects of an area of the image. The representation of a pattern
is optimised for the most critical operations that have to be performed on it. New
functionality is embedded in the system’s architecture to support feedback for
interaction. The functionality that is supported by the system will reflect
functionality offered by PHIGS [ISO89] and HIRASP [Teunissen88] but needs
extensions to be able to facilitate more advanced interaction techniques. Some of
the user interface aspects of this functionality originates from the aforementioned
STW project ‘‘Raster Graphics Facilities’’.

"By and large, the designs of commercially available products have been motivated
primarily by a bottom-up concern with cost-effective hardware technology that meets
performance constraints and not by a more general top-down, ‘software-first’
strategy based on user requirements. A proper top-down strategy would not only
include cost-effectiveness and performance, but would also take into account
programmability and extensibility. The preoccupation with hardware is
understandable in the light of the concern with performance, as measured only by the
number of elements processed per refresh cycle for a flicker-free display." [Foley82]

From a user requirements perspective the design of a graphics system should
preferably be based on a top-down, software-first strategy. In a proper design cycle
chronologically the following activities are undertaken:

������������������������������������������������������������������������������������������������������������������
3) STW stands for ‘‘Stichting voor de Technische Wetenschappen’’ (that is: Foundation for
Technical Sciences).
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� characterisation of algorithms, data-structures and requirements;
� construction of a symbolic model;
� simplification and verification of the symbolic model;
� design of a physical system;
� implementation of the physical system;
� testing and maintenance.

Unfortunately, following these steps does not guarantee a ‘first-time-right’ design.
The transition from software (the symbolic model) to hardware (the physical
system) is a delicate step. One has to bridge the significant gap between our
conception of notations and our conception of devices.

"In software the gap is seen in the comparison of the theoretical complexity of a
program and the empirical performance. Calculations based on models at different
levels of abstraction can be refined to make estimates of the number of clock cycles
required, en route to estimates of run-times in seconds that may be tested. (...)

In hardware the gap is seen in the essential role that timing and performance
play in the many notions of specifications and correctness criteria for devices. In a
sense, each model of computation for hardware design attempts to bridge, or more
accurately, hide this gap." [McEvoy90]

The raw performance of interactive graphics systems is often decisive for the
success or failure of a product, for which reason all noteworthy graphics systems are
implemented using leading edge technology. Computer graphics has always been
strongly influenced by hardware technology. Each step in the evolution of hardware
technology made it possible to improve algorithms, improve shading models and
increase the complexity of representations.

Due to the everlasting demand for more system performance, a top-down design
strategy quickly tends to lead to a design of the ‘ultimate’ graphics system.
Consequently, it is unlikely that for state-of-the-art systems a software-first strategy
results in first-time-right abstractions that can be implemented in a cost-effective
system, or even worse, that can be implemented at all. Therefore, the realisation of
a system (in software as well as in hardware) has to be an iterative process.

1.4. The STW Research Project on Interactive Raster Graphics

The following stages of the project could be distinguished.

The first part of the project adhered to the software-first strategy. Activities
included characterisation of requirements, data-structures and algorithms, in
particular the algorithms involved in creation, manipulation and display of patterns.
It also involved the construction and verification of a model of computation. Based
on this model, critical modules that were candidate for VLSI implementation were
identified.
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Next the activities involved specification of modules, influenced by more technical
and practical conditions. Given the context of the project it was clear that a physical
implementation of the model of computation would go with trade-offs between the
initial specification and the technological constraints and limited resources we find
in an academic environment. A physical implementation of even a simplified
version of the model was considered to be of importance to demonstrate the viability
of the system, in particular for those parts of the system that outstandingly differ
from the conventional.

With this awareness in mind, the selection of the modules that could actually be
implemented in VLSI was made. As a result, this stage was characterised by a
bottom-up concern with hardware technology — though conform the skeleton
produced by the preceding top-down design phase. In this phase of the project it
became clear that, technologically speaking, the lowest level of the architecture
— viz., the display controller — was the most demanding and outstanding element
of the architecture. This display controller has a two-phase structure: a level that is
resposible for producing the pixels and a level that scans visible objects.

For the first level of the display controller — viz., the real-time pixel
generator — no adequate components could be found on the market. For the
targeted display resolution, fully shaded pixels have to be produced every 12 ns.
Some elements of current general purpose processors may operate at such high
rates. However, bus access rates are limited to a rate which is insufficient to sustain
even a 25 MHz pixel stream needed for medium resolution displays. Therefore we
concluded that the pixel-producing part of the display processor had to be
implemented in custom VLSI. The actual design of the chip was done at the
University of Twente. At the CWI the instruction set was verified by means of a
structural simulator. This simulator both validates the functional design and
visualises the results of newly designed graphics algorithms. With help of people
from the UvA, the chips are recently integrated in a first version prototype to
demonstrate the feasibility and the potential image quality of the system.

The second level of the display controller — viz., the object scanners — is not
critical from a technological point of view. For future implementation, custom
modules for bus arbitration and buffering purposes are specified and partly designed
(but not implemented yet). These modules would serve to integrate an array of
general purpose processors with the pixel generator.

1.5. Outline of the Dissertation

So far the STW funded research project has been motivated and placed in context.
This dissertation is based on several research activities involved in this project. It
should as such not be seen as a report on all the research activities that took place.

Chapter 2 is a survey of graphics systems and interaction. An inventory of
interaction mechanisms is presented. Next the temporal aspects of interaction and
the use of adaptive algorithms as a potential means to satisfy temporal constraints
are discussed. Chapter 3 surveys existing graphics system architectures. Different
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1.5. Outline of the Dissertation 7



strategies to implement multi-processor architectures and characteristics are
discussed. In Chapter 4 we find the theses of this work. It is argued that the variety
of interaction mechanisms that exist are best served by a hierarchical architecture.
A layered object-space architecture is proposed. It is illustrated how such a
hierarchical architecture excels in support of interaction. The implications of this
model of computation on some fundamental aspects are discussed. Chapter 5 is on
consequences of the approach on aspects of geometry. It discusses representation of
objects, structures for data storage and geometry based operations — i.e., a hidden
surface removal algorithm which can handle incremental changes and scan-
conversion. The rendering of the visible objects is described in Chapter 6. A
reformulated high quality local illumination model is presented that is well suited to
be implemented on scan-conversion hardware. Chapter 7 discusses the design and
implementation of an object-space display controller — a two-phased architecture
which can refresh a display from a structured list of objects. It is shown how this
real-time scan-conversion system offers scalability and flexibility. Finally, in
Chapter 8 results obtained are evaluated and future work is discussed.

October 13, 1995
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2
Graphics Systems and Interaction

Synopsis.
This chapter is on aspects of graphics systems in relation with interaction. It begins with
a survey of the concepts and terminology of both graphics systems and interaction.
Next an inventory of basic interaction tasks is made since we suspect a relation between
the response time of an interactive graphics system and how well required input can be
mapped on interaction facilities available. Following this, temporal aspects of image
generation are addressed. Finally we discuss adaptive methods as the potential means to
meet timing requirements.��������������������
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2.1. Interactive Graphics: Concepts and Nomenclature

"With interactive graphics, we are largely liberated from the tedium and frustration
of looking for patterns and trend by scanning many pages of linear text on line
printer listings or alphanumeric terminals." [Foley82]

A computer application may find the need to display an abstract, or realistic entity,
called a scene. For this purpose, an application makes use of a graphics system
which provides facilities to:
� specify (or model) a scene in terms of a set of logical graphical elements;
� specify parameters according to which the scene is transformed into an image;
� handle graphical input.

In this work, the graphics system is taken to be the whole of the language through
which a programmer can specify pictures and input handling, and the hard- and
software modules needed to generate those pictures and provide that input. An
application is considered to be interactive if the user has ways to influence the
behaviour of the application during the execution of the program.
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2.1.1. Scene Specification

A scene is the mathematical representation of what has to be displayed. It is
constructed by means of logical graphical elements, called primitives. Primitives
incorporate two components: the geometry and an associated set of attributes (or
properties).

The geometry of a primitive defines a set of points (Pprim) in a vector space,
Pprim ⊆ Rn . A scene specification language may have many types of primitives,
where each type defines a certain basic geometrical form (such as a point, line, filled
triangle, etc.). The minimal set of primitive types needed to adequately specify a
scene is highly dependent on the type of application. International standard graphics
systems such as GKS [ISO85b] and PHIGS [ISO89] offer a common set of graphical
primitives.

Attributes specify how the geometry appears on the output medium (line type,
transparency, colour, etc.). Each type of primitive has a specific set of attributes.
Attributes are not necessarily bound to individual primitive instances, they may be
bound to a group of primitives or can even be global.

Instances of primitives may be combined to form more interesting graphics
objects. Examples of this can be found in graphics systems like ILP [Hagen80],
PHIGS and HIRASP [Teunissen88]. These systems provide facilities for
specification of hierarchically structured objects. The structuring results in a
description of the scene in the form of a directed acyclic graph in which the
constituent primitives can be found in the leaves of the graph.

2.1.2. Image Synthesis

A scene is mapped onto the display- or image-space. This mapping includes both
geometric and attribute transformations. The geometric transformation, specified by
viewing parameters, maps the geometry of the primitives ( ⊆ Rn ) onto a geometry in
the two-dimensional image-space ( Z2 ). The attribute transformation results in a
function which assigns a colour intensity to each point of this two-dimensional
geometry.

Net result of mapping of the scene onto the display space is a set of display
primitives, which describe an image. The process to construct an image within the
limitations of a display device is known as rendering. The type of display
primitives in which the image is described depends on the type of display
technology in play (plotter, laser printer, CRT, etc.). Due to the limitations of the
display device, the rendered image can essentially be no more than an
approximation of the picture specified by the scene and mapping parameters.

Logical Model
A logical model of the graphics system envisions the mapping of a scene onto the
display space as a stepwise process in which primitives travel through a pipeline of
functional modules [Carlbom80]. This model distinguishes between the different
logical representation levels of the scene that exist in the image synthesis pipeline
and the operations applicable to these representations. In this logical model (shown

October 13, 1995

2 Chapter2: Graphics Systems and Interaction



in Figure 2.1) each module of the pipeline performs an elementary graphical
operation on all passing primitives. Each stage in the pipeline maps one logical
representation of the scene onto another. Intermediate representations can be stored
and made accessible to improve the response time of the system. The inherent
display device dependence of the mapping process as a whole is confined to a mere
subset of the modules of the pipeline.

Representation
level

logical
processor

Input to modify output

Input forwarded to other processors

forwarded logical input

physical input devices

AM SDF LDFDFC DPU DC

API

Figure 2.1: Logical model of the image generation pipeline. AM - Application
Model, API - Application Programmer’s Interface, DFC - Display File Compiler, SDF
- Structured Display File, DPU - Display Processing Unit, LDF - Linear Display File,
DC - Display Controller.

Logical Representation
Application Model. The application model is the representation of a scene as
determined by the application program. This scene is presented as a model from
which specific graphical images can be composed. The application program can
change the scene by editing its representation. Naming of parts of the representation
is allowed and can be used to aid editing.

Structured Display File. The structured display file contains only graphical
information of the scene, and is composed as a list of output primitives. The
graphics system manages the content of the structured display file. The application
program has access to this representation level only via the application interface.

Linear Display File. The linear display file contains the representation of the scene
in a form designed for optimal refresh speed. For traditional raster displays the
linear display file is the so-called ‘frame buffer’, a buffer in which an image is
represented as a pixel pattern. The display holds the visible image.

Logical Processes
Between each pair of successive representations we find a logical processor.
Logical processors accept input parameters by means of which the mapping process
can be influenced. The user and/or the application program may indirectly control
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these optional parameters.

Display File Compiler. The display file compiler maps the application model onto
the structured display file. This mapping process can be parameterised, for instance
by surface properties.

Display Processing Unit. The display processing unit maps the structured display
file onto the linear display file. This computational expensive mapping involves
processes like geometric transformations, hidden surface removal calculations,
illumination calculations and clipping. The display processing unit can be
parameterised by viewing and illumination settings.

Display Controller. The display controller maps the linear display file onto the
screen. Also the display controller can be parameterised. For instance, to
accommodate window management functions it may be possible to map
parameterised portions of the linear display file onto the screen.

2.1.3. Graphical Input

The image synthesis pipeline converts primitives — in terms of elements of the
language an application understands — into display device dependent data. The
reverse is true for graphical input. Graphical input originates from data that comes
in via physical input devices. The raw data that input devices produce have to be
converted into a more abstract form, that is, in terms of the language of the
application.

Numerous input devices have been developed to facilitate graphical input.
Examples of input devices are keyboard, tablet, mouse, lightpen, touchscreen, dial
and data-glove. Of course these input devices differ in ergonomical aspects like
physical dimensions, resolution and input bandwidth. They also produce data that
may differ in aspects like range and dimensionality.

Logical Model
For current graphics systems, the device dependency of input data is hidden by
making use of a logical input model. In a logical input model, data input takes place
via logical input devices. The raw, device dependent input data are converted into a
set of input primitives. Typical types of input primitives that can be found in all
graphics systems are commands and geometrical data. The purpose of this
abstraction is portability; mapping of device dependent input data onto input
primitives is handled completely within the logical input model. Instances of
elementary input primitives may be combined and mapped onto more complex input
primitives before they are handed over to the application. The logical input model
encapsulates all types of physical input devices and associated user actions. In this
way, the application is unaware whether geometrical data is produced by a keyboard
or by a pointing device.
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Logical Input Device
The logical model of a graphical input device is shown diagrammatically in
Figure 2.2. The output of a logical input device is an input primitive. Different
classes of logical input devices exist corresponding to different types of input
primitives. Each class has a well-defined data type for the measure reported by
devices of that class. Current computer graphics standards support the classes:
locator, stroke, valuator, choice, pick and string [Rosenthal82].

The operating mode of the device determines when an input primitive is
delivered to the user of the device. It specifies the behaviour of the device as seen
by both the operator and the using agent. Examples of operating modes commonly
supported include the conventional request, sample, and event modes. Support for
other modes can be defined as long as they operate within the confines of the model.

There are seven types of operations that can change the state of a logical input
device and its component processes. These are: definition, initialisation, activation,
utilisation, deactivation, termination and undefinition.

Control

Measure Prompt Echo Acknowledgement Trigger

....

Figure 2.2: Logical model of a graphical input device.

Logical Processes
A logical input device comprises measure, echo, prompt, trigger, and
acknowledgement processes overseen by a single control process. The control
process is responsible for the overall operation of the logical input device and its
associated component processes. Each of the component processes functions
independently which, when acting in concert, can result in the production of an
input primitive.

When the logical input device is activated, the control process activates the
measure, echo, prompt, and trigger processes. The measure process continuously
maintains a measure value derived from the input data. This includes all
computations necessary to map the input data to the measure value. The echo
process provides continual feedback of the current value of the measure. This
feedback is expressed in terms of the output facilities available at the level of
abstraction at which the logical input device is defined. The prompt process
indicates the availability of its associated logical input device. A trigger process
continuously monitors one or more sets of conditions. When any one of these sets
of conditions is satisfied, the trigger is fired. When the trigger firing report is
received by the control process, it produces an appropriate input primitive that
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— dependent on the operating mode of the device — may contain the measure
which was current at the time of the trigger firing. The input primitive is then
reported to the agent that is using the logical input device and the acknowledgement
process is activated. The acknowledgement process informs whether the input
report was accepted or rejected by the using agent.

2.1.4. Graphical Interaction

It is good programming practice to clearly separate interaction facilities from the
pure application functionality by means of a user interface. The user interface is a
logical module which handles all transactions between a program and a user. The
term user interface will be used to refer to in- and output devices and the software to
control these devices. Interaction implies that (re)actions take place at both sides,
however, a distinction can be made depending on which side controls the
interaction. In the case of internal control the user interface is in charge of the
interaction. The user is prompted to enter information. In the case of external
control the user initiates the interaction. In terms of the logical input model the user
interface has to set the appropriate operating mode of the input device(s).

To inter-act takes at least two actors. For graphical interaction, one actor — i.e.,
the user — makes use of input devices to provide information to an application. In
turn, the other actor — i.e., the application — makes use of output devices to inform
the user. Interaction requires proper feedback: each input action should
immediately be ‘‘confirmed’’ by the system. A logical input device may provide an
echo which is handled completely within the user interface. For this, the logical
input model uses output functionality provided at the same level of abstraction at
which the logical input device is defined 1). On higher levels of abstraction the
application program may become responsible for feedback as well. In that case the
actions involved in generating graphical feedback include:
� handling of the logical input data; (graphics system)
� handling of the input primitives; (application)
� possible updates of some application data; (application)
� traversing (part of) the graphics pipeline; (graphics system)
� update of the refresh buffer. (graphics system)

This set of actions make up the graphical feedback-loop (see Figure 2.3). Graphical
feedback implies that, in one way or another, logical input devices have to be
coupled to output facilities. Here we find that the traditional logical input model
described in the previous sub-section falls short. The model does not contain special
functionality for this purpose. As a result, according to this model, the coupling has
to take place in the application program.

It is essential that response on user input is acceptably fast. In fact, response on user
input is a key determining factor of the quality of a user interface. The time to

������������������������������������������������������������������������������������������������������������������
1) Examples of this are on-screen input devices provided by the system such as dials, sliders
and buttons.
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Figure 2.3: Graphical feedback loop. User input is processed and results in a visible
reaction.

traverse the entire feedback-loop — i.e., the time elapsed between a user input
action and the moment the related feedback appears on the screen — is called
response time. A system’s response time depends on several factors. Obvious
factors are the amount of processing involved in the feedback-loop and the raw
performance of the computing resources. Other factors are operating system related
dependencies such as interrupt handling, context switching and the like. This
variety of factors illustrate that concentrating on the throughput rate of the graphics
pipeline alone is not enough to ensure fast response. It is essential that the amount
of processing involved in the feedback loop is minimalised. As will be discussed
later, this relates to how effective a user can operate the graphics pipeline, how
accessible intermediate representations are, and how these representations relate to
the ‘real world’.

2.2. An Overview on Interaction Tasks

"...interaction sequences can be decomposed into a series of basic interaction tasks.
Each interaction task instance has a set of application requirements, defined by the
context of the application in which the task is embedded." [Foley84]

The interaction tasks referred to in this quote are user-oriented, in the sense that they
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are the primitive action units performed by a user. These interaction tasks present a
different view on interaction as the hardware- and software-oriented view in the
context of logical input devices as presented in § 2.1.3. The relation between
interaction tasks and logical input devices should be clear. Logical input devices are
part of the means to accomplish basic interaction tasks.

In [Foley84] Foley et al. classify basic interaction tasks as: selection, position,
orient, path, quantify and text. Beside these basic interaction tasks, they distinguish
controlling tasks that modify objects being displayed: stretch, sketch, manipulate
and shape. In their view, manipulate differs from the basic interaction tasks in that
the cursor is replaced by an already existing object on the screen. Here the
distinction between a cursor and an object is not relevant; the different types of
manipulation of an object are assumed to be basic interaction tasks. In this view, the
operand of any task may therefore be a cursor as well as a display primitive (or a
group of display primitives).

Basic interaction tasks of interest for this dissertation are those tasks that make
use of interaction techniques which relate directly to the image generation pipeline,
or more specifically: interaction techniques that provide dynamic visual feedback.
The important role of these basic interaction tasks in particular should reflect in the
design of the architecture. In the next we will confine to these types of basic
interaction and controlling tasks.

Selection
A user may select from a collection of displayed entities by means of a pointing
device, such as a lightpen or a mouse- trackball- tablet- or joystick-controlled
cursor. In principle, the types of entities that can be selected may vary from
commands in a menu, symbols and icons to display primitives or groups of display
primitives. In this analysis we are interested in selection of display primitives and
groups of display primitives.

Selecting or picking display primitives essentially involves a search of the
display file. Selection typically serves to specify the operand of an operation. It is
part of almost any interaction dialogue. Primitives may be embedded in a
hierarchical structure. Then, selection may occur at different levels of the
hierarchical structure. The hierarchical level at which selection takes place is
‘‘defined by the context of the application in which the task is embedded’’. The
application should provide the means for the user to climb up and down the
hierarchy.

The graphics system has to make clear which of the primitives will be picked
upon triggering based on the current position of the selection device, by for
example, high-lighting. Such feedback should ensure non-ambiguity to avoid
unpleasant surprises. This may seem an obvious and simple requirement, but in
practice it may turn out to be quite complicated. To avoid ambiguity, high-lighting
of a partly hidden selection should preferably reveal the structure of the complete
selection, i.e., including the obscured parts. However, it may be essential to be able
to judge that selection in its three-dimensional context, in which case a simple

October 13, 1995

8 Chapter2: Graphics Systems and Interaction



overlay of the complete structure on the image is unsatisfactory.
Ideally, the echo process finds all display primitives that (partly) obscure the

structure and, for instance, makes these primitives (partly) transparent. In any case,
the system has to ‘‘know’’ what part of the current pickable item is visible and what
part is invisible.

Position
The user can specify a position by means of a pointing device. The position task
may be an open-loop or closed-loop process. For the open-loop technique the visual
feedback on the screen serves to show the result of the position task, it does not play
a role in specification of the final position. On the other hand, if the position task is
a closed-loop process, the user adjusts the position of the operand based on what is
shown on the screen until the desired result has been obtained. Therefore the
position of the object on the screen will continuously have to be updated 2). If the
operand is an object rather than a cursor, the task is also know as dragging. It may
be clear that in this case the requirements on the response of the system are high.

The position task may occur in one, two or three-dimensional space and may be
constrained (e.g., along a path or in a plane). Naturally, for proper positioning it is
important that feedback ensures non-ambiguity. Consequently, a position task in a
three-dimensional space should make it possible to judge the position of the operand
in the 3D context. This implies that hidden surfaces have to be removed in real-
time, and possibly that display primitives that obscure the operand have to be found
and made transparent in real-time as well. In practice we often see that, to avoid
such complications, 3D positioning is possible on simplified models only (e.g.,
wire-frame models).

Panning and zooming are a special kind of position tasks. Add and delete
operations can be considered as being position tasks as well. This view is
demonstrated for instance in the desk-top metaphor in which deleting of a file is
done by dragging the icon representing that file into a trashcan.

Orient
The orient task very much resembles the position task. Yet, there are some
differences — such as the users perception of orientation and the use of input
devices — that make it reasonable to classify orient as a separate type of basic
interaction task. The orient task may occur in two or three-dimensional space and
may be constrained (e.g., rotation around an axis).

The user may specify an orientation by means of an input device like a dial, a
locator or a joystick. The orient task may in principle be an open-loop or closed-
loop process. In the latter case, the user adjusts the orientation of the operand until
the desired result has been obtained. Like for the closed-loop position task, also for
a closed-loop orient task hidden surfaces have to be removed in real-time, and it
may be necessary that display primitives that obscure the operand have to be found
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2) More on open and closed loop interaction techniques in § 2.3.1.
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and made transparent. This complication does not occur in wire-frame models.
Since for the orient task the operand remains at its local position, finding the display
primitives that obscure the operand will in general not be as involving as it can be
for dragging.

Path
A user can specify a path by a series of positions and/or orientations. It is seen as a
task different than the position and orient task because in this case the order and
relative relation of the positions/orientations is of main interest, not the individual
positions/orientations that make up the path.

The user may specify a path by means of a pointing device using techniques
similar to those for the position and orient task. The path may be distance-based or
time-based. The operand may be a cursor or an object. It is important to be able to
judge a path in its 3D context, which implies that, similar to what holds for the
position task, hidden surfaces have to be removed in real-time and, possibly, that
display primitives that obscure the path have to be found and made transparent in
real-time.

Quantify
The quantify task serves to input a value, a dimensionless number, that can be bound
to any aspect of objects or global entities of the scene. Unlike the interactions tasks
listed so far, this does not restrict to geometry related aspects only.

The user may specify a value to quantify a measure by means of, for instance, a
valuator or a mouse- or tablet-controlled slider. If the operand is an object by itself,
the task is typically a controlling task, rather than a basic interaction task.

Controlling tasks
The basic interaction tasks listed in the above are different types of manipulations of
an operand with respect to the rest of the environment. By means of controlling
tasks such as stretch and shape, the user can modify (edit) the operand itself. The
user typically operates on a particular feature of the operand only, not affecting
remaining features. Examples of this type of manipulation may be deformation of
the operand by (re)positioning of a vertex or a control point (for curved surfaces) or
variation of an appearance control parameter.

The user may edit an operand by means of a selection, position, orient and/or
quantify task. In case the task is an open-loop version, the user adjusts the feature
directly until the desired result has been obtained. Continuous feedback of the edit
task in a three-dimensional space implies that hidden surfaces have to be removed in
real-time in case the feature is part of the geometrical description of the operand. In
general, the operand will globally speaking remain at its current local position, so
that here also finding the display primitives that obscure the operand is not as
involving as it is for dragging. It may be that display primitives that obscure the
operand have to be found and made transparent. This complication does not occur
in wire-frame models.
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If the appearance control parameter of the operand is edited, a closed-loop
version of the task can be reduced to a continuous redraw of the operant only, based
on the current value of the appearance control parameter.

2.3. Temporal Aspects of Interaction

User interfaces are becoming more and more sophisticated due to evolution of both
hard- and software. Sophisticated user interfaces should support natural interaction
and take into account features of human perception. This leads to animate response
— that is, response where changes as invoked by the user are visualised by a
smooth, natural transition from one state into another. In this sub-section, such
temporal aspects of image generation in general, and for animate response in
particular are examined.

Motion plays an important role in numerous aspects of human vision. Eyes are in a
constant state of movement to generate stimuli needed to see anything at all.
Relative motion of objects turns out to be very helpful in our understanding of
three-dimensional structures: a change of viewing position generates motion
parallax. The human mind is trained to interpret this motion parallax as a measure
of distance. The human vision system uses relative motion as a basis of grouping,
organising objects that belong together. By exploiting these type of perceptual
capabilities of the viewer acquired by years of training in the real 3D world, animate
response can improve human computer interaction.

Why should we be concerned about temporal aspects of response, is it not
sufficient to let the system simply respond as fast as it can? Systems get faster every
day, so if todays workstations are not fast enough yet, systems of the future will be.
It is a fact that due to progressing technologies, workstations continue to increase in
capacity. As a consequence of this also applications become increasingly more
complex. The net result of the increase of capacity may therefore very well be
insufficient. More importantly however, responding as fast as possible does not
necessarily lead to adequate response.

A system can be too slow, but on the other hand it can also be too fast to be
perceived by the human viewer, leaving him in a state of confusion. What is needed
is a concern about the temporal aspects of response: the system must be ‘‘tuned’’ to
the time frame of the user. This tuning should aim at optimal interaction, taking into
account the limited temporal resolution of both the display system and the human
vision system. Also, a system may operate within a certain time frame to help the
user anticipate to a new situation. The following examples that can be found in
some 2D user interfaces may be illustrative.

Low-end systems cannot support dragging of a window with all of its content.
Dragging a window with a significant time-lag turns this basically simple task into a
tedious exercise: it is next to impossible to place the window at the desired position.
A workable solution to get around this problem is to leave the window with its
content where it is and let the user drag a simplified representation of the window:
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its boundary rectangle. Once the user is satisfied with the new position, the window
and its content can be redrawn at the new position. Quality is traded for time.

The visible action upon closing a window, i.e., clearing the screen, can in
general be done quite fast. However, it may be better to smoothly lead the user to
the new situation by means of a shrinking boundary rectangle moving towards a
disk or folder icon. An implicit animation like this gives the user a better idea of
what is going on. Here, time is traded for quality.

For animate response in three-dimensional dynamic environments more
sophisticated techniques are needed, but basically they have to be of the same
nature: adapt to the users time frame.

2.3.1. Animate Response

Animate response is the visual response of a system to changes invoked by the user.
It is characterised by a smooth, natural transition from one state into another. It is
useful to make a distinction between implicit animation and direct manipulation.
These two categories differ in characteristics of the visual feedback of the transition
phase, a difference which reflects in the temporal aspects of the interaction.

Implicit Animation. For implicit animation the current state and the explicit
specification of a new state implicitly specifies the transition. The transition is an
‘open loop’ animation. Although certain parameters may affect the characteristics
of the transition process, the transition itself is autonomously generated by the
system, that is, not directly controlled by the user. The temporal aspects of the
transition can in principle be analysed beforehand. The implicit animation can be a
natural transition between two ‘key-frames’ resulting in for instance an animated
sequence of a slowly rotating molecule. One may also think of more abstract
transitions in which the relation between two by nature different entities can be
visualised such as the relation between a window and an icon as just mentioned.

Implicit animation can be employed by traditional command language type of
interaction in which objects are manipulated by means of explicit commands, issued
for example by typing or by menu selection. Implicit animation serves to ‘guide the
eye’, to make the transition appear more natural. Based on the type and amount of
the change, the system should be able to determine how to best animate a transition.
Setting of transition parameters may allow the user to specify speed, image quality
and other aspects of the transition. Advanced systems would automatically adapt to
skill and preferences.

Direct Manipulation. Direct manipulation allows the user to manipulate a visible
representation of a virtual model as if it is a real object which is mechanically
connected to an input device like a mouse, a light pen, a trackball or a data-glove.
In this type of transition process, the user is in direct control over the transition from
one state to an a priori unknown final state. In this case, the visualisation process is
an essential part of a closed loop between the system and the user. The user handles
the input device based on what he sees on the screen. As a result time constraints
are strict.
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Direct manipulation has already proven to be successful in a well known type of
user interface: the desktop metaphor. This type of user interface proved to be a
success mainly because it presents a virtual two dimensional environment which is a
metaphor of an environment already familiar to the user: the desk. The interface
allows the user to manipulate documents (windows) on a screen just as paper
documents can be manipulated on a desk.

A similarly natural and intuitive direct manipulation concept can be used in
three-dimensional environments. In such artificial realities — also known as virtual
environments or cyberspace — the user is free to manipulate simulated three-
dimensional objects in a natural way, is free to walk through and interact with
imaginary worlds, in short: can be immersed in a virtual model. Based on the direct
manipulation concept we can for instance create remote control systems with which
a user is able to control remotely in space (hazardous or far away environments),
remotely in time (future) or allow control in a different scale (macro- or
microworld) [Shneiderman89].

The most important aspect of direct manipulation appears to be direct
visualisation. If the result of the manipulation is not visualised immediately, the
user will not feel immersed in the environment. As stated by Scott Fisher 3) ‘‘the
quality of the graphics appears not to be extremely important, as long as the
response is good’’.

2.3.2. Computer Animation

Why is a film, a long band of static images, often called a ‘movie’? Answering that
question also gives an answer to why computer animation is at all possible, using
video displays which essentially can display static images only. Apparently the
characteristics of the human vision system makes it possible to give a viewer an
impression of continuous movement by successively presenting displaced static
images or frames. This ability is based on two distinct features of the human vision
system: persistance of vision and the so-called phi phenomenon [Gregory90].

Persistance of vision is the inability of the retina to follow light flashing at a rate
above about 50 Hz. Because of this, a movie projector — that presents frames at the
standard rate of 24 Hz — raises the flicker rate to 72 Hz by means of a shutter
mechanism. The phi phenomenon tells us that the retina system is tolerant with
respect to intermitted images provided the jumps in space or time are not too large.
It is likely that this ability to tolerate gaps is developed to maintain continuity as
objects are hidden briefly behind obstructions, or retinal images behind blood
vessels.

Since the impression of continuous movement is lost below a certain frame rate,
it is important to know at what range of rates these frames should be generated. As
the time interval between successive stimuli is increased, the observer’s perception
of apparent movement goes through several stages [Goldstein89]. In an experiment
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3) Panel Virtual Environments and Interactivity: Windows to the Future, SIGGRAPH’89,
Boston.
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with two flashing lights at a separation in time of about 30-60 msec, partial
movement is perceived. At about 60 msec, the lights appear to move continuously
from one position to another. At intervals between about 60-200 msec the phi
movement is perceived. Movement appears to occur between the two lights, yet it is
difficult to actually perceive an object moving in the space between them. Outside
the range 30-200 msec we do not percieve movement.

Also the distance in space between the two lights affects the perception of
apparent movement. As the distance increases the time interval or the intensity of
the flashes must be increased to maintain the same perception of motion.

Video displays have a constant refresh rate of 50-100 Hz. Therefore, the maximum
frame rate is restricted 4). This limitation has effect on visualisation of fast moving
objects. The displacement of fast moving objects between two individual frames
may become quite large. When these object are displayed just as if they were static,
the spatial relation is lost and the impression of watching objects in continuous
motion is no longer there. A movie projector however, shows separate frames at a
rate as low as 24 frames per second. This rate is sufficient to generate an impression
of continuous motion, even of fast moving objects. Why this is so can been found
by looking at individual images of fast moving objects on a camera film. The finite
exposure time of the film results in blurred images of fast moving objects. Due to
motion blur the impression of continuous movement is maintained, even at a rate of
24 frames per second. Apparently the human vision system can trade off temporal
resolution against spatial resolution.

A number of papers present methods to generate motion blur (also known as
temporal anti-aliasing) [Korein83, Potmesil83, Max85, Grant85]. In these papers it
is argued that ‘‘animation which simulates motion blur feels more natural’’ or
‘‘motion blur smooths out jerkiness’’. A more theoretical foundation of why and to
what extend motion blur is needed can be found in Blake’s thesis on computing
adaptive detail [Blake89].

Blake’s study aims at reducing the computational complexity of computer animation
by computing just what is needed to produce convincing pictures. The thesis is
centered around two metrics, a spatial (static) priority: ‘‘objects further away from
the viewpoint are visually less important to the picture than those closer by’’ and a
temporal (dynamic) priority: ‘‘objects moving quickly with respect to the observer
need to be redrawn more often than those at rest’’. These intuitive formulations are
further developed and extended with the notion that human vision introduces a
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4) A ‘‘frame’’ should be seen as a virtual picture which can be displayed for several refresh
cycles. The frame rate is the rate at which successive, different frames are displayed. It
should not be confused with the refresh rate, which is constant and is dictated by the
persistence time of the display medium. (This is analogous to the movie projector that
displays frames at a rate of 24 Hz but flickers at a rate of 72 Hz.) Since frames can be
swapped only just before the start of a new refresh cycle, the frame rate can never exceed the
refresh rate.
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trade-off between temporal and spatial resolution. These are the basics for arriving
at measures to determine to which extent detail can be left out without being
noticeable by a viewer.

Changing images are a function of two space variables and of time. A Fourier
transformation of this function results in a spectrum, a function of temporal and
spatial frequencies. This function is non-zero in a limited domain only. The effect
of motion on this spectrum is that it is sheared in the temporal frequency dimension.
The amount of shear is proportional to the velocity of the object components in the
two dimensional image. The human vision system is limited in spatial and temporal
frequencies by the various transmission systems between our mind and the outside
world, resulting in a so-called window of visibility [Watson86]. Since the spectrum
of moving objects is sheared, some spatial frequencies which would fall inside the
window of visibility for static objects, may fall outside this window when these
objects are in motion. Removing the spatial frequencies that fall outside the window
of visibility is equivalent with removing details of the moving object that cannot be
perceived by the human vision system. These spatial frequencies in combination
with the frame rate of the display system appears in aliased form, causing the
unnatural or jerky motion mentioned above.

Blake remarked that Fourier analysis is useful for analyzing a problem and
obtaining insight into what is happening. In practice, however, computations and
algorithms are less likely to use Fourier techniques directly. He argues that optic
flow analysis as introduced by Gibson [Gibson79] can be used to obtain a measure
of the velocity and/or distortion of object components in the image. This measure
can be used to determine the amount of detail needed. It indicates which spatial
frequencies have to be left out, or equivalently, to what extend the image should be
motion blurred.

Finally, Blake concludes that for planar objects, four orders of optic flow effects
result in four orders of frame to frame coherence. In decreasing order of coherence
these orders are:
� no displacement;
� translation in the image plane;
� linear transformation in the image plane (shear, rotation, scaling);
� all other, non-linear transformations.

To be able to exploit these types of frame to frame coherence it is necessary to
maintain a relation between objects and their projection onto the image plane.

2.3.3. Discussion

The major issue of computer animation is how to convince the viewer, to make him
see what he is meant to see. Often images are simply rendered at the highest — and
constant — quality level that is possible. For real-time animation systems this
requires a major exertion which can hardly be maintained by costly specialised
systems — such as flight simulators — and then, for well-defined situations only.

Animation production involves three separable tasks: modeling, animation (i.e.,
the design of the choreography) and rendering. Animation production is a compute
intensive process which may — and, due to the separability, can — take orders of
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magnitude more time than the real-time display of the animation itself. This is
unlike animate response, where animation and rendering by definition occur in real-
time. In spite of this difference in character, computer animation may still teach us
how to deal with certain temporal aspects such as limitations enforced by the display
system and the human vision system.

In the process of computer animation production, limited computing resources
can be traded against production time. This is quite different from what we find in
an interactive environment of which the main device necessarily has to be: ‘‘the
quality of the graphics is not extremely important, as long as the response is good’’.
The main objective for animate response is real-time display of continuous motion,
even if one has to deal with complex structures. For animate response, the limit on
computing resources necessarily has to be compensated by a reduction of image
quality, but then preferably in a reasoned way. This issue will be addressed in the
next section.

2.4. Dealing with Motion

In the above, we concluded that for animate response two constraints may
complicate the visualisation of continuous motion: the limit on the frame rate as
dictated by the display system and the limited capacity of computing resources. The
net result of both limits is the same: temporal aliasing may become visible.
Depending on its cause, temporal aliasing can be prevented by temporal anti-
aliasing or by reduction of the cost of image generation. As has been mentioned
before there are several techniques for temporal anti-aliasing. The cost of image
generation can be scaled by so-called adaptive image generation techniques. In the
next we will examine their usability for animate response.

2.4.1. Temporal Anti-aliasing

Existing temporal anti-aliasing methods [Korein83, Potmesil83, Grant85] are based
on supersampling techniques. As a result, the computational cost of one temporal
anti-aliased frame is much more than the cost of one aliased frame. Also the more
efficient method as presented by Max [Max85] adds computation cost to each
frame. This may not seem surprising. However, one should realise that — as
mentioned in § 2.3.2 — temporal anti-aliased images contain less detail: the high
spatial frequencies are filtered out. One could argue that therefore, temporal anti-
aliasing should save rather than add computational costs. It is surprising that as of
yet there are no methods that are able to make use of this.

In an interactive environment it is likely that computing resources are a limiting
factor due to the combination of scene complexity and real-time requirements. We
therefore may conclude that existing super-sampling techniques are not suited for
animate response.
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2.4.2. Adaptive Image Generation

Generating a physically perfect image would by far exceed the processing power of
any state of the art supercomputer. Due to this, a whole scale of rendering models
emerged, each with a different level of approximation of the ‘physical correct’
image. Based on requirements of a specific application, one of these rendering
models can be selected. If the system is tuned for worst case situations the
efficiency will be far from optimal. On the other hand if the system is optimised for
‘normal’ situations its worst case behaviour may be unacceptable. Adaptive image
generation is a means to adjust the image generating process to the possibilities of a
particular moment. The quality of the image — and thus the cost — is related to the
time available between successive updates. Ideally, this results in the best possible
image at any time.

There are two distinct aspects that determine the cost of the image generation
process and which can be varied. These are the quality of the rendering process,
and the quality of the object representation.

Quality of rendering
Forrest suggested that rendering of primitives should be supported at different
quality levels. In [Forrest85] he recognises five quality levels to draw a line,
starting with an aliased Bresenham line drawing up to a perfect anti-aliased line of
which line endings are drawn according to the specification (e.g., rounded or
square). He suggested that such a hierarchy in quality could be exploited in the
context of personal workstations. Images should first be rendered at the lowest
quality level to get the fastest response and upgraded to higher quality levels if the
user does not take immediate action.

Bergman et al. proposed image rendering by adaptive refinement [Bergman86];
that is, improve the quality of a static image as long as there is time to do so. The
image successively goes through the following phases: display vertices of polygons,
display edges of polygons, display flat shaded polygons, add shadowing, display
Gouraud shaded polygons, display Phong shaded polygons, and finally, anti-alias the
image where needed. The performance of the method is enhanced by making use of
results of previous phases and trimming of the data, i.e., selecting the polygons that
should be handled in the next phase.

Both of these methods try to combine interactive response and generation of the
best possible image by a stepwise improvement of the image quality. The order of
the steps taken are based on rendering costs only, not influenced by application
requirements and not related to aspects of human perception. It does not anticipate
on the fact that for some applications it might be more important to anti-alias the
image to avoid disturbing wrinkles along the edges than to properly shade the
object, whereas for other applications the reverse may be true.

Both methods make use of otherwise idle cycles in a personal computer to
improve the image quality. The rendering is supposed to start at the lowest quality
level. When displaying continuous motion idle cycles are rare, so that these
methods are likely to produce images of the lowest quality level only.
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Quality of representation
Alternatively, rendering costs can be tuned by selecting the level of detail of a
scene. To be able to render objects at different levels of detail, Clark made use of
hierarchical data structures in which sub-hierarchies contain objects modelled in
greater and greater detail [Clark76]. Such hierarchical structures allow for a simple
incremental approach: as long as there is time, objects can be progressively refined.
A metric which takes into account the viewing distance and speed of the objects, can
be used to indicate which objects are best candidates for further refinement
[Blake89]. Again, if the rendering is supposed to start at the lowest level it likely
that when displaying continuous motion, images of the lowest refinement level will
be produced only.

Hierarchical data structures may offer the means to manage the complexity, and
thus the image generation costs. They allow definition of a so-called graphical
working set [Clark76], which is that fraction of the structure that at a certain time
[Hegron87] is potentially of interest. This notion has been put into practise in flight
simulator applications for a long time. There, the most appropriate representation of
an object is selected from a hierarchical data structure at display time. Such data
structures are carefully optimised for the application. Also automatic generation of
the hierarchy, and preferably support for temporal anti-aliasing and texturing should
be considered.

Not all object representations have an inherent hierarchical structure. In such a
situation we need a hierarchy that can automatically be generated from the
representation at hand. Recursive spatial subdivision seems an obvious way to
automatically generate an oct-tree like hierarchical structure. Although the result is
a simple uniform representation, rendering of such a hierarchy is not very efficient
and the representation is not compact. Furthermore, transformation of objects will
require restructuring of the hierarchy. From this we conclude that such hierarchies
are not suited for animate response.

Rubin & Whitted stated: "creation of a hierarchical database is a non-trivial
operation" [Rubin80]. They presented a homogeneous representation from which
nodes of the hierarchy are procedurally generated. Their representation is a graph
structured hierarchy of nothing but bounding volumes. Each bounding volume
contains subspaces, which are the bounding volumes of the next level in the
hierarchy. Their representation allows sharing of subspaces. A step to the next
level in the hierarchy of bounding volumes implies that a volume, being the
difference between the bounding volume and its subspaces, has to be subtracted.
However, subtraction of such a volume reveals previously obscured parts of the
scene. This would imply a redo of (a part of) the visibility calculation. It would be
more efficient to have a hierarchy that incrementally adds volumes, leaving the rest
as it was. The proposed sharing of subspaces greatly reduces the amount of data
storage but introduces combinatorial problems when creating the hierarchy. Since
an optimal result requires careful consideration, Rubin & Whitted concluded that it
would benefit to off-load the structuring of the hierarchy to the model creation stage.
Rubin [Rubin82] expanded the representation to allow for geometrical
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transformations between nodes. Such an expansion may be useful in an animate
environment.

How well can object descriptions support temporal anti-aliasing? As we saw in
§ 2.3.2, temporal anti-aliasing goes with removing high spatial frequencies above a
certain cut-off frequency. This cut-off frequency is inversely proportional to the
speed of an object. An object can be described by a sum of band limited terms of
increasing frequencies, a representation which can for instance be obtained by
Fourier analyses. The effect of temporal anti-aliasing on such representation would
be that the faster this object moves, the less terms would remain. This behaviour
may seem ideal since then the rendering costs would be inversely proportional to the
speed of the object. Unfortunately however, an object description by a sum of band
limited terms is in general not the most efficient. For one thing, it is not a natural
representation of objects, so that Fourier transformation is needed to obtain a
representation like that. Also the rendering of such a representation would be
costly. In a static or near to static situation, a description of even the simplest object
would at least need terms up to a frequency equivalent with the display resolution,
otherwise visible detail would be lost. As a result, whether a description by band
limited terms pays off is dependent on the extent to which Fourier transformation
simplifies temporal anti-aliasing and complicates rendering. It is likely to pay off
only in situations where any other representation would be of similar complexity,
such as may be the case for textures.

Norton et al. [Norton82] described a method of limiting texture detail for textures
expressed as a sum of band limited terms by means of "clamping" those terms that
exceed a certain frequency. Since the authors just considered spatial anti-aliasing,
their clamping frequency is fixed as it is determined by the display resolution only.
A similar method could in principle be used for temporal anti-aliasing if the
clamping frequency is related to the speed of the object. Other spatial anti-aliasing
methods for textures exploit hierarchies of various resolution texture maps
[Crow84, Glassner86]. Temporal anti-aliasing of such textures can be done by
selecting the appropriate resolution map, again related to the speed of the object.
However, for these texture representations the costs of texture mapping is
independent of the texture density. Consequently, reducing texture resolution in that
case will not reduce the cost of the image generation.

Quality Related to Cost
In order to optimally balance image quality and temporal aspects of the animation,
selection of the level of detail used for rendering should not only be based on the
visual aspects, but also on the actual costs of rendering of the different levels of
detail. For implicit animation in particular, it would be desirable to have an absolute
quantification of the rendering cost as function of the level of detail (and rendering
algorithms used). With this, we could determine the maximum level of detail for
which the animation can be sustained. To obtain an absolute quantification of the
costs however, would require an extensive simulation of the rendering hardware that
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will be used. Another complication that has to be dealt with is that the complexity
of the scene is likely to be view dependent.

In [Funkhouser93] Funkhouser and Séquin describe an adaptive display
algorithm that adjusts the image quality to maintain a uniform frame rate. They
‘‘perform a constrained optimization to choose a level of detail and rendering
algorithm for each potentially visible object in order to generate the best image
possible within the target frame rate’’. Their cost heuristics is based on
measurements of rendering several levels of detail on the graphics system of
interest. Their benefit heuristics is a somewhat ad hoc estimate of the ‘‘contribution
to model perception’’.

2.5. Conclusions

In this chapter we discussed the issues involved in graphics systems in relation with
interaction. In this we emphasised on animate response. We noted that the frame
rate needed to display continuous motion can be related to the speed of the object
components. A movie projector — the display engine of a mechanical ‘‘graphics
system’’ — is operated completely time independent of the camera. It is clear that
both mechanical devices are operated at a constant frame rate to avoid complex
synchronisation issues.

In computer graphics applications, however, we do not deal with mechanical
devices and in general there is a rather tight coupling between the image generation
system (the ‘‘camera’’) and the image display system (the ‘‘projector’’). In this case,
a more complex synchronisation scheme is feasible. A more flexible
synchronisation scheme would gives us the possibility to vary the frame rate, related
to the speed of the object components in the image. Making optimal use of frame
coherence is a promising strategy to optimise interactive environments. In its
simplest form frame coherence can be exploited by partially updating the image.
The image has to be redrawn only in the area where the image is known to be
changed. In the extreme, each object might have its individual frame rate.

The success of adaptive image generation methods based on incremental
calculations is highly dependent on to what extent increments make use of
previously obtained results. If rendering of one level does not make sufficient use of
the results obtained by previous levels, the total cost of generation of the final image
may even exceed the cost of non-incremental methods, which renders these type of
adaptive algorithms useless for dynamic environments.

In this sense adaptive techniques that directly aim for a certain quality level,
based on pre-estimated cost are likely to be more successful. Tuning the level of
image quality should adhere to priorities prescribed by the characteristics of human
perception, not by the cost of the quality improvement. To be able to do so, we need
metrics which take into account the measure of quality — in terms of level of detail
and rendering quality — and the associated costs in relation with the computing
resources. Providing such metrics is beyond the scope of this dissertation, but we
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have learned that the architecture should provide flexibility to be able to adjust the
quality in a reasoned way. Again, in the extreme it should be possible to
differentiate between individual objects.
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3
Raster Graphics Hardware

Synopsis.
This chapter is on hardware aspects of raster graphics systems. Techniques involved in
graphics systems targeted for displaying 3D polygonal models are examined. Image
generation involves computing tasks of vastly differing order of granularity and
complexity. The multitudinous equivalent calculations involved make graphics systems
obvious candidates for parallelisation. Different task subdivision strategies and their
applicability for graphics systems are discussed.��������������������
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3.1. Introduction

Whereas the previous chapter focussed on software aspects of graphics systems, in
this chapter we will concentrate on hardware elements necessary for the display of
raster graphics. In downstream order these elements are:
� graphics processor,
� frame buffer,
� display controller,
� display device.

Several techniques exist to improve the performance of a graphics system. A
systems designer can choose for virtually any performance level, but of course there
is a price to pay. As a result we find on the market systems that range from cheap
low-performance systems in which a single general purpose CPU also takes care of
all graphics tasks, up to expensive high-performance systems in which graphics
tasks are offloaded to powerful special purpose graphics subsystems.

Graphics systems architecture is a specialised branch of computer architecture. It is
driven, therefore, by the same advances in semiconductor technology that have
driven general purpose computer architecture over the last several decades. Many of
the same speed-up techniques can be used, including pipelining, parallelism, and
tradeoffs between memory and computation [Molnar90].

The design of special purpose hardware tends to be based on the characteristics of a

October 13, 1995



particular class of popular applications. Because of this, we may find that a system
based on general purpose hardware, with mediocre performance for standard types
of applications, turns out to be competitive for applications for which the
characteristics do not adhere to the expected standard behaviour. Throughout the
years we have seen several ‘waves’ of moving functionality in the direction of
dedicated graphics processors and the reverse, moving functionality to the general
purpose host CPU. These tidal waves in the ocean of computer graphics systems
design are caused by changes in hardware technology (e.g., the RISC versus CISC
competition) as well as changes in software technology and de facto standards
(graphics languages versus pixel based window systems). The current trend is that a
substantial amount of functionality is performed by the host CPU. The CPU is then
assisted by a rather simple rasteriser (for instance the REX of Silicon Graphics’
Indigo [SiliconGraphics93]). More high-end versions may still have dedicated
hardware for geometry based processing such as transformation and
triangularisation [SiliconGraphics92].

In high-end systems we usually find that concurrent processing is taken to be the
answer to improve the performance of a graphics system. The main stream of
research on graphics hardware involves strategies for concurrent processing. This
chapter will address several issues of concurrent graphics systems

3.2. An Overview on Hardware Elements

In the next subsections the hardware elements necessary for the display of raster
graphics will be discussed in upstream order. This discussion serves to indicate
important characteristics of these hardware elements only. More complete surveys
on graphics hardware can be found in the literature (e.g., [Glassner85, Molnar90]).

3.2.1. Display Device

For the display of computer graphics images, different types of display technologies
exist, each with its specific characteristics. Based on the elementary display
primitive we can make a distinction between vector devices (e.g., pen plotters,
vector displays etc.) and raster devices (e.g., matrix printers, LCD’s etc.), since
these are two conceptually differing technologies.

Where speed is concerned, graphics systems typically make use of cathode-ray
tubes (CRT’s) for display of images. A CRT has a phosphor-based coating on the
inside surface, which glows when it is hit by an electron beam. The persistence time
of the phosphor-based coating is typically in the order of 10-60 milliseconds.
Because of this, images displayed on CRT’s are transient, so that they have to be
cyclically redisplayed. CRT’s come in two flavours: we can make a distinction
between vector displays and raster displays.

Vector display. Vector displays are calligraphic systems for which the elementary
display primitive is a line segment. The position of a line segment is specified by
the location of a begin- and end-point only. For CRT’s, line segments are actually
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drawn, that is, the electron beam is directed along each of the line segments. The
beam is switched off when it is directed towards a next line segment. The inherent
limited resolution of the digital representation of begin- and end-point causes
quantisation. However, the lines on the screen themselves are continuous as shown
in Figure 3.1. Because of this, the display space of vector displays is said to be
continuous.

The refresh buffer for vector displays contains the data of all the elements that
have to be displayed. Therefore, the size of its content is dependent on the image
complexity.

Figure 3.1: Rendering of an object for a vector display results in a set of continuous
lines (left). Rendering the same object for a raster display results in a two
dimensional array of intensity values (right).

Raster display. For raster displays the image is represented by a multitudinous
two-dimensional array (raster) of picture elements — or pixels. The electron beam
follows a fixed path that covers the entire display area, independent of what is
actually displayed (see Figure 3.2). The image is drawn by setting the electron beam
intensity according to the pixel value of the pixel that is related to the electron beam
position. This results in a series of discrete dots on the screen as shown in
Figure 3.1. Consequently, the display space of raster displays is said to be discrete.
Each pixel of the array carries intensity information of a point of the rasterised
image. Since the total number of pixels that cover the display area is fixed, the size
of the refresh buffer is fixed — i.e., independent of the image complexity.

Nowadays, raster displays are the most common types of CRT display devices used.
They became successful because:
� their technology is based on simple standard television technology which makes

them cheap;
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� representation of intricately coloured solid areas is facilitated so that highly
realistic images can be rendered;

� their refresh process is not influenced by the complexity of the scene or the
extensiveness of the rendering process.

These characteristics turned out to be of more importance than the high resolution
and more dynamic characteristics of vector displays. In the remainder of this work,
the individual term ‘display’ is assumed to stand for ‘raster display’.

Figure 3.2: The path of the electron beam when scanning the display area.

The electron beam that is fired onto the coating of the CRT can be deflected by
means of either electrostatic or magnetic fields. The beam intensity can be varied,
which changes the brightness of the spot where the beam hits the coating. Beam
deflection and beam intensity are controlled by electronic circuitry. This circuitry is
integrated with the CRT in a so-called monitor.

The display area is scanned by the electron beam in a number of horizontal
sweeps going from left to right (see Figure 3.2). When reaching the end of the
horizontal sweep, the intensity is set to zero and the beam will ‘fly back’ to the start
of the next line just below the previous line. This is known as horizontal retrace.
This continues until the bottom of the display area is reached. Then again the
intensity is set to zero and the beam will be redirected to the top of the display area,
ready for the next refresh cycle. Bringing the beam back to the top of the display
area is known as vertical retrace.

The electronic circuitry of the monitor that handles the scanning of the display
area is controlled via the video input signal. The voltage level of the video input
signal directly controls the beam intensity 1). The proper relation between the video
signal and the actual position of the electron beam is secured by means of
synchronisation pulses. These pulses can be communicated via a separate sync
signal. Also we find systems in which these synchronisation pulses are

������������������������������������������������������������������������������������������������������������������
1) Colour displays actually have three electron beams and three video input signals to be able
to control the red, green and blue components of an image individually (see for instance
[Foley90]).
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superimposed onto the video signal (for colour systems composited with the green
video signal only). This does not interfere with the beam intensity control, because
synchronisation pulses show up in the vertical and the horizontal retrace time as
illustrated in Figure 3.3.

Vertical
Sync.

Horizontal
Sync.

line scanning

pixel scanning

line time

frame time

Figure 3.3: Composite sync. The video signal carries pixel brightness information
as well as synchronisation pulses. The synchronisation pulses relate the brightness
information with the position of the electron beam on the screen.

3.2.2. Display Controller

Images displayed on CRT’s are transient, so that they have to be cyclically
redisplayed. This cyclic redisplay — also known as the refresh process — is
performed by the display controller at a sufficiently fast repetition rate (typically
50-100 Hz). The display controller reads the digital pixel data from the frame
buffer. The display controller as a rule incorporates a lookup table which translates
pixel values in intensity values that are input to the digital-to-analogue converters
(DAC’s) 2). A lookup table may be used for gamma correction or to expand 8-bit
pixel values into 3 × 8-bit colour intensities.

Normally, successive pixels are stored in a frame buffer on successive memory
locations. Shires [Shires86] surveys the Intell 82786, a display processor that
supports windowing in hardware. The CPU provides the description of the parts of
various windows that are to be shown on the screen. The display processor then
fetches the implied pixels.

The display controller also generates the horizontal and vertical synchronisation
pulses, which ensures that the scanning of the display area by the electron beam
controlled by the monitor circuitry is in lockstep with the scanning of the frame
buffer performed by the display controller. As a result, the data representing a
particular pixel defines the brightness of the exact same spot on the display area in
each refresh cycle.

������������������������������������������������������������������������������������������������������������������
2) The display controller of a colour system incorporates three DAC’s. Each of these
controls the red, the green, and the blue electron beam individually.
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The output of the DAC(’s) and the two types of synchronisation pulses
superimposed on that forms the analogue video signal to control the monitor.

The function of a display controller may be simple, but the high speed of the
circuitry involved makes the implementation non-trivial. A high resolution display
has more than 1M pixels so that the maximum pixel rate is well over 100MHz. The
BT485/125MHz RAMDAC [Brooktree88] is a popular chip for high resolution
systems that takes care of the most critical issues. It not only incorporates a lookup
table and a DAC, but also features five parallel pixel input ports. The pixels input
via the multiple ports are serialised on-chip. As a result of this, the pixel data can be
supplied at a five times lower rate. The importance of this will be addressed in the
next subsection.

3.2.3. Frame Buffer

To assure a flicker-free display of an image on a CRT, the refresh process is time-
bound. Traversal of the image generating pipeline is costly. Moreover, the
execution time of some of the functions in the pipeline depends on the momentary
complexity of the scene. This addresses the function of a refresh buffer. A refresh
buffer contains the final product of the rendering process — that is, the set of display
primitives that make up the image. Due to this, the refresh buffer decouples the
refresh process from the rendering process so that the image representation stored in
the refresh buffer is guaranteed to be continuously redisplayed within the time
constraints imposed by the display medium. For raster graphics systems the refresh
buffer is commonly known as the frame buffer. Due to the synchronisation
mechanism described in the above, there is a one to one relation between the
location of the data in the frame buffer and the position of the pixel on the display.
As a result, a pixel’s position is not stored in the frame buffer, only the value of its
intensity. The number of bits of information stored per pixel (also, the number of
bitplanes) varies, dependent on the type of system: a monochrome system can do
with one bit per pixel. A professional full-colour system may have 36 bitplanes to
store colour information (12 bits for each of the red, green and blue video signals)
and, in addition to that, may have several bitplanes to store overlay, Z-buffer, alpha
channel and even object identification data.

We noted before that for a high resolution system the sustained pixel rate may be
well over 100MHz. Therefore, the display controller will have to be able to read all
pixels at that rate. It would be ideal if the entire content of the buffer can also be
updated in one refresh cycle. This implies that pixels have to be written into the
frame buffer at a similar rate simultaneously. As a result, the frame buffer for a
high-resolution system should have a total access rate of well over 200MHz 3).

������������������������������������������������������������������������������������������������������������������
3) In fact, in case the system makes use of the Z-buffer algorithm for hidden surface removal,
pixels are likely to be addressed several times per frame, so that even an access rate of
200MHz is insufficient to be able to replace the content of the entire buffer in one refresh
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However, the memory access rate of a cheap conventional DRAM memory is in the
order of 10MHz, which is clearly insufficient. This access problem is known as the
‘frame buffer bottleneck’. In the following, several answers to reduce this memory
access problem will be reviewed.

Separate bus
In a simple architecture, the frame buffer may share the memory address space with
the rest of the system memory. The pixel values are stored in and retrieved from the
frame buffer memory via the system bus (see Figure 3.4). In this way the CPU and
the display controller have to compete for memory access. It may be clear that this
architecture can be used for low performance low resolution systems only.

System
Memory

Display
Controller

System Bus

videoFrame
Buffer

CPU

Figure 3.4: A simple graphics system in which the frame buffer access for both read
and write takes place via the system bus.
A better access to the frame buffer can be obtained if the frame buffer is

implemented as a dual ported memory. Then, pixels are retrieved from the frame
buffer via a separate port. The display controller is connected to this port via the
pixel bus. In this way the communication needed for the refresh process does not
affect the system memory bus (see Figure 3.5). In the dual ported memory, display
controller access via the pixel bus has priority over access via the system bus.

One step further in this direction is the complete separation of the frame buffer
from the system memory. Frame buffer access is handled by a co-processor — the
graphics processor — via a private bus, the graphics processor bus (see Figure 3.6).
The frame buffer may again be implemented as a dual ported memory so that the
communication needed for the refresh process does not affect the graphics processor
bus. Of course, also in this architecture, display controller access via the pixel bus
has priority over access via the graphics processor bus.

The result of separation of the system bus, the graphics processor bus and the
pixel bus is that the effective number of cycles during which the frame buffer can be
accessed increases.

������������������������������������������������������������������������������������������������������������������
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Figure 3.5: A graphics system in which the frame buffer is implemented as dual-
ported memory, so that frame buffer access by the display controller does not affect
the system bus data transport.
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Figure 3.6: Graphics system centered around a graphics processor which off-loads
the CPU. Also the frame buffer is completely separated from the system memory,
which increases the effective frame buffer access rate.

Double buffering
We already pointed out that the display controller has to have access priority. This
means that for high resolution systems the frame buffer is effectively blocked for
updates, except during retrace times which can be a mere 10-20% of the total time
— depending on system parameters like resolution and such. Limited access for
frame buffer updates can be avoided by means of double buffering. Then, one
buffer can be used for image display, while at the same time, the other is accessible
for writing pixels for the next frame continuously. Whenever this next frame is
ready for display, the function of the two buffers is swapped. Swapping of the two
buffers can be synchronised with the vertical retrace. Then it is guaranteed that the
individual frames displayed on the screen are consistent. If the calculation and
update of individual frames alone takes more than one refresh cycle — which to a
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certain extent could be acceptable even for animation — double buffering is
mandatory. It may be clear that this solution is expensive in terms of hardware.

Video RAM
A ‘‘poor man’s’’ alternative to considerably widen the relatively small access
window is offered by the video RAM (VRAM), a memory chip designed especially
for frame buffer implementations. Just like a conventional memory chip, the
VRAM allows for random access to any of its memory locations. What comes extra
is a secondary data port. Via this port a serial register can be shifted out (and in).
This serial register is as wide as the memory array and can be loaded with the data
of one complete row of the memory in just one clock cycle. The data that resides in
the serial register can be shifted out while at the same time the memory is available
for random access read/write operations. Due to the parallel loading of the serial
shift register, the number of cycles the frame buffer is inaccessible for writing
because of the refresh process has effectively reduced with a factor equal to the
width of the shift register (typically 256 or 512). The maximum rate of the serial
port of most VRAM’s is typically less than 30MHz. Note that this rate is
insufficient for high resolution systems. Also note that double buffering may still be
needed in case the update of individual frames takes more than one refresh cycle.

VRAM’s are also used because it reduces the requirements on the address
generator needed for pixel output.

Multiple banks
The access time of available memory chips (being any type of RAM or VRAM) is
insufficient to accommodate the refresh of high resolution systems 4). To increase
the bandwidth, the frame buffer can be configured as multiple banks that supply
pixels in parallel (e.g., 5 banks for a 1280 × 1024 display). These pixels are then
loaded in parallel into a high-speed shift register which is shifted out at the required
rate. Such serialisation circuitry is often integrated in the DAC chip (see also
subsection 3.2.2. Display Controller).

3.2.4. Graphics Processor

In one way or another, graphics systems usually incorporate a graphics processor
— a dedicated processor that handles (some of the) tasks of the image synthesis
pipeline (see § 2.1.2.). Among graphics systems, we will find a great variety in
which functionality is handled by such a graphics processor. As has been mentioned
in the introduction of this chapter, throughout time, we have witnessed a constant
change in which of the functions that make up the image synthesis pipeline are
handled by the graphics processor and which functions are handled by the host CPU.
Graphics standards such as GKS [ISO85b] and PHIGS [ISO89], made it possible to

������������������������������������������������������������������������������������������������������������������
4) Note that for high resolution systems we need to store > 1Mbyte, and we would need to
have an access time < 10ns, a low power consumption and preferably a low price at the same
time.
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pinpoint functionality that could be implemented in hardware. If we restrict
ourselves to raster graphics systems, we have seen graphics processors that just
handle scan-conversion up to processors that handle the complete GKS functionality
[Gu

..
nther88].
The ‘wheel of reincarnation’, first formulated by Ivan Sutherland in the 70’s, is a

philosophical tendency in graphics hardware design. Sutherland noticed that there is
an inclination among system designers to off-load graphical computation from the
CPU to a graphics processor, and then repeat this process (i.e., off-load the
computation again from the graphics processor to a graphics sub-processor and so
on). The process is repetitive, since when designers add more and more registers
and functions to a display processor, the processor becomes a full fledged CPU
again. At that stage though, the processor has become slow and inefficient, so that
need arises for a small, fast processor, starting the cycle anew.

In [Guttag86] Guttag et al. discuss issues that must be taken into account in the
design of a VLSI 32-bit microprocessor specialised for graphics applications. They
particularly stress the requirement that such a processor should be general enough to
perform any graphics operation. Examples of single chip graphics processors that
adhere to this concept are Texas Instruments’ TMS34020 and Intell’s i860
(described in [Molnar90]). Both processors are perfect examples of the wheel of
reincarnation philosophy; they are sufficiently general purpose to be used as a stand
alone CPU as well.

On the other extreme we find for instance the Raster Engine (REX) that is
incorporated in the IRIS Indigo [SiliconGraphics93]. The REX — implemented as a
single high-density ASIC (Application Specific Integrated Circuit) — is a small, fast
processor that primarily takes care of span interpolation for flat and linear shading
with optional dithering. All other operations such as the viewing transformation, the
decomposition into triangles and the calculation of the slopes of the triangles which
finally leads to the generation of point-sampled spans are performed by the host
CPU, a RISC processor that is sufficiently powerful to do so.

3.3. Concurrency and Graphics Systems

3.3.1. Introduction

Effective interactive computer graphics applications require considerable computing
resources to guarantee a sufficiently fast response. In the last decade, we have
witnessed a remarkable improvement of computing power due to improved
processor technologies. This evolution can be expected to continue. However, to
satisfy the need for higher image quality, scene complexity and interactivity, experts
in the field estimate that four to five orders of magnitude more processing power
than available in present day processors is necessary. Such a gap can only be
bridged by making use of highly parallel multiprocessor systems.

The inherent nature of graphics algorithms makes that they are well suited to be
implemented on multiprocessor systems. In increasing levels of complexity, the
computing tasks can be organised based on pixels, vertices, polygons, patches,
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objects or frames. Furthermore, the image generation pipeline consists of a number
of clearly separable tasks. As a result graphics algorithms can be mapped onto
numerous multiprocessor configuration alternatives. For isolated graphics
operations — such as geometric transformations — a proper optimal projection onto
parallel hardware is not hard to find (e.g., [Clark82]). However, if one considers the
graphics pipeline as a whole, the situation is much more complex.

The characteristics of a particular application running on a multiprocessor
configuration are a determining factor of the overall efficiency of the system. The
numerous multiprocessor systems, academic as well as commercial, that can be
found today have specific characteristics and are often well suited for a particular
type of images and a particular type of rendering only. However, in today’s
computer graphics applications, we must be able to deal with more than just one
type of images and more than just one type of rendering. We find a great variety in
the internal characteristics of the image synthesis process, caused by the variety of
shading techniques [Hall88], hidden surface removal algorithms [Sutherland74] and
graphics primitives [Hopgood83, Dam88]. When we consider the fact that the
characteristics of applications vary considerably, and in an interactive environment,
even momentarily, it will be clear that it is impossible to speak about ‘‘the’’ general
optimal multiprocessor architecture.

Concurrency can be viewed upon with different interests. For instance, one may
focus on hardware configurations, i.e., the architecture of the system. From another
point of view one may be concerned with the algorithmic aspects of concurrency,
i.e., how a particular problem can be distributed. In the next we will summarise a
classification based on these two different views, that is, based on architectures and
based on distribution. In these classifications we restrict to those types of
concurrency that can be found in existing graphics architectures.

3.3.2. Architecture Based Classification

In computer graphics systems, we recognise the following classes of parallel
architectures: SIMD, MIMD and systolic array. These classes may come in
different levels of granularity.

Classes
SIMD. A single instruction, multiple data system (also known as vector processor)
is an arrangement of synchronously operating processors: all processing elements
execute the same instruction in lock-step. The centralised control makes a SIMD
system relatively cheap and well suited for massive parallelism. However, the
efficiency of a SIMD system may reduce dramatically when conditional instructions
are executed. SIMD systems are well suited for specialised tasks on multiple data
streams.

MIMD. A multiple instruction, multiple data system is a configuration of
asynchronously operating processors. Synchronisation is handled by message
passing. Job scheduling and communication are the most critical aspects of a
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MIMD system. Scalability and configurability made this type of system popular.
On the other hand, this type of architecture is costly, since each processor must have
its own instruction buffer and controller. Besides, debugging of a MIMD system
can be quite tedious. Due to the asynchronous operation of the processing elements,
a MIMD system can (at least potentially) handle data dependent operations quite
efficiently. MIMD systems are the most flexible type of multiprocessor systems. In
computer graphics systems we may find MIMD systems configured such that the
processing elements asynchronously execute the same set of instructions on
different portions of data (multi-stream), as a pure pipeline architecture (single-
stream) or as a combination of these two extremes.

Systolic array. A systolic array processor can be considered as being a mixture of a
pipeline architecture and a vector processor. Individual elements of the array handle
instruction level tasks only. The dimensionality of the array and the interconnection
of the processing elements — which may allow multiple data streams — tends to be
problem specific. As such, a systolic array should be seen as a dedicated multi-
stream processor rather than as a flexible programmable system. Information
— which can be data as well as instructions — flows between processing elements in
a pipelined fashion, as regular as a heartbeat (hence the name systolic array). The
simple and regular communication and control structure makes the systolic array
rather simple to design and implement.

Granularity
Beside the above classification of architectures, we can distinguish several levels of
granularity. Especially for MIMD-type architectures, we may find concurrent
systems that involve processing elements that range from mainframes, workstations,
loosely coupled multi-processors, tightly coupled multi-processors, down to
instruction set level multi-processors.

Mainframes. Processing can be off-loaded to a mainframe, a vector-processor, a
supercomputer or even a cluster of supercomputers. These types of number
crunching facilities can usually be accessed via a local-area network (LAN) or even
a world-spanning wide-area network (WAN). Because of the the mode in which
these compute servers tend to operate and the characteristics of the network
involved, this approach is typical for non-interactive highly compute intensive
preprocessing tasks, which are outside the scope of this overview.

Workstations. A processing task can be distributed among a cluster of workstations,
connected via a LAN. Such a cluster may very well be heterogeneous. Normal
operating system facilities can be used to start remote procedures. Communication
costs are relatively high. Although network technologies are improving, the
response time of the facilities cannot be guaranteed to be sufficient for closed-loop
interactions.
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Loosely coupled multi-processors. In loosely coupled systems, the processors are
connected to neighbouring processors via point-to-point communication links. Each
processor has a private local memory. Data exchange and synchronisation is
handled by sending messages. The communication cost is relatively low, that is,
compared to communication via a LAN. In spite of this, communication costs can
still become a dominating factor.

Tightly coupled multi-processors. Processors of a multi-processor system may share
(a part of) their main memory. In that case they are said to be tightly coupled. The
communication costs of tightly coupled multi-processor systems are low because
bulky data can be shared and synchronisation can be obtained via shared status
information. On the other hand, memory contention puts an upper limit on the
number of processors that can efficiently be coupled in this way.

Instruction set level processors. Finally we have the category of instruction set level
processors in which we find dataflow processors, neural networks and the like.
These architectures execute machine instructions in parallel. A serious
inconvenience of these type of architectures is that programming is non-trivial. The
systolic array is an example of an instruction set level processor.

3.3.3. Distribution Based Classification

From an algorithmic point of view the following task distribution strategies for the
image synthesis process can be recognised: functional, image-space and object-
space subdivision.

Classes
Functional. A simple strategy to distribute the processing for any type of
application is functional subdivision. For computer graphics systems this implies
that processors are allocated for one of the tasks (or even sub-tasks) found in the
image synthesis pipeline (geometric transformation, clipping, shading etc.).
Because of the structure of the image synthesis pipeline (see § 2,1,2), this approach
results in a serially pipelined architecture ; data is passed from one processor to the
next, each processor performing a specific task. The individual processing elements
may be highly optimised for the specific task assigned to them. Vector
transformations for instance requires floating point arithmetic, whereas rasterisation
can do with integer operations.

Functional subdivision may seem to be an obvious strategy for graphics systems,
however, one should realise that load balancing and capability of handling large data
streams are essential for optimal efficiency. One of the characteristic features of the
image synthesis process is that throughout the image synthesis pipeline the amount
of data increases considerably. Although the processing elements involved may
accommodate for this, it still is a potential problem for load balancing. The amount
in which the data increases as well as the complexity of the processing tends to be
data dependent. Also some of the tasks (e.g., clipping) may cause interrupts in the
data-flow. These effects negatively influence the efficiency of a functionally
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subdivided system.
The modules of a functionally subdivided system tend to be highly optimised,

which implies that they are targeted for a particular type of primitive only. If more
types of primitives are to be handled, the pipeline may have to be split up in
different parallel path.

Image-space. Another task subdivision approach often used for distributed image
synthesis is image-space subdivision; each processor performs all operations for one
or more pixels of the image. The image synthesis process is basically organised
within the following outer loop:

for each pixel do

begin /* body of rendering algorithm */

...

for each object do

begin

...

end

...

end�������������������
�
�
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The pixel-wise organisation of the image-space subdivided rendering process more
or less reflects a major concern for the set of pixels that have to be produced. The
rendering algorithm is raster dependent.

The maximum level of concurrency that can be obtained is determined by the
image resolution, which is a constant, hence limited, factor. The efficiency of the
image-space subdivision approach may be low in case the image complexity is not
homogeneous. In that case, adaptive subdivision methods are favourable. However,
adaptive subdivision methods considerably complicate the implementation.

An implication of image-space task subdivision is that multiple copies of
geometric data have to be distributed among the processors. This goes with
considerable communication costs, especially during start-up. For dynamic
applications, image-space subdivision implies that multiple copies of the same data
that exist throughout the system have to be updated, or may have to be retransmitted
from one part of the system to another.

Object-space. A complementary approach, also known as object-space subdivision,
is based on the principle that processors are allocated to process one or more
graphical objects (e.g., lines, areas, characters). Here the image synthesis process is
organised within the following outer loop:
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for each object do

begin /* body of rendering algorithm */

...

for each pixel do

begin

...

end

...

end�������������������
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This object-based organisation reflects a possible interest for the objects that have to
be processed. In this case, parts of the rendering algorithm can be raster
independent. The measure of raster independency relates to the extend of the part in
the inner loop.

The maximum level of concurrency that can be obtained is determined by the
number of objects in the scene. Hence, the more complex the scene, the higher the
maximum level of concurrency. Task scheduling for object-space subdivision can
be complex, since the amount of processing required per object may differ — e.g.,
depending on the size of the object. Furthermore, in an interactive environment the
number of objects in a scene is a dynamic quantity. These effects complicate load-
balancing, so that it may be difficult to optimise the overall efficiency of the system.

Granularity
Also for concurrent algorithms we distinguish different levels of granularity. These
are known as the classes coarse, medium and fine grain. This classification is based
on the number of instructions executed between synchronisation events. The
following definitions do not imply that there is a general consensus on the exact
quantification of these levels.

Coarse grain. Tasks are executed with hardly any information exchange. Typically
the number of instructions is over a thousand. The cost of communication is
negligible in relation with the processing costs.

Medium grain. Tasks executed are in the order of tens to hundreds of instructions.
The cost of communication is an important factor.

Fine grain. Tasks are up to several instructions long, the communication cost is a
determining factor.
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3.3.4. Discussion

Many solutions have been proposed to distribute the work involved in fast
generation of high quality images across multiprocessor systems [Molnar90]. We
have seen that all of the ‘‘pure’’ strategies mentioned above have their limitations.

Figure 3.7: ‘‘Pure’’ subdivision strategies. On the left functional subdivision, in the
middle image space subdivision and on the right object space subdivision.The image generation process itself is a pipeline of several sequential processes.

Therefore it should come as no surprise that this type of multiprocessing can be
found in a rudimentary form in even the first generation of graphics systems.
However, subdivision of the image generation pipeline in smaller tasks can be done
up to a limited number of steps only, so that the maximum degree of
multiprocessing by means of pipelining only is limited. We noted before that,
especially for a purely pipelined architecture, data dependent operations make it
hard to balance the load. The longer the pipeline, the less efficient some modules
will be used.

The ultimate pure image-space partitioned system would imply a processor per
pixel. This many processors alone is impractical, but even a compromise — i.e., a
processor for parts of the image — implies that all primitives have to be processed
by all processors (i.e., the system is object-serial) Hence the throughput is limited by
the processor speed.

The ultimate pure object-space partitioned system (a processor per object)
results in multiple pixel streams that have to be combined (i.e., the system is pixel-
serial). A simple solution implies synchronisation which reduces efficiency. An
asynchronous solution requires extra memory and composition hardware.
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Practical solutions in general are mixtures of several of these pure strategies. To
obtain a sufficiently high degree of multiprocessing, systems designers have to
combine pipelining and parallelism. Parallelism can then materialise in the form of
parallel modules or even parallel pipelines. This leads to hybrid architectures such
as the hypothetical architecture shown in Figure 3.8.

vertex operations

rasterisation

pixel operations

Figure 3.8: Example of a generic hybrid multiprocessor graphics system. Parts of
the graphics pipeline are parallelised to obtain a sufficient amount of processing
power.

When parallelising distinct image generation tasks we can choose between
image-space subdivision and object-space subdivision for each of these tasks
individually. Of these two, image-space subdivision seems to be more appropriate
for the rasterisation phase, the phase that generates and operates on pixels. Object-
space subdivision on the other hand seems to be more appropriate for the pre-
rasterisation phase, the phase which deals with graphics primitives and their
vertices.

3.4. Conclusions

In most of today’s graphics systems we may recognise a geometry processor, a
rasteriser and a frame buffer. Each of these modules are candidate for subdivision
in parallel units to improve the speed of the system.

The demand for higher image quality implies that the number of frame buffer
accesses per pixel will increase. Also the amount of information per pixel will
increase. Traditional memory architectures cannot accommodate for that. What is
needed is a high bandwidth between rasteriser and pixel memory — that is, much
higher than the bandwidth offered by standard memory chips. In existing systems
this is obtained by organising the frame buffer memory in parallel banks so that
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multiple pixels can be accessed per memory cycle. For a high bandwidth the
rasteriser and the pixel memory should be integrated preferably into one system
module.
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4
A Layered Object-Space Based

Architecture

Synopsis.
The responsiveness of interactive applications is an important measure of the quality of
the underlying graphics system. In this chapter we propose to improve responsiveness
by means of reduction of the effort needed to perform interaction tasks. We describe the
abstract computational model of an interactive graphics system and discuss requirements
on output representation. It is argued how this leads to a layered object-space
architecture. Some consequences of this approach on fundamental aspects of the
graphics system are reviewed.��������������������
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4.1. Introduction

An essential requirement for any graphics system is easy and versatile interaction.
Raster graphics systems, as it stands today, are still not able to fulfill interaction
requirements fully. The underlying technical reason for this is the discrepancy
between objects that are defined by position and shape and their pixel
representations viewed and pointed to by the user. The process of changing from
object definition to raster representation destroys whatever high-level structure one
has in the scene. Since one generally operates on a semantic level of interaction, the
pixel representation per se is not a representation eligible for manipulation purposes.
However, it is the pixel representation that in a great extent determines the
algorithms and architectures of existing graphics systems.

Presently there exist two mainstream approaches to make raster graphics
systems more viable for interaction:

� Perform each step involved in the graphical feedback loop (see § 2.1.4.) as
quickly as possible by pushing the hardware limits to the maximum, viz.,
running many processors per given task in the image synthesis pipeline.
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� Restructure the functional model (§ 2.1.2.) to reduce the computational
complexity of the graphical feedback loop, viz., looking at image synthesis from
a fresher perspective.

The principle of the first approach is that in cases where a proper representation
level is not available for direct manipulation, it can at least be generated as quickly
as possible. Obviously there is nothing wrong with this approach, as long as it stays
cost effective and exhibits extensible (read ‘programmable’) behaviour. A common
characteristic of the approach is then to identify and isolate a simple (subset of)
operation(s) and map it, frequently in a conceptually simplistic manner, to hardware.
Due to the availability of advanced VLSI design tools, there is a manifest incentive
to do this. We, however, observe a major shortcoming with this approach. There
are ultimate limits to what can be done by brute-force hardware speed-ups.

The computational complexity community has long ago come to know that the
laws of parallel computation are qualitatively different from that of the sequential
computation; algorithms do not always smoothly translate from uniprocessor to
multiprocessor architectures. We believe that without clarifying the algorithmic
improvements, brute-force mappings of existing graphical algorithms into hardware
will introduce only temporary speed-ups and these improvements will be nullified in
time by growing user demands.

One should be careful not to assign the problems of image synthesis to hardware
designers solely. By concentrating on hardware design alone we may end up in a
dead-end street from which it is hard to back-out again. Software issues should also
be thoroughly studied. The real solution to the hard problems of computer graphics
will come, in our view, from a direction which considers the intrinsic difficulty of
user-driven problems from a computational standpoint. This brings us to the second
approach.

The second approach is no different from the first one in terms of its goal, i.e.,
produce a responsive raster graphics system. Yet, the methodology is quite
different. In this case, one analyses interaction tasks, and then tries to develop
original data structures and algorithms and devise new architectural organisations
that guarantee that for all interaction tasks representations of the proper level are at
hand. Only then one maps expedient tasks into hardware as much as this is justified.

We subscribe to the second approach: we will first examine the structure of the
image synthesis pipeline in relation with interaction requirements, and only then try
to push the hardware limits to the maximum where this is needed. We will base a
possible restructuring of the image synthesis pipeline on the following:

MAXIM 1: Reduction of the effort needed to perform interaction tasks in terms
of computation and in terms of data storage and retrieval will lead to a more
responsive graphics system.���������������������
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In other words one should try to come to a ‘lean production’ model. Not lean in the
sense of ‘of poor quality’, but lean in the sense of ‘restrict to what is absolutely
necessary’ 1). This may seem to be a rather obvious strategy. If lean production is
supposed to be appropriate for graphics systems, one should wonder why this
architectural line is so little investigated.

To a certain extent this can be explained by the fact that in spite of the high level
of assistance offered by modern VLSI design tools, hardware design is not simple.
The tendency of system design is to find a simplified way to perform an isolated task
that — often merely because of the simplification — can be implemented in VLSI.
In contrast with this, when looking for a system-wide solution we often need more
flexibility which in general leads to more complexity. As a result, we may even find
that solutions preferred from a system-wide point-of-view are not suited to be
implemented in VLSI.

Simplification is tempting, it seems to pay off rather well (as is unmistakably
demonstrated by the success of RISC-technology). We argue that by looking at the
conglomerate of tasks from a proper perspective, we may have to invest in details in
order to gain in the end. Yet, it is not always clear how to estimate whether
investments made are worth while. For a better understanding, we will first examine
the abstract computational model of image synthesis and interaction tasks.

4.2. Abstract Computational Model

The image synthesis process can be defined in terms of abstract levels (see also
§ 2.1.2.). Upon traversing the image synthesis pipeline from the application towards
the physical display we first encounter the highest level and at the end we find the
lowest level of abstraction. Between these two we find several intermediate levels.
Levels are interconnected by a bidirectional data stream (see Figure 4.1). The
output data stream is the stream that flows in the direction of the display, the input
data stream is the stream that flows in the opposite direction, i.e., towards the
application interface. In each abstraction level we may distinguish (at least
conceptually) between an input and an output environment. Both the input and the
output environment have a representation store and processes that have access to
that representation store. In Figure 4.1 these processes are represented by lines. An
arrow directed towards the representation store indicates that the representation may
be edited by the process. An arrow directed from the representation store indicates
that the representation is used by that process.

������������������������������������������������������������������������������������������������������������������
1) Lean production is a term also known in the automobile industry [Womack91]. The
essentials of lean car production are: just-in-time, flexibility, and quality circles. Of course in
car production different measures play a role in the economics of the process, but still, the
analogy between lean car production and lean image production is of interest.
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Figure 4.1: Computational model of one abstract level (left). The model is
symmetrical with respect to the input and the output environment. The complete
image synthesis pipeline is made up by several of these abstract levels (right).

Figure 4.1 should make clear that the model is symmetrical with respect to input and
output. The logical input device in the input environment can pass the input through
to a higher level, or invoke a function f (input) which causes changes in the output
environment. Similarly, the output environment can pass the output through to a
lower level, or invoke the function g (output) which causes a change of state in the
input environment.

Via the function f (input), the output environment acts as the agent using a logical
input device at the same level of abstraction (§ 2.1.3). In this way, a logical input
device may directly control components of the state of the output environment at the
same level of abstraction. An example of this is a logical input device which
provides a transformation matrix used directly by the output environment (e.g. for
dragging objects).

Similarly, via the function g (output), the computational model allows the output
environment to be either a part of the state of the component processes of a logical
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input device, or input to a process. An example of this is a pick logical input device
for which the input is a location in the coordinate space and the current collection of
graphical information at that level of abstraction.

Note that for graphical interaction, the model allows a logical input device to control
components of the state of the output environment both directly, or via a path
involving the transfer of input primitives to a higher level of abstraction, followed
by an invocation of an output function which causes appropriate changes at the
lower level. However, interpretation of Maxim 1 with respect to this computational
model leads to:

MAXIM 2: Changes of the output representation as a direct result of an
interaction task should be initiated from, and handled at, the lowest possible
level of abstraction.���������������������

����������������������������������������������������������������������������
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In other words, the path of a feedback loop should be as short as possible 2). As a
direct consequence of this maxim we come to the seemingly trivial:

MAXIM 3: Each level of abstraction, from which interaction tasks may initiate
changes of the output representation, should be immediately available to the
processes involved in interaction tasks.���������������������
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The consequence of Maxim 3 is that the intended representation levels should not
only be available conceptually, but should actually be stored in memory rather than
being reproduced when necessary. Note that, in accordance with Maxim 1, this does
not rule out the possibility to share data, e.g., between different representation
levels, as long as this does not impede access.

Note that Maxim 3 does not suggest to store all intermediate results ‘‘just to be
on the safe side’’. Storage is costly; all intermediate representation levels that are
actually stored should be accounted for.

������������������������������������������������������������������������������������������������������������������
2) If we again compare the image synthesis pipeline with a car production line, then Maxim 2
states that upon a customers request for a car with a particular type of engine, we should
allocate a semi-manufactured car that just arrived at the point of the production line where
engines are built in, rather than to allocate a car-production slot that is about to enter the
production line. In this way we are able to serve the customer as quickly and efficiently as
possible.
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4.3. Output Representation

With the logical model that is presented in § 2.1.2 in mind, one can reason that the
logical processes to traverse and/or edit output representations — also known as
display files — can be accommodated by appropriate structuring. This notion is
represented by:

MAXIM 4: The content of a display file should reflect a basic concern with
performance and structuring.��������������������

����������������������������������������������������������������������������
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Performance. Performance results from fast execution of each primitive in the
display file. The representation of primitives in combination with the algorithms
that implement each logical process must emphasise the execution speed. The
performance of the system will be determined by the slowest algorithm. Graphics
algorithms can be implemented either in software or in silicon.

Structuring. The primitives are structured into groups to accommodate editing and
traversing of the display file. The structure of a display file should support editing
of ‘group’ information, for instance, to facilitate dragging of compound structures.
At the same time, elementary information should also be directly accessible for
editing, for instance, to support pick operations. An appropriate structuring of a
display file will aid the logical process of generating the display file of a lower level
based on a confined change of a display file of a higher level. It will be this
generation speed which determines how display files should be structured.

Interpretation of Maxim 1 in this context leads to two basic notions related to editing
of display files. These are the notion of incremental changes and the notion of local
changes.

MAXIM 5: Algorithms that operate on the output representation should be able to
make changes incrementally.��������������������

����������������������������������������������������������������������������
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By incremental changes we mean changes that are relative to an existing state. In
this way, an editing operation can be represented by updating an entity in a
structured display file. The change takes effect by first letting the change propagate
through the display file at hand and then generate from this updated display files on
each of the lower levels of abstraction.

MAXIM 6: Algorithms that operate on the output representation should be able to
maintain the notion of locality.��������������������

����������������������������������������������������������������������������
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The notion of locality means that a change will affect a relatively small portion of
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the display file. If the corresponding part in the display file can be easily identified,
it is possible to minimise both the update efforts in the display file at hand, as well as
the generation of the corresponding updated display files on each of the lower levels
of abstraction.

We conclude that structuring of the output representation at the different levels
of abstraction should be particularly helpful in supporting these types of incremental
and local changes. Typical editing operations on the structured and logical display
files that must be supported include the following.

Geometrical Transformations. The geometry of an object is represented in the
structured display file by a group of primitives. An editing operation of particular
interest is the transformation of the object as a whole as an essential element of the
position task (see § 2.2). The structured display file must have a level where a
complete group of primitives can be addressed and manipulated. With the
appropriate output representation this editing operation can then reduce to a change
of only one value. Naturally this change will have to propagate through to the lower
levels of abstraction.

Colour Control. Little attention has been given to provide firmware for dynamic
control of colours. Fast regeneration should include colour function evaluation.
This can be done if, in the process of mapping the higher level display file onto the
lower level, the area information and the colour function per area can be preserved.
Then the effect of shading, reflection and transparency can be realised by colour
function compositions.

Appearance Control. The attributes that are traditionally used for creating dynamic
effects, such as highlighting, are primarily used for fast low level feedback. They
affect either groups or individual output primitives. In both cases the corresponding
elements must be easily tractable in the display file. Appearance control introduces
no further requirements beyond those already encountered for transformations.

Insert and Delete. Insertion and deletion of objects in the display file require local
rearrangements for proper hidden surface removal and lighting effects. Such
rearrangements must be calculated quickly, followed by a reexecution of the hidden
surface removal algorithm.

Picking Manipulations. Picking an output primitive is an operation which involves
a search through the display file. Usually, the graphics system will provide some
form of feedback to identify the picked primitive by, for example, high-lighting.
Picking and feedback will be best served by functionality that identifies the relevant
elements in real-time. Feedback will assist during picking. Higher level feedback
will use upward references realised either by an explicit administration or by fast
searching traversal.
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4.4. A Multilayer Computational Model

Based on the set of maxims presented in this chapter, we now construct a
computational model for the image generation pipeline. The basic principles of this
model are: proper representation levels should be available for interaction tasks, and
the aspects of editing display files as invoked by interaction tasks should be basis of
the structuring of the display files.

A specification of the proper levels of abstraction is implicitly indicated by
Maxim 3. Based on the inventory of interaction tasks presented in § 2.2., we
conclude that — apart from the application model — three geometry based levels of
image representation in particular must be accessible for interaction purposes. In
[Hagen87, Akman88] these representation levels are named high, medium and low.

DEFINITION: The high level representation contains objects of representation types
generated by the application model, in the (3D) coordinate system of that
application model (known as world coordinates in graphics standards like GKS
and PHIGS). In principle there is no limit on the type of primitives that can be
present 3). At this level the representation is view independent.

DEFINITION: The medium level representation contains graphical objects that result
from a perspective or projective transformation, viz., it is view dependent. All
objects of any type in the the high level are mapped to objects represented by
means of just one type of primitive, the pattern. A pattern is a ‘‘21⁄2D’’
domain 4) associated with a colour function that assigns a colour for each point
in the domain (see also § 5.2). Each pattern of the medium level representation
maintains a reference to the primitive of the high level representation from
which it originated. Patterns are associated with instructions that operate on
domains and colour functions 5). Besides patterns and associated instructions,
the display list also contains structuring elements which determine an acyclic
directed graph that specifies the order of execution of the display list elements.

������������������������������������������������������������������������������������������������������������������
3) For practical reasons we will restrict to polygons. The system can be extended by
providing a module to map a specific representation into the generic representation used in the
medium level. For ‘‘standard’’ mappings such modules will be provided.

4) On this level and below, z-coordinates are relevant only for visibility calculation, which
involves determination of the relative depth ordering. This ‘minor’ role of the z-coordinate is
reflected in the representation of a domain (see Chapter 5).

5) Examples of instructions associated with patterns of the medium and the low level
representation are geometric transformations, colour transformations and dynamic attributes.
These type of instructions are part of the display files and can be associated with individual
patterns or with a group of patterns. We also make use of global instructions which have to
be accessible for all mapping processes, and are therefore not part of the display files of a
particular level. By means of global instructions we specify for instance the lighting
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DEFINITION: The low level representation is a view dependent list of non-
overlapping visible areas that result from hidden surface removal of the patterns
of the medium level representation. The areas are represented by means of
patterns only. Each pattern maintains a reference to the pattern of the medium
level representation from which it originated. The patterns are associated with
instructions that operate on domains and colour functions 5). The structure of the
display list is based on geometrical position, rather than on logical coherence. In
§ 5.3 this data structure will be discussed in detail.

With these definitions of three intermediate representation levels, we come to the
layered architecture shown in Figure 4.2. Note that all the representation levels of
this layered architecture are in object-space, that is, each of the levels has distinct
identifyable graphical objects rather than a collection of anonymous picture
elements.
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Figure 4.2: A multilayer architecture. Interaction tasks can be initiated from
intermediate representation levels.

It is required that we maintain consistency among the different representation
levels. For example, after a change, hidden elements may have to be recovered
which necessitates going back to higher levels. Therefore, each element of the low
level maintains a reference to the corresponding element in the medium level
representation, and similarly, each element of the medium level maintains a
reference to the corresponding element in the high level representation.

We will consider the representations as objects in the sense of object-oriented
languages. Each object at any given level has a set of associated ‘‘methods’’ that it
responds to. When an action is performed on an object, the object itself may initiate
a series of actions to keep the data structures intact. Some actions require
permanent changes in the objects at the high level (e.g., deleting an object). Some
actions are just temporary (e.g., making an object transparent to reveal what is
behind). These actions may be effectuated by providing each object with the

������������������������������������������������������������������������������������������������������������������

conditions.
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appropriate methods. The user need not and should not know how these
administrative tasks are carried out. All the user wants is to see the immediate
changes that he wants to carry out, and is to be guaranteed that all through the
interaction tasks the geometry is kept correct.

We claim that this layered architecture provides support for interaction tasks
because of the following features:
� Selection of visible primitives (picking), as most essential interaction task, is

supported by the low level representation directly. The representation of
patterns as well as the geometry-based data structure of the low level
representation, are optimised for position-based identification (see Chapter 5).
Referencing of primitives from one level to the primitives of the next higher
level makes that the identification process can effortlessly propagate to higher
levels.

� Each of the three intermediate representation levels can be accessed
immediately, so that changes for interaction tasks can be initiated from each of
these levels. As a result, the path of a feedback loop can be minimised.

� The structure of the display files as discussed in § 4.3 in combination with the
stored intermediate representation levels, makes it possible to apply incremental
changes so that the propagation of changes can be restricted and affect a mere
subset of the image information. In this way, the effort needed to update the
output representation, also of each of the lower levels, can be minimised.

4.5. Discussion

Based on the viewpoint presented here, pixels can be considered as being artifacts of
the raster technology. Interaction support as such does not account for a pixel
representation of the image: none of the interaction taks mentioned in § 2.2. operate
on pixels directly. A pixel representation is unstructured and does not support the
notion of locality and incremental changes (see Maxim’s 4, 5 and 6). In the
multilayer architecture proposed here the refresh process can therefore at least
conceptually be initiated from the low level, a level that contains a list of visible
areas rather than an array of pixels 6).

This point of view is in contrast with what we often find in other architectures
where pixels play a dominant role in both the rendering algorithms and the structure
of the architecture. For instance in [Fournier88] Fournier and Fussel present a
formal study in which they present arguments to make use of a rasterised
representation level. Their paper:

������������������������������������������������������������������������������������������������������������������
6) Note that stricktly speaking this does not rule out the possibility to introduce an extra
representation level, for instance when forced by technical issues.
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(...) constitutes a first attempt at a disciplined analysis of the power of a frame buffer
seen as a computational engine for use in graphics algorithms. We (that is, Fournier
and Fussel) show the inherent power of frame buffers to perform a number of
graphics algorithms in terms of the number of data fields (registers) required per
pixel, the types of operations allowed on these registers, and the input data.

In their point of view the frame buffer is seen as a major memory resource. Their
abstract model of a frame buffer is an array of automata each with a number of
registers. The study involves the time and space complexity of several algorithms.
According to them, the simple time-space trade-off they show for some of the
problems, and the drop in cost of memory caused by technological changes, provide
new motivation for the use of frame buffers with the capability of doing more than
simply storing a digital representation of a scene to be displayed on a raster monitor.

There is nothing wrong with reconsidering the trade-off between memory usage
and the speed of a computation. However, one should be careful. Technical issues
rather than a drop in cost of memory should be considered when arguing for making
use of frame buffers for doing more than simply storing a digital representation of a
scene. As has been explained in § 3.2.3, systems designers already have to face the
frame buffer bottleneck. By concentrating on the trade-off between memory usage
and the speed of a computation alone we are tempted to add more and more
information per pixel just to try to speed up algorithms. Yet, more information per
pixel implies more communication — hence, an increase of the frame buffer access
problem. Also, with a limited number of registers per pixel it is not possible to give
an exact answer to the visible surface problem or to solve the exact area sampling
problem [Fournier88]. It is clear that in practice, the amount of information (i.e.,
the number of registers) per pixel has to be limited.

Pixels are there, and people (ab)use them. In our opinion, the problems of
pixel-based systems indicate that pixels should not play a dominant role for graphics
systems in both the rendering algorithms and the structure of the system’s
architecture. We consider pixels merely as being artifacts of the raster technology
that indeed will have to be produced somewhere along the line.

We observed that all three intermediate levels of our multilayer architecture are in
object-space. This has certainly consequences for the hidden surface removal and
shading methods. Also, in this view the refresh process is initiated from the low
level (i.e., a list of areas rather than an array of pixels), which has consequences for
the display controller. While this is unusual, we believe that it is well worth
investigating. In the next we will have a closer look at these consequences.

4.5.1. Hidden Surface Removal

In the proposed multilayer architecture, the mapping of the medium level onto the
low level representation involves hidden surface removal. This implies that our
hidden surface removal algorithm is an object-space algorithm since both the
medium and the low level representation are object-space representations.
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Apart from some high-end flight simulators, object-space hidden surface
removal algorithms are not what we normally find in graphics systems. The reason
for that is primarily because object-space algorithms are considered to be difficult to
implement, expensive and, consequently, slow. In contrast, the most frequently
used image-space hidden surface algorithm, the so-called Z-buffer algorithm, is
considered to be simple, cheap and fast. So the question does arise:‘‘can we afford
an object-space hidden surface removal algorithm in a supposedly interactive
environment?’’ When we compare these alternative approaches, we should consider
the following motivations:
� An object-space hidden surface removal algorithm takes place before

rasterisation of the graphics primitives. This may reduce the data stream in the
last section of the pipeline (dependent on the average size of the objects). An
object-space algorithm avoids rasterising primitives that in the end turn out to be
invisible.

� Image-space methods do not produce a visibility map. As a result a redraw of
the complete scene is necessary to find out which object is visible at a certain
image location 7).

� Object-space algorithms are independent of the resolution of the display device.
Consequently, certain operations (such as zooming) do not require a reexecution
of the object-space hidden surface removal algorithm at all, as would be the case
for image-space methods.

� Image-space algorithms necessitate a redraw of the entire image whenever one
primitive is moved or deleted, whereas an object-space approach may provide
facilities for incremental updates.

� Image-space hidden surface removal implies point sampling. Point sampling
inherently leads to artifacts, and thus to a lower image quality. For instance,
objects smaller than the distance between two sample points may or may not
contribute to the final image, dependent on the position of these objects relative
to the sample grid.

� Object-space algorithms allow for exact area sampling, a technique that
produces a weight factor for the intensity per pixel. Exact area sampling can be
seen as the ultimate supersampling technique 8) which increases the apparent
resolution and thereby reduces aliasing effects.

� The parts of a scene that are illuminated by a light source are exactly those parts
that would be visible when viewed from the position of the light source. This
illustrates how an object-space hidden surface removal algorithm can also be
used for calculating shadows.

������������������������������������������������������������������������������������������������������������������
7) This redraw may be an optimised process, it is not necessary to actually produce pixels.

8) Supersampling is a well known anti-aliasing technique. It is based on increasing the
number of samples per pixel. The resulting pixel value is taken to be the average of all
sampled values.
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We bring forward that under certain circumstances an object-space hidden surface
removal algorithm may even be competitive. The cost of the object space hidden
surface removal algorithm is compensated in particular by not rasterising primitives
that are not visible. These savings depend on the shading techniques used. This
illustrates the importance of looking at problems from a proper perspective as
mentioned in § 4.1. As shading techniques improve in quality and consequently
become more expensive, it essentially becomes more expensive to opt for image-
space hidden surface removal. Then we should rather ask ourselves:‘‘can we afford
not to use an object-space hidden surface removal algorithm in a supposedly
interactive environment?’’

In Chapter 5 we will present an object-space hidden surface removal algorthm
and analyse the cost effectiveness in more detail.

4.5.2. Illumination and Shading

The definitions of the medium and the low level representation state that in both
levels we find one type of primitive only, i.e., the pattern. Object-oriented methods
associate objects and the methods these objects respond to. The architecture
presented prescribes abstraction levels based on geometry, not based on the
evaluation of shading methods. Also, global instructions — for instance the once
that describe the lighting conditions — are accessible for mapping processes at each
of the levels of abstraction. This provides flexibility with respect to the level of
abstraction at which certain parts of the colour evaluation have to take place. In this
way, different shading methods and evaluation strategies can be incorporated in the
same architecture. This flexibility holds in particular for colour evaluation that can
take place at the medium and low level of the architecture. The separation of
domain and colour function as characteristic feature of the pattern representation in
combination with object-oriented methods makes it possible to implement optimal
evaluation strategies.

In general, lazy evaluation will be the preferred strategy. Then, colour function
evaluation takes place at the low level rather than at the medium level
representation. In this way, we avoid that evaluation of the colour function is
performed for primitives that are invisible. On the other hand, there are situations
for which it would be most welcome if the evaluation of the colour function for
primitives that are invisible has already taken place. Take for example a primitives
that is about to become visible, for instance due to movement of an object that
momentarily obscures that primitive. Then colour function evaluation would not
have to take place at the very moment that that primitive becomes visible, which
may be during a real-time feedback loop.

We will briefly address this issue in § 6.2.3. Here we restrict ourselves to say
that the layered object-space architecture provides sufficient flexibility to be able to
support different colour function evaluation strategies.
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4.5.3. Display Controller

In § 4.5 we stated that the refresh process can conceptually be initiated from the low
level representation. For the display of continuous motion in general a frame rate of
24 Hz — the standard movie projector frame rate — is sufficient 9). In § 3.2.2 we
learned that the refresh rate for CRT displays is 50-100 Hz. If we compare this with
the required frame rate, we observe that there is a difference of a mere factor of 3.
As a result we find ourselves confronted with a trade-off between computation and
storage. It is tempting to relax the system requirements (i.e., rasterise frames at a
rate of 24 Hz) and introduce an intermediate frame store (note, this does not
necessarily have to be a pixel based representation).

However, since for interaction purposes there is no mandate for such a frame
store, we will refresh the display directly from the low level representation. Given
the real-time requirements of the refresh process, it is clear that a display controller
that actually operates from the low level representation is quite a challenge. Such a
system would bring the fastest possible response on interactions. In Chapter 7 we
will present such an object-space display controller architecture.

4.6. Conclusions

We argued that reducing the effort needed to perform interaction tasks will lead to a
more responsive system. An architecture that stricktly adheres to the concepts as
presented in this chapter has far-reaching consequences for the type of hidden
surface removal algorithm that can be used. In turn this has consequences for the
rasterisation process (the possibility to do exact area sampling) and shading
technique (lazy shading). From this we conclude that the feasibility of this approach
has to be demonstrated by the design and implementation of a practical object-space
hidden surface removal algorithm. This and other issues of dealing with geometry
will be discussed in Chapter 5.

We also concluded that the low level representation of the architecture — that
contains information in the form of non-overlapping areas — can be used to directly
supply information for the refresh process. We decided to design and implement a
display controller that can actually refresh the display based on this type of
information. In doing so, we obtain a raster graphics system of which the
interactivity is comparable to that of the vector graphics systems that where quite
common in the early days of computer graphics. In order to be successful, such an
object based display controller should still be able to display realistically shaded
area’s. For this we needed a high quality shading method that is optimised for fast
rasterisation. Such a method will be presented in Chapter 6, whereas the object
based display controller itself will be discussed in Chapter 7.

������������������������������������������������������������������������������������������������������������������
9) Note that frame rate is not to be confused with the refresh rate (see also § 2.3.2).
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5
Dealing with Geometry

Synopsis.
The main theme of this chapter is how to deal with geometry and geometrical operations
in a display resolution independent way. We will attend only that part of the layered
object-space architecture that comes after the viewing transformation. This chapter
covers representation of objects, storage structures, and geometry based processes like
hidden surface removal and scan-conversion. An exact incremental hidden surface
removal algorithm is presented which is based on binary operations on surface elements.
By means of these operations, individual objects can be added, deleted and made
transparent, and incremental changes can be confined to those objects of which the
visibility is changed. The scan-conversion process involves exact area sampling as
anti-aliasing method.��������������������
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5.1. Introduction

Throughout the years, the common interest of applications that pushed the
development of computer graphics systems has been the ability to interact with what
is displayed on a screen. Although raster graphics systems offered more
functionality and improved the image quality by being able to display solid shaded
areas, they could replace the vector graphics systems in interactive environments
only after the introduction of (hardware implemented) techniques that allowed fast
incremental operations on the image, the so-called bitmap operations (or rasterops).
These types of operations for 2D graphics interaction could be implemented
successfully primarily because raster graphics systems provide direct access to the
complete 2D image information on which the bitmap operations operate.

Increased performance of processors and development of graphics algorithms
made it possible to introduce 3D graphics applications, even for low end computer
systems. Also for interactive 3D applications support of incremental changes on the
image is obligatory. The implementation of operations that perform incremental
changes for 3D applications — analogous to bitmap operations that perform
incremental changes for 2D applications — should be based on operations on a 3D
representation. Here we face an intrinsic problem: even for so-called 3D computer
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graphics systems, the image representation produced by the system is two-
dimensional only 1).

A fundamental step in generating images of 3D scenes is clipping and hidden
surface removal: the resulting image consists of (parts of) surfaces that are visible
from a certain position in space. Several types of algorithms exist to tackle this
classic computer graphics problem [Sutherland74]. These algorithms come in two
fundamentally different types, i.e., image-space and object-space hidden surface
removal.

The 3D graphics systems on the market today make use of hardware
implemented image-space hidden surface removal. Image-space hidden surface
removal implies that for each pixel in the image the system infers which object is
visible. This reflects how these systems evolved from 2D raster graphics systems.
It is relatively simple to add hardware to a 2D raster graphics system and obtain an
efficient implementation of the Z-buffer algorithm — one of the simplest image-
space hidden surface removal algorithms [Foley90]. However, a consequence of
applying the Z-buffer algorithm is that information is lost: the result of the hidden
surface removal cannot be cross-referenced to the objects in the higher levels of
abstraction. As a result, the system has no direct overview of which objects are
visible for the user so that support for incremental changes is hampered. Therefore
we conclude that this technology driven evolution from 2D to 3D graphics systems
has inherent difficulties to meet the basic requirements for interactive 3D
applications (see Chapter 4).

An exact (i.e., object-space) hidden surface removal algorithm on the other
hand, operates in 3D space. It computes which parts of the input objects are visible,
and so produces 3D objects in a form independent of the resolution of the display
device. These visible elements can refer directly to objects in the higher level
models (up to the application model). Via these references, the object-space
approach allows for incremental operations. Temporary changes can be handled
efficiently. In our view object-space based hidden surface removal algorithms are a
sound basis for 3D graphics interaction.

In § 4.5.1 we listed motivations that should also be considered when comparing the
two alternative classes of hidden surface removal algorithms. In summary: by
applying image-space hidden surface removal essential geometrical information is
lost, hence it is impossible to combine the Z-buffer algorithm with exact anti-
aliasing. Also, the image-space algorithms produce results that are valid for a
particular resolution only and cannot be scaled arbitrarily. Image-space algorithms
operate at the very end of the image generation pipeline. This implies that all
objects are actually drawn — i.e., all pixel values of each object are calculated —

������������������������������������������������������������������������������������������������������������������
1) Systems that incorporate a so-called Z-buffer maintain information of the maximum z-
value only, all other z-values are lost. Therefore it cannot be considered as being 3D
information.
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before the visibility is checked 2). On the other hand, object-space hidden surface
removal is computationally complex and the implementation is dependent on the
representation of the objects.

We bring forward that, in spite of the computational complexity, under certain
circumstances an object-space hidden surface removal algorithm can be
competitive. Namely, the cost of object-space hidden surface removal is
compensated in particular by not rasterising primitives that are not visible. These
costs can be substantial, depending on the depth complexity of the scene, on the
complexity of the shading method used, and on the number of light sources. The
cost of the Z-buffer algorithm is measured in the total number of pixels covered by
all the input primitives. As we will see, the cost of the object-space hidden surface
algorithm is quasi output sensitive — that is, the cost relates to the number of
primitives that turn out to be visible, not to the number of pixels covered. Since the
costs of the two methods are based on different measures, it is not possible to
compare these methods directly without specification of the characteristics of a
scene and the rendering method used.

As we will see in § 5.4.6, given a reasonable depth complexity, not rasterising
invisible (parts of) Gouraud shaded primitives does not make up for the costs of the
object-space algorithm. Yet, for more advanced techniques the object-space
algorithm may result in a reduction of the total cost of rendering that in cases can be
substantial. The current trend towards more realistic graphics, even for interactive
applications, will lead to more complex shading that includes texturing and
shadows. Object-space hidden surface removal may then save on costs. The
fundamental questions for hidden surface removal and calculation of shadows
— being: ‘‘which objects are visible?’’ and ‘‘which objects are illuminated?’’ — can
be answered by the same object-space algorithm. Applications that allow direct
manipulation in 3D need collision detection, a closely related object-space problem.
By making use of these shared interests the overall efficiency of object-space
algorithms will increase.

It should be clear that for an efficient object-space hidden surface removal
algorithm, carefully designed data structures are essential. These structures also
have to be suited for dynamic modifications. Therefore, we will first concentrate on
data representations before we will discuss the hidden surface removal algorithm
and scan-conversion process.

������������������������������������������������������������������������������������������������������������������
2) In principle shading calculations can be deferred until after the image-space hidden surface
removal calculation at the cost of storage of substantially more information per pixel
[Deering88, Lastra95]. However, this is costly and aggravates the frame buffer access
problem.
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5.2. Representation of Geometry: the Domain

In this context, the graphics primitive used after the viewing transformation is called
a pattern. Patterns describe the visual aspects of an area of the image
[Hagen85, Hagen86b]. Patterns are the main elements of the medium and the low
level representation of the layered architecture (§ 4.4). The geometry of a pattern is
described by its domain, whereas a colour function assigns a colour for each point in
that domain.

A domain is a 21⁄2D raster independent representation of the geometry that is
optimised for the geometrical operations that have to be performed on it — such as
hidden surface removal and scan-conversion 3). For this, the domain description
includes an extent, the representation is guaranteed to be free of pathological cases
and the geometrical data are sorted. These features of the domain representation
will be discussed in more detail in the following sub-sections.

5.2.1. The Use of Extents

In algorithms involved in image generation we frequently find the very basic
‘‘point-in-primitive’’ test 4). The point in primitive test is also the kernel of the
selection task, which is essential for interaction (see also § 4.4).

The cost of a point-in-primitive test is dependent on the geometrical and
topological complexity of the primitive. In its bare form, it involves calculation of
line intersections, each of which takes several additions, subtractions and
multiplications. It is not efficient to spend that much computational effort on
primitives that are relatively far away from a given point P, as most of them will be.
A more efficient approach is to first get a rough indication of the relative positions
by making use of a simple 2D enclosure which fully contains the primitive projected
on the x−y plane. By means of enclosures, the relative expensive point-in-primitive
test can be traded for a cheaper point-in-enclosure test. If P is found to be on the
outside of the enclosure, it will be on the outside of the primitive as well. Only
when P is found to be within the enclosure, the exact and more expensive point-in-
primitive test will tell us whether P is an interior or exterior point.

The efficiency of the use of enclosures depends on the average complexity of the
primitives and on the type of enclosure. That is, how complicated is the point in
enclosure test and how well does the enclosure ‘fit’. If the enclosure fits tightly, the
number of point-in-primitive tests will be optimally reduced. On the other hand,
tight fitting enclosures may be costly to produce and may have a more costly point-

������������������������������������������������������������������������������������������������������������������
3) Domains are said to be 21⁄2D objects, because after the viewing transformation the position
of the domain in the image is determined by the x and y coordinates alone. Projection of
domains on the 2D image plane is done by parallel projection (i.e., simply by nullifying the
z-coordinate).

4) The point-in-primitive test referred to here is a test of a point in the projected primitive,
i.e., a test in the 2D x−y plane.
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in-enclosure test. In deciding on a suitable type of enclosure we have to consider
these effects.

Through the use of enclosures, the costs of the point-in-primitive test for a scene
that contains N primitives is N × CE + E × CP, where E is the number of enclosures
inside which P lies, CE is the cost of the point-in-enclosure test, and CP is the
average cost of the point-in-primitive test. The method will pay off when
CE < CP ×

N
(N−E)�������. Note that this does not include the costs of producing the

enclosure.
Efficient enclosures are circles and axes-aligned rectangles [Foley90]. We

opted for the axes-aligned rectangle also known as extent (E) or bounding box 5)

because it is extremely simple to produce and the cost of the point-in-extent test is at
maximum 4 compares:

if (P
x
<E

l
|| P

x
>E

r
|| P

y
<E

b
|| P

y
>E

t
)

return (FALSE);��������������������
����������������������������������������������������������������������
�
�
�
�
�

In which the subscripts l, r, t and b stand for left, right, top and bottom.
To illustrate the efficiency of the method, assume that CE <

10
1���� CP (this will be

true for even a simple triangular area if the enclosure is an axes-aligned rectangle).
Then the method already pays off when P is outside the enclosure of at least 10% of
the primitives.

The test to determine if two primitives overlap is even more complex, and
subsequently more costly, than the point-in-primitive test. It is worth noting that the
cost of the point-in-enclosure test CE for axes-aligned rectangles is equal to the cost
to test for overlap of two extents. The test for overlapping extents is:

if (E1
r
<E2

l
|| E1

l
>E2

r
|| E1

t
<E2

b
|| E1

b
>E2

t
)

return (FALSE);��������������������
����������������������������������������������������������������������
�
�
�
�
�

Consequently it will pay off even more to test for overlap of extents before testing
for overlap of the primitives themselves.

������������������������������������������������������������������������������������������������������������������
5) The term ‘‘bounding box’’ is somewhat confusing, because in general a box is associated
with a 3D object, whereas here it is supposed to refer to a 2D entity. To avoid possible
confusion only the term ‘‘extent’’ will be used.
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5.2.2. Area Representation

For computer graphics applications, areas — being 2D or 3D primitives — are
usually represented as polygons; a list of vertices which — by the order of the
vertices — describes the outline of an area (see Figure 5.1). This type of area
representation is popular mainly because of its ostensible simplicity. However,
when analysing the computational complexity the representation is not simple at all.
All of the vertices have to be taken into account to be able to determine whether a
point is an interior or exterior point. Due to this, polygon-based geometrical
operations — such as area-filling and determination of the union or intersection of
areas — are complex. This was the motivation for the design of the pattern
representation. Patterns are planar primitives. As a result the geometry of a 3D
pattern (i.e., its domain) can be described by the coefficients of a plane equation and
the projection of the domain onto the x−y plane; a 2D area. If necessary, the third
dimension of each point in the domain can be reproduced by means of the
coefficients of the plane equation.

2D areas can be described in several ways. In [Hagen85] ten Hagen suggested a
raster independent representation based on scanlines and scanpoints. From this
representation other, more practical, representations were derived. Each of these
representations can represent flat regions in continuous 3D space without limitations
on complexity of the topology — that is connected, disconnected, with holes,
convex or concave.

What follows is a presentation of three area representations, followed by a
discussion on the characteristics. In this discussion, the representation of the third
dimension is conveniently left out.

Scanline-Scanpoint representation
The Scanline-Scanpoint representation, first presented in [Hagen85], is based on
horizontal scanlines and points on these lines. The scanlines are sorted on their y-
value and can be found on arbitrary positions, however, their number is minimal. In
other words, the representation does not include scanlines which can unambiguously
be reconstructed on the bases of information of other scanlines. Consequently, we
find scanlines only at positions where the outline changes (see Figure 5.1). Each
scanline has a number of scanpoints that are specified by their position on the
scanline and by their ‘‘type’’. Scanpoints are sorted on their x-value. The type
information is necessary to make the representation unambiguous.

An important aspect of the Scanline-Scanpoint representation is that — unlike
the polygon representation — it is not necessary to scan the complete area
description to determine the topology of the pattern around a certain point. The
geometrical values in the representation are sorted, so that merely two scanlines, the
one above and the one below the point, contain all necessary information on the
topology around the point.

When put in practice, operations on the Scanline-Scanpoint representation
turned out to be quite complex, mainly because for every operation the scanpoints of
two successive scanlines had to be related with each other.
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Figure 5.1: Polygon representation (left) versus Scanline-Scanpoint representation
(right). The former representation is merely an ordered list of vertex coordinates. In
the latter representation, the topology of a 2D area is unambiguously described by the
position of the scanlines and the position and type of the scanpoints.

Scanline-Edge representation
To avoid the necessity to relate scanpoints of two successive scanlines, we
constructed the Scanline-Edge representation. Like the Scanline-Scanpoint
representation, the Scanline-Edge representation has scanlines only at those
positions of the domain where the outline changes. Each scanline has a number of
edges that are specified by their position on the scanline and by their slope
[Kuijk88]. Scanlines and edges are sorted on their relative position. Note that each
scanline necessarily has an even number of edges and that the topmost delimiting
scanline has no edges at all (see Figure 5.2). Horizontal edges are discarded. The
information that relates to one scanline is self-contained. That is, the position of one
single scanline and the edges that relate to that scanline is sufficient to
unambiguously describe the topology of the area on and above that scanline up to
the next.

The following algorithm — which scans from bottom to top — converts a
traditional polygon representation into a Scanline-Edge representation:

make edge_list /* sorted on:

y.bot else on

x.bot else on

slope */

initialise y on lowest y.bot encountered during sort

(next page ...)�������������������
�
�

����������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
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while (edges in edge_list) do

begin

if (y.bot == y)

insert into active_list /* sorted on:

x.val else on

slope else

remove redundancy */

generate scanline (y) /* based on active_list */

if (y.top == y)

remove edge from active_list

y.next = minimum ( y.bot /* of edges in edge_list */,

y.top /* of edges in active_list */)

calculate x.val of edges in active_list at y.next

while (disordered x.val in active_list) do

begin

calculate y.val of intersections

y.int = minimum (y.val of intersections)

generate scanline (y.int)

exchange edges crossing at y.int

end

y = y.next

end�������������������
�
�
�
�
�
�
�

����������������������������������������������������������������������
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Figure 5.2: Polygon representation versus Scanline-Edge representation. The
topology of a 2D area is unambiguously described by the position of the scanlines
and the position and slope of the edges.

Note that two successive vertices of the polygon’s vertex list make up the edges for
edge_list. The coordinates of the endpoints of an edge are (x.bot, y.bot) and (x.top,
y.top). The algorithm is based on a sweepline technique just as the scanline
algorithm described in [Foley90] used for rasterisation of polygons except that it:

� operates in continuous coordinate space,
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� generates scanlines at particular positions only (vertices and intersections),
� removes redundant information (double, aligned and horizontal edges).

Several binary operations that operate on the Scanline-Edge representation have
been successfully implemented which resulted in a working object-space hidden
surface removal algorithm (see § 5.4). The implementation of these operations was
quite complicated, primarily because of the fact that the slices between two
scanlines are of different height. Furthermore, the representation has redundant
information: for an edge that spans several scanlines the position and slope is
specified at each of these scanlines. This led us to experiment with the following
representation.

Sorted-Edge representation
Unlike the two representations above, the Sorted-Edge representation is not
scanline-based. It is a compact representation which comprises a sorted list of
edges. When generating this representation from a polygon representation,
horizontal edges and double edges are discarded, connected edges in direct line are
joined together, and possible intersecting edges are eliminated by subdividing one of
the edges of each pair that would otherwise intersect. In this way pathological cases
are avoided and redundant information is removed.

Edges that describe a closed area can be sorted in different ways. For algorithms
based on sweepline techniques for instance, we may be interested in the order in
which edges become active or inactive. This would suggest an ordering on y.bot or
y.top (see Figure 5.3). However, for stabbing queries for a particular y value 6) it
would be useful if the ordering of edges would be such that edges are reported
monotonically in x by simply following the list of edges, that is, if the edges are
sorted on their relative x position. The example in Figure 5.3 illustrates that these
options in general lead to different orderings.

1 2
3 4

3 2
4 1

1

2 3

4

Figure 5.3: The order in which edges become active (left) or become inactive
(middle) when sweeping in y-direction and ordering of edges for stabbing queries
(right).

Since any set of numbers ⊆ R can be ordered, ordering on y.bot or y.top is
always possible. Whether edges can be sorted on their relative x-position for all

������������������������������������������������������������������������������������������������������������������
6) In other words, queries that report the set of edges that are ‘active’ on a particular y-value
— i.e., edges that intersect the line F(x,y) = y.
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possible y-values is less obvious. It would not be useful if the sorting would depend
on the y-value, in other words, if there are situations for which the order of the
sorted edges are different for different y-values. This indicates the relevance of the
following:

THEOREM: There exists an ordering of nonintersecting nonhorizontal edges of a
domain, for which for all possible y-values stabbing queries that follow that
order report edges monotonically in x.

PROOF: Let E1
. . . En be an ordering of edges for y1 so that a stabbing query

following that order reports S1 , a set of monotonically ordered edges. Let S2 be
the set of edges reported for y2 (y2 ≠ y1) by following the same order E1

. . . En .
If two successive edges Ei,Ej ∈ S2 are incorrectly ordered, then one of the
following statements has to be true.
1) Ei and Ej share a point at y1 .
2) Ei and/or Ej ∈/ S1 .
3) Ei and Ej intersect between y1 and y2 .
If 1) is true Ei and Ej can be interchanged and S1 will still be monotonically
ordered. If 2) is true Ei and Ej can be interchanged without consequences for the
monotonic ordering of S1 . Statement 3) cannot be true, since it is in conflict
with the assumption that edges do not intersect.

This implies that reordering E1
. . . En to obtain a correctly ordered set for y2

can be done without consequences for the monotonic ordering of S1 . Based on
the same reasoning, incorrectly ordered edges can be interchanged for any y-
value. Hence it is possible to come to a set of edges correctly ordered for all y-
values. �
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Figure 5.4: Polygon representation versus Sorted-Edge representation. In the
Sorted-Edge representation redundant edges such as horizontal and double edges are
removed, and aligned edges are joined together. Intersecting edges are subdivided
(Note: only nonhorizontal edges).

As it turns out, an ordering of edges based on the relative x-position is more useful
than ordering on y.bot or y.top. This can be explained by the following. When
scan-converting a domain, each edge becomes active and inactive just once,
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whereas the relative order in x-direction is of interest for every pixel row. Also in
other geometry-based algorithms the order of edges in x-direction is used quite
often. Therefore a representation in which the edges are ordered based on the
relative x-position (Figure 5.4) makes the implementation of these algorithms
simpler and more efficient at the same time.

A domain is a closed area so that two edges share one vertex. To reduce the amount
of memory needed for storage, each edge in the Sorted-Edge representation is
described by pointers (indices) to the two vertices that make up the endpoints of the
edge rather than by the vertex coordinates. Vertex coordinates are stored in an array
(see Figure 5.5) in principle in arbitrary order. The sorted edge list comes in the
form of an array of sorted index pairs. Since the number of vertices of a domain
will be relatively small, the number of bits needed for one index (8) is small
compared to the number of bits needed for the coordinates of one vertex (128). To
accommodate algorithms operating on the representation, the vector coordinates
— that in principle can be stored in arbitrary order — are sorted in y.

ab

cb

cd

ed

1

2 3

4

a

b

d

e

c

edges

a

e

c

d

b

vertices

Figure 5.5: The Sorted-Edge representation is an array of vertices and an array of
sorted edges which are pointers (indices) to these vertices.

The Sorted-Edge representation is generated from a polygon representation using
the following algorithm:
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make edge_list /* sorted on:

y.bot else on

x.bot else on

slope */

initialise y on lowest y.bot encountered during sort

while (edges in edge_list) do

begin

if (y.bot == y) {

insert into sorted-edge_list /* sorted on:

x.val else on

slope else

remove redundancy */

mark active /* in sorted-edge_list */

}

if (y.top == y)

mark inactive;

y.next = minimum ( y.bot /* of edges in edge_list */,

y.top /* of active edges */)

calculate x.val of active edges at y.next

while (disordered x.val of active edges) do

begin

calculate y.val of intersections

y.int = minimum (y.val of intersections)

cut off one edge of pairs crossing at y.int

mark cut-off edge inactive

insert remainder into sorted-edge_list

/* sorted on:

x.val else on

slope else

remove redundancy */

mark remainder active /* in sorted-edge_list */

end

y = y.next

end�������������������
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Discussion
How do the above representations relate to each other, and, what is the effect on
efficiency? In this discussion the characteristics of the polygon, the Sorted-Edge
and the Scanline-Edge representation will be compared. The Scanline-Scanpoint
representation is left out of this discussion, because it is considered to be
impractical.
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The Scanline-Edge representation basically subdivides domains in a number of
slices, each of which can be processed individually. Because of this, fine grained
distributed processing based on individual slices is possible for operations that
involve one domain only. Operations that involve two or more input domains are
more complicated. In general slices of different domains are not aligned. In
practice this makes it impossible to distribute processing on a slice basis and binary
operations such as union or intersection of domains may lead to redundant scanlines
that have to be removed.

The Sorted-Edge representation cannot be subdivided without cost.
Consequently, the Sorted-Edge representation by nature should be processed as a
whole.

The cost to store several simple objects using a polygon representation, the
Scanline-Edge representation and the Sorted-Edge representation is listed in
Table 5.1. From this we see that the Scanline-Edge representation is the least
efficient in terms of storage. What we get in return for this is the possibility to treat
slices as separate entities.

polygon

6C   (384)

8C   (512)

8C   (512)

8C   (512)

scanline

11C

16C

6C

21C

sortedge

6C + 6P

8C + 8P

8C + 4P

10C + 10P

(704)

(1024)

 (384)

(1344)

(432)

(576)

(544)

(720)

Table 5.1: Costs to store areas in different representations, expressed in coordinates
(C) and indices (P). Between parentheses the corresponding number of bits needed
are shown (assuming that C takes 64 and P takes 8 bits).

Due to the sorting of data of both the Scanline-Edge and Sorted-Edge
representations several time-critical operations on domains, such as:

� a point-in-domain test,
� clipping,
� union and intersection of domains, and
� scan-conversion

can be done efficiently. All these operations profit from the one-time investment of
sorting of the geometrical data. The overall gain depends on which operations occur
most frequently, on what possible restrictions are imposed on the geometrical data
(e.g., grid-aligned), and on the characteristics of the targeted processor architecture.
For simple domains, such as triangles and quadrilaterals the Sorted-Edge
representation seems to be favourable. For more complex domains, the Scanline-
Edge representation may be more efficient. A further study on these representations
in particular with respect to multi-processing is planned.
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5.3. Efficient Storing of Domains

For hidden surface removal, all domains that overlap have to be found. As will be
shown in § 5.4, an incremental hidden surface removal algorithm involves finding
the subset of domains overlapping one query domain. An efficient first step is to
find among all domains those domains of which the extent overlaps the extent of the
query domain as explained in § 5.2.1. There we have learned that the test for
overlapping extents is relatively cheap (see expression 5.2). However, for a serious
dynamic application the total number of domains can be quite large so that it is
necessary to reduce the search space in order to avoid costly memory access.

Reduction of the search space implies a proper organisation of the data store.
This can be done by subdivision of the space in partitions. Partitions can be found
in the form of a grid [Franklin80, Slater88], horizontal strips [Sechrest82], quad-
trees [Warnock69] or more object based organisations such as BSP-trees [Fuchs80].
In one way or another, each of these space partitions maintains a list of objects
associated with that partition. In case an object falls within several partitions, each
of these partitions maintains a reference to that one object. As a result, a coarse
subdivision implies long lists of objects per partition, a fine subdivision will increase
the average number of references to the objects. Therefore, Franklin et al.
[Franklin86], proposed to adapt the space subdivision for optimal tuning on the
characteristics of a scene.

Theoretically optimal results can be obtained by balanced tree structures such as
segment trees [Bentley80, Wood85, Mairson88, Berg92, Krefeld92]. These data
structures lead to theoretically optimal algorithms, yet in practice these are difficult
to implement [Snippe92]. Also, especially for dynamic applications, the cost of
setting up and maintaining a data structure should be related to the savings on extent
overlap tests resulting from reduction of the search space. The asymptotic
behaviour of an overlap reporting algorithm may be important, but should be judged
in the proper perspective. After all, the number of visible domains will be limited,
simply because of the limited resolution of the display device. It is not worthwhile
investing in complicated, theoretically optimal well balanced tree structures with
high setup costs.

We sought a suitable structure in which each object is referenced just once. This to
make it simple to make changes. The structure should lead to near optimal
reduction of the search space and yet should be easy to implement because of
possible implementation in VLSI.

The most simple structures are based on regular space subdivision. A
disadvantage of regular subdivisions is that the distribution of objects in space may
not be homogeneous, which reduces the effectiveness of such subdivisions. Linear-
sorted lists are not optimal. However, if the lists are short, the simplicity obtained
may compensate the theoretical inefficiency. In the next two sub-sections it is
shown that a simple combination of these two types of arrangements leads to useful
results.
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We started by saying that the first step on a query will involve a check based on
the extent. Because of this, the position of a domain in the data structures we
present is determined by its extent, i.e., by (one or more of) the values domain.top,
domain.bot, domain.left, domain.right.

5.3.1. Slice-List Structure

A simple arrangement of objects first presented in [Kuijk88] is the Slice-List
structure. For this structure the visible space is subdivided in y-direction, leading to
a number of horizontal slices of equal width. A linear list of domains is associated
with each slice (see Figure 5.6). The position of domains stored in the Slice-List
structure is based on the following two criteria:
1) The list in which a domain is stored is the list associated to the segment within

which domain.bot falls.
2) In the lists, domains are sorted on decreasing domain.top.

Figure 5.6: The Slice-List data structure. Each slice has a list of domains of which
the bottommost point of the extent falls in that region. In the lists, the domains are
ordered based on the y-value of the topmost point of the extent.
Note that this arrangement — that will be used several times more — shows just a
few nonoverlapping extents. A more realistic picture would be cluttered with lots of
extents of which the majority overlap.

The intent of this ordering is that a query for overlapping extents primarily
addresses those domains that overlap a query extent in y-direction (see Figure 5.7).
Domains in the lists associated with slices above the query extent (the dark grey
area) and domains in the lists that come after a domain of which domain.top is
below the query extent (the light grey area) cannot overlap. If overlap in y-direction
is found, in the sequel, the test for overlap in x-direction will have to take place.

The preference for ordering in y-direction is related to the requirements for
scan-conversion. In that process all domains that contribute to a specific scanline
have to be found in an efficient way. (More on scan-conversion in § 5.5.)

The following algorithm will report all domains of which the extent overlaps the
query extent Q:
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Figure 5.7: The Slice-List data structure reduces addressing domains outside an
interval of y-values when searching for extents overlapping a query extent (shown
dashed). The highlighted domains will be addressed only.

for (i = 1; slice[i-1].bot < Q.top; i = i + 1) do

begin

domain = first-domain-in-slice;

while (domain.top > Q.bot) do

begin

if (!( domain.right < Q.left ||
domain.left > Q.right ||
domain.bot > Q.top) 7))

report (domain);

domain = domain.next;

if (domain == NULL)

break;

end

end�������������������
�
�
�
�

����������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

It will be clear that the Slice-List structure needs O(N) space, since all domains are
stored (i.e., referenced) just once. The time complexity of the query is O(N): in the
worst case all N domains have to be checked for overlap. More of interest is the
asymptotical behaviour in a well behaved expected case.

Let the range in y-direction (Y) be covered by m slices. Then the average length
of the lists in the slices will be N/m. Assume that the domains are evenly distributed
and of average height h. Then the number of domains that will be addressed for a
query extent with Q.top in the kth segment and height hQ, is on average:

������������������������������������������������������������������������������������������������������������������
7) The last slice for which slice.bot < Q.top may contain domains for which
domain.bot > Q.top. To avoid reporting of those nonoverlapping extents the test
domain.bot > Q.top cannot be spared.
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Y
N��� .(h + hQ) + (

m
k��� −

Y
Q.top������).

m
N��� + k (5.1)

The first term represents the average number of domains that actually overlap in y-
direction (N/Y is the average density per unit length, h + hQ is the interval to be
considered). The other terms relate to domains that are addressed, but do not
overlap in y-direction. More specifically, the second term represents the average
‘‘round-off error’’ introduced by the finite resolution of the space subdivision. In
other words, it is the average number of domains in slice k for which
domain.bot > Q.top. In this term k/m − Q.top/Y is the corresponding proportion of
the slice and N/m is the average slice density. The third term, k, reflects the fact that
in each slice that is addressed (i.e., 1...k), the first domain with domain.top > Q.bot
has to be found in order to stop the loop. Note that k is directly proportional to m.
Also note that because of this term the cost of the query depends on y.

This dependency on y can be reduced if hmax, the maximum height of all
domains stored, is known. Then the for-loop in the search algorithm can start
with i = k − �

� ( (hQ + hmax).m ) / Y �
� so that the average cost of a query is:

Y
N��� .(h + hQ) + (

m
k��� −

Y
Q.top������).

m
N��� + min

	
�



�
�
� Y

(hQ + hmax).m�������������
�
�
�
, k

�
�
�

(5.2)

which is independent of the y value (except when k < �
� ( (hQ + hmax).m ) / Y �

�). The

extra reduction in search-space is illustrated in Figure 5.8. The lists associated with
the dark grey shaded slices are not visited at all.

Figure 5.8: Reduction of the number of domains that have to be checked if the
maximum height of all domains stored is known. Only the highlighted domains will
be addressed.

The second and the third terms of expression 5.2 depend on the number of slices
m. In order to reduce the value of the second term, the number of slices should be
increased. This not only reduces the average number of domains in a slice N/m, it
also reduces the maximum distance between Q.top and the maximum value of
domain.bot in slice k. However, increasing the number of slices will increase the
cost as represented by the last term. Note that this last term is independent of N, so
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that the optimal number of slices is dependent on the domain arrangement at hand.
This more or less suggests an adaptive approach, analogous to the adaptive grid
solution as described in [Franklin86].

In general there will be a relation between N and hmax. Domains in this structure
do not overlap. Consequently, the more domains there are, the smaller hmax is likely
to be. When optimising the number of slices, also the cost to build and modify the
structure should be considered. These costs relate directly to N/m, the average
length of the lists in the slices. We will continue on cost and less well behaved
distributions in § 5.3.3.

5.3.2. Grid-List Structure

The Slice-List data structure resulted in a reduction of the search space in y-
direction only. We wanted to extend this idea and obtain a similar reduction of the
search space in x-direction. For this, the one dimensional slice structure is replaced
by a two dimensional grid structure. A linear list of domains is associated with each
grid-cell (see Figure 5.9). Unlike the grid structures proposed in [Franklin80] and
[Slater88] that store a list of all objects that intersect a grid-cell, we store domains
just once. The position of domains stored in the Grid-List structure is based on the
following two criteria:
1) The list in which a domain is stored is the list associated to the cell within which

the point (domain.left, domain.bot) falls.
2) In the lists, domains are sorted on decreasing (domain.right + domain.top).

Figure 5.9: The Grid-List data structure. Each grid-cell has a list of domains of
which the lower-left point of the extent falls in that region. In the lists, the domains
are ordered based on the sum of the x and y coordinates of the upper-right point of the
extent.

The particular ordering in the list makes that a query for overlapping extents
primarily addresses domains that are confined within a triangular space determined
by the query extent (see Figure 5.10). Domains in the lists associated with cells
above and on the right of the query extent (the dark grey area) cannot overlap. Also,
domains in the lists that come after a domain of which domain.right + domain.top is
below the line x + y = Q.left + Q.bottom (the light grey area) cannot overlap.
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The following algorithm will report all domains of which the extent overlaps the
query extent Q:

for (j=1; cell[i-1][j-1].bot<Q.top; j=j+1) do

begin

for (i=1; cell[i-1][j-1].left<Q.right; i=i+1) do

begin

domain = first-domain-in-cell;

while (domain.(right+top) > Q.(left+bot)) do

begin

if (!( domain.right < Q.left ||
domain.top < Q.bot ||
domain.left > Q.right ||
domain.bot > Q.top) 8))

report (domain);

domain = domain.next;

if (domain == NULL)

break;

end

end

end��������������������
�
�
�
�
�
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��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5.10: The Grid-List data structure reduces addressing domains outside a
triangular area defined by a query extent (shown dashed) when searching for
overlapping extents. The highlighted domains will be addressed only.

The Grid-List structure needs O(N) space, since all domains are stored (i.e.,
referenced) just once. The time complexity of the query is O(N): in the worst case
all N domains have to be checked for overlap. More of interest is the asymptotical
behaviour in a well behaved expected case. Like for the Slice-List structure, the
behaviour of the algorithm can be improved by reducing the number of cycles of the
for-loops if the maximum height hmax and the maximum width wmax of all domains
stored so far are known. Since in this case, there are two nested loops, the reduction
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is even more significant. The extra reduction in search-space is illustrated in
Figure 5.11. The lists associated with the dark grey shaded cells are not visited at
all. Also, this reduction makes the cost of the query independent of the position of
the query domain 9).
Let the visible space (X−Y) be covered by a grid of m × m cells. Then the average
length of the lists in the cells will be N/m2 . Assume that the domains are evenly
distributed, of average width w and of average height h. Let the maximum width of
all domains in the structure be wmax and the maximum height be hmax. Then the
number of domains that will be addressed for a query extent with Q.top in row j,
Q.right in column j, height hQ and width wQ, is on average:

X.Y
N���� .

2

(w + wQ + h + hQ)2
�����������������

+ ( j.(
m
i��� −

X
Q.right�������) + i.(

m
j��� −

Y
Q.top������) − (

m
i��� −

X
Q.right�������).(

m
j��� −

Y
Q.top������) ).

m2

N����

+ min
	
�



�
�
� Y

(wQ + wmax).m�������������
�
�
�
, i

�
�
�
. min

	
�



�
�
� Y

(hQ + hmax).m�������������
�
�
�
, j

�
�
�

(5.3)

The first term represents the average number of domains that overlap a right-angled
isosceles triangle, the white area shown in Figure 5.10. N/(X.Y) is the average
density per unit area and (w + wQ + h + hQ)2 /2 is the area of the triangle. The other
terms relate to domains that are addressed, but do not overlap the triangle. Much
like what we have seen in expression 5.2, the second term represents the average
‘‘round-off error’’ introduced by the finite resolution of the space subdivision and
the last term reflects the fact that in each cell that is addressed the first domain
beyond the region of interest has to be found to stop the for-loops.

We learn from 5.3 that the total cost for a particular domain arrangement is
related to the number of grid-cells. Increasing the number of cells will reduce the
cost as defined by the second term, yet increase the cost indicated by the last term.
When optimising the number of cells, also the cost to build and modify the structure
should be considered. This cost relates directly to N/m2 , the average length of the
lists in the cells. We will continue on cost and less well behaved distributions in the
next subsection.

������������������������������������������������������������������������������������������������������������������
8) Similar to the algorithm for the Slice-List structure the tests domain.left > Q.right and
domain.bot > Q.top cannot be spared.

9) With exceptions for small i and j, similar to the exception for small k for the Slice-List
structure.
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Figure 5.11: Reduction of the number of domains that have to be checked if the
maximum height and width of all domains stored is known. Only the highlighted
domains will be addressed.

5.3.3. Results

If we evaluate the Slice-List and the Grid-List data structures based on the reduction
in search space we have to relate the results expressed in 5.2 and 5.3 to the average
number of domains that actually overlap:

X.Y
N���� .(w + wQ).(h + hQ) (5.4)

If we compare this with the first terms of 5.2 and 5.3 and assume that wQ << X and
hQ << Y it is clear that the Grid-List structure potentially results in a better reduction
in search space. A comparison of these two structures should also include the total
number of grid-cells and slices and the investment in memory that goes with it.
Both slices as well as cells contain just pointers to the first domain of the sorted list.
Therefore the amount of memory involved is relatively small. It should be noted
that the cost to build and modify the structure in both cases relates to the number of
items in the linear list, which is inversely proportional to the number of slices or
cells and thus inversely proportional to the investment in memory.

To test the behaviour more quantitatively, also in less optimal situations, several test
scenes with different characteristics have been used (see Figure 5.12). These test
scenes — that have been selected to represent the characteristics of various
applications — are the following:

Random. This scene consists of homogeneously distributed domains. The size of
the extents in x- and y-direction is 0.0075-0.0125 times the window size. The total
number of domains in the scene is 100K, the average size is 10-4, so that the average
coverage is 10.

Landscape. The landscape distribution is a distribution in which the number of
domains near the horizon (on 2/3 rd of the image height) increases while the size of
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Figure 5.12: Scenes used for testing the behaviour of the data storage structure.
They are (top row from left to right): Random and Landscape, on the middle row:
Cluster and Two-size, and on the bottom row: Vlsi and Teapot.
Note that to avoid cluttering, both the number and size of the extents actually used
differ from what is shown here.
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the domains decreases in such a way that the average coverage remains constant
(that is, for the part below the horizon). The total number of domains and the
coverage, averaged over the entire image, is the same as those of the random
distribution.

Cluster. The cluster distribution is a gaussian-like distribution in which the number
of domains near the center of the image increases. The size of the domains, the total
number of domains and the coverage, averaged over the entire image, is the same as
those of the random distribution.

Two-size. The two-size distribution is a homogeneous distribution of domains. The
domains come in two size classes, that is, domains of 0.5 times and 2.5 times the
size of the domains of the random distribution. The total number of domains and
the coverage, averaged over the entire image, is the same as those of the random
distribution.

Vlsi. The Vlsi distribution is a distribution of domains that are centered on a grid
structure. The part of the grid that overlays the image is 100 × 100 cells. The
domains are either small squares of 0.005 times the window size, or they are
horizontal or vertical strips of half the width of the small squares and of length
0.04-0.06 times the window size. The total number of domains and the coverage,
averaged over the entire image, is the same as those of the random distribution.

Teapot. The teapot distribution is a projection of the domains that result from
triangulation of the utah-teapot model. The total number of domains is about 40K.
The average coverage of the part of the image that contains the teapot is about the
same as the coverage of the random distribution.

As can be seen in Figure 5.12, the distribution of domains across the image of these
six test scenes differs, and for some of these scenes also the size of the domain
extents varies.

Based on these test scenes we will analyse how domains are distributed among
the slices and cells for different slice and grid ‘‘resolutions’’. Then we will examine
how well the data structures succeed in reducing the number of domains to be
checked for overlap with a particular query extent for these different resolutions.

Distribution among Slices
In each of the Figures 5.13-5.15 we see how the domains are distributed among the
slices for the six scenes. The different figures show the distribution for space
subdivisions in 10, 100 and 1000 slices. We observe that for all these resolutions
the scenes Random and Two-size have a homogeneous distribution of their domains
among the slices: the maximum of the number of domains per slice is inversely
proportional to the number of slices. Also the scene Vlsi has such a homogeneous
distribution for subdivision in 10 and 100 slices (Figures 5.13 and 5.14). However,
the distribution of domains of the same scene for 1000 slices (Figure 5.15) clearly
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demonstrates the effect of grid alignment of the domains. Due to this alignment, a
further subdivision of the visible space in more than 100 slices does not result in an
equivalent reduction of the maximum of the number of domains per slice.

The scenes Landscape, Cluster and Teapot exhibit an inhomogeneous
distribution of domains. Still we find that the maximum of the number of domains
per slice for the scenes Landscape and Cluster is practically inversely proportional
to the number of slices. The scene Teapot does not behave that nicely. This scene
is characterised by ‘hot-spots’, i.e., locations which contain a large number of very
small domains. As a result, subdivision of the slices does not necessarily subdivide
these local clusters proportionally.

Distribution among Cells
In Figure 5.16 we see how, for each of the six scenes, the domains are distributed
among the cells of a grid of 40 × 40 cells. Figures 5.17 and 5.18 show the maximum
number of domains per cell of each horizontal row of cells for space subdivision in
100 × 100 and 1000 × 1000 cells.

We observe also that the scenes Random, Two-size and Vlsi show a
homogeneous distribution for a subdivision in 100 × 100 cells (Figure 5.17): the
maximum of the number of domains per cell is inversely proportional to the number
of cells. The effect of grid alignment on the distribution of the domains of the Vlsi
scene shows up in Figure 5.18. The scenes Landscape, Cluster and Teapot are
inhomogeneously distributed, but again for the scenes Landscape and Cluster the
maximum of the number of domains per slice is practically inversely proportional to
the number of cells.

We note that in terms of number of lists in the structure, the Grid-List structure does
not reduce the maximum length of the linear lists substantially better than the Slice-
List structure, except when the number of slices exceed the scene resolution such as
for grid-aligned scenes. Hot-spots of the scene Teapot still spring out. In going
from 1K slices to 1M cells we reduced the maximum of the number of domains in
the list with just a factor of 15 (compare the height of the peaks in Teapot of
Figures 5.15 and 5.18).

A possible advantage of grid-cell subdivision has to be demonstrated by
analysing the reduction in search space.
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Figure 5.13: The distribution of the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot
over 10 horizontal slices.
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Figure 5.14: The distribution of the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot
over 100 horizontal slices.
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Figure 5.15: The distribution of the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot
over 1000 horizontal slices.
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Figure 5.16: The distribution of the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot
over a grid of 40 × 40 cells.
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Figure 5.17: The maximum number and the average number of domains per cell for
each horizontal row of cells for the distribution of the 100K domains of the five test
scenes Random, Landscape, Cluster, Two-size and Vlsi and the 40K domains of the
test scene Teapot over a grid of 100 × 100 cells.
Note that 100 × the average number of domains per cell-row is equivalent with the
number of domains per slice for the distribution shown in Figure 5.14.

October 26, 1995

5.3. Efficient Storing of Domains 29



0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

m
ax

 n
o 

do
m

ai
ns

 p
er

 c
el

l

grid cel in y direction

Random

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

m
ax

 n
o 

do
m

ai
ns

 p
er

 c
el

l

grid cel in y direction

Landscape

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

m
ax

 n
o 

do
m

ai
ns

 p
er

 c
el

l

grid cel in y direction

Cluster

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

m
ax

 n
o 

do
m

ai
ns

 p
er

 c
el

l

grid cel in y direction

Two-size

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

m
ax

 n
o 

do
m

ai
ns

 p
er

 c
el

l

grid cel in y direction

Vlsi

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

m
ax

 n
o 

do
m

ai
ns

 p
er

 c
el

l

grid cel in y direction

Teapot

Figure 5.18: The maximum number of domains per cell for each horizontal row of
cells for the distribution of the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot
over a grid of 1000 × 1000 cells.
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Effective Reduction of the Search-Space
How well do the Slice-List and the Grid-List structure reduce the search space?
Expression 5.2 and 5.3 indicate what can be expected for homogeneously distributed
domains. In the next we examine the number of domains that are addressed when
looking for domains that overlap a query domain for each of the six test scenes 10).
The query domain used is 0.01 times the window size. To be able to analyse the
behaviour of the algorithm at every part of the image, we scanned the entire image
using 1M different positions.

In Figures 5.19-5.21 we present the results obtained for the Slice-List structure for
different resolutions. The graphs show both the average number of domains
addressed and the average number of domains that actually overlap as a function of
y. In Figure 5.19 we find the number of domains addressed for a space subdivision
in 10 slices. The results found are conform expression 5.2. We clearly see the
dramatic effect of the limited resolution in what we called the round-off error that is
described by the second term of expression 5.2 (see § 5.3.1). This effect drops off
when going to higher resolutions (Figures 5.20 and 5.21). We find that when going
to resolutions of more than 100 slices we face a limit in the reduction of the number
of domains addressed.

By using the Slice-List structure the number of domains addressed have been
reduced substantially: for a sufficiently fine grained resolution, we address 2% of
the 100K domains of the Random scene on average. This is equal to the average
number of domains of which the extent overlaps in y-direction only, so this result
may seem reasonable. Yet, the extent of a mere 2% of the domains addressed
actually turn out to overlap the extent of the query domain. For some locations of
some of the other scenes the result is even worse.

In Figures 5.22-5.24 we present the results obtained for the Grid-List structure for
different resolutions. These graphs show the average number of domains addressed
as a function of x and y. The results found are conform expression 5.3. Also here
we see the effect of the limited resolution that drops off when going to higher
resolutions (Figures 5.23 and 5.24).

In Figure 5.25 we show the average number of domains of which the extent
actually overlaps the extent of the query domain as a function of x and y. Of the
three different resolutions shown in Figures 5.22-5.24, the graphs suggest that a grid
of 100 × 100 cells seems to be the most optimal resolution. Note that in that case the
size of the grid-cells is in the same order as the average size of the domains. Also
note that the reduction in search space for the sets Vlsi and Two-size turns out to be
less effective. The somewhat larger domains

������������������������������������������������������������������������������������������������������������������
10) We count the number of memory accesses, so addressing empty slices and cells is
counted as well — this will show up in the graphs that relate to the scenes Landscape, Cluster
and Teapot.
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Figure 5.19: Search space reduction for 10 slices. These graphs show the average
number of domains addressed and the average number of domains of which the
extent overlap the extent of a query domain as a function of the position of the query
domain. The full sets are the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot.
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Figure 5.20: Search space reduction for 100 slices. These graphs show the average
number of domains addressed and the average number of domains of which the
extent overlap the extent of a query domain as a function of the position of the query
domain. The full sets are the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot.
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Figure 5.21: Search space reduction for 1000 slices. These graphs show the average
number of domains addressed and the average number of domains of which the
extent overlap the extent of a query domain as a function of the position of the query
domain. The full sets are the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot.
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Figure 5.22: Search space reduction for a grid of 10 × 10 cells. These graphs show
the average number of domains addressed as a function of the position of the query
domain. The full sets are the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot.
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Figure 5.23: Search space reduction for a grid of 100 × 100 cells. These graphs
show the average number of domains addressed as a function of the position of the
query domain. The full sets are the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot.
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Figure 5.24: Search space reduction for a grid of 1000 × 1000 cells. These graphs
show the average number of domains addressed as a function of the position of the
query domain. The full sets are the 100K domains of the five test scenes Random,
Landscape, Cluster, Two-size and Vlsi and the 40K domains of the test scene Teapot.
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Figure 5.25: These graphs show the domains of which the extent overlap the extent
of a query domain as a function of the position of the query domain for the 100K
domains of the five test scenes Random, Landscape, Cluster, Two-size and Vlsi and
the 40K domains of the test scene Teapot.
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we find in these sets make that more grid-cells are addressed. The cost of the
addressing of grid-cells is most apparent for a grid of 1000 × 1000 cells
(Figure 5.24).

Table 5.2 and Figure 5.26 present another representation of the result. They
show the ratio of number of domains addressed per domain of which the extent
overlaps the extent of a query domain for resolutions ranging from 10 × 10 up to
1000 × 1000 cells. We find that for a grid of 100 × 100 cells, we address on average
less than 0.1% of the 100K domains of the Random scene. This is less than 2× the
number of domains of which the extent overlaps the extent of the query domain. It
will be clear that this result is much more satisfying.

�������������������������������������������������������������������������
Random �� Landscape �� Cluster �� Two-size �� Vlsi �� Teapot�������������������������������������������������������������������������

subdivision query extent size 10�������������������������������������������������������������������������
10 16.6 25.4 18.7 22.7 15.2 43.3
15 10.2 13.6 11.5 12.0 8.1 16.6
30 4.3 5.4 4.9 5.0 4.1 7.0
60 2.4 3.2 3.0 2.8 2.5 3.9

100 1.9 2.4 3.1 2.5 3.1 2.9
150 1.9 3.1 4.1 3.5 4.1 3.7
300 2.3 4.7 8.8 6.3 9.4 4.2
600 5.8 13.3 31.7 18.5 30.1 8.5

1000 13.7 33.2 83.2 46.9 78.5 18.2�������������������������������������������������������������������������
subdivision query extent size 100�������������������������������������������������������������������������

10 2.7 11.3 3.5 3.2 6.1 7.3
15 2.3 10.1 2.6 2.8 5.0 7.0
30 1.9 8.7 2.1 2.4 5.1 2.7
60 1.8 8.5 2.1 2.4 3.3 2.2

100 1.8 9.4 2.4 2.6 4.0 2.0
150 1.9 11.4 3.3 3.1 5.2 2.2
300 2.8 22.4 8.2 6.2 11.9 4.2
600 6.6 66.7 27.4 18.4 38.4 12.5

1000 15.7 169.1 72.9 47.3 100.8 32.1���������������������������������������������������������������������������
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Table 5.2: Efficiency of the data structure (see also Figure 5.25).

5.3.4. Conclusions

From the above we conclude that the Grid-List structure leads to a near optimal
reduction of the search space. The structure makes that for the optimum resolution
for the given test scenes we address in the order of 2-10 times the number of
domains of which the extent overlaps the extent of a query domain. We claim that
using this simple structure and combining that with a final check for extent overlap
is in practice much more efficient than a more complicated structure that reports
exactly those domains of which the extent actually overlap the extent of a query
domain.

By looking at the results at more detail we observe that the hot-spots of the
scene Teapot do not noticeably affect the efficiency. However, we do find a
dependency of the result on the maximum size of the domains — as is most apparent
for the scenes Landscape and Vlsi. If the set would contain just one domain that
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Figure 5.26: Efficiency of the data structure (see also Table 5.3). The topmost graph
shows the number of domains that are addressed per overlapping extend reported for
a query extent of size 10 for grids of 10 × 10 up to 1000 × 1000. The graph at the
bottom shows the result for a query extent of size 100.
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spans the entire image we may have to address all the cells as indicated in
Figure 5.10, leading to a much reduced efficiency.

Dependency on the maximum size of the domains of a set can be avoided by
introducing a multi-scale Grid-List structure. Such a multi-scale structure would
combine for instance a 2 × 2 a 20 × 20 and a 200 × 200 grid. A domain is then stored
at the level in which the size of the grid-cells is in the same order as the size of the
domain. A multi-scale structure would even simplify the search algorithm, because
then for each of the levels the maximum size of domains is fixed. In this dissertation
we will not go into further details of such a basically simple extension.

5.4. Exact Incremental Hidden Surface Removal

The exact incremental hidden surface removal (HSR) algorithm discussed in this
section is designed especially to be embedded in the architecture presented in
Chapter 4. The algorithm is optimised in relation with required functionality and
context (in particular with the scan-conversion process) rather than optimised for
asymptotic computational complexity.

Support for graphical interactions such as direct manipulation as discussed in
previous chapters implies that the HSR algorithm should be able to handle deletion
or repositioning of objects efficiently, and it should be able to deal with less trivial
situations like transparent and interpenetrating objects. Temporary changes, by their
nature, require a different approach then permanent changes. All of this can be
supported by an adequate object representation and the binary operations that form
the gist of the algorithm.

Both input and output primitives of the HSR algorithm are types — in the sense
of ‘abstract data types’ — of a specially designed representation: being the flat
polygon-like primitives we call patterns as described in § 5.2. The perspective
transformation has already been applied upon the input primitives, so that the
projection onto the 2D image-plane that follows the HSR reduces to a parallel
projection — which amounts to simply leaving out the z-coordinates. Therefore the
3D geometry of a pattern is represented by a so-called domain, being a projection of
the surface area onto the x−y plane and the coefficients of the plane equation.

Exact — or object space — hidden surface removal implies that for each input
primitive the algorithm has to produce the visible part. In the perspective
transformed space in which patterns are defined, this can be done by binary
operations on the geometry that is projected onto the x−y plane. The relative depth
ordering of the primitives that are projected determine what operations are to be
performed and on which primitives. In other words: hidden surface removal can be
done by an adequate set of binary operations on 2D domains, taking into account the
depth values as represented by the coefficients of the plane equation of the domains
involved.
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5.4.1. Binary Operations

The binary operations on domains needed for the hidden surface removal algorithm
have two input domains. Since we allow for interpenetrating domains, a
combination of two domains may lead to four differently covered areas, as is
illustrated in Figure 5.27 11).

Given two input domains A and B we define the following binary operations (see
also Figure 5.28):

DEFINITION: A − B is that part of A that is not obscured by B.

DEFINITION: A − B is that part of A that is not covered by B.

DEFINITION: A∩B is that part of the area that is covered by both A and B where A is
not obscured by B.

DEFINITION: A∪B is the area that is covered by A or B.
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A B
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y

A
-B

B
-A

∩B
A

∩A
B

Figure 5.27: Example of a combination of two interpenetrating triangles (left) that
leads to four differently covered areas.

Given these definitions we come to the following:

COROLLARY: A − B = A∩B ∪ A − B.

COROLLARY: A − B, A∩B, B − A and B∩A are disjunct and completely cover A∪B.

The option to produce either A − B or the two separate areas A∩B and A − B is needed
in particular to be able to handle transparent objects. Also note that we did not
define A∩B, because this operation would not tell us which of the two input
domains is ‘‘on top’’.

������������������������������������������������������������������������������������������������������������������
11) Note that a domain can have holes and does not have to be one connected area. Of
interest here is by which of its input domains the area is covered and, if covered by both, in
which order. Therefore we find four different combinations at most.
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We implemented a function separate (A , B) that, depending on the topology of the
two input domains and the transparency as is determined by the colour functions of
the input domains, produces one of the following combinations of disjunct output
domains:

� A and B,
� A − B and B − A,
� A − B, B − A and A∩B,
� A − B, B − A and B∩A or
� A − B, B − A, A∩B and B∩A.

Note that in case A∩B = ∅ the function outputs the two input domains. In case A
and B do not interpenetrate then either A − B = A or B − A = B and also either
A∩B = ∅ or B∩A = ∅. In any case, if both A≠∅ and B≠∅ the function
separate (A , B) produces at least two disjunct nonempty output domains.

Domains A − B and A − B will have the same colour function that A has, B − A and
B − A will have the same colour function that B has, whereas A∩B and B∩A will have
a mixture of the colour functions of A and B (see Figure 5.28).

A-B B-A

A-B

B-AA
-B

B
-A

A
-B B

-A

∩A
B

∩B
A

∩A
B

∩B
A

Figure 5.28: Hidden surface removal of two interpenetrating triangles (as shown in
Figure 5.27) may result in two, three or four differently shaded areas, depending on
opacity. In the upper left both triangles are opaque, in the upper right A is transparent
and B is opaque, in the lower left A is opaque and B is transparent and finally in the
lower right both triangles are transparent.
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5.4.2. Basics of the Algorithm

The visibility calculation is handled in the following way. There exists a data
structure containing all input domains, being the Medium Level Representation
(MLR) defined in § 4.4. There also exists a so-called visibility map: a data structure
that contains the complete set of disjunct visible domains, being the Low Level
Representation (LLR) also defined in § 4.4. The domains in the LLR are stored in a
Grid-List structure as described in the previous section.

Given this, the basics of the hidden surface removal algorithm is as follows:

for all I in the MLR do

begin

for each extent overlapping domain N in LLR do

begin

if N or I transparent and obscuring do

begin

insert N∩I and I∩N in LLR

N = N − I

I = I − N

end

else do

begin

N = N − I

I = I − N

end

end

insert I in LLR

end��������������������
�
�
�
�
�

����������������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

From this algorithm we see that the LLR is built-up incrementally: the domains of
the MLR are added one by one. Domains of the LLR that are (partly) obscured by a
MLR domain and transparent domains that obscure that MLR domain are updated
accordingly — that is, removed, partly removed or split. For each domain in the
LLR the part of the MLR domain that is obscured by the LLR domain is removed.
In this way we end up with just the visible area of the MLR domain. Note that this
visible area makes up one domain that does not have to be one connected region.
Finally, this visible area is added to the LLR. This process is repeated for all
domains in the MLR. In this way we ensure that all domains of the LLR, or
visibility map, are disjunct at all times.

Note that the inner for-loop of the algorithm is executed only for those
domains of which extent overlaps the extent of I, by making use of the features of
the Grid-List structure. Domains in the LLR of which parts are removed or that are
split, are repositioned in the Grid-List structure, according to their updated extent.

The output domains N − I and I − N or N − I, I − N , N∩I and I∩N are calculated by the
function separate (I , N). Clearly only nonempty domains are inserted in the
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visibility map.

We observe that the algorithm is quasi output sensitive. That is, the time complexity
of the algorithm is related to the number of domains that will be visible — i.e., that
are output —, yet the algorithm may spend time on domains that are invisible,
depending on the ordering of input domains.

5.4.3. Results

Rather than looking at the time complexity of the algorithm, we measured the CPU
time needed for the algorithm as a function of number of triangles when running on
a SiliconGraphics Indigo equipped with a 50MHz processor. For these
measurements we used three different test scenes. Two of the scenes are simply a
stack of triangles, one of decreasing sizes (the scene tri-steps on the left side of
Figure 5.29) and one of increasing sizes (the scene tri-spets on the right side). As a
result, all triangles of the scene tri-steps are visible, whereas for the scene tri-spets
only one triangle is visible. These tests scenes (and their names) are similar to the
scenes used in [Snippe92]. The third scene used is the Utah teapot looked upon
from the side.

x

y

z

x

y

z

Figure 5.29: Test scenes used for timing of the hidden surface removal algorithm.
On the left the scene ‘‘tri-steps’’ on the right the scene ‘‘tri-spets’’.

In Figure 5.30 we present the results. The graph makes clear that the algorithm is
indeed output sensitive. Presenting the triangles of the two scenes tri-steps and tri-
spets in reversed order produced the exact same results. In the same graph we also
show the results of the output sensitive algorithm presented in [Snippe92]. This
algorithm takes a depth sorted list of polygons that are put in the leaves of a tree
structure. The union of these objects are calculated bottom-up, next the visible parts
are calculated top-down. The timing of this algorithm was done on similar
equipment, yet the clock speed of the system was not specified.

We observe that our algorithm turns out to be exactly linear in case of the simple
scene tri-spets and exactly quadratic in case of the worst case scene tri-steps. As
could be expected, the time needed for the scene teapot falls in between the times
needed for these two extremes. It is important to note that although there is a
relatively high constant involved, the trend for the scene teapot is quite promising.
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Figure 5.30: The time needed for hidden surface removal of the scene tri-steps, tri-
spets and teapot. For comparison we also show the results of an output sensitive
algorithm presented in [Snippe92] (steps and spets, which are test scenes similar to
tri-steps and tri-spets).

When looking at the absolute values we conclude that we need to improve the
implementation. We have not seriously analysed the implementation in order to
optimise the code itself. We expect that a version based on the Sorted-Edge
representation will do better because it does not require calculation of edge
intersections at each scanline. Furthermore we now also have processors that run
faster. Nevertheless, we clearly need techniques to reduce the complexity of the
algorithm further.

5.4.4. Reducing Complexity

The complexity of the hidden surface removal algorithm can be reduced in several
ways. Of course we can make use of techniques to reduce the number of input
domains such as the obvious back-face culling and cone-of-vision techniques. In
principle, also depth sorting domains prior to the HSR process can be of help.
Clearly starting with large domains in front of the scene that obscure lots of small
domains reduces the number of domains in intermediate visibility maps. Then the
complexity of the algorithm will be reduced as well. However success cannot be
assured. For some cases such as the test scenes tri-steps and tri-spets, depth sorting
does not work out at all 12). Because of this, pre-sorting should not be too costly.

������������������������������������������������������������������������������������������������������������������
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Fortunately we do not need a full-fledged depth sorting algorithm that can handle
cyclic overlaps, simply sorting on the average z-value for instance should do 13).

A potentially better technique, that has to be looked into at more detail, is
hierarchical hidden surface removal. Computer graphics applications in general
display scenes of which the elements are ordered in some fashion. A scene may for
instance comprise a number of high level objects such as a desk, a chair, a teapot.
Each of these objects may be described by hundreds of polygons. These high level
objects themselves are confined in space and so can have a 3D bounding volume
associated with them, much like the 2D extent of the individual domains. Hidden
surfaces can be removed on a per object bases, and the outline of these objects can
be projected onto the front face of their bounding volume. This outline forms one
domain. Then, hidden surface removal for the entire scene can be done based on
these object projections as long as bounding volumes do not intersect. If bounding
volumes of two objects do intersect, these objects have to be handled at the polygon
level. The reduction on complexity that can be obtained in this way depends on the
level of detail of the objects.

5.4.5. Support for Selection and Partial Updates

In conformity with Maxim 5, formulated in § 4.3, the hidden surface removal
algorithm should be able to make changes incrementally. Only then the propagation
of partial changes typical for interactions that occur in the MLR can be restricted, so
that the effort needed to update the LLR can be minimised. The incremental
changes of interest with respect to the hidden surface removal algorithm are changes
of geometry and change of transparency. Both types of changes can be effectuated
by removal of the visible parts of the domains of concern from the LLR, followed
by repair of domains of which parts should become visible as a consequence of this
removal (this is known as ‘‘damage repair’’) and finally by adding updated domains.
For damage repair we have to be able to find out in an efficient way which domains
of the MLR had been obscured, or similarly, which domains of the MLR cover a
certain area.

For selection of a display primitive by means of a pointing device — an essential
basic interaction task mentioned in § 2.2 — we come to a similar requirement: it
should be possible to find in an efficient way which domain in the MLR is visible at
a certain position.

������������������������������������������������������������������������������������������������������������������
12) For a scene with a large obstacle halfway and lots of small objects in front and in the
back, it would be best to start with the large object, next the objects behind it and only then
handle the objects in front.

13) Depth sorting using for instance BSP trees [Fuchs80] — that are build-up by recursively
splitting the 3D space — can be used to obtain a depth order for any viewpoint. However,
this goes with splitting polygons as well, so that using these tree structures certainly does not
pay off, especially when dealing with dynamic environments.
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The LLR data structure is designed to be able to efficiently find the domain that
covers a certain position. Yet, domains in the MLR are stored in a structured graph
based on logical coherence, so that looking for domains in the MLR on the basis of
a geometrical position is not efficient. Furthermore, numerous domains of the MLR
may cover the same position, yet one of them is visible only (see for example the
scene tri-spets, Figure 5.29). In the interest of the selection task and also to
accommodate partial updates, we keep a simple administration of the relation
between domains in the MLR and domains in the LLR, so that it is possible to find a
domain in the MLR based on a geometrical position via its related domain in the
LLR.

The relation between domains in the MLR and domains in the LLR is administered
in the following way:

� Each domain of the MLR is augmented with a list of domains in the LLR that
describe a visible part of that domain, the so-called ‘‘visibles’’. This list is empty
if the domain is obscured completely, it contains the reference to one domain in
case the domain is opaque and it may contain the reference to several domains in
case it is transparent, since then the visible part may obscure different other
domains, and so will be split.

� Each domain of the MLR is also augmented with a list of domains in the LLR
that (partly) obscure it, the so-called ‘‘invisibles’’.

� Each domain of the LLR is augmented with a list of domains in the MLR that
(partly) cover the area of the LLR domain, the so-called ‘‘parents’’. This list is
ordered by visibility (i.e., distance to the viewer) only up to the first domain that
is opaque. This partial ordering is necessary and sufficient to be able to
correctly handle the shading of the domains.

An administration like this is appropriate for the selection task. Given a position, a
domain in the LLR that covers that position can be found efficiently due to the
characteristics of both the grid-list structure and the domain representation. Based
on this, the selection task can either report the first parent of that LLR domain
— being the MLR domain that is visible at the given position —, but it can also
report one of its other parents, such as the first opaque in the list, or the first domain
behind the visible domain etc.

The administration as described also accommodates partial updates. Partial
updates will involve addition and/or removal of domains. These actions will be
initiated in the MLR. Consequently, upon these changes, the domains stored in the
LLR as well as the administration have to be updated as follows.
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Adding a Domain
The actions needed upon addition of a MLR domain are straightforward. Naturally
the actions as described by the hidden surface removal algorithm (presented in
§ 5.4.2) have to be performed. In respect with the administration we have to add the
following steps.

For each domain in the LLR that turns out to be obscured by the domain to be
added, a reference to the MLR domain is simply put first in its list of parents. For
each domain in the LLR that turns out to obscure the domain to be added, we have
to determine the appropriate position of a reference to the MLR domain in its list of
parents. If the obscuring domain is opaque, the reference in the list is simply
inserted at an arbitrary position after the first parent. If the obscuring domain is
transparent, the LLR domain may have been split — in which case both fragments
will get a copy of the list of parents of the original domain 14). The appropriate
position of a reference to the MLR domain, is found by checking the order of
visibility of the MLR domain with respect to all transparent parents and the first
opaque parent already in the list. This check includes a check for interpenetration.
If interpenetration occurs, the domain has to be split.

For each domain in the LLR that either obscures or is obscured by a fragment of
the MLR domain, a reference to that LLR domain is included in either the MLR
domain’s list of visibles or list of invisibles, depending on the order of visibility of
that fragment.

Removing a Domain
Upon removal of a MLR domain, the visibles of that domain are removed from the
LLR, and consequently also the references to them (note: if the MLR domain is
opaque there is one visible at most). For such a visible, a reference to it can be
found in the list of visibles of the domain first in the list of parents (this is the
domain that is in the process of being removed), and in the list of invisibles of all of
its other parents, so these references can be easily found and removed.

References to the MLR domain should be removed as well. Only the visibles
and the invisibles of the MLR domain have such references in their list of parents,
so these references can be easily found and removed.

Based on the administration, damage repair as a consequence of removing a
MLR domain can be done at minimal cost. The parents of the visible(s) of the MLR
domain, not being the MLR domain itself, are reissued. Prior to this the visibles of
these parents are removed from the LLR, since reissuing the parents causes them to
be replaced.

������������������������������������������������������������������������������������������������������������������
14) Note that in principle this is not correct. After a split, some parents may not cover or
partly cover the area of both fragments. However, this can occur for parents after the first
opaque parent only. Therefore it is a simplification that may lead to some extra steps when
removing the domain, yet it does not lead to incorrect images.
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In this way we keep a consistent administration and restricted the actions needed for
partial updates to those domains that could possibly be affected.

5.4.6. Discussion

In this section we presented an exact incremental hidden surface removal algorithm
that does provide us the functionality needed for the layered object-space
architecture presented in Chapter 4. If we look at the results presented in § 5.4.3 we
conclude that the algorithm running on a single processor system will be able to
handle 100-10000 primitives real-time, depending on the depth complexity of the
scene. This may seem to be disappointing since often scenes will be more complex
than this. On the other hand, incremental updates as occur in CAD-like applications
may often be of that order of complexity. We will come back to this issue after a
discussion on cost.

In the introduction of this chapter we noted that the cost of object-space hidden
surface removal is compensated by not rasterising primitives that are not visible. In
the next we elaborate on that. Details of the cost of rasterisation can be found in
Appendix A.

From Figure 5.30 we estimate that the cost of the object-space hidden surface
algorithm is in the order of 10K instructions per triangle 15). Note that this number
is based on measurements on an implementation of the algorithm in C, which
includes the cost of conversion of the polygon representation, memory management,
function calls, exception handling, etc.

For the most simple shading technique (Gouraud shading) the costs for shading
amounts to calculation of intensity at each vertex (i.e., evaluation of expression A.1
that can be found in Appendix A) and linear interpolation of these intensities across
the polygon. For a 100 pixel triangle this requires 400 operations plus about 200
operations per light source. The z-buffer algorithm requires one frame buffer read
(z-value), one compare and possible frame buffer updates (colour and z-value) per
pixel. This cost will be in the order of 4 operations per pixel. With this, the cost of
rasterising one Gouraud shaded z-buffer hidden surface removed 100 pixel triangle
illuminated by one light source is in the order of 1000 operations.

For a better shading method (Phong shading) the intensity is calculated
according to expression A.1 for each individual pixel, while the vectors involved are
interpolated across the polygon. Assuming viewpoint and light sources at finite
distances this method requires about 2850 operations plus 11700 operations per light
source for a 100 pixel triangle. Again the z-buffer algorithm requires in the order of
400 operations, so the cost of rasterising one Phong shaded z-buffer hidden surface
removed 100 pixel triangle illuminated by one light source is in the order of 15000
operations.

������������������������������������������������������������������������������������������������������������������
15) Based on the fact that we measured the performance on a machine with a 50MHz R4000
CPU that has a peak floating point rating of 25MFLOPS.
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As has been mentioned in the introduction of this chapter, the cost of objects space
hidden surface removal and the alternative image space hidden surface removal
method is based on different measures. Hence, there is a break-even point that
depends on the average size of the triangles, the depth complexity of the scene, the
number of light sources, and the complexity of the shading method used.

Based on the above estimated costs we conclude that object space hidden
surface removal is not cost-effective for rendering an entirely Gouraud shaded
scene, no matter what the depth complexity of the scene turns out to be (it would be
cost-effective if there are > 50 light sources, which is not very realistic in CAD-like
applications). Yet, since the object space hidden surface removal allows us to
restrict update efforts to a mere fraction of the amount of primitives involved, the
object space method may in cases be cost-effective for partial updates.

For the Phong shading method we conclude that for unexceptional conditions
— that is, a common average size of the triangles, depth complexity, and number of
light sources — object space hidden surface removal can be cost effective for
rendering a scene 16). In this case the object space method is almost certain to be
cost-effective for partial updates, even if the scene is illuminated by one light source
only.

The trend in computer graphics applications is to add more complexity to the
shading method (e.g., texturing, transparency, etc.). It will be clear that in that case
the conditions for which the object space hidden surface removal will be cost-
effective are relaxed. If we also succeed to reduce the complexity of the object
space hidden surface removal algorithm, as discussed in § 5.4.4, the break-even
point would shift in favour of the object space hidden surface removal algorithm
even further.

When comparing the cost of the object space hidden surface removal algorithm and
the cost of rasterisation of Gouraud shaded triangles one might wonder why the
object space hidden surface removal algorithm does not handle two orders of
magnitude more primitives, since graphics systems can be found that handle in the
order of 1 M Gouraud shaded triangles per second. Such graphics systems make use
of specialised rasterisation hardware that operates on integers and that is based on
pipelining and multiprocessor techniques. In a similar way we need specialised
object space hidden surface removal hardware. This issue should be investigated
further.

������������������������������������������������������������������������������������������������������������������
16) Note, more efficient versions of the Phong shading method on which we based our cost
estimate have been developed, at the cost of accuracy. On the other hand we did not include
overhead costs in the cost estimation. The numbers presented here serve to indicate orders of
magnitude.
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5.5. Scan-Conversion

Scan conversion is the process of producing the component pixels of the rasterised
image, also known as rasterisation. In this process we have to deal with the issue of
converting a representation in a continuous space into a representation in a discrete
space 17). On this issue F. C. Crow states:

"The simplest algorithm for determining the color of a pixel is to evaluate the
intersections of all surface fragments with a ray emanating from the eye. The
intersecting surface closest to the eye determines the color of the pixel. Areas lying
in between the rays will be lost. Since such rays are infinitesimal thick, we can argue
that virtually everything is lost." [Crow84]

This statement addresses one of the problems caused by the limited resolution of
point sampling: the method may miss detail (see Figure 5.31). To reduce this
problem, the sampling resolution can be increased by means of supersampling, that
is, taking more samples per pixel area — in general assuming pixel areas to be cells
of a rectangular grid. Subsamples are then combined to produce the final intensity.
Supersampling in combination with an image space hidden surface removal
algorithm implies that the resolution of the hidden surface removal algorithm has to
be increased likewise. As a result, supersampling increases the effective resolution
at the cost of a proportional increase in computation and storage demands.
Supersampling reduces the problem of missing detail, yet it does not resolve it.

Increasing the number of subsamples to infinity leads to area sampling (that is
an integration over the pixel area). For each pixel, the resulting intensity is
determined by evaluating the area of all display primitives that cover a pixel area.
Each primitive contributes to the pixel intensity proportional to the amount of area
covered. This technique — that resolves the problem of unseen detail — is known
as unweighted area sampling. A pixel projected onto the CRT surface is a
nonhomogeneously illuminated spot. An exact convolution calculation that
corresponds to the characteristics of that spot is far too complex and even display
dependent. A commonly used approximation is assuming pixel areas to be
nonoverlapping cells of a rectangular grid. Note that area sampling does not go with
image space hidden surface removal algorithms. For area sampling an exact (that is
object space) hidden surface removal algorithm is a necessity.

Area sampling may resolve the problem of unseen areas, however, it does not
resolve aliasing that occurs because of the limited spatial sampling frequency (see
Figure 5.31). Aliasing is reduced by applying appropriate convolution filters to the
image. This corresponds to weighted area sampling. Weighted area sampling
typically introduces a dependency of the influence on the intensity per unit area
based on the distance from the center of the pixel 18). The weighting functions of

������������������������������������������������������������������������������������������������������������������
17) A continuous space implies a space in which a continuum of positions occur, whereas in a
discrete space a discrete set of positions can be found.
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adjacent pixels overlap to guarantee a continuous transition for objects that move
from one pixel to the next. More on this subject can be found in
[Foley90, Crow81, Crow84].

(b)

(c)

(d)

(a)

Figure 5.31: The result of different sampling techniques. A regular spaced spike
structure (a) that is rasterised by means of point sampling (b), unweighted area
sampling (c), and (d) weighted area sampling using a cone filter. On the left we find
a graphical representation of the distribution of the sampling functions used.

The low level representation (LLR) from which the display is refreshed is the result
of an object-space hidden surface removal algorithm. As a result, the patterns in the
LLR are nonoverlapping. The geometrical properties of these patterns are described
by the domain function D ( x , y ), whereas the colour properties of patterns are
described by the colour function C ( x , y ). The colour on a certain position can be
found by:

C ( x , y ) =
k=1
Σ
n

∫ Dk( x , y ) Ck( x , y ) dx dy (5.5)

in which Dk and Ck are the domain and colour function of pattern k and in which n
denotes the number of patterns that contribute to the image. In case the contribution
of domains to a pixel is determined by unweighted area sampling, this reduces to:

C ( x , y ) =
AP

1����
k=1
Σ
n

Ak( x , y ) Ck( x , y ) (5.6)

������������������������������������������������������������������������������������������������������������������
18) Unweighted area sampling corresponds to filtering the image using a box filter, so that
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The normalisation factor AP is the inverse of the amount of area covered by a pixel
cell. Ak( x , y ) is that part of the area of a pixel cell located at ( x , y ) that is covered
by pattern k.

A discussion on the organisation of an implementation of the scan-conversion
process can be found in § 7.2.

5.6. Conclusions

Scan-conversion as well as hidden surface removal in a great extent involves
geometry-based sorting. We formulated a representation of objects, named
domains, in which the geometrical data of the objects are sorted. This domain
representation reduces the complexity of both the hidden surface removal and the
scan-conversion process. We demonstrated how to store objects in a data structure
that orders the objects based on their geometry. This data structure significantly
reduces the search space for geometry-based object identification.

The incremental object-space hidden surface removal algorithm presented in this
chapter is based on binary operations on domains. It can handle a mixture of
opaque and transparent objects. By keeping an administration of relations between
objects of the scene and visible parts of these objects, the binary operations can be
used to add and delete individual objects so that incremental changes affect only
those objects of which the visibility is changed.

Object-space hidden surface removal preserves the information on pixel
coverage. This can be used to improve the image quality by applying unweighted or
weighted area sampling.

Based on the measured cost of the current implementation we conclude that
object-space hidden surface removal can be cost-effective for the more advanced
shading methods. It will be cost-effective in particular for partial updates.
Optimalisation and parallelisation of object-space hidden surface removal
algorithms should be further investigated. It is also worth investing in research on
specialised object space hidden surface removal hardware.

������������������������������������������������������������������������������������������������������������������

within the pixel cell there is no dependency of the influence on the intensity per unit area.
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6
Illuminat ion and Shading of

Polygonal Models

Synopsis.
Dynamic graphics applications are quite demanding on the visual quality of
smooth shading of planar polygon meshes. In this chapter we will review different
shading methods. We introduce phased shading and present an efficient high
quality method based on angular interpolation. We will show how spherical
trigonometry leads to a linear expression of the angle between the vectors
involved in the shading calculations. The outcome is a parameterised piecewise
quadratic expression in terms of pixel position. This expression can efficiently be
computed by means of forward differencing at the cost of two additions per pixel.��������������������
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6.1. Introduction

By looking around us in the real world we observe the result of rather
complicated physics : the interaction of photons with the inhomogeneou s
entities that make up the physical environment. This reality is far too
complicated to simulate accurately at all, let alone in real-time. Therefore
computer generated images are produced by using a simplified illumination
model that describes the interaction between light and the elements of the
simulated 3D environment.

"Illumination models are often discussed in the computer graphics literature in a
theoretical sense, however, when put into practice the models are greatly
compromised by the limitations of shading technique, of image display, and of
the knowledge of physical properties required to apply the model. The
interrelationships of perception, physics, rendering techniques, and the display
techniques coupled with the current state of the art make it nearly impossible to
make significant new advances by addressing only one of these topics in
isolation." [Hall88]
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The visual quality of computer generated images of 3D scenes is directly
related to the cost of the shading technique used to generate these images.
Our concern is not just the quality of individual images, it involves temporal
aspects of interaction as well. As a result, the extend to which we can strive for
image quality for interactive graphics applications is often limited.

For instance, in applications in which the user can directly manipulate the
objects in the scene, we have to rule out global illumination methods such as
ray-tracing or radiosity, since global illumination methods do not only take into
account the direct illumination of a surface by light sources, they also take into
account the indirect illumination by all other surfaces in the scene. In doing
so, the complexity of these methods is orders of magnitude higher than the
complexity of local illumination methods that simply leave out these surface-
surface interactions. Yet, in case of more restricted user control — such as in
architectural walktroughs — it may very well be possible to include global
illumination elements by preprocessing viewpoint independen t parts of the
shading calculation. This has briefly been mentioned in § 4.5.2.

For the application area of concern — being CAD-like applications in
which the user can directly manipulate the objects in the scene — we need a
local illumination model and a shading method based on this model to
smoothly shade curved surfaces approximated by planar polygonal meshes,
preferably producing the best quality image. This also has to be brought in
relation with Maxim 1 which states that we have to reduce the effort to perform
interaction tasks. This issue will be addressed in the next section.

6.2. Illumination & Shading

6.2.1. Illumination Model

Most popular shading methods are based on the illumination model developed
by Phong Bui-Tuong [Phong 75] that — in spite of its simplicity — has the
potential to produce remarkably realistic results. This model incorporates
ambient , diffuse and specular components. More light sources may contribute
to an individual polygon, in which case the diffuse and specular components
for each of the individual light sources have to be summed. The intensity
vector I 1) is calculated using the expression :

I = Iambient +
light sources

Σ Ilight source
. ( ( N . L ) + ( E . R )n ) (6.1.a)

In this expression details such as the coefficients that describe the properties of
the surface and the distance attenuation function are left out. These details do
not influence the core of the methods that are used to calculate the light

������������������������������������������������������������������������������������������������������������������
1) Each intensity vector is a vector in the 3D RGB color space. Therefore I has three
colour components IR,IG and IB .
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intensity across an individual polygon. For more information on surface
property issues and attenuation we refer to, for instance [Foley90] or [Hall 88].

Ilight source is the intensity vector of the light source, n is a coefficient which
relates to the reflectivity of the surface. The caption of Figure 6.1 describes
what the vectors used in 6.1.a stand for. The vectors N, L, E and R are
normalised. With the angles α and β that relate to these vectors as shown in
Figure 6.1 we can reformulate this expression and come to the equivalent form:

I = Iambient +
light sources

Σ Ilight source
. ( cos α + cosnβ ) (6.1.b)

In this illumination model, the ambient term ( Iambient) and the diffuse term
( Ilight source

. ( N . L ), or its alternative form Ilight source
. cos α) account for surfaces that

are ideal diffuse reflectors, i.e., reflectors for which the intensity of the reflected
light is equal in all directions. The ambient term replaces the surface-surface
interactions that are handled in more detail by global illumination models : it
represents the amount of energy of the indirect light cast upon the surface area
by the environment. The diffuse term represents the amount of energy of the
direct light that each light source casts upon the surface area. According to
Lamberts law (see [Foley90]) the amount of energy the direct light produces is
proportional to cos α.

L

N
E

R
α β

Figure6.1 : Vectors involved in Phong’s Illumination model. The diffuse
component relates to α (i.e., the angle between the surface normal N and the
direction of the light source L). The specular component relates to β (i.e., the
angle between the direction of reflection R and the direction of the viewpoint
E).

The specular component accounts for nondiffu se reflection. A perfect
mirror is the ultimate nondiffu se reflector. It reflects 100% of the direct light in
the direction of the reflection vector (see Figure 6.1). Less perfect reflectors
tend to disperse the energy in a gaussian-like distribution around that direction.
This effect is simulated by the term Ilight source

. ( E . R )n , or its alternative form
Ilight source

. cosnβ. This term produces the highlight caused by a reflection of the
light source that is characteristic for shiny surfaces.

Often the specular component is calculated by making use of the vector H
that represents the surface normal that would produce the mirror reflection
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from the light to the eye [Blinn77]. This vector can be calculated using the
following expression :

H =
| L + E |

L + E���������

Or in words : H is the normalized vector halfway between L and E (see
Figure 6.2). This vector was introduced by Blinn to be able to replace (E.R)



7
An Object-Space Based

Display Controller

Synopsis.
In this chapter we present the architecture of a display controller that refreshes a
raster display from an object-space frame representation. The display controller
scan-converts two-dimensional areas and produces scanline-based video signals.
Each refresh cycle is characterised by repeated actions that relate to two different
time scales. This logically led to the design of a two-phased display controller
architecture with two classes of processing elements and interconnections. The
custom modules designed for this architecture are based on an abstraction that is
not restricted to a specific type of primitive or a specific type of rendering. The
two-phased modular structure makes it possible to scale the system’s resolution
and maximum image complexity independently. The implementation of a one-
phase prototype that serves to demonstrate the image quality of the system is
described.���������������������
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7.1. Introduction

High quality visualisation and interaction facilities are essential features of
todays workstations. Recognising this, system designers paid special attention
to the image generation pipeline in order to improve both image quality and
interaction behaviour. By improving the image generation pipeline, the frame
buffer access bottleneck became more and more apparent. To overcome this
problem, all sorts of partitioning strategies have been developed, seemingly
without much questionin g of the function of the frame buffer and the
effectiveness of the frame representation itself.

The function of a frame buffer in graphics systems is to uncouple the real-
time refresh process from the computational ly intensive image synthesis
process. In order to separate these two processes, storage of the image is
needed in a representation suitable for the refresh process. The enormous
evolution of hardware that occurred during the last decade did not produce an

November 24, 1995



image synthesis system that meets the timing requirements imposed by the
refresh process. Throughou t the years, the increased capacity of processing
systems has largely been negated by the ever increasing demands on image
quality and image complexity. More fundamentally, since there is no limit on
the scene complexity, image synthesis by definition is not a real-time process.
It cannot be guaranteed that the image synthesis process will meet the real-
time requirements of the refresh process. Therefore, uncouplin g of the image
synthesis process and the refresh process is inevitable.

Frames, stored in the frame buffer, are by default represented in the form of
individual pixels. In Chapter 4, an architecture for an image synthesis system
has been presented that is designed to have optimal interaction support for
realistic 3D graphics. There it was stated that — from an interaction point of
view — there is no need to have access to an image representation in the form
of individual pixels. The performance and resolution of image synthesis
systems have, to a major extent, been limited by the bare pixel update speed as
determined by memory access times. The availability of powerful single-chip
processing systems makes it in principle possible to store frames in a
compressed form and decompress the compressed representation during the
real-time refresh process. This approach indeed reduces the bandwidth
requirements for frame buffer access. However, for the purpose of interaction
and partial updates it should still be possible to relate a compressed output
representation with the screen position (see § 4.3. and § 5.4.5). This property
does not hold for most well known image compression algorithms.

These observations led us to investigate whether a CRT display could be
refreshed directly from an object-based representation of the frame. As stated
in Chapter 4, an object-based frame store is more suited for interaction
purposes than the conventional pixel-based frame store. It can also be much
more compact, thereby reducing the frame buffer access problem. In this
chapter, the result of this investigation is presented.

7.2. Unfolding the Scan-Conversion process

In the proposed architecture, the low level representation (LLR)described in
§ 4.4 from which an object-space display controller refreshes the display,
contains a set of nonoverlappi ng domains. Domains describe the geometry of
a pattern projected onto the 2D image plane in a nonrasterised form (see § 5.2).
This implies that the real-time refresh process involves scan-conversion of
these patterns. Real-time scan-conversion requires a considerable amount of
computational resources. As a result, any reduction of costs such as the
exploitation of coherence is essential. For each pattern, the colour of adjacent
pixels, as well as the intersections of the edges of a domain with the next
pixel-row can be calculated incrementally. Making use of coherence reduces
the processing requirements of the display controller, but even then, real-time
scan-conversion requires in the order of several thousand MIPS.
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In the process of converting 2D areas into 0D points, a scan-conversion
algorithm that exploits spatial coherence will in essence be based on two
nested loops, each scanning in one of the two orthogonal directions thereby
reducing the dimensionality by 1. The lean production strategy (see Chapter 4),
prescribes that pixels should preferably be produced just in time to avoid
unnecessary memory access. Then the path of the electron beam scanning the
display area (see § 3.2.1) determines the order of the nested loops of the scan-
conversion process : the outer loop should make incremental steps in the
vertical (y) direction, whereas the inner loop should make incremental steps in
the horizontal (x) direction.

for ( y = 0; y < VERT; y++ ) do

begin

...

for ( x = 0; x < HOR; x++ ) do

begin

...

end

...

end��������������������
�
�

����������������������������������������������������������������������
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�
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In our implementation of the scan-conversion process, the cycle of the outer
loop of the algorithm for scanline s will for a pattern k explicitly produce the
following result :

Cs ( x ) =
As

1��� Dk, y( x ) Ck, y( x ) (7.1)

The normalisation factor
As

1��� is the inverse of the amount of area covered by a

scanline. Dk, y( x ) describes the amount of pixel area covered by pattern k along
scanline y (see the discussion on area sampling in § 5.5). Ck, y is the colour
function of pattern k.

The result for all N domains in the LLRfor scanline s is:

Cs ( x ) =
As

1���
k=1
Σ
N

Dk, y( x ) Ck, y( x ) (7.2)

This set of functions along a scanline is an intermediate result of the scan-
conversion process. For each pixel of the scanline, the individual terms of this
expression have to be evaluated and summed to produce the colour value (or
intensity) of the individual pixels — which in effect is execution of the inner
loop of the scan-conversion process. This two-phase approach goes with two
different classes of requirements on computing resources. This difference will
reflect in the architecture of the display controller.
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7.3. Architecture of the Display Controller

In the design of the display controller, the following requirements have been
taken into account.

� The system should be scalable. That is, it should be possible to configure a
system for a particular resolution and maximum image complexity 1).

� The scalability should show a performance improvement linear with the
increase of hardware.

� Critical elements should be implementable in custom VLSI.
� It should be possible to use the same architecture for increased packing

densities (i.e., the architecture should not be determined by current VLSI
technology).

These requirements and the two-phase approach of scan-conversion, as
suggested in the previous section, resulted in a display controller architecture
with two different types of processing elements : the x-processors and the y-
processors (see Figure 7.1).

pixel
stream

scanline commands

y-processors

visible objects

x-processors

video.  .  .  .

.  .  .  .

DAC

Display Controller

Figure7.1 : Block diagram of a grey-level Display Controller. The y-processors
scan objects and generate scanline-based commands for the x-processor array
that produces a pixel stream. A full colour system requires 3 pixel streams.

������������������������������������������������������������������������������������������������������������������
1) A measure of image complexity is the number of patterns as well as the complexity
of the colour functions of the individual patterns (that is number of light sources, diffuse
only or diffuse and specular reflection, transparency etc.). We insist that the system
should be able to handle frames that consist of lots of small patterns with rather simple
colour functions just as well as frames that consist of fewer patterns with more complex
colour functions.
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In this architecture the array of y-processors perform the calculations involved
in the outer loop of the scan-conversion process — that is, calculation of the
intersections of the domain of a pattern k with a scanline and the colour
function along that scanline.

for ( y = 0; y < VERT; y++ ) do

begin

calculate D
k
(x,y)C

k
(x,y);

end�������������������
�

����������������������������������������������������������������������
�
�
�
�
�
�
�

The result of this comes in the form of scanline commands (i.e., the terms of
expression 7.2), on a per scanline basis. These commands are send to a one-
dimensional systolic array 2) of x-processors. The x-processors sort and process
the scanline commands and produce a stream of digital pixel values that are
converted into analogue video signals.

Note that the display controller architecture is a hybrid (§3.3) ; it is a
combination of image-space parallelism (the x-processors) and object-space
parallelism (the y-processors). The display controller can be configured with
any number of x-processors to accommodate any display resolution desired 3).
The performance of the system in terms of image complexity is proportional to
the number of y-processors 4). In this way, the two-phase approach allows us
to choose different levels of parallelism for the two tiers, and thereby tune
different characteristics of the display controller independen tly.

7.4. The X-Processor Array— or Difference Engine

The x-processor array is the most time critical element of the display controller.
This array has to produce pixels at the pixel clock rate. For high resolution
systems (> 1M pixels) this rate is close to 100 MHz. There are no general
purpose elements that can be used for this purpose, so we had to implement
these elements in custom VLSI.

������������������������������������������������������������������������������������������������������������������
2) A systolic array is a dedicated multi-stream processor In which data and instructions
flows between processing elements in a pipelined fashion (see § 3.3.2).

3) That is, within the range of current display technology. The throughput rate of any
physical device is limited and so would be the maximum resolution of this system. In
Appendix B we present ‘virtual arrays’ as a means to go beyond this physical limit.

4) The number of y-processors determines the bandwidth to the (distributed) frame
store (which relates to the maximum number of patterns that can be handled) as well as
the available processing power (which relates to the maximum complexity of the colour
function that can be handled).
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7.4.1. Basics of the X-Processor Array

The high throughput requirements of the system at the level of the x-processor
array made it clear that processing of scanline commands as well as the data
transport mechanism should be simple. Inspired by the SAGE5), presented by
Gharachorloo et.al [Gharachorloo 88], we opted for a linear systolic array. The
inner loop of the scan-conversion process

for ( x = 0; x < HOR; x++ ) do

begin

calculate D
k,y

(x)C
k,y

(x);

end�������������������
�

����������������������������������������������������������������������
�
�
�
�
�
�
�

is unfolded so that each processor of the array executes one cycle of the loop.
Consequent ly each x-processor is assigned to a pixel column : there are as
many x-processors as there are pixels on the scanline. The scanline commands
produced by the y-processors comprise all the information for execution of the
inner loop. Evaluation of Dk, y is basically a range check, so that the linear
systolic array automatically sorts commands in linear time. As a result, the
scanline commands of a particular scanline can be accepted in arbitrary order.

Each x-processor performs incremental calculations on the scanline
command it receives. The result is then passed on to its right neighbour. The
left-most x-processor accepts the scanline commands generated by the array of
y-processors. The ‘heart-beat ’ of the systolic array is equal to the pixel clock
rate : opcode and operand of the commands are passed on at the rate at which
pixels are produced.

commands

to DAC
pixel - bus

scanline Nscanline N +1

Refresh

Figure7.2 : The x-processors of the array operate on commands of at most two
successive scanlines. The commands for one scanline and those for the next
one are separated by a Refresh command.

������������������������������������������������������������������������������������������������������������������
5) SAGEstands for Systolic Array Graphics Engine.
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Commands from one scanline are separated from commands of the next
scanline by, a Refresh command (see Figure 7.2). Upon receiving a Refresh
command an x-processor outputs the accumulated value — i.e., the result of
evaluation of all the commands executed after the preceding Refresh
command — onto the ‘pixel bus’. In the meantime the processor resets its
internal registers to be ready to accept the commands for the next scanline. In
this way, a Refresh command directly controls the pixel flush. Consequent ly
Refresh commands will have to be issued at regular intervals, equal to the total
line time. Since processors of the array should output accumulated pixel
values one at a time, there can be only one Refresh command active at a time.
There is no Refresh command active during the horizontal and vertical retrace
times (see § 3.2.1), since then the array does not have to produce pixels.

7.4.2. The Command Set

For high quality shading models, the intensity along a scanline appears to be a
sum of Gaussian-like features. For evaluation of such colour functions we have
considered various alternatives. In Chapter 6 we demonstrated how the
ambient, diffuse, and specular components of Phong’s illumination model can
be approximated by piecewise second order polynomials. Such low order
polynomials are well suited to be evaluated by means of forward differencing.
In turn, forward differencing is well suited to be implemented in VLSI: timing
requirements can be met at minimal cost in terms of chip area.

We therefore decided to let the system evaluate colour functions by means
of forward differencing. Consequent ly we use the term ‘‘Difference Engine’’ if
we refer to the integrated systolic array of x-processors 6). We anticipated that
for evaluation of the illumination model it would be useful if partial
contributio ns of multiple light sources could be summed by the Difference
Engine. We noted that efficient generation of regular patterns can be obtained
by (re)setting the intensity and/or first and/or second order difference at fixed
intervals. Furthermore we anticipated that a command to reproduce rasterised
images efficiently would be useful. Given this, we came up with the command
set of the x-processor shown in Table 7.1. At the CWI this command set was
examined by means of a structural simulator. This structural simulator and
some of its implementation issues will be described in § 7.4.4.

������������������������������������������������������������������������������������������������������������������
6) The term Difference Engine is not new in the history of computing. In 1882 Charles
Babbage built an experimental model of a mechanical calculator that he called
Difference Engine because it was ‘‘based on a mathematical principle known as the
method of finite differences ’’. It was supposed to be part of a machine that could
calculate and print astronomical tables. An attempt of Babbage to build this first
mechanical computer failed after a dispute between Babbage and his chief engineer. In
November 1991 a full-size computing engine based on Babbages original design built
by Swade and his colleagues at the Science Museum in London flawlessly performed its
first major calculation [Swade 93]. (Also we were inspired to use the name as result of
a Science Fiction novel by William Gibson & Bruce Sterling).

November 24, 1995

7.4. The X-Processor Array — or Difference Engine 7



����������������������������������������������������������������������������������������������
Mnemonics Operands Operation�� �� �� ������������������������������������������������������������������������������������������������
Eval0 x,dx,I Set the intensities between the pixel locations x and x+dx at I and

disable the accumulation of intensities until the next Refresh command����������������������������������������������������������������������������������������������
Eval1 x,dx,I Accumulate the intensities between the pixel locations x and x+dx.����������������������������������������������������������������������������������������������
Eval2 x,dx,I,dI Interpolate and accumulate the intensities between the pixel locations x

and x+dx by first order forward differencing.����������������������������������������������������������������������������������������������
Eval3 x,dx,I,dI,ddI Interpolate and accumulate the intensities between the pixel locations x

and x+dx by second order forward differencing.����������������������������������������������������������������������������������������������
SetI x,I Set the intensity at pixel location x to I����������������������������������������������������������������������������������������������
SetdI x,dI Set the first forward difference of the intensity at pixel location x at dI����������������������������������������������������������������������������������������������
SetddI x,ddI Set the second forward difference of the intensity at pixel location x at dI����������������������������������������������������������������������������������������������
SetPI x,dx,I Set the intensity at pixel locations x, x+dx, x+2dx.... to I����������������������������������������������������������������������������������������������
SetPdI x,dx,dI Set the first forward difference of the intensity at pixel locations x, x+dx,

x+2dx.... at ddI����������������������������������������������������������������������������������������������
SetPddI x,dx,ddI Set the second forward difference of the intensity at pixel locations x,

x+dx, x+2dx.... at ddI����������������������������������������������������������������������������������������������
Dis x, dx Disable the accumulation of the intensities between the pixel locations x

and x+dx until the next Eval command.����������������������������������������������������������������������������������������������
Acc_mode - Enable/disable accumulation of negative intensities.����������������������������������������������������������������������������������������������
Refresh - Output the accumulated intensity and reset the processor.����������������������������������������������������������������������������������������������
Nop - No operation�����������������������������������������������������������������������������������������������
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Table7.1 : Command set of the x-processors.

The number of bits of the data that goes with the commands listed in Table 7.1
is as follows.

For specification of the position and the width of a span we decided that
12 bits should be sufficient. This implies that the Difference Engine can cope
with screen resolutions of up to 4 K pixels in horizontal direction.

Mostly in graphics systems pixels are 8 bits per colour component — i.e.,
3 × 8 bits for a full colour system. For high quality applications , such as film
production , we may find systems that produce pixels of 12 bits per colour
component. We decided that the Difference Engine should be able to
accommodate this high resolution standard. Using 12 bits per component also
simplified the design of the data path since it matches nicely with the 12 bit
pixel addressing scheme — that uses the same data path as we will see when
we describe the implementation. Furthermore it allows us to allocate sign-,
overflow- and extra precision-bits when 8 bit colour components are sufficient.

Evaluation by means of forward differencing implies that round-off errors
accumulate. Second order differencing implies that the error can at maximum
be resolution 2 × round−off error. Since the maximum number of steps is 4 K, the
intensity and related differences should be specified with 12 bits + 24 precision
bits to guarantee a correct 12 bits pixel value up to the last pixel in the span. In
other words : I, dI and ddI have to be 36 bit fixed-point numbers.
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7.4.3. Implementation of the Difference Engine

In this subsection, the implementation of the x-processor elements that make
up the Difference Engine will be described. The actual chip design and
verification has been done by our colleagues in Twente. For more detail on
the operation and inner structure of the x-processor, we refer to [Jayasinghe 89].
For more information on the theoretical justification of the design, we refer to
[Jayasinghe 91c].

As already explained in the previous subsection, the intensity and related
differences are represented by 36 bit fixed-point numbers. Feeding I, dI and
ddI into the system simultaneously would involve 216 pins per package for the
data path alone. We had to limit the number of pins per package. Therefore
the chip has one 36 bit data input and one 36 bit data output port. This implies
that I, dI and ddI have to be sent serially. Since 12 bits are sufficient for the
representation of the X and dX, we can send both X and dX simultaneously.
Table 7.2 shows the serialised data as it is sent into the Difference Engine. The
prescribed sequential ordering has been optimised to maximise the throughput
of the x-processor. Throughou t the rest of this chapter we will indicate the
serialised atomic units of the commands as being instructions . These
instructions hop from one processor to the next at the pixel clock rate.

Note that as an exception, the intensity that goes with the Eval0 command
is specified by a 12 bit integer value. The Eval0 command — that serves to
reproduce rasterised images efficiently — does not allow for accumulation,
hence we do not need precision bits at all. As a result, the Eval0 command
occupies 1 time slot only.

����������������������������������������������������������������������������������������������
Command Time slot #1 Time slot #2 Time slot #3 Time slot #4 Time slot #5����������������������������������������������������������������������������������������������

Eval0(X, dX, I) X, dX, I
Eval1(X, dX, I) X, dX I Accumulate
Eval2(X, dX, I, dI) X, dX dI I Accumulate
Eval3(X, dX, I, dI, ddI) X, dX ddI dI I Accumulate
SetI(X, I) X I
SetdI(X, dI) X dI
SetddI(X,, ddI) X ddI
SetPI(X, dX, I) X, dX I
SetPdI(X, dX, dI) X, dX dI
SetPddI(X, dX, ddI) X, dX ddI
Dis(X, dX) X, dX
Acc_mode Enable/Disable
Refresh() Refresh
Nop() No operation�����������������������������������������������������������������������������������������������
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Table7.2 : Serialisation of the commands in atomic instructions.

Figure 7.3 shows the architecture of the x-processor at register transfer level. As
is shown in this figure, the x-processor has four registers and three main busses
that carry data, instructions and pixel values. Registers A, B and C serve to
store respectively the intensity, the first difference and the second difference of
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the intensity function. Register D serves to hold the accumulated intensity.
Furthermore, the x-processor has a 36 bit so-called ‘block carry ’ adder, a
control unit and some multiplexers and buffers. For increased clarity,
Figure 7.3 does not show the clock distribution , control lines and other details
of the processor. For this type of information, we refer to [Jayasinghe 89].

Figure 7.3 does show that the 36 bit data is broken in three blocks of 12 bits
each. In doing so, the addition could be pipelined and delay caused by carry
propagation is nonexistent. Because of the pipelining, the data that enters the
array should be skewed in time. Consequent ly, the pixel data leaving the array
will have to be de-skewed again. From a conceptual point of view data
skewing does not influence the operation of the processors, so in the rest of this
exposition we ignore the fact that the data is skewed.

The data flow through the processor is handled by a control unit, that also
keeps track of write-protect information. Furthermore the control unit sends
signals to downstream processors via the instruction bus.

A B C

-1

mux
D

+

+

+

pixel bus

data bus

instruction bus

Buf

Buf

36

12

12

12
12
12

12
12
12

12
12
12

12

mux

control
unit

protect
flags

mux
12

mux

Figure7.3 : Register level architecture of the x-processor. The arrows indicate
the directions for read/write access. To allow for pipelined block carry
addition, the data bus and the 36 bit registers are subdivided in three 12 bit
sections, in the figure indicated by different shades of grey.

Each clock cycle, 36 bit data is clocked in by the x-processor, together with a
12 bit instruction identifier. To improve the speed of the system, time-critical
signals are available directly via some bits of the instruction identifier. These
bits (or signals) typically control the data flow through the processor. As a
result, the control unit could be kept rather simple, which also reflects in the
amount of real-estate. Other bits of the instruction identifier are decoded by
the control unit to produce less time-critical signals.

Addressing of the processors (which corresponds to pixel positions) is
relative. That is, to be able to execute commands, the processors do not need
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to know to which absolute pixel column they are assigned to. Relative
addressing is handled in the following way. Each processor decrements the X
value of the command that comes along (in fact adds -1). As long as X > 0 the
commands are not active. The first processor that finds X = 0 will start to
perform the action that goes with the command. All its downstream processors
then start to decrement dX in a similar way. The processor that finds dX = 0
turns the command into a Nop instruction, so that no further action is
performed by all remaining downstream processors. Relative addressing
makes the system very flexible ; modules can be simply interchanged or
replaced and faulty processors can be set in an ‘idle’ state (see § 7.4.5).

In the next we will describe the actions performed by the processors for
each of the commands.

Eval
The Eval0 command differs from the other Eval commands. It serves to write
12 bit intensity values directly into the D registers of the processors between
position X and X+dX. It thereby overwrites the content. The content of the D
registers then also cannot be changed until after a Refresh command. The
Eval0 command — that takes one instruction only — is designed to be able to
reproduce rasterised images efficiently.

+ + + + ++ + + + + +

+ + + + ++

Pixel

+ + + + +

+ + + + + + + + + + +

C

B

A

D

ΔΔ

Δ

I

Figure7.4 : Principle of second order forward differencing. The content of two
registers are added, the resulting difference is passed on to the right-
neighbouring processor, and the resulting intensity is accumulated in the local
register D. Note that this is an overview of actions that in the Difference Engine
occur sequentially in time.

The other Eval commands are the commands upon receipt of which the
processors perform forward differencing and produce the intensity values that
are accumulated. All Eval commands are active for the processors between
position X and X+dX. Figure 7.4 illustrates how the processors of the array
cooperate to perform second order forward differencing (i.e., handle an Eval3).
It shows how data flows from registers A, B and C via the accumulator to
register D and registers A, B and C of the right-neighbourin g processor 7).
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Set
The Set commands serve to set one of the values I, dI or ddI at a specific
location. A set value will override the value that would otherwise be the result
of forward differencing performed by upstream processors. Setting the intensity
will in general result in a discontinu ity. Setting the first difference will result in
a continuou s intensity curve with a discontinu ity of the first derivative of the
curve. Setting of the second difference will result in a smooth change of the
intensity curve (see Figure 7.5). The Set commands come in two ‘flavours ’: the
nonperiodi c, which are effective at one position only, and the periodic, which
repeat the setting after every dX positions.

The Set commands write data in the appropriate registers and raise a
corresponding protect flag. When this protect flag is true, the Eval commands
will not overwrite the content of the register. All protect flags are reset during
the last cycle of each Eval command.

Figure7.5 : Results of a SetI (left) a SetdI (middle) and a SetddI (right).

Dis
The Dis command disables accumulation of the intensity values produced by
the Eval commands — that is, disables writing into register D —, for processors
between position X and X+dX, yet all other actions still take place. As a result,
for an Eval command of which the range goes beyond position X+dX as given
by the operand of the Dis command, the processors that come after this
position will produce pixel values just as if the span X, X+dX would not have
been disabled. The disabled state is reset after execution of the first Eval
command that comes along.

The Dis command serves to reduce the cost of rendering of partly obscured
patterns twofold. Firstly, the Dis command takes one time slot only, whereas
setting up the forward differencing command for a separate section may take as

������������������������������������������������������������������������������������������������������������������
7) By reusing the registers it is possible to perform forward differencing of any order.
Note that in that case, the maximum span for which full precision can be guaranteed is
limited. For instance if the most significant bit is a sign bit and 8 bits precision is

sufficient, the maximum span of which the results will be exact is 2 p
27����

in which p is the
order of the forward differencing. As can be deduced from Table 7.2, the number of
time slots needed to supply the necessary information is p + 3. For higher order forward
differencing the Set commands can be used to set the two highest order differences
only.
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much as 5 time slots (in case of an Eval3). Secondly, the Dis command
simplifies the task of the y-processors, since the initial values of the intensity
and all the differences for such a separate section do not have to be computed.

Acc_mode
The Acc_mode command serves to be able to disable accumulation of negative
intensities in the D register. Evaluation of piecewise second order polynomials
can be done efficiently by setting the second order difference at specific
locations. In doing so, we can even position the intensity curve with sub-pixel
precision — especially useful for confined specular highlights —, yet at the cost
of introducing round-off errors that may result in small negative intensity values
at the end of the curve. With Acc_mode set we can allow for such small
round-off errors.

Refresh
Upon the Refresh command, the content of the D register will be transferred to
the pixel output circuitry, and all registers and their flags will be cleared to be
ready to process the scanline commands for the next pixel row. As stated in
§ 7.4.1, this Refresh command has to be issued at regular intervals.

Nop
In this architecture the Nop command (all instruction identificatio n bits are 0)
is indispensab le. It does not change the state of the processor, and can
therefore be safely used to fill-up possible empty time slots before the Refresh
command.

7.4.4. Software Simulation of the Difference Engine

In the process of developing custom (VLSI)hardware, simulation tools have to
be used to verify a design at different levels of accuracy. These levels include
at least the following :

a) Electronic level simulation : analogue simulation of the digital hardware.
b) Logic level simulation : technology independen t, gate-level simulation.
c) Structural simulation ; simulation of functionali ty, registers, flags and logic.
d) Functional level simulation ; data and control may differ from that of the

actual hardware.

Together these levels represent an integrated set of layered simulation tools.
The reason for using less accurate simulators (c & d) at all, is that accuracy (that
is, the amount of detail) is very expensive in terms of computing resources. As
a result, accurate simulators (a & b) are impractical for testing software.
Therefore we implemented two levels of simulators for the Difference Engine.
A functional level simulator that was optimised for speed and a structural level
simulator to validate the hardware design, and to visualise the result of the
software that should run on it.
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Functional level simulation
The functional level simulator (d) is used primarily to verify that algorithms will
perform as expected in practice. The simulator accepts the same instruction
set as the Difference Engine, however, it employs instruction codings and word
sizes appropriate for fast execution on workstation platforms. As a result it has
sufficient speed to allow simple graphical results to be visualised, yet the
numerical precision differs from the targeted precision. This simulator is used
for exploring high level ideas and testing instruction sets. Alternative shading
algorithms and the investigation of wavelet image decoding (see § 7.2.2) was
done exclusively on this functional level simulator.

Structural level simulation
In a layered set of graphics hardware simulators, a structural level simulator (c),
bridges the gap between hardware fidelity on the one side, and sufficient
performance to visualise graphics algorithms on the other. A structural level
simulator allows the applications programmer to verify that the output from a
shading algorithm will be accurate on the target hardware. It also allows the
hardware specialist to trace data and commands and to interrogate the state of
any part of the system at any stage.

It is this combination of interests that makes this level of simulation a useful
adjunct in dealing with one of the problems which crop up in hardware
design : the communication between applications programmers and hardware
specialists. Exact simulators (that is, simulators of the levels a & b in the list
above) are not the right tools to help the communication between the two
different disciplines, since they cannot execute realistic code, and they are
comprehensible only to hardware designers. On the other hand, functional
level simulators do not provide the information which hardware designers can
use. The intermediate structural level simulator is particularly useful in giving
the system designers a concrete idea of what the hardware designers have
implemented. On the basis of the simulation, questions can be formulated by
the applications programmer in terms which can readily be understood by the
hardware designers.

A structural level simulator should have a sophisticated user interface to
allow for interactive inspection and debugging of executing programs ; both the
exact digital state of the hardware, and the graphical output should be
visualised interactively. Therefore, we designed and implemented ‘‘XInPosse’’,
a structural simulator that models the elements of the Difference Engine at a
functional level with fidelity and granularity sufficient to predict and evaluate
their behaviour [Guravage 93]. Its graphical user interface (see Figure 7.6)
allows one to initiate, control, and observe the execution of commands in the
array. The simulator provides the user with a means of tracing commands
within the array while interactively setting breakpoints. Individual processors
can be displayed and their states observed while commands pass through
them. An intensity graph for each scanline is drawn, along with a complete
output image.
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Figure7.6 : Graphics interface of the XInPosse simulator. The main window is
used for control of the simulation (file selection, tracing, etc.). The three small
windows display the state of individual processors (here processors 30, 31 and
32). The ‘Scanline Display ’ window serves to display the intensity graphs of
scanlines and the ‘Image Display ’ window serves to display the complete
output image.

We opted for an object-oriented design of the simulator process’s components
and communications. The user interface was written with Xt and the MOTIF
widget set, both C libraries. The simulator, on the other hand, was written in
C++. While the proposed hardware generates pixel intensities at the rate
required for the screen refresh (up to 85 MHz), the simulator draws pixels
between 6 and 10 per second. Though the actual hardware is a systolic array,
the processors are simulated serially.
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The structural simulator is the only medium, short of the hardware itself, which
offers sufficient numerical accuracy to compute the pixel intensities based on
forward differencing. With it, we verified that the hardware could execute the
graphics algorithms correctly and that the limitations on numerical accuracy
and range were graphically acceptable.

Straight away, the simulator — that was built based on the hardware
documentation — revealed several errors. All were attributed to errors in the
documentation . By testing sequences of instructions rather than testing the
functionali ty of individual hardware instructions, we can observe the
relationships (and problems) which arise only among multiple commands. The
simulator has served as a liaison between software and hardware engineers. It
has been used to formulate and specify questions about the hardware before
asked of the hardware designers ; and to evaluate their answers. A number of
nontrivial ambiguities have been resolved this way.

7.4.5. Features and Estimated Performance

The implementation of the Difference Engine resulted in a chip which houses 9
processing elements (see Figure 7.7). To be able to increase the yield, it is
made possible to configure the system and bypass faulty processors — provided
the bypass itself is not faulty. For this purpose the processors have a bit-serial
shift register. Due to the relative addressing scheme, configuration of the
system can be done without any consequences for the commands that have to
be issued. For the configuration procedure the normal operation mode has to
be interrupted. Normally this will be done once only during system setup.
However, it can be done unnoticeabl y during vertical retrace time also.

A second serial shift register is used for off-line testing purposes. For all
commands, controller outputs are loaded into this shift register. In a dedicated
test circuit the contents of the register of an individual chip can be shifted out
to be able to observe the behaviour of the controller.

register A

co
nt

ro
lle

r

adder

multiplexer

data

register D

register C

register B

instruction pixel

12 12 36

Figure7.7 : Floorplan of one x-processor (left) and of a complete chip that
houses 9 x-processors (right).
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The actual design of the chip took place at the University of Twente using
CAMELEON for the symbolic layout design, the procedural design language
Grap MG to build the processor in a hierarchical form and DRACULA for design
rule and electrical rule checking.

The Difference Engine is implemented using a 1.6 μ CMOS process
(technology : C3DM). The 9-processor chip has about 80 K transistors, the die
size is 11.4 mm × 10.2 mm. The chip is housed in a ceramic 144 pin grid array
package. Of the 144 pins, 48 pins are for the input bus (data + instruction
identifier), 12 for pixel input, 48 for the output bus and 12 for pixel output. The
remaining 24 pins are for clock input (4), system configuration (4), testing (2),
sign in/out (2) and power supply (12). The chip is designed to operate at 5V.
The power dissipation is estimated to be 78 mW per MHz.

Extensive simulation has indicated that the circuitry of the processors will
run at 12 − 15 ns cycle time (66-85 MHz). In practice it turned out that by
mistake the driving capacity of the bond-pads was too low 8). The cooling
capacity of the package (that was selected on price) is also a limiting factor.
The current batch turns out to have a maximum clock rate of 25 MHz.

Due to the (potential) high clock rate and the massive parallelism, the
Difference Engine is a very powerful machine. Its performance relates directly
to the pixel clock rate. For the targeted high resolution systems (1280 × 1024)
the performance would be as high as 108 GOPS (85 MHz pixel rate × 1280
processors). For low resolution systems (640 × 485) the performance would be
13.8 GOPS (21.5 MHz pixel rate × 640 processors). Note that the processors
continue to operate usefully during horizontal retrace time, in spite of the fact
that during that time no pixels are produced.

Of main interest however, is the maximum number of patterns that can be
rasterised — i.e., that can contribute to pixels on the screen 9). This measure is
somewhat hard to quantify, since there is no direct one-to-one correspondence
with the number of instructions that can be handled by the Difference Engine.
The number of instructions per pattern depends on the number of light sources,
the average size of the patterns and the order of forward differencing involved
in the rasterisation. To be able to give an indication of the performance of the
Difference Engine anyway, we assume that there is one light source, that 10%
of the patterns fall within the range of the specular term, and that 10% of the
patterns fall into two subsequent sections of the piecewise quadratic function
used for colour evaluation. Based on these moderate assumptions, we can

������������������������������������������������������������������������������������������������������������������
8) The bond pad design used has a throughput rate of typical 30-35 MHz. This bond
pad design was extracted from a library and therefore unfortunately not simulated.

9) N.B. The capacity of a graphics system is typically given in number of primitives
that can be handled by the system, in other words, the number of primitives that enter
the graphics pipeline. In general that does not indicate how many of these primitives
actually contribute to pixels on the screen — i.e., are visible.
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produce the number of patterns that can be rasterised at maximum 10). In
Table 7.3 these numbers are given for low resolution systems (running at
21.5 MHz), as well as for high resolution systems (running at 85 MHz), for
patterns of on average 10 × 10 pixels and for patterns of on average
100 × 100 pixels.

���������������������������������������������������������������������������
patterns / second��������������������������������������������������������������

screen resolution 640 × 485 screen resolution 1280 × 1024��������������������������������������������������������������Interpolation

size 10 × 10 size 100 × 100 size 10 × 10 size 100 × 100���������������������������������������������������������������������������
Quadratic 331 K 33 K 1.5 M 146 K���������������������������������������������������������������������������
Linear 497 K 50 K 2.2 M 220 K���������������������������������������������������������������������������
Constant 663 K 66 K 2.9 M 292 K���������������������������������������������������������������������������
Eval0 2.0 M 199 K 8.8 M 880 K����������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table7.3 : The rasterisation capacity of the Difference Engine in terms of
maximum number of patterns per second for various orders of forward
differencing (Quadratic implies Phong shading, and Linear implies Gouraud
shading). Note that these numbers refer to patterns that really contribute to
pixels on the screen, i.e., that are actually visible.

The numbers in Table 7.3 are defined by the input bandwidth of the system.
We can multiply these numbers by the number of pixels the patterns cover,
and divide that by the number of pixels that are output by the system per
second. This gives us the ratios shown in Table 7.4. Under the condition s
given in the above, these ratios turn out to exceed 1. Hence, there are not
enough pixels on the screen to display all the patterns that can be handled.
Apparently the capacity of the Difference Engine is such that it is possible to
accumulate several intensity values for each pixel on average 11).

Table 7.4 illustrates that for large patterns, the maximum number of
intensity values that can be produced per pixel, is higher than that for small
patterns. Considering that the smaller the pattern the harder it is to distinguish
individual contributio ns of a large number of light sources we conclude that
this behaviour correlates with the lean production strategy ; lean production
prescribes that the system should not produce more information than what can
be seen. This implies that for small patterns the shading calculation should
preferably be kept simple (e.g., calculations based on the summed influence of
a number of light sources instead of calculations based on the influence of
individual light sources).

������������������������������������������������������������������������������������������������������������������
10) The geometry of patterns can be quite complex. Here the only restriction on
complexity we assumed is that intersection with a scanline leads to one continuous
span (e.g., triangles and other convex polygons).

11) Note that we also assumed that the quadratic interpolation implies accumulation of
the diffuse and the specular intensity.
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���������������������������������������������������������������������������
average # intensity values / pixel��������������������������������������������������������������

screen resolution 640 × 485 screen resolution 1280 × 1024��������������������������������������������������������������Interpolation

size 10 × 10 size 100 × 100 size 10 × 10 size 100 × 100���������������������������������������������������������������������������
Quadratic 2.1 21.4 2.2 22.4���������������������������������������������������������������������������
Linear 3.2 32.0 3.3 33.6���������������������������������������������������������������������������
Constant 4.3 42.9 4.5 44.9���������������������������������������������������������������������������
[Eval0] [12.8] [128.0] [13.4] [134.0]����������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table7.4 : The capacity of the Difference Engine in terms of average number of
intensity values that can be accumulated per pixel. Note that the Eval0
instruction does not allow for accumulation.

Observe that for the Eval0 instruction, the ratio of intensity values versus pixels
is highest of all. However, this instruction is used typically for (re)production of
incoherent and/or run-length encoded images for which coherent areas of
10 × 10 pixels are most unlikely. Furthermore using an Eval0 instruction
implies that intensity values cannot be accumulated.

From Table 7.3 we learned that there is a relation between the system
resolution and maximum number of patterns that can be processed. This is
caused by the fact that the clock speed of the Difference Engine is fixed with
respect to the pixel rate. This relation is a useful one. It makes sense that a
high resolution system is able to process more patterns — and hence produce
more detail — than a low resolution system.

In Appendix B we demonstrate the flexibility of the system by showing
some nonstandard configuration s that provide ways to adapt — i.e., increase or
decrease — the maximum number of patterns that can be processed for a given
resolution. Just like the standard configuration , these nonstandard
configuration s have one input port for the 48 bit instructions and one output
port for the 12 bit pixel values. These type of configuration s are called virtual
arrays. Virtual arrays allow us to configure a system to obtain any required
performance level, not restricted by the limitations of the physical x-processor
implementation. Virtual array configuration s may introduce some extra delay,
but this will at most be in the order of 0.1 msec, which is insignificant .

7.5. Driving the Difference Engine

In the previous section we discussed the operation and implementation of the
x-processors. These x-processors could be kept quite simple, yet they operate
at a very high speed. The uninterrupted data stream and the simple operations
on fixed-point numbers made it possible to pipeline the executions. Because
of this, the maximum throughput rate of the x-processors could meet the
requirements (up to 85 MHz).
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The y-processors operate at a different time-scale. The complexity of their
task is in a different scale also. They operate on floating point numbers and
deal with irregular data streams. Because of the level of complexity involved
we decided to rely on general purpose hardware. General purpose processors
are produced in large quantities, so they can be implemented economically on
the most advanced technologies and developed using the most advanced
design tools that produce highly optimised designs. As a result it is extremely
hard to be competitive in terms of performance. In spite of the advanced
technology of current general purpose processors, the required input rate of the
Difference Engine is too high to allow for a direct coupling of the Difference
Engine and such general purpose processors.
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Instruct.
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Buffer
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Figure7.8 : Block diagram of a grey-level display controller. The Access
Controller, Load Monitor, and Instruction Buffer handle bus arbitration and
reduce requirements on the output rate of the y-processors.

In Figure 7.8 we find a more detailed version of the block diagram shown in
Figure 7.1. It shows that, beside the Difference Engine and the y-processors, a
grey-level display controller comprises an Access Controller, a Load Monitor,
and one Instruction Buffer per y-processor. These elements handle bus
arbitration and bridge the difference in maximum output rate of the y-
processors and required input rate of the Difference Engine. A detailed
description of these elements can be found in Appendix C. In short :

The Access Controller is the unit that issues the Refresh command and the
control signals NEXTand WRITEinvolved in bus access at regular intervals.

The Load Monitor is an optional device that provides information on the total
number of instructions per scanline. Based on this information, higher level
processes may adapt the level of detail or the quality of the illumination model.
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The Instruction Buffer accepts instructions at a rate at which the y-processor is
able to write. It stores these instructions until access to the Instruction Bus is
granted. Then the instructions are written onto the Instruction Bus at the high
rate required by the Difference Engine.

The y-processors are general purpose processors that generate the instructions
for the Difference Engine 12). For synchronisatio n of the scanning process, the
y-processor ‘listens’ to the bus control signals.

Both the Access Controller and Load Monitor can be built with off-the-shelf
hardware. The Instruction Buffer is the main element needed to drive the
Difference Engine for which no off-the-shelf hardware could be found. The
VLSI design team at the University of Twente did some design studies and
simulations that demonstrated the feasibility of the design. In Appendix C we
describe : the architecture of a full colour system, the principle of the bus
arbitration mechanism, the design and special features of the instruction
buffers, and the y-processors.

7.6. Building a Prototype

The feasibility of the object-space display controller described in this chapter
can be demonstrated convincingly by actually building a prototype system.
The Difference Engine is the fundamental, and technologicall y most
challenging part of the display controller. Therefore this part of the display
controller was selected to be implemented in full custom VLSI. To complete a
working prototype, the rest of the system was implemented using standard
components, necessitating compromises with overall system performance. The
most radical compromise is that the instructions for the Difference Engine are
stored in a buffer rather than being generated in real-time. From a
technological standpoin t it is relatively simple to replace this instruction store
by an y-processor array to obtain an object-space display controller system in
which the instructions are generated in real-time. (Details on this can be found
in Appendix C.). Another compromise is that we decided to implement a
grey-level system. A full colour system would not more convincingly
demonstrate the feasibility of the system ; it merely involves more components.

������������������������������������������������������������������������������������������������������������������
12) The display controller can in principle combine different types of specially
configured y-processors. One can think for instance of a dedicated ‘‘character-
generator ’’ that handles a database of instruction tables for characters of different
typefaces. Similarly one can think of a dedicated texture-processor.

November 24, 1995

7.6. Building a Prototype 21



7.6.1. System Components

The prototype system comprises the following three sub-systems shown in
Figure 7.9:

� a SUN 4/100 Workstation,
� an INMOS B408 /B409 graphics system,
� the Difference Engine.
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Figure7.9 : Block diagram of the prototype Difference Engine System. A frame
store module (IMSB408) is used to store encoded instructions. These
instructions are decoded by the Mapper. The x-processor array produces pixel
values that are converted into video signals by the display board (IMSB409).
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The Host
The SUN workstation serves as a host computer on which program
development is done, data is stored and via which the graphics display system
communicates with the rest of the world. The connection with the INMOS
B408 /B409 graphics system modules takes place via a NiCHE NT1000. The
NT1000 is a transputer system motherboard which plugs directly into the Sun
VMEbus 13). It offers a range of I/O interfaces, plus sites for up to 32 transputer
based modules (TRAMS)14). The transputer networks on the NT1000 are
software configurable [Niche 88].

The INMOS Graphics System
The INMOS graphics system consists of two TRAM modules : the frame buffer
(IMSB408) and the display card (IMSB409). These INMOS modules were
selected to drive the Difference Engine because they closely met our needs
with respect to functionali ty. The B408 and B409 are meant to be building
blocks for a distributed graphics system (see [INMOS89]). In normal mode of
operation these modules are connected via a pixel bus. For our application we
break the pixel bus up and write instructions into the frame buffer memory,
instead of pixel values. The Difference Engine that connects the two ends of
the pixel bus turns these instructions into pixel values.

T800

Address
Generator

1.25 Mbyte
Dual Port RAM

1 Mbyte
DRAM

Pixel
Port

Processor
bus

Timing Pixel
bus

Figure7.10 : Block diagram of the IMSB408 Frame Store Module. Instructions
for the Difference engine are stored in the Dual Port RAM.

The B408 is a frame store TRAM that houses a T800 transputer, 1Mbyte
DRAM, 1.25 Mbyte Dual Port RAM organised in 32 bit words, and an Address
Generator (see Figure 7.10). Controlled by signals on the pixel bus, the
Address Generator handles the output of data at a rate of up to
100 Mbytes/second. The Dual Port RAM is used to store the instructions to be

������������������������������������������������������������������������������������������������������������������
13) A transputer is a single VLSIdevice with processor, memory and communication
links for direct connection to other transputers.

14) The TRAMis in effect a board level transputer module with a standardised interface
and possibly RAM (see [INMOS 91]).
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executed by the Difference Engine. This instruction store is accessible via the
T800 transputer. This transputer can either run a program that generates
instructions locally, or it can setup a communication link and receive
instructions generated by external processors (being the SUN host or other
transputers). Data is transferred via a transputer link.

The pixels generated by the Difference Engine are handled by the IMSB409
display board (Figure 7.11) and displayed on a separate monitor. The B409
houses a T222 transputer, a Video Timing Generator — that produces the
signals to control the Address Generator of the B408 — and three 6 bit DAC’s.
It accepts data from the pixel bus at a maximum rate of 25 MHz.
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Figure7.11 : Block diagram of the IMSB409 Display Module. One of the
DAC’s is used to convert 6 bit pixel values.

The above specifications of the B408 /B409 graphics system indicate that a
prototype display controller based on these modules will not exploit the full
potential of the Difference Engine. The Dual Port RAM of the B408 is
organised in 32 bit words and the pixel bus between the INMOS modules is
32 bit wide, whereas the Difference Engine needs a 12 bits instruction identifier
and a 36 bits operand. Instructions for the Difference Engine come with two
types of operands : one where the operand is one 36 bit wide intensity, and one
where the operand is formed by three optional 12 bit items (see Figure 7.12).

Since the pixel bus between the B408 and B409 modules has a maximum
clock rate of 25 MHz and since the DAC’s have a resolution of 6 bits only, we
observe that :

� The resolution of the prototype will have to be less than 1K × 1K, so that
10 bits for representing X and dX is sufficient.

� The intensity of the Eval0 instruction can be represented by 6 bits.
� 7 bits (that is 6 + a sign bit) + 2 × 10 precision bits (needed for second order

interpolation ) is sufficient for representing intensities that go with all other
Eval commands.
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Figure7.12 : The two types of data formats of the instructions of the Difference
Engine.

From this we conclude that all instructions can do with 27 bits for the operand.
This leaves us 5 bits for the instruction identifier. The x-processor has 25
‘‘atomic ’’ instructions (see Table 7.2) that make up the 14 different commands
indicated in Table 7.1 (including the Nop instruction). Therefore, we can
include a look up table between the pixel bus and the x-processor array and
use a 5-bit index to refer to the appropriate 12 bit atomic instruction. As a
result we find that the limited resolution enforced by the B408 and B409
module specifications complies well with a 32 bit representation of the
instructions in the frame store.

Using the B408 /B409 graphics system modules we can build a 640 × 480 pixel
64 grey-level prototype display controller. Such a low resolution prototype
does not exploit the full potential of the Difference Engine, yet it still does
demonstrate the feasibility of the architecture. Therefore we decided not to
invest in the design of better modules.

7.6.2. Board Level Components

In this subsection we will discuss the board-level circuitry of the Difference
Engine, that is, the input, the clock, and the output circuit shown in Figure 7.9
(more detailed information can be found in [Steffens95].

Input Circuit
The elements of the input circuit are shown in a block diagram (Figure 7.13).
The input circuit consists of an instruction look up table, a data mapper, a
delay circuit and a configuration circuit.

Instruction Look-up Table. Input of the instruction look-up table is 5 bits coded
instructions that are stored in the frame store. Output of the instruction look-up
table is the 12 bit instruction identifier required by the x-processors and one
extra bit, Type, indicating the type of the instruction. This signal is used in the
mapper circuit to be able to handle the two different types of data formats that
go with the instructions differently.
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Instruction  look-up table

5

10

10

12

7

Type

IMS B408
pixel port

Cin[12:1]

notD[26:20]

notD[31:27]

notD[9:0]

notD[19:8]

SysReady

first
processor

Init

Token

Token_clk
notD[1:0]

Ain[1]

Ain[2]

Dataword mapper

2

1

2 clk delay

5

4

3

Data_in
high group

1

2 clk delay

5

4

3

Data_in
low group

1

2 clk delay

5

4

3

Data_in
mid group

Ain[15:4]gnd

Ain[3] Test_in

Ain[16]connected to Din[36]

maplow

clut

mapmid

maphigh

Configuration
circuit

Clock delay
circuit

gnd

Pixel in

Sign in

Token input

Token clock

ocpd

notFieldSync
notEarlyBlank

Implemented in  Xilinx XC3142 fpga

Figure7.13 : Block diagram of the input circuit. The instruction look-up table
the data mapper, and the delay circuit are implemented in one FPGA.

Data Mapper. The input to the mapper circuit are Type generated by the
instruction lookup table and the 27 bits data that go with the 5 bits coded
instructions.

For instructions that need 36 bit intensity values, the 27 bits data stored in
the frame store module are expanded to 36 bit by expanding the sign bit and
padding low bits to zero. Note that we are free to choose which range of 6 bits
of the 12 bit pixels that are produced by the Difference Engine will be
connected to the DAC — these are not necessarily the 6 least significant bits.
This choice will determine the expansion of the sign bit (which therefore may
involve 1 to 5 bits) and consequentl y also the number of least significant bits
that are padded to zero (involving 8 to 4 bits).
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For the Eval0 instruction — that goes with a 12 bit intensity value — the sign
bit of the 7 bit intensity stored in the frame store module (that is supposed to be
zero always) is expanded to 1 to 5 bits in the same way as for the 36 bit
intensity values. The least significant bits are padded to zero, yet in this case
this may involve 4 to 0 bits.

The 10 bit pixel address and 10 bit pixel span, stored in the frame store
module, form the 10 least significant bits of the 12 bit pixel address and the
12 bit pixel span. The two most significant bits of the pixel address and pixel
span are set to zero.

Delay Circuit. Following the data mapper we find an input delay circuit. This
delay circuit serves to delay specific bits of each of the three 12 bit sections by
one or two clock cycles. This delay is applied because the x-processors
operate on skewed 12 bit data words. By operating on skewed data, the 12 bit
adders of the x-processors could be pipelined, so that the x-processors can run
at a maximum speed of 11 ns cycle time.

Configuration Circuit. A fully configured prototype Difference Engine consists
of 80 IC’s housing 9 processors each. For such a large number of processors it
is not unlikely that some of them are not fully functional, but are still capable of
passing on data. By switching off defective processors, we can still make use
of the rest of the processors on the chip. Programming of the array (that is,
switching off malfunctionin g processors) is done by activating a configuration
circuit by means of the ‘‘SysReady’’ signal generated by the B408 module. The
configuration circuit then sets the array in programming mode and passes on
the data put on the pixel bus. When programming the array, the data put on
the pixel bus is data from a ‘‘configuration file’’ stored in a dedicated part of
the frame store. In this way the system is fully software configurable.

Tcw

Tno1

Tno2

Tp2h

Tp1h

CLK1

CLK2

D_in
Com_in

D_out
Com_out

T2h T1s

Figure7.14 : Timing diagram of the two phase processor clock and data in/out.

November 24, 1995

7.6. Building a Prototype 27



Clock Circuit
The Difference Engine requires a two-phase clock hat is, two phase pulses and
their inverse. In Figure 7.14 the timing of the clock pulses is shown. At the
time of design of the prototype an indication of the required pulse widths and
intervals were given as result of measurements in a test circuit and analysis of
the chip design. The measurements made clear that timing was critical. It was
indicated by the chip designers that the appropriate clock timing could only be
established by tuning the clock parameters in a populated (or even partly
populated) prototype. As a consequence of this we designed a clock circuit of
which the width and phases are fully programmable.

The circuit has been built using Analog Devices AD9500 programmable
delay generators (PDG). As shown in Figure 7.15, two such programmable
delay generators drive one D-flip-flop (a 10135 JK).One PDG sets the output of
the flip-flop after a programmed delay of t1 , the second PDG resets the flip-flop
after a programmed delay of t2 . This creates a programmed pulse width of
t2 − t1 . These two PDG’s are triggered by means of a PDG which in turn is
triggered by the clock signal of the B408 /B409 pixel bus. In this way we can
shift the clock pulses relative to the clock of the pixel bus. Two of these
circuits produce the fully programmable, two phase clock. Inverse phases are
obtained by using the inverse output of the D-flip-flops.

TTL

ECL

Pixelclock
D[7:0]

Trigger

Reset

Latch

Rset-5.2V

Q

AD9500 J
K

Q
Q

CP

SR

+5.0V

-5.2V
TTL

ECL

10135
10125

10124

-5.2V

to clock distributionD[7:0]

Trigger

Reset

Latch

Rset-5.2V

Q

AD9500

D[7:0]

Trigger

Reset

Latch

Rset-5.2V

Q

AD9500

Latch

A B

C

0
255

0
255

0
255

Figure7.15 : Block diagram of one programmable pulse width clock generator.

The delay of the AD9500 is set by an 8-bit value, which is provided by two
hexadecimal rotary switches, and latched manually by pressing a switch. The
resolution of the delay can be set between 10 ps and 10 μs by means of an
external resistor and capacitor. With Rset being 150 Ω and Cset not connected
we obtain a maximum delay of 76.8 ns with a resolution of 0.3 ns.
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The Trigger and Reset of the PDG’s expect differential ECLsignal levels, so
that TTL/ECL conversion and visa versa is necessary. The delay setting
however is TTLcompatible.

The prototype system is implemented on multi-layer printed circuit boards.
Two of the layers serve for distribution of the power (a +5 v and a ground
plane). The AD9500 programmable delay generator is an analogue device that
turned out to be rather sensitive to even small variations in the power as
caused by switching of other digital components. For reasons of stability, the
clock circuit required a separated ground plane and +5 V, -5V power plane.
Also, the clock circuit has a separate power supply.

Figure7.16 : A 20 MHz two phase clock as produced by the clock generator.

Output Circuit
A delay circuit was needed to skew certain bits of the input data with one and
two clock cycles. Similarly an output circuit is needed to unskew the pixel
values that leave the last processor of the processor array (see Figure 7.17). The
delay circuit that does this is built using 74AS574 registers. 6 bits of the 12 bit
pixels that are produced by the Difference Engine will form the input for the
DAC. Selection of these 6 bits is done by a GAL26cv12. The output is buffered
by 74AS642 buffers and terminated conform the pixel bus specifications.

last 
processor

IMS B09
Pixel port

Aout[15:11]

Aout[6:4]

Aout[11:7] 1 clk delay

2 clk delay

notD[11:0]pixel
switch

Figure7.17 : Block diagram of the output delay circuit. Pixel data is unskewed
and a (fixed) 6 bit range of the 12 bits produced is selected.
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7.6.3. Physical Design

From a logical point of view, the system may look quite simple. The board
level circuits just described are not complicated, and the x-processor chips
simply have to be linked up. The main issue of the hardware implementation
is the size of the system : a fully configured system comprises a pipeline of 720
processors. The size of the system is determined primarily by the chip carrier
in which the x-processors are housed. This chip carrier is a 144 pin, 15 × 15,
pin grid array (PGA). Building the pipeline with PGA’s mounted flat on a
printed circuit board, requires a lot of area. This would imply that a fully
configured pipeline would have to be spread out over several boards. This is
likely to cause problems, since the x-processor are synchronousl y clocked.
Therefore it is important to reduce the distance covered by the processor
pipeline and so make the length of the clock lines to be as short as possible.

Board Layout
A workable solution was found by placing two x-processor IC’s on a small
multi-layered printed circuit board. A motherboard was designed that contains
2 × 20 slots to insert these two-chip processor boards. The layout of this multi-
layered printed circuit board is shown in Figure 7.18. On the motherboard
itself we find the clock generator and clock drivers. A power connector is
placed at the rear edge. The data mapper, the configuration circuit, and the in-
and output delay circuits can be found on a small board (the input/ou tput
circuit board) that is inserted in a dedicated slot. Also the two connectors that
connect to both ends of the interrupted pixel bus are situated on this board.

The space needed for routing interconnectio ns of the x-processor chips has
been kept entirely on the two-chip processor boards. In this way we could
minimise the span of the pipeline : the connectors on the motherboard for the
two-chip processor boards are placed close to each other, leaving a small
separation between the processor boards for the purpose of cooling.

A further reduction of the extent of the processor pipeline has been
obtained by breaking up the pipeline in two sections. The clock lines can be
found in the area between these two sections. This particular layout reduces
the length of the clock lines — and thereby the propagation delay — by half.
The total length of each of the four clock lines is 273 mm, which — given the
clock rate — can be considered as being rather long. Driving wires of this
length at 25 MHz does not have to be a problem as long as the usual
termination techniques are applied.

The setup of the system makes it possible to bypass empty slots and run the
system with even a partly populated system. This is done simply by means of a
flat cable with connectors at both ends. Any of the processor boards can also
be replaced by an adapter card that connects up to a logic analyzer. In this
way the data stream through the system can be monitored.
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 X-processor slots 1-20

 X-processor slots 21-40

clock buffers

clock generator

input/output circuit
connector

clock in

four phase 
clock out

ECL

TTL

Clockgenerator
+5V analogue
-5V analogue

GND analogue

Digital
+5V
GND

Power connector
clock generator power plane

clock delay
 circuit

Figure7.18 : Layout of the mother board of the Difference Engine. The x-
processor chips can be found on daughter boards inserted in the slots.

Clock distribution
The clock lines for each two-chip processor board are buffered individuall y to
avoid fan-out problems and to avoid driving too much capacitance, since this
would lead to degrading rise and fall times. Regarding the minimum time
interval between the two clock phases (min. 4ns) and the set up times between
two x-processors in the pipeline, a skew — i.e., a difference of propagation
delay between any two outputs — in the order nanosecond s is unacceptable.
Therefore we make use of 49FCT805 clock buffers of which the maximum
skew is 0.7 ns. The length of the wires between the buffer and the clock pins of
the chips on the processor board ranges from 6.9 to 8.9 inch. All clock lines
are terminated by parallel termination resistors.

Each clock buffer chip consists of two banks of drivers (see Figure 7.19).
Each bank drives five outputs from one TTLcompatible CMOS input, divided
over the eight sections of the processor pipeline. The skew between each
section due to propagation delay on the clock lines is depended on the length
between the points where the signal is connected to the main clock line. For
this board the typical delay on a wire is 0.15 ns per inch. The maximum
distance between the connections is 1.1 inch which relates to 0.165 ns delay
between each section. Such a clock skew is insignificant .
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As we can see in Figure 7.18 the clock generator is relatively far away from
the processor array. This also implies that we have to deal with relatively long
clock lines. For this reason the ECL/TTL converter is positioned at the
beginning of the ‘‘clock distribution highway ’’ between the two sections of the
x-processor slots rather than near the clock generator circuit itself. Naturally
the ECLwires are terminated as usual for ECL.
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Figure7.19 : Distribution of the four clock signals. It takes two 49FCT805
clock buffers to drive five slots.

7.7. Results

Several instruction sets in various orders of complexity were used to test the
prototype system. The most complex set used is a set of instructions to render
a Phong shaded image of the body of the Utah teapot (upside down, as is
shown in Figure 7.20 on the left). Also we implemented various utilities to
manipulate the content of the instruction buffer for system debugging purposes.
The first results on a partly populated system (about 180 processors) made clear
that there was a bug in the hardware implementation (Figure 7.20 on the right).

By analysing the data flowing through the processor array we found this to
be an error in carry propagation. As it turns out, the carry produced by the
12 bit adder that handles the middle most bits (see § 7.4.3) is propagated to the
second least significant bit of the highest 12 bit byte. As a result the forward
differencing performed by the array is incorrect (see Table 7.5).
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Figure7.20 : The upside down body of the Utah teapot generated by the
simulator (left), and generated by the partly populated Difference Engine (right
image has been grabbed from the screen by using a video camera).
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Table7.5 : Example of second order forward differencing of 36 bit numbers as
intended (two leftmost columns). A bug in carry propagation makes the array
produce the result shown in the two columns in the middle. A compensation
for this error leads to the result shown in the two rightmost columns.

This error in carry propagation can largely be compensated by down shifting
the 24 least significant bits one position 15). In case the difference is negative,
the most significant of the 24 least significant bits has to be set to 1. In doing
so, the resulting 12 bit intensity is almost correct, except for the least significant
bit (as is shown in Table 7.5).

The Difference Engine produces 12 bit intensities, yet the prototype has
6 bits DAC’s. The range of 6 bits used can be chosen arbitrarily — provided
that the mapping on the input side corresponds to this choice (see § 7.6.2).

������������������������������������������������������������������������������������������������������������������
15) To which bits of the data in the B408’s frame store this applies depends on how the
27 bit fixed point representation maps onto the 36 bits of the Difference Engine.

November 24, 1995

7.7. Results 33



0.00E0 5.00E-7 1.00E-6 1.50E-6-5.00E-7 2.00E-6

0.00

0.10

0.20

0.30

0.40

0.50

-0 .10

0.60

0.00E0 5.00E-7 1.00E-6 1.50E-6-5.00E-7 2.00E-6

0.00

0.10

0.20

0.30

0.40

0.50

-0 .10

0.60

Eval2 (1, 17, 0.0625, 0.015625);

Eval2 (21, 17, 0.0625, 0.0078125);

(a) (b)

0.0E0 1.0E-6 2.0E-6 3.0E-6-1.0E-6 4.0E-6

0.00

0.50

1.00

1.50

-0 .50

2.00

0.0E0 1.0E-6 2.0E-6 3.0E-6-1.0E-6 4.0E-6

0.00

0.50

1.00

1.50

-0 .50

2.00

Eval2 (1, 17, 0.5, 0.0078125);

Eval3 (21, 33, 0.0, 0.0, 0.001953125);

Eval1 (55, 16, 0.9375.0);

(c) (d)

0.0E0 1.0E-6 2.0E-6 3.0E-6-1.0E-6 4.0E-6

0.00

0.50

1.00

1.50

-0 .50

2.00

0.0E0 1.0E-6 2.0E-6 3.0E-6-1.0E-6 4.0E-6

0.00

0.50

1.00

1.50

-0 .50

2.00

Eval2 (1, 17, 0.5, -0.0078125);
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(e) (f)

Figure7.21 : Measured video signals (using a digital oscilloscope) and the
commands used to generate these signals. In this case the DAC is connected to
the 6 least significant bits of the 12 bits that are produced by the Difference
Engine. The parameters of the commands are : Eval1(x, dx, I); Eval2(x, dx, I, dI);
Eval3(x, dx, I, dI, ddI) — see also Table 7.1. Graphs (a), (c) and (e) show the
result of unmodified data, whereas (b), (d) and (f) show the result of
compensation for the carry bug.
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Due to this, the error in the least significant bit of the 12 bits produced that
(vaguely) shows up in Figure 7.21 can be made invisible by not using the least
significant bit. We therefore use the 6 middlemost bits of the 12 bits that are
produced (see the result shown in Figure 7.22).
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Figure7.22 : Measured video signals showing the result of compensation for the
carry bug. In this case the DAC is connected to the 6 middlemost bits of the
12 bits that are produced by the Difference Engine. As a result, the error in the
least significant bit of the 12 bits produced does no longer show up.

In this way we produced the images shown in Figure 7.23. These images are
mostly correct, yet some of the data appeared to be lost (i.e., data was not
clocked in properly). In time this got worse (Figure 7.23 on the right), which
indicated a temperature dependence of the input circuitry. This problem could
be solved by a redesign of the motherboard. The clock circuit was better
isolated electromagnetically by separating both the ground and power plane
from the rest of the system. Furthermore the gap between the processor boards
was increased to improve the cooling capacity of the system.

We verified that the modifications were successful and configured the
system with 640 processors. In Figure 7.24 we see the result of this. The
graphs (a) and (b) show two scanlines of the image of the teapot body before
modification (generated by a partly populated system), the graphs (c) and (d)
show (other) scanlines of the same image after the modification.
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Figure7.23 : Images grabbed from the screen showing the result of
compensation for the carry bug. The image on the right was captured several
hours later, indicating a temperature drift.
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Figure7.24 : Scanlines grabbed from the image of the teapot body before
modification of the motherboard (a and b) and generated with a partly
populated system (about 180 processors). Graphs (c and d) show the result after
modification of the motherboard (with 640 processors installed).

More results are shown in Figure 7.25 : a cubic spline that is generated by one
single command (a), a quadratic spline with two set instructions (b), a
combination of a linear and quadratic spline (c), the combination of a regular
pattern and a linear interpolation (d), and the different results obtained with
accumulate mode off (e) and accumulate mode on (f). In Figure 7.26 we show
the resulting test image grabbed from the screen by means of a video camera.
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Setddi (38, 1, 0.008789);

Eval3 (1, 55, 0.0957, 0, 0.008789);

Acc_mode ();

Setddi (9, 1,-0.0078125);

Setddi (38, 1, 0.008789);

Eval3 (1, 55, 0.0957, 0, 0.008789);
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Figure7.25 : Measured results of several instruction sets. A description of the
operation and the operands that go with the commands used can be found in
Table 7.1.
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Figure7.26 : Test image generated by the Difference Engine (grabbed from the
screen by using a video camera).

7.7.1. Displaying Animated Sequences

The prototype object-space display controller was build to demonstrate the
feasibility of the architecture. In this prototype system, the instructions for the
Difference Engine are stored in a buffer rather than being generated real-time.
In this way, the system is able to display even complex static images, that is,
images that require a substantial amount of instructions per scanline.

Given the limited capacity of the 25 MHz T800 transputer that drives the
Difference Engine, it should be clear that building up all instructions for a
complex image takes some time 16). However, when building up instructions
involves a few bytes per scanline, or if we can do with changes that involve a
few bytes per scanline, frame rates of about 50 Hz can be obtained.

We have some animated sequences that cover a large portion of the screen
area, yet the changes between successive frames involve a few instructions per
scanline only (see the example shown in Figure 7.27). The fact that we can
generate these animation sequences real-time demonstrates the result of one of
the main objectives of the architecture : due to the object-space approach we
can make incremental changes effectively.

The 1.25 Mbyte Dual Port Memory in which the instructions are stored is
not big enough for double buffering. Synchronisation of frame updates with
the vertical sync is possible, yet for most of the animated sequences we have,
the time needed to update the instructions is more than the vertical retrace
time. As a result, when using this prototype system for animated sequences,
partly updated frames may be displayed.

������������������������������������������������������������������������������������������������������������������
16) Note that in this prototype system the transputer that drives the Difference Engine is
the bottleneck. The Difference Engine itself can at all times handle all instructions
stored in the buffer.
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Figure7.27 : Frame from a real-time animation running on the prototype
architecture (simulated). It shows one (!) pattern that is textured and illuminated
by a nearby light source (that is not visible). In the animation, this light source
moves continuously towards randomly chosen positions.

7.7.2. Reconstruction of Encoded Signals

The Difference Engine can interpolate any spline (polynomial) curve. Thus any
signal that is expressed in terms of a spline basis can be reconstructed. Not
only that, the architecture with its accumulator allows one to sum over
incrementally generated output so that the splines of a multiresolution
representation can be summed over different scales to produce the final image
to any required accuracy. The reconstruction time depends not on the spacing
of the knots in the splines (the lengths of the interpolation spans) but only on
the number of knots. As a result, an image can be decompressed even at video
rates provided that the number of knots are less than the number of pixels to be
generated (by some fixed overhead per scanline).

This has opened the way for using the Difference Engine to reconstruct
images that have been coded with a wavelet transform . The wavelet transform
produces a multiresolution description of an image that can be decoded to
yield more and more accurate reconstructions of that image. It is argued that
wavelet transforms perform better than the discrete cosine transform advocated
by the JPEG standard, it fits in better with human perceptual aptitudes and is a
more compact coding.

For a detailed discussion of the use of this system for wavelet reconstruction
see[Marais 94].
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Figure7.28 : Reconstruction of a wavelet encoded image (simulated). The
multi resolution description is transformed directly into instructions for the
Difference Engine.

7.8. Conclusions

The display controller presented in this chapter has a two-phased structure that
makes it possible to independen tly scale two important characteristics of the
system. The number of y-processors can be selected to meet the requirements
on the maximum image complexity. The number of processing elements in the
Difference Engine can be scaled to accommodate different resolutions (up to
4K pixels per scanline).

The Difference Engine is ‘‘user-friendly ’’ in that it accepts sets of related
instructions in arbitrary order. The time to process instructions is independen t
of the length of the interpolation span and results of different interpolation s can
be accumulated. The number of instructions per scanline that can be handled
is related to the number of pixels that have to be generated — so, the higher the
resolution of the system, the more instructions can be handled, hence, the
more complex the image can be.

We note that the input bandwidth of the Difference Engine is limited. Yet,
also the output bandwidth is limited — simply because that relates to the
limited number of pixels on the screen. By selecting the appropriate
instructions (on the one end of the spectrum we can opt for accumulation of
high order interpolation , on the other end we can opt for setting individual
pixels) we can always minimise the input stream such that the number of
instructions needed is less than what can be input. Furthermore the input
capacity can even be increased as is shown in Appendix B.
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The designed maximum throughput rate of the system is sufficient to
support high resolution systems. Due to the (potential) high clock rate and the
massive parallelism, the Difference Engine is a very powerful machine. We
have demonstrate that a 13.8 GOP system can be built that drives a 640 × 480
pixel display. It can handle the rasterisation of ∼330 K high quality shaded
polygons per second. The same architecture can be used for high resolution
systems (1280 × 1024). In that case the performance would be as high as
108 GOPS (85MHz pixel rate × 1280 processors) and the rasterisation of
∼1.5 M high quality shaded polygons per second can be handled.

In spite of the massive parallelism and the 1.2 micron technology used, we
needed ‘only’ 72 chips for a 640 × 485 display. This number can be further
reduced by using better design tools and better technologies. Then it is
possible to fit more processing elements on the same die with even a slight
improvement in speed.

In a multi-disciplin e project like this, the different ‘‘worlds ’’ of application
programmers and technicians was foreseen. It was somewhat naively expected
that VLSIdesigners would — by nature — at least anticipate on the problems
board-level system designers have to solve. Unfortunately, the selected chip
carrier, the pin assignment, and the extreme demands imposed on the board-
level design by the complex two phase bipolar clock signals required by the
processor array suggest otherwise.

The development of software simulators was done in parallel with hardware
specification and not prior to such specification. This reduced the delay in
getting feedback on the feasibility implementing ideas in hardware from our
VLSIdesigners but meant that proper simulation of the system was occasionally
neglected. One useful purpose of the structural simulator discussed in § 7.4.4
was that it served as a communication tool between the architecture
designers/specifiers at the CWI and the VLSI design/implementati on team.
Some bugs showed up in the hardware implementation. These were not
related to improper specification. It appeared that only the individual modules
of the design were checked, not the fully integrated design. The bugs found all
related to module interconnectio ns.

By exploiting massive parallelism and RISC-like technology, we designed a
multiprocessor display controller for real-time refresh from the low level
representation defined in Chapter 4. A system based on such a display
controller is as responsive as can be for interactions taking place at this level.
Since the frame representation at this level consists of a structured list of
patterns, it is both very compact as well as well suited for partial updates. As a
result, the access requirements of the frame store memory are reduced
considerably. The real-time refresh process includes advanced scan-
conversion. Complex shading methods as well as regular patterns and multiple
light sources are efficiently supported.
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Although designed for computer synthesised images, the Difference Engine
turned out to be well suited for high speed image reconstruction. Without
going into a contemplation of the meta-levels of the design process it is
interesting to observe that this generality of application resulted from bottom-
up design. The initial top-down design produced an architecture for raster
graphics (only). The bottom-up design that followed concentrated on
extracting the lowest common denominator of primitive operations for
synthesising pixels — a language for manipulating related pixels. This
vocabulary can now be used for expressing other facts about images. This may
lead to one integrated system for image reconstruction and image synthesis
(see Figure 7.29).

Difference Engine
Spline 

Interpolation

Graphics Engine
Image

Synthesis

Decoding Engine
  Image

Reconstruction

1-D
Scanline

Instructions

0-D
Pixels

to Display

Figure7.29 : The Difference Engine can be used as rasteriser for image
synthesis as well as for image reconstruction, even at the same time.
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8
Conclusions

Synopsis.
This dissertation is on the development of an interactive three-dimensional raster
graphics system for CAD-type of applications. The aim of the research described
in this dissertation has been to develop a new architecture for an interactive
graphics workstation, targeted for displaying three-dimensional polygonal models.
We concentrated on reducing the amount of calculation involved in interaction
tasks and concluded that the amount of calculation can be kept low by providing
exactly that functionality required for interaction. We argued that a layered
system and a consistent raster independent object-space approach allows us to
make optimal use of incremental algorithms. A consequence of this approach is
that we have to make use of nonstandard image generation algorithms and
nonstandard image generation hardware.���������������������
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Computer graphics involves computing tasks of vastly differing order of
granularity and complexity. These tasks relate to operations on frames, objects,
patches, polygons, vertices and pixels. For specific tasks — such as geometric
transformations — a dedicated hardware configuration on which the algorithm
can be mapped appropriately can be found in a confined design space. Yet,
for the entire image generating pipeline many and various configuration s
should be considered. Consequent ly, we may find implementations of
graphics systems based on almost all possible task subdivision strategies that
can be conceived.

Differing implementation strategies result in systems with differing
characteristics. Normally a system is designed for a targeted type of rendering
and for a targeted class of images. However, in computer graphics we find
several types of graphics primitives, hidden surface removal algorithms,
shading methods and image processing techniques. This causes a great variety
in intrinsic characteristics of tasks involved in image generation. In addition,
the characteristics of interactive applications vary considerably, even at run-
time. As a result some systems available today may excel in certain types of
applications , and yet be mediocre in others : they are too specific and lack the
flexibility required for high speed interaction.
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Changing pictures form the key to the architecture proposed here. In an
interactive computer graphics application a user interacts with a three-
dimensional model at several levels of abstraction. For an efficient support of
interactive editing and incremental updates a raster independen t representation
of the three-dimensional model should be immediately available at each of
these levels. Fundamental actions that underly every change a user makes are
pointing and identificatio n. Actual pixels are not needed for interaction.

By taking these observations seriously and ruthlessly pare away other
elements we get a radical prescription for a graphics architecture. One where
all visible surfaces are identified explicitly and without any mandate for a pixel
store. We argue that such a geometry based, raster independen t pipeline
organisation leads to a lean, yet flexible, computation model.

As a consequence of the raster independen t object-space paradigm, the
visibility calculation — that is clipping and hidden surface removal — takes
place in object-space. The transition from object-space to image-space (i.e.,
rasterisation) is included in the real-time refresh process. The feasibility of the
approach is demonstrated by the design and implementation of an incremental
object-space hidden surface removal algorithm, by the formulation of a
shading method optimised for fast rasterisation, and by the design and
implementation of an object-space display controller.

Our architecture uses a pre-sorted representation of objects and a geometry-
based data structure to store these objects. The specific representation of
objects reduces the complexity of both the hidden surface removal and the
scan-conversion process. The data structure used to store objects is designed
to reduce the search space for geometry-based object identificatio n. The
hidden surface removal algorithm presented in this dissertation includes a set
of binary operations on projected objects. These operations can be used to add
and delete individual objects so that incremental changes affect only those
objects of which the visibility is changed. Thus a firm basis for powerful
interaction and animation is established.

We formulated a shading method, much like Phong shading, that is
optimised for high speed rasterisation. This ‘reformulated Phong ’ shading
method interprets interpolation of vectors involved in the calculation as
rotations. Spherical trigonometry leads to a linear expression of the angle
between the vectors along a scanline. The outcome is a parameterised
piecewise quadratic expression for each intensity term. These terms can be
handled directly by forward differencing. The image quality obtained is as
good as the quality of Phong shaded images.

A display controller handles the refresh process of a graphics display
device. The display controller in the object-space based architecture proposed
here reads ‘area drawing instructions ’ collected in a structured list and
produces scanline based video signals. We designed a two-phased display
controller architecture with two differing classes of processing elements. The
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actual rasterisation — i.e., the second phase of the scan-conversion process —
involves forward differencing. This goes with relatively simple operations
repeated numerous times. For this task we opted for a high speed 36 bit
forward differencing engine, implemented as a highly pipelined systolic array.

The implementation of an incremental object-space hidden surface removal
algorithm and a prototype object-space display controller demonstrates the
feasibility of the raster independen t object-space approach.

We found that the cost of object-space hidden surface removal (based on a
non-optimised version of the algorithm) is in the same order of magnitude as
the cost of rendering ‘‘Phong-like ’’ shaded objects. Then, for sufficient
complex scenes (that is, in terms of depth complexity and number of light
sources), the current version of the object-space hidden surface removal
algorithm can already be cost effective. The superiority for partial updates
should be clear. However, optimalisation techniques should be investigated
and research in specialised object-space hidden surface removal hardware in
particular is needed to be able to reach the level of performance of the current
generation specialised rasterisation hardware.

For the design of the object-space display controller we concentrated on
extracting the lowest common denominator of primitive operations for
synthesising pixels. This led to a vocabulary that can be used for expressing
facts about images in a most general way. The generality of application of the
architecture is demonstrated by using the prototype display controller to
reconstruct images that have been coded with a wavelet transform. This led to
new ideas on functionali ty and further optimalisation for the next generation of
rasterisation hardware that, given the interest in multi-media applications ,
seems to be worth investigating.
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