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ABSTRACT

The Wavelet Transform generates a sparse multi-scale signal representation which may be readily compressed.

To implement such a scheme in hardware, one must have a computationally cheap method of computing

the necessary transform data. The use of semi-orthogonal quadratic spline wavelets allows one to maintain

a suitable level of smoothness in the MRA whilst enabling cheap computation. Among the other advantages

a�orded by such a scheme are easily implementable boundary conditions and the existence of either linear

or generalized linear phase in the wavelet �lters, which has important consequences for signal compression.

For image representation, a compressed spline MRA i.e., an MRA in which `redundant' basis coe�cients have

been ignored, allows us to generate a spline representation of an image which (for low order splines) may be

readily displayed on specialised graphics hardware. Such a representation may also be used directly to generate

a progressively transmitted image.

1991 Mathematics Subject Classi�cation: 42C15, 68U10.

1991 Computing Reviews Classi�cation System: E.4, I.4.2, I.4.5, I.4.10.
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1. Introduction

Wavelet Theory has had a signi�cant impact on many areas of engineering and mathematics.
The sparse and local representation generated by a wavelet decomposition is fundamental to
its rising popularity as a data (in particular, image) compression technique. Directly coupled
to the wavelet representation is the concept of a Multi-Resolution Analysis (MRA), in terms
of which a signal may be decomposed into a weighted sum of scaled and translated wavelets.
Many of the wavelets which are employed today are de�ned by means of recursion for-

mulae and do not have a simple closed form expression. The Spline wavelets introduced by
C. K. Chui [4] and M. Unser [8] are well suited to analytic manipulations, possessing many
desirable properties in addition to having a closed form representation. These properties
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include rapid computation of the wavelet representation and preservation of certain kinds of
phase information, which is important for image compression (to ensure minimal distortion
of the reconstructed signal). Furthermore, since the wavelets and scaling functions are ei-
ther symmetric or anti-symmetric, the boundary conditions are substantially simpli�ed (cf.
Section 2.1).
Cubic splines are generally used since they are believed to provide the best compromise

between computational cost and smoothness. Low order1 splines (constant and linear) are un-
satisfactory: they contain gradient discontinuities which are reected in the Multi-Resolution
Analyses which they generate. These discontinuities are extremely noticeable (Mach banding)
when wavelet compression techniques are used which discard `redundant' basis coe�cients.
Consequently, we desire some degree of smoothness in our scheme.
We present theory and substantive data to support our contention that a quadratic based

wavelet formalism is superior to a cubic based one, in terms of both implementation cost and
representational accuracy.

2. Spline Wavelets and Multi-Resolution Analysis

A wavelet,  (x), is a `well behaved' function (an element of the functional space L2(R)) which
is localised in both space and frequency (the Fourier domain) and possesses a zero integral
i.e. it oscillates.
It may be shown that any function f(x) 2 L2(R) may be expressed as a weighted sum of

scaled and translated wavelets:

f(x) =
X
j;k

cj;k (2
jx� k) k; j 2 Z:

The parameter j controls the scaling of the wavelet, whilst k determines its position.
Generally, wavelets are orthogonal (in that their L2 inner product is zero) across scales
and within a particular scale. However, certain bene�ts accrue if this restriction is relaxed
somewhat. In the case of spline wavelets, only orthogonality across scales is enforced, and
these wavelets are thus called semi-orthogonal wavelets.
The wavelet decomposition of a signal implies an in�nite expansion over all possible scales.

That is, every f(x) 2 L2(R) has a direct sum decomposition:

f(x) = � � � g�1(x) + g0(x) + g1(x) + � � � ; (1)

with gj(x) =
P

k
dj;k (2

jx� k) 2Wj ; for all j 2 Z. The detail spaces Wj are spanned by the
translates of wavelets of a given scale j.
Directly coupled to this expansion is the concept of a Multi-Resolution Analysis (MRA)

[4], which provides a means of progressively examining a signal at di�erent scales. In the
MRA framework, a signal, f(x), may be approximated at a scale j, by evaluating

fj(x) =
X
k

cj;k�(2
jx� k); (2)

where the scaling function, �(x), generates a scaled basis

spanf�(2jx� k); k 2 Zg;

1The order of a polynomial is the degree plus one.
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for the approximation spaces, Vj. Amongst the numerous properties possessed by an MRA,
the following is of the most immediate relevance to us

fj+1(x) = fj(x) + gj(x); fj 2 Vj ; gj 2Wj : (3)

This states that any (L2) signal may be decomposed into the sum of a lower resolution
approximation and a di�erence signal which encodes the detail lost in going from the scale
j + 1 to the scale j.
In practice, our signal is approximated at some (input) resolution, lets call it scale 0, and

only decomposed across a small number of scales, say M . This results in a residue, f�M (x),
which encodes all the information over the scales which have not been expanded.

f0(x) = g�1(x) + g�2(x) + � � �+ g�M (x) + f�M (x): (4)

The basis coe�cients fdj;k; cM;k; j = �1; : : : ;�M; k 2 Z; g in this representation consti-
tute the Wavelet Transform of the signal. The Wavelet Transform is a `sparse' representation,
producing many coe�cients which may be discarded without noticeably a�ecting the quality
of the reproduced signal. This enables one to achieve signal compression. These coe�cients
may be obtained through a series of convolutions followed by signal down-sampling, arranged
in a cascading fashion to a depth determined by the number of steps in the decomposition.

cj�1;k =
X
l

al�2kcj;l; (5)

dj�1;k =
X
l

bl�2kcj;l: (6)

In a similar fashion, up-sampling followed by convolution, again arranged in a feedback
cascade may be used to regenerate the input signal from the wavelet coe�cients.

cj;k =
X
l

[pk�2lcj�1;l + qk�2ldj�1;l]: (7)

The decomposition sequences, fakg and fbkg, correspond to discrete versions of the dual
scaling function and wavelet, respectively. They are In�nite Impulse Response (IIR) �lters.
Similarly, the reconstruction sequences, fpkg and fqkg, correspond to discrete versions of the
compactly supported scaling function and wavelet, respectively.
For 2D signals (like images), a separable MRA is generated by taking the tensor product

of the 1D MRA.
We de�ne three 2-D wavelets as follows,

	[1](x; y) = �(x) (y) (8)

	[2](x; y) =  (x)�(y) (9)

	[3](x; y) =  (x) (y): (10)

The kth resolution approximation of our image, I(x; y), is given by

Ik(x; y) =
X
i;j

ck;i;j�(2
kx� i; 2ky � j): (11)
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where �(x; y) � �(x)�(y), is the 2D scaling function.
Similarly, just as we did in 1-D, we may write

Ik+1(x; y) = Ik(x; y) + gk(x; y): (12)

where gk(x; y) encodes the detail lost between resolutions k and k + 1 and is given by

gk(x; y) =
3X

i;j;p=1

dk
[p]

ij
	[p](2kx� i; 2ky � j): (13)

The 2D decomposition relation becomes

cj�1;k;l =
X
m

X
n

am�2kan�2lcj;m;n (14)

d[1]j�1;k;l =
X
m

X
n

am�2kbn�2lcj;m;n (15)

d[2]j�1;k;l =
X
m

X
n

bm�2kan�2lcj;m;n (16)

d[3]j�1;k;l =
X
m

X
n

bm�2kbn�2lcj;m;n: (17)

while the reconstruction relation is now

cj;k;m =
P

l

P
p
pk�2lpm�2pcj�1;l;p +P

l

P
p
pk�2lqm�2pd

[1]
j�1;l;p +P

l

P
p
qk�2lpm�2pd

[2]
j�1;l;p +P

l

P
p
qk�2lqm�2pd

[3]
j�1;l;p: (18)

The reader is referred to [4] for additional explanations and references. The values of the
quadratic decomposition and reconstruction sequences may be found in [5, 6].

2.1 Boundary Conditions

In order to correctly compute the Wavelet Transform of a �nite signal, such as an image, the
boundaries of the signal must be extended to enable correct evaluation of the boundary con-
volutions. Arbitrary signal extension will induce boundary artifacts which will contaminate
the wavelet representation and, consequently, the associated MRA. This issue is of crucial im-
portance for both the quadratic and cubic schemes, since the decompostion �lters, which are
used to generate the representation, are (truncated) IIR �lters with large support: incorrect
boundary extensions can have wide ranging a�ects on the decomposition.
Since the �lters used are either symmetric or anti-symmetric it is possible to use symmetric

boundary extensions (cf. Appendix A.1 for details) in such a way that signal symmetries
persist (in some form or another) even after down-sampling.

2.1.1 Convolution of symmetric signals and �lters. A signal may have several points of
symmetry, all with di�erent characteristics. We need only consider signals which have sym-
metry conditions imposed on their end-points | the existence (or not) of other symmetry
points within the signal is of no consequence. Hence, the analysis will only consider the
four basic types of end-point extension enumerated in Appendix A.1 (whole-sample and half-
sample (a)symmetry).



2. Spline Wavelets and Multi-Resolution Analysis 5

Suppose that one imposes a speci�c symmetry on a �nite signal. How does the �lter (which,
we will assume, possesses symmetry of its own) interact with this extension? That is, what
symmetry (if any) will the resulting signal possess? To answer this question, one must know
how convolution responds to the presence of symmetry.
Given a signal fskg with symmetry described by sk = �sl�k (one can describe any sym-

metry by this sort of constraint) and a �lter ffkg which satis�es fk = �ft�k, we have

ak = (s � f)k

=
X
n

�sk�nfn

=
X
n

�sl�k+nft�n

=
X
n0

�sl+t�k�n0fn0

= �al+t�k: (19)

Thus, the centre of symmetry will be at l+t

2
and will be either whole-sample or half-sample in

nature depending on whether l+ t is divisible by two or not. Using this relationship, one can
enumerate the various permutations of signal/�lter symmetry. The complication that arises
when implementing the wavelet �lter-bank scheme arise from the down- and up-sampling
which occurs. This will, in general, alter the symmetry relationship, and this must be taken
into account when determining the BCs one is going to apply. The only cases we considered
were those based on cubic and quadratic wavelet �lters. The signal sequence may be of
arbitrary size | it is not constrained to have a size which is a power of two, etc.
To ensure a more convenient analysis, the sequences fam

k
g and fb

m

k
g were used, where am

k
=

am
�k

and so on. With this change i.e., using these sequences in place of the unbarred sequences,

the decomposition algorithm corresponds precisely to �ltering by fam
k
g or fb

m

k
g followed by

down-sampling. No similar adjustment is required for the fpm
k
g and fqm

k
g sequences. The

following symmetries hold, for an mth order cardinal spline scheme:

pm
k

= pm
m�k

qm
k

= qm3m�2�k

am
k

= am
�m�k

b
m

k
= (�1)mb

m

�(3m�2)�k (20)

2.1.2 Computing with the boundary extensions. To determine the boundary conditions
(BCs), we need only consider a one level decomposition | the procedure discussed below can
be used for all subsequent levels. Our goal is to ensure that one (or more) of the symmetry
extensions holds after �ltering and down-sampling. This means that one has to select an
appropriate input BC. It is important to realise that some input extensions lead to expansive

transforms, that is, the number of output coe�cients is greater than the number of input
samples. This is undesirable from a compression point of view. Hence, we desire an input
extension which will result in a non-expansive transform.
The boundary conditions depend on the nature of the start and end indices of the input

sequence i.e., whether they are even or odd. This also means that the input sequence need
not start on any particular index | most schemes require that the sequence start on index
0. The input boundary extensions we chose are given in Table 1 and Table 2 and are pre-
sented in terms of the start and end-points of the input sequence and the type of symmetric
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Case 1 Case 2 Case 3 case 4

Start (s) Even Even Odd Odd

End (e) Even Odd Even Odd

Ext Start (in) HSS HSS HSS HSS

C.O.S Start (in) s� 1=2 s� 1=2 s� 1=2 s� 1=2

Ext End (in) HSS HSS HSS HSS

C.O.S End (in) e+ 1=2 e+ 1=2 e+ 1=2 e+ 1=2

Ext Start (out) WSS WSS HSS HSS

C.O.S Start (out) s�2

2

s�2

2

s�1

2
� 1=2 s�1

2
� 1=2

Ext End (out) WSS HSS WSS HSS

C.O.S End (out) e�2

2

e�3

2
+ 1=2 e�2

2

e�3

2
+ 1=2

Ext Start (in) HSS HSS HSS HSS

C.O.S Start (in) s� 1=2 s� 1=2 s� 1=2 s� 1=2

Ext End (in) HSS HSS HSS HSS

C.O.S. End (in) e+ 1=2 e+ 1=2 e+ 1=2 e+ 1=2

Ext start (out) HSA HSA WSA WSA

C.O.S. Start (out) s�4

2
� 1=2 s�4

2
� 1=2 s�5

2

s�5

2

Ext End (out) HSA WSA HSA WSA

C.O.S End (out) e�6

2
+ 1=2 e�5

2

e�6

2
+ 1=2 e�5

2

Table 1: Quadratic Boundary Conditions. The First block provides the boundary conditions for input

and output sequences when �ltering with fa3kg; the second block provides the same information for fb
3

kg. The
abbreviation C.O.S stands for Centre Of Symmetry, while Ext denotes extension. Those conditions applying

to input are quali�ed with (in) and those associated with output with (out).

extension required. The output values stated represent the new points of symmetry etc.
after �ltering and decimation with the indicated �lters. By using the symmetry extensions
indicated in the Tables for each subsequent step of the decomposition, we can ensure that the
output sequence retains some form of boundary symmetry, even after convolution (with the
appropriate symmetric �lter) and down-sampling. One simply notes the �lter to be applied
and the values of the �rst and last sequence indices of the input signal and uses the Tables
to apply the indicated extension.
The boundary extensions for reconstruction are simply those resulting from the previous

levels �ltering and decimation. They are determined by examining Table 1 or Table 2 after
processing each levels input sequences. These BCs must either be stored on re-created; for
compression purposes, the latter option is more suitable.
To re-create the BCs, one just simulates the �lter bank operation, without actually perform-

ing the �ltering operations | this requires very few calculations (one just needs to compute
the starting end terminating sequence indices). This approach is in contrast markedly to the
methods employed when signals are constrained to have, say, lengths that are a power of two.
In this case, one can deduce the necessary BCs beforehand based on the length of the input
signal. Nonetheless, the additional freedom one obtains when using unrestricted signal sizes
more than compensates for this minor inconvenience.
The reconstruction process is as follows:
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Case 1 Case 2 Case 3 case 4

Start (s) Even Even Odd Odd

End (e) Even Odd Even Odd

Ext Start (in) WSS WSS WSS WSS

C.O.S Start (in) s s s s

Ext End (in) WSS WSS WSS WSS

C.O.S End (in) e e e e

Ext Start (out) WSS WSS HSS HSS

C.O.S Start (out) s�2

2

s�2

2

s�1

2
� 1=2 s�1

2
� 1=2

Ext End (out) WSS HSS WSS HSS

C.O.S End (out) e�2

2

e�3

2
+ 1=2 e�2

2

e�3

2
+ 1=2

Ext Start (in) WSS WSS WSS WSS

C.O.S Start (in) s s s s

Ext End (in) WSS WSS WSS WSS

C.O.S. End (in) e e e e

Ext Start (out) HSS HSS WSS WSS

C.O.S Start (out) s�4

2
� 1=2 s�4

2
� 1=2 s�5

2

s�5

2

Ext End (out) HSS WSS HSS WSS

C.O.S. End (out) e�6

2
+ 1=2 e�5

2

e�6

2
+ 1=2 e�5

2

Table 2: Cubic Boundary Conditions. The First block provides the boundary conditions on input and

output sequences when �ltering with fa4kg, while the second provides this information for the �lter fb
4

kg.

1. retrieve BCs for signal,

2. extend the signal using these BCs (for as many periods as desired)

3. up-sample the signal,

4. apply the appropriate reconstruction �lter.

Figure 1 illustrates these ideas with a simple partial decomposition/reconstruction example.

2.2 Image Representation on a Spline Basis

Given the computational simplicity of polynomial spline representations it may be desirable
to express an image as the sum of polynomial primitives. This may be achieved by performing
a spline MRA on a given image.
The �rst step towards implementing this analysis is to project the input image onto the

`best' approximating spline. This may, however, be an expensive task, often requiring the
inversion of a matrix system with the same dimensions as the image. A cheap and satisfac-
tory alternative is quasi-interpolation [4, 6], which uses local information to determine the
interpolant. As the degree of non-locality is increased, the accuracy of the �t improves | in
the limit the signal (image) is interpolated exactly (Section 3.3).
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31-2-3 0 4 5 62 7 8-1 31-2-3 0 4 5 62 7 8-1 31-2-3 0 4 5 62 7 8-1

A
HSS HSSInput signal

A
HSS HSSInput signal

A
HSS HSSInput signal WSSWSS Filtered Signal

31-2-3 0 4 5 62 7 8-1

B

31-2-3 0 4 5 62 7 8-1

C
HSS

This is the
signal to be

stored WSS

31-2-3 0 4 5 62 7 8-1

HSS

This is the
signal to be

WSSextended
D

31-2-3 0 4 5 62 7 8-1

WSSWSS This signal is now
upsampledE

31-2-3 0 4 5 62 7 8-1

F HSSHSS
Sequence filtered
with interpolative

filter

Figure 1: Partial decomposition and reconstruction. This example illustrates the ideas referred to

above, by working through the �ltering steps for the (quadratic) decomposition �lter fakg and the reconstruc-

tion �lter fpkg. `A' shows the input signal and its extension (HSS, as required by Table 1). This signal is then

�ltered with fakg (`B') and down-sampled (`C'). This process would yield the approximation coe�cients for

the next level. The next three diagrams illustrate a partial reconstruction. `D' shows how the stored signal is

extended, with the extension it had after the decomposition phase. This extended signal is then up-sampled

(`E') and �nally �ltered with the `interpolative' �lter, fpkg (`F'). To complete the process, one would extract

the stored detail coe�cients, extend, up-sample and �lter them, in a similar manner, before adding the two

resulting signals together.

3. The Case For A Quadratic MRA

Having established the theoretical base for our discussion, we are now in a position to compare
the relative merits of the quadratic and cubic based MRA's. There are three issues which
bear discussion.

3.1 Computational cost

Quadratic wavelets and scaling functions possess a smaller support than their cubic counter-
parts. This means that the synthesis of the input signal from its wavelet decomposition (as
is the case after compression) may be achieved more speedily in the former case.
The number of non-zero components in the relevant �lters is indicated in Table 3. It

can be seen from this table and Equation 7, that the number of multiplications required to
compute the (up-sampled) convolutions is proportional to (#fpkg+#fqkg). Thus, assuming
that 2D signals are computed using the separability property, the cubic schemes requires
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Order #fpkg #fqkg

Quadratic 4 8

Cubic 5 11

Table 3: Comparison of reconstruction �lter lengths for the cubic and quadratic schemes

approximately 33% more multiplications and additions than the quadratic scheme (for both
1D and 2D signals). Of course, if the separability of the 2D convolutions is not exploited, the
balance swings even further in favour of quadratics (with cubics then requiring almost twice
as many multiplications and additions).
If one wishes to compute the values of the interpolated signal at any real point then, once

again, the quadratic computation is cheaper: the recursive formula

Nm(x) =
x

m� 1
Nm�1(x) +

m� x

m� 1
Nm�1(x� 1): (21)

where m is the order of the polynomial, and

N1(x) = �[0;1)(x) =

(
1 if x 2 [0; 1);
0 otherwise:

(22)

may be used to e�ciently compute the value of the spline basis at any point with a complexity
proportional to the order of the spline.

3.2 Wavelet Representation Error

Since the dual wavelet and scaling function have in�nite support, the decomposition sequences
they engender (which are used to determine the wavelet representation coe�cients) must be
truncated. However, this truncation cannot be arbitrary | it must preserve the symmetry of
the decomposition sequences or else one loses the bene�t of symmetric signal extension and
reconstruction artifacts will occur.
The decomposition �lters must, not unexpectedly, obey certain pass-band conditions if

they are to �lter out the right information [4]:X
k

ak = 1;

X
k

bk = 0: (23)

These formulae correspond to the requirement that the scaling function and the the wavelet
have unit and zero integral, respectively.
If these conditions are not (approximately) satis�ed, the �lters will not function correctly

and they will pass frequencies outside of their intended pass-band. Examination of the
decomposition �lter symmetries shows that the cubic detail �lter, fb4

k
g, possesses a whole-

sample centre of symmetry, whilst the quadratic detail �lter possesses a half-sample centre of
symmetry and is anti-symmetric. While this seems unremarkable, if one progressively takes
fewer terms from each of these sequences, the cubic �lter fails its pass-band condition much
more rapidly than the quadratic �lter, for comparative levels of truncation.
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#fakg #fbkg O(
P
ak � 1) O(

P
bk)

Quad 26 26 10�3 10�4

Cubic 27 27 10�2 10�3

Quad 20 20 10�2 10�4

Cubic 21 21 10�2 10�2

Quad 18 18 10�3 10�4

Cubic 19 19 10�2 10�2

Quad 16 16 10�2 10�4

Cubic 17 17 10�2 10�1

Quad 14 14 10�2 10�4

Cubic 15 15 10�2 10�2

Quad 12 12 10�2 10�4

Cubic 13 13 10�2 10�1

Table 4: Failure of band-pass conditions. The left-most two columns indicate the number of a; b

coe�cients maintained after truncation. The �nal two columns indicate the order of magnitude of the error

to within which the sequences approach their band-pass conditions, Equation (23).

Table 4 illustrates the point very well. Examination of the data shows that a quadratic
�lter with only 14 non-zero entries satis�es the pass-band conditions to the same order of
magnitude as a cubic �lter with 27 non-zero components (in the bk sequence). Consequently,
a quadratic decomposition may be computed more cheaply than a cubic decomposition,
assuming that a similar level of accuracy is required.
The reason for this failure lies with the nature of the symmetries these two �lters possess.

The quadratic �lter has the structure (: : : ;�a;�b;�c; c; b; a; : : :) while the cubic �lter has
the has the structure (: : : ; a; b; c; b; a; : : :). In the former case, provided one truncates about
the centre of symmetry, one is guaranteed that the sum will be close to zero | because of
the negative signs. However, in the cubic case this is not so, and at low truncations, there
are no longer su�cient terms to (nearly) satisfy this condition. Figure 2 show the e�ect of
this failure: the incorrectly registered frequencies add ripples to the signal.
This lack of robustness on the part of the cubic spline wavelet scheme has evinced surpris-

ingly little comment in the literature.

3.3 Quadratic Image Representation

The last few years have seen the emergence of increasingly sophisticated display hardware. An
example of such is the Di�erence Engine [1] which has the ability to generate a polynomially
interpolated span of (arbitrary length) pixel data with a single cheap instruction. This paves
the way for novel image synthesis techniques, such as the reconstruction of an image expressed
on a `compressed' polynomial spline basis obtained by applying a data compression technique
to the Wavelet Transform corresponding to a spline-based MRA [6]. However, before such a
representation can be generated the initial signal (image) must be approximated by a spline
of the appropriate degree.
To reduce costs, one may employ a quasi-interpolation (cf. Appendix) scheme [6], which

uses local image data to compute the approximation. Again the choice of polynomial must
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0

50

100

150

200

250

0 50 100 150 200 250

A
B
C

Figure 2: Failure of the cubic �lters at low truncations. `A' gives the input data, `B' the 2nd resolu-

tion level cubic decomposition approximating the image and `C' the reconstruction to level 2 after decomposing

with the over truncated cubic decomposition sequences. When the cubic �lters are not over truncated, they

result in a reconstruction which has these sinusoidal ripples smoothed out. Note: the reconstruction sequences

are never truncated.

be decided | do we wish to use a cubic or a quadratic based MRA? Surprisingly, the cubic
quasi-interpolation turns out to be less accurate than quadratic quasi-interpolation! This
provides yet another incentive to use a quadratic scheme.

Quadratic Case Mean Standard Deviation jMax Errorj

k = 1 0.00 1.69 21

k = 2 0.01 0.90 10

Cubic Case

k = 1 0.01 2.74 34

k = 2 0.00 1.79 21

Table 5: The error induced by quasi-interpolation of our test image. The quadratic scheme

ensures both a lower projection error and a lower maximum error. The bene�t of using a higher order quasi-

interpolation is clear: even k = 2 provides a considerable gain over k = 1.

Table 5 shows that for a second order (k = 2) quasi-interpolation scheme (which employs a
5x5 convolution mask), the mean interpolation error is almost zero, with a standard deviation
of under a pixel value (in the quadratic case) and a maximumerror of 10 pixels. The maximum
error occurs where we have a very sharp intensity gradient (like a spike | see Figure 3). In
contrast, the same order of cubic quasi-interpolation yields a signi�cantly more noisy �t.
This result is supported by the theory of quasi-interpolation [4, 6]: we have the following

relationship
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Figure 3: Quasi-interpolation Error E�ects. The interpolation error is biased by 128. The graph `A'

gives the input data. `B' gives the cubic quasi-interpolation (k = 2), `C' gives the quadratic quasi-interpolation

(k = 2) of the scan-line. Graph's `D' and `E' give the interpolation error for the quadratic and cubic cases,

respectively. Observe that the interpolation error for the cubic scheme is greater than that of the quadratic

scheme for the same k.

max
l2Z

j(Qkf � Jmf)(l)j � (max
l2Z

f(l) + min
l2Z

f(l))
1

2
�k+1

m
; �3 =

1

2
and �4 =

2

3
; (24)

where the sequence ffkgk2Z is bounded and m is the order of the underlying polynomial. In
the above expression, (Qkf)(x) is a kth order quasi-interpolant, while (Jmf)(x) is an mth
order (true) interpolant. It is easy to see that, for any order k of quasi-interpolation, the 3rd
order (quadratic) quasi-interpolant will provide a better �t.
An explanation for this somewhat counter-intuitive result may be gleaned by examining the

weights used to compute the quasi-interpolant (cf. Appendix). The cubic weighting function
decays more slowly; consequently more importance is attached to non-local data and this
results in the suppression of local features.

4. Conclusion

The choice of polynomial on which to base a spline MRA plays a fundamental role in deter-
mining the speed and accuracy with which the wavelet representation may be determined. In
the case of the semi-orthogonal spline wavelets we employed the quadratic MRA was shown
to be superior to the cubic one in both decomposition and reconstruction times, while also
permitting greater accuracy for a corresponding number of terms in the truncated IIR �l-
ters used to perform the decomposition. Furthermore, for applications in which one desires a
cheap method of maximally (smoothly) approximating an arbitrary image, one may employ a
local quasi-interpolation scheme under which it is both cheaper and more accurate to perform
a quadratic approximation than a cubic one.
We believe that the arguments stated above provide compelling reasons to favour the

quadratic over the cubic scheme: the quadratic representation possess a su�cient degree of
smoothness to enable accurate approximations of smooth data, while requiring substantially
less computation than its cubic counterparts.
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A. Appendix

Details are provided on several important implementational issues. For additional informa-
tion, the reader is directed to [4, 5, 6].

A.1 Symmetric signal boundary extensions

There are two major classes of signal extensions [2]:

� those with whole-sample symmetry and

� half-sample symmetry.

Whole-sample sequence extensions have their centre of symmetry on a integral index, while
those with half-sample symmetry are symmetric about a half-integer `index' (See Figure 4
and Figure 5).

HSS WSS

Centre of symmetry Centre of symmetry

Figure 4: Symmetric extensions. The dashed line indicates the centre of symmetry.

HSA WSA

0

Point of Symmetry

Point of Symmetry

Figure 5: Anti-symmetric extensions. The centre of symmetry is indicated by a dashed line. Observe

that WSA forces the sequence to assume the value zero at the point of symmetry. HSA enforces this zero

condition at a half-sample point of symmetry i.e., an `index' of the form k + 1

2
; k 2 Z:

It is assumed that the sequences are extended periodically using the given boundary condi-
tions. Conceptually, one extends the sequence (using the indicated BCs) by folding it around
the end-point and shifting the resulting sequence along the index axis, for as many periods
as required. In practice, one uses modulo operations to map overowing indices back into
the range covered by the input signal. The modulo operations must be chosen carefully to
take account of the di�erent extension types at the end-points. Provided the BCs have been
chosen correctly, this periodic extension ensures that we can deduce the correct sequence
value of any index.
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De�nition 1 The four basic sequence extensions are

Whole-Sample Symmetric A sequence is whole-sample symmetric (WSS) about an index

k if sk�n = sk+n, for all n.

Whole-Sample Anti-symmetry A sequence is whole-sample anti-symmetric (WSA) about

an index k if sk�n = �sk+n, for all n.

Half-Sample Symmetry A sequence is half-sample symmetric (HSS) about the `index' k+
1

2
if sk�n = sk+1+n, for all n.

Half-Sample Anti-symmetric A sequence is half-sample symmetric (HSS) about the `in-

dex' k + 1

2
if sk�n = �sk+1+n, for all n.

Observe that WSA requires that the sequence value at the index about which the extension
takes place be zero.

A.2 Quasi-interpolation

Quasi-interpolation may be used on a data set provided

1. the data is bounded and continuous and

2. the data satis�es the Fix-Strang conditions.

We assume that our pixel values may be considered a sampling, on Z� Z, of a continuous
image function, I(x; y).

De�nition 2 If a 2-D, symmetric, origin-centred piece-wise polynomial function �(x; y) sat-
is�es the Fix-Strang conditions [3]

1. �̂(0; 0) = 1;

2. D��̂(2�i; 2�j) = 0; 0 6= i; j 2 Z; j�j � � (� � 0),

then one may de�ne the kth order quasi-interpolant, (QkI)(x; y); k 2 Z+; of I 2 Cs(R2 ) as

(QkI)(x; y) �
X
l

X
m

(�kI)(l;m)�(x� l; y �m): (25)

The convolutional operator �k operates on the input image-sequence, I0(l;m); l;m 2 Z, and

is de�ned by

f(�kI)(i)g = (� �m+ � � �+ (�1)km � � � � �m| {z }
k times

) � I0(i); i 2 Z2; (26)

where � � �i;j;0 = 1 if i; j = 0; and 0 otherwise and

mi;j =

(
�(0; 0) � 1 for i; j = 0;
�(i; j) for i; j 6= 0:

(27)

This quasi-interpolant has the following properties:

� only local data (the extent of which is determined by the parameter k) is used to
determine the values of the sequence f(�kI)(i; j)g
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2
666664

O x X x O

x Q I Q x

X I # I X

x Q I Q x

O x X x O

3
777775

m = 3 k = 2 k = 1

Q -0.0117187 -1/64

I -0.1699218 -3/32

# 1.665 23/16

x 0.00293 -

X 0.0092773 -

O 0.0002441 -

Table 6: The arrangement of coe�cients of the quasi-interpolation operator

� any polynomial of degree � � 2k + 1 will be reproduced by this scheme

� the sequence of operators Qk converges to a true interpolation operator, Q1, as k !1;
i.e., (Q1I � I)(l;m) = 0; i;m 2 Z.

The coe�cients of the � sequences for the quadratic case are given in Table 6.
In Table 6, the matrix represents the support (i.e. grid-points)over which the coe�cients

of the intensity samples Iij are non-zero. The centre of the matrix represents the coe�cient
of Iij.
The Fix-Strang conditions are satis�ed by the cardinal splines Nm(x) and consequently

also by their tensor products. To use the above scheme, we must recast it in our framework.
In this case

�(x; y) � Nm(x+
m

2
)Nm(y +

m

2
) (28)

where the shift is required to centre the cardinal B-spline functions. Equation 25 then looks
like

(QkI)(x; y) =
X
l

X
n

(�kI)(l; n)Nm(x+
m

2
� l)Nm(y +

m

2
� n): (29)

What we desire is that (QkI)(x; y) = I0(x; y) �
P

l

P
m
c0
ln
Nm(x � l)Nm(y �m). From

this we can see that, barring the shift in the arguments, the input approximation coe�cients
correspond to the lambda sequences. Of course, one cannot simply disregard the shift | it
forms an integral part of the equation. If we are dealing with a scheme for which m

2
is an

integer, such as the cubic (m = 4) scheme, one can apply a simple change of variable and
include the shift in the lambda sequences indices:

(QkI)(x; y) =
X
l

X
m

(�kI)(l +
m

2
;m+

m

2
)Nm(x� l)Nm(y � l): (30)

We may then make the identi�cation: c0
ij
= (�kI)(i+

m

2
; j + m

2
).

However, if the shift is not integral, as is the case for the quadratic scheme (m = 3), then
one cannot do this. The question is, given our desire to use the quadratic scheme, how do we
get around this? We used the following approach. Since (QkI)(x; y) = I0(x+ m

2
; y + m

2
), we

may still match the coe�cients, provided that we remember that what we are now dealing
with is a shifted version of the input image. This means that all our subsequent approximation
images will also be shifted; in fact, our �ltering scheme will now generate the coe�cients for
our shifted detail and approximation images. Nonetheless, by evaluating the functions with
a negative shift added to the arguments, we can compute values as we normally would.
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