
Constraints on Objects, Conceptual Model and Implementation

Richard H. M. C. Kelleners

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and

Technical University of Eindhoven, Dept. Computing Science

Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands

E-mail: richard@win.tue.nl

Remco C. Veltkamp

Utrecht University, Dept. Computing Science

Padualaan 14, 3584 CH Utrecht, The Netherlands

Remco.Veltkamp@cs.ruu.nl

Edwin H. Blake

University of Cape Town, Dept. Computer Science

Rondebosch 7700, South Africa

e-mail: edwin@cs.uct.ac.za

Abstract

This paper presents the design and implementation of a model for combining ob-

ject oriented programming and constraint programming. This model aims to be an aid

in the development of computer graphics applications that use these two programming

paradigms.

We �rst identify the typical aspects of the paradigms and how they conict with each

other. Next, we show how these conicts are solved in the model by radically separating

the object oriented paradigm from the constraint paradigm. The communication between

these two systems is then managed by a third party.

A prototype of the model was implemented, based on a coordination language a

language for managing concurrent, independent processes. This allows us to build an

ideal implementation. Although this ideal implementation does not yield the necessary

performance in speed, it clearly demonstrates that the model provides an appropriate

way for setting up an application that incorporates object oriented programming as well

as constraints.

1 Introduction

In today's interactive graphics applications, such as drawing applications, CAD/CAM sys-
tems, systems for visualization, simulation, animation, etc., we can often recognize two basic
design methodologies. These two are object oriented programming and constraint program-
ming. Object oriented programming is widely used to design and implement graphics systems,

1



both in commercial and research �elds. On the other hand, the usage of constraints and con-
straint solving techniques is not so widespread in the commercial world, but it has a long
history in research and dates back to the �rst days of interactive graphics ([Sut63]).

Both methodologies are powerful techniques for building computer graphics applications.
Object oriented methods provide sound software engineering principles needed to cope with
the design and implementation of large, complex software systems. The use of constraints
allows for the declarative modeling of the behaviour of animations and interactions with many
components or objects.

The power of both approaches justi�es for a combination where objects and constraints
are uni�ed in a harmonious and coordinated whole. However, integration leads to conicts
in programming methodologies ([FBB92]), which obstructs the application of constraints in
the object oriented approach. We distinguish two incompatibilities between constraints and
object oriented concepts:

� A constraint solver looks at and sets the internal data of an object.
� Object oriented programming is imperative, and constraint programming is declarative.

The �rst incompatibility conicts with the information hiding principle in the object ori-
ented paradigm. The second incompatibility identi�es a di�erence in programming method-
ology: object oriented programming speci�es the actions to be taken (imperative program-
ming), while constraint programming speci�es a set of constraints that have to be maintained
(declarative programming).

A number of ways have been described to combine objects and constraints. Some methods
are completely based on message passing. In [LvdB91], the methods of an object that may
violate constraints are guarded by so-called propagators. The propagators send messages to
other objects to maintain the constraints. This technique is similar to the pre- and postcon-
dition facilities in Go [Dav91] [GoP93]. This approach is limited to constraint maintenance,
starting with a consistent situation.

Equate [Wil91] uses term rewriting as a guide to �nd solutions. Constraints are speci�ed
as equations, and rewrite rules convert equations into equivalent sets of equations that can be
solved by messages to an object. The rewrite rules which rewrite the equations are provided
by the classes and are similar to the program clauses of logic programs. The Object-Oriented
Constraint System (OOCS) [HB94] is similar, does not use term rewriting. Instead, an object
supplies a set of solution program segments for each constraint that has been imposed upon
it. The object guarantees that execution of any of these segments will leave the object in a
state which satis�es the constraint. OOCS then solves a set of constraints by determining
which program segment steps interfere with each other. By arranging the solution steps, the
OOCS solver is able to decide which are feasible solutions, if any.

These systems often cannot solve global constraints, due to the local character of the
satisfaction mechanism. More powerful solutions are necessarily global in nature. The danger
is that all objects need methods to get and set their internal data. This however, allows
every other object to get and set these values, which is clearly against the object-oriented
philosophy. One way to restrict this, is to have an object allow value setting only when
its internal constraints remain satis�ed (see [Ran91]). A constraint could be made internal
by constructing a `container object', which contains the constraint and the operand objects,
but this does not solve the basic problem. Another approach is to limit access to private
data to constraint-objects or the constraint solver-objects only. For example, C++ provides

2



the `friend' declaration to grant functions access to the private part of objects. This is also
comparable to the approach taken by [CBL91], where special variables (slots) are accessible
by constraints only. However, encapsulation is still violated, and the C++ friend construct
could be easily misused.

On the other hand, under strict information hiding, constraint satisfaction on objects
cannot be guaranteed [VK95]. If one is to sacri�ce strict information hiding in order to
facilitate constraint satisfaction, care should be taken not to allow abuse. The proposed
solution is to separate the object oriented application from the constraint framework and let
the two systems then communicate via a communication scheme that is di�erent from the
message passing activity.

The separation provides a remedy to the above mentioned incompatibilities. Firstly,
the communication scheme takes place orthogonal to the objects' message passing activity,
which guarantees that the information hiding conict among objects will not be violated.
Secondly, separation of the object oriented application from the constraint framework creates
a decoupling between the imperative and the declarative paradigms. This facilitates the
design, implementation and maintenance of the systems, without sacri�cing any of the power
of both methodologies.

In this document, we present a conceptual model that uses this separation for building
computer graphics systems that use both objects and constraints. Section 2 present the
conceptual model. In section 3, we describe an implementation of the model using the
coordination language MANIFOLD. The last section discusses directions for future research.

2 Conceptual model

The conceptual model o�ers a controlled way of dealing with the violation of the information
hiding principle by separating the object oriented framework from the constraint framework.
The two frameworks communicate by a separate third-party communication protocol that is
di�erent from the typical object oriented message passing activity.

There are the following types of entities: constraints, constrainables, solvers, coordina-
tors, and a single Communication Server, see Figure 1 for an overview. Informally, the
constrainables correspond to objects in the object oriented application and can be subjected
to constraints. The constraints specify relations among the constrainable entities they op-
erate on. A solver computes values for (the attributes of) constrainables that satisfy the
constraints imposed on them. Coordinators are responsible for the coordination of possi-
bly multiple, concurrently operating constraint solvers, depending on the type of constraint
solvers. For example, constraint satisfaction by local propagation needs other coordinators
than constraint satisfaction by solving a set of equations. The communication between con-
straints, constrainables, solvers, and coordinators is done by event raising and data ows.
Those events are handled by the Communication Server. It sets up and destroys data ows
when needed.

2.1 Communication Server

The Communication Server manages the communication between the entities in the concep-
tual model. The general outline of the Communication Server was inspired by the language

3



Constraints

Coordinators

Solvers

Constrainables

Communication Orchestrator

Figure 1: Constraints, constrainables, solvers, and coordinators communicate with each other
via events (zigzag arrows) and data ows (double arrow), which are provided by the Com-
munication Server.

MANIFOLD and its underlying concepts (see section 3.1 and [Arb96]). The two most impor-
tant notions are event and data ow.

event An event is an asynchronous, non-decomposable (atomic) message, broadcasted by the
Communication Server or by a constrainable, constraint, solver, or coordinator entity.

� Raising an event means that it is broadcasted to the environment. An entity that raises
an event is called the event source.

� Posting an event means that it is detectable only to the entity itself. We call a posted
event internal.

� An event contains a data structure holding the name (or type) of the event and a
reference to the source that raised it.

An event can be raised by the Communication Server and by any entity (constrainable,
constraint, solver, or coordinator). An entity can show its interest in an event by registering
itself to the Communication Server. It can register itself for a certain event type raised
by a certain entity, for a certain event type raised by any entity, for any event raised by
a certain entity, or for any event raised by any entity. All raised events are picked up by
the Communication Server and are forwarded to entities that are interested in these events.
Entities have an event memory where the Communication Server places the event. Posted
events are placed only in the event memory of the posting entity. The entities are polling the
event memory to see if they have received an event. They can identify these events and take
proper action. An entity that raises an event can make no assumptions on who receives the
event and when or in which order received events are processed.

4



b.a.

Figure 2: A constrainable can communicate with other objects via message passing (a) and
with entities of the conceptual model via events and data ows (b).

data ow A data ow is the transport of units of data. This ow is always in one direction
and has a beginning and an end.

� A data ow has an input side, called the source, and an output side, the sink.
� When data enters a data ow at the source, it is delivered to the data ow's sink,
without loss, error, or duplication, and the order preserved.

� The data is transported through a channel, which is created and deleted by the Com-
munication Server.

The moments at which channels are created, and between which entities depends on the
actions that entities take. An entity can request the Communication Server to create a
channel by raising an event.

At the beginning and end of a channel are entities. The connection point for a channel is
a port:

port A port is a named `opening' to an entity, through which data can be exchanged.

� Ports can be guarded by a condition, for example to see if there is a data ow connected
to it. If the condition is true, then an event is posted to notify the entity.

By means of events and data ows, entities can communicate in a way that is completely
orthogonal to the message passing framework of the object oriented application.

2.2 Constrainables

Objects on which constraints can be imposed, need some extra functionality to make them
suitable for constraint solving. It is necessary that they can notify the environment of state
changes and that they provide access to internal data for a constraint solver. Objects with
this extra functionality are called constrainable objects or just constrainables.

A constrainable object communicates with its environment in two ways. It can send
messages to other objects, which is the normal way of communication in an object oriented
environment. Message passing is prohibited when constraint solving takes place. When

5



constraints are being solved the constrainable communicates with other entities through data
ows. This is illustrated in Figure 2. The curved arrows in the �gure are messages sent
or received by the objects. The zigzag arrows depict events. The rectangles inside the
constrainable object represent its internal data, the squares on the object boundary depict
the ports to which data ows can be connected.

A constrainable is in one of two modes, the solving mode, caused by an event, called
E-solving-mode, or the normal mode, caused by the event, called E-normal-mode. When the
constrainable is in normal mode, it communicates with other objects via messages. When it
is in solving mode, it communicates with other entities through data ows. In both modes
the constrainable can raise and detect events.

A constrainable has the following ports:

� P-state-in. Through this input port, the constrainable receives a new state from a solver.
There is a guard that posts the event E-state-in when data arrives.

� P-state-out. Through this output port, the constrainable transmits its current state to
a constraint or to a solver. There is a guard that posts the event E-state-out when a
connection to the port has been made.

A constrainable reacts to the following events:

� E-solving-mode. This event is raised by a constraint on this constrainable, or by a
coordinator. In reaction to this event, the constrainable delays the handling of messages
from other objects until reception of the E-normal-mode event.

� E-normal-mode. This event is also raised either by a constraint on this constrainable or
by a coordinator. Upon reception of this event, the constrainable resumes the handling
of messages.

� E-state-out. This is an internal event. The constrainable puts its internal data on the
P-state-out port.

� E-state-in. This is also an internal event. The constrainable copies data from the P-
state-in port to its variables. The source of the channel connected to P-state-in is the
solver that has computed a new state for this object.

A constrainable can raise the following event:

� E-changed. This event is raised when its internal state is changed by methods of the
object. No event is raised when the state changes by copying data from the P state in
port.

2.3 Constraints

A constraint speci�es a relation among a set of constrainables. It does not compute a solution
to satisfy the relation it describes, this is done by a solver entity (see section 2.4). In an
actual application, a constraint and a solver for that constraint may be implemented as a
single object, but in the conceptual model they are distinguishable entities with a speci�c
functionality.

A constraint has the following ports:

� P-state-in. Through this input port, the constraint receives the state of an operand
from that constrainable. There is no guard on this port. Data only arrives at this port
after the constraint has requested it.

6



� P-param-out. Through this output port, the constraint sends additional data (to the
coordinator), e.g. the size of the violation error, or the changed operands. There is a
guard that posts the event E-param-out when a connection to the port has been made.

� P-constrainable-out. Through this output port, the constraint sends constrainable iden-
ti�ers of its operands to a solver. There is a guard that posts the event E-constrainable-
out when a connection to the port has been made.

� P-commserv-out. Through this port, the constraint sends constrainable identi�ers to
the Communication Server in order to establish a channel between the constraint and
that constrainable (see below).

A constraint reacts to the following events:

� E-changed. This event is raised by a constrainable that is its operand. Upon reception
of this event, the constraint collects the states from its operands and checks whether
the constraint relation still holds. Collecting the data is done by raising the event
E-state-needed (see below).

� E-constrainable-out. This is an internal event. The constraint puts constrainable iden-
ti�ers on the P-constrainable-out port, which will be received by a solver.

� E-param-out. This is an internal event. The constraint sends data through the P-param-
out port.

A constraint can raise the following events:

� E-violation. This event is raised in order to let the coordinator know when the constraint
relation does not hold.

� E-solving-mode. This event is raised in order to put the constrainables that are its
operands in solving mode.

� E-normal-mode. This event is raised in order to put the constrainables that are its
operands in normal mode, again.

� E-state-needed. This is raised to let the Communication Server make a channel between
the P-state-in port of the constraint and the P-state-out port of each of its operands.

A constraint entity, and similarly solver and coordinator entities, can raise events to
request the Communication Server to create channels. Depending on the event type, the
Communication Server knows which ports have to be connected. E.g., when a constraint
raises E-state-needed, a channel has to be created between P-state-out of an entity (in this
case, a constrainable) and P-state-in of the constraint. After an entity has done the request
(i.e., raised the event), it sends an identi�er of the entity through the P-commserv-out port.
This identi�er is then received by the Communication Server and used to create the channel.

2.4 Solvers

A solver calculates values for the collection of constrainables that satisfy the constraints that
the solver operates on. It takes one or more constraints as input and, after performing the
necessary calculations, it sends values to the constrainables that satisfy the constraints. A
solver may be a dedicated solver that solves only one constraint, but it can also solve a set
of constraints.

A solver has the following ports:

7



� P-constrainable-in. Through this input port, the solver receives constrainable identi�ers
from the constraint. There is no guard on this port, since data only arrives after the
solver has requested it.

� P-constraints-in. Through this input port, the solver receives constraint identi�ers from
the coordinator. There is a guard that posts the event E-constraints-in when data
arrives.

� P-state-in. Through this input port, the solver receives the state of a constrainable.
There is no guard on this port. The solver waits for data at this port after he has
requested it.

� P-state-out. Through this output port, the solver sends the state of a constrainable.
Again, there is no guard on this port. The solver sends the data after it has requested
the Communication Server to create the channels.

� P-param-in. Through this input port, the solver receives additional parameters which
may be needed during solving from the coordinator. There is a guard that posts the
event E-param-in when data arrives.

� P-param-out. Through this output port, the solver sends results to the coordinator
concerning the outcome of its calculations. There is a guard that posts the event E-
param-out when a connection to the port has been made.

� P-commserv-out. This is the output port for sending constrainable and constraint iden-
ti�ers to the Communication Server.

A solver reacts to the following events:

� E-constraints-in. This is an internal event. The solver reads constraint identi�ers from
the P-constraints-in port.

� E-param-in. This is an internal event. The solver reads data from the P-param-in port.
� E-param-out. This is an internal event. The solver puts data on the P-param-out port.

A solver can raise the following events:

� E-state-needed. The event is raised in order to let the Communication Server create a
channel between the P-state-in port of the solver and the P-state-out port of a constrain-
able. The solver communicates the constrainable identi�cation to the Communication
Server through the P-commserv-out port.

� E-state-available. The event is raised in order to let the Communication Server cre-
ate a channel between the P-state-out port of the solver and the P-state-in port of a
constrainable.

� E-constrainable-needed. The event is raised to let the Communication Server create a
channel between the P-constrainable-out port of a constraint and the P-constrainable-in
port of the solver.

A solver is triggered when a coordinator puts constraint identi�ers on its P-constraints-in
port. Additional data may arrive on the P-param-in port (from the coordinator), which the
solver can use in its solving algorithm.

Before starting the calculations, a solver requests constrainable identi�ers from the con-
straints by raising the E-constrainable-needed event. The Communication Server will create
channels from the P-constrainable-out ports of the constraints to the P-constrainable-in port

8



of the solver. The constraint identi�ers needed by the Communication Server to create the
channels, are transmitted through the P-commserv-out port.

When the solver has all identi�ers, it raises the E-state-needed event to fetch the states of
the constrainables. Again, this event is picked up by the Communication Server, which creates
channels between the P-state-in port of the solver and P-state-out ports of the constrainables.
The identi�ers of the constrainables are communicated to the Communication Server through
the P-commserv-out port.

When a solver has calculated values that satisfy the constraints, it raises the event E-state-
avail and sends the states through its P-state-out port. The Communication Server creates
the channels in the same way as when the states were fetched.

If the solver has �nished its calculations and there is a connection to the P-param-out port
(which is created by the coordinator), the solver will put the results of the calculations on
this port.

2.5 Coordinators

A coordinator is concerned with conducting a number of constraint solvers. Any particular
coordinator has a speci�c solving strategy to solve a collection of constraints. For example,
there can be a coordinator which guides local propagation, a coordinator for relaxation, one
for solving numerical constraints, etc. Each strategy requires a di�erent way of triggering the
solvers. The task of the solver coordinator is to trigger the proper solver at the proper time.

A coordinator maintains a data structure in which it stores all constraints and their
operands. This data structure, we will call the constraint network. From this network, it
can derive how constrainables and constraints are interrelated. Furthermore, a coordinator
stores for each constraint which solver types can solve the constraint.

A coordinator has the following ports:

� P-constraints-in. Through this input port, the coordinator receives constraint identi�ers
from another coordinator. There is a guard that posts the event E-constraints-in when
data arrives.

� P-constraints-out. Through this output port, the coordinator sends constraint identi�ers
to a solver or other coordinator that has to solve the constraints. There is no guard
on this port, since the coordinator requests the Communication Server to create the
channels.

� P-param-in. Through this input port, the coordinator receives additional parameters
from a constraint. There is no guard on this port.

� P-param-out. Through this output port, the coordinator sends additional parameters
to a solver. Again, there is no guard on this port.

� P-commserv-out. This is the output port for sending constraint and solver identi�ers to
the Communication Server.

A coordinator reacts to the following events:

� E-violation. Raised by a constraint. When the coordinator detects this event, it will
start its speci�c strategy in order to satisfy all constraints.

� E-constraints-in. This is an internal event, posted by a guard when there is data on
P-constraints-in.

9



A coordinator can raise the following events:

� E-solving-mode. This event is raised in order to put the constrainable entities this
coordinator handles in solving mode.

� E-normal-mode. This event is raised in order to put the constrainable entities this
coordinator handles in normal mode.

� E-param-needed. This event is raised in order to retrieve data from a constraint or a
solver or another coordinator.

� E-param-avail. This event is raised when the coordinator wants to send data to a solver
or another coordinator.

� E-constraints-avail. This event is raised when the coordinator wants to send constraint
identi�ers to a solver or another coordinator.

When there is no constraint solving taking place, a coordinator waits for the events E-
violation or E-constraints-in. When the event E-violation is detected, the coordinator will start
its speci�c strategy to solve all the constraints in its constraint network. When the coordinator
detects the E-constraints-in event, it will receive constraints on the P-constraints-in port and
starts solving this network of constraints.

When a violation event E-violation from a constraint is received, the coordinator will put
all constrainables, that are managed by the coordinator in solving mode by raising the event
E-solving-mode. Next, it will analyze the network to decide which constraints will be solved
by which solvers. A coordinator can also decide to let a part of the network be solved by
another coordinator.

The coordinator triggers a solver or coordinator by raising the event E-constraints-avail and
sending an entity identi�cation through the P-commserv-out. The Communication Server will
then create a channel between port P-constraints-out of the coordinator and P-constraints-in
of the entity. If the coordinator also raises the event E-param-avail, a channel will be created
between the P-param-in/out ports of both entities.

Finally, the coordinator will raise the event E-param-needed, in order to retrieve results
from the solvers and/or coordinators. The channels are created in the similar way as described
above. If the coordinator wants to end all constraint solving, it raises the E-normal-mode
event, which places all constrainables in normal mode.

2.6 Example

We will now demonstrate the operation of the model by means of an example. In the example,
there are two coordinators. One coordinator uses a local propagation algorithm to solve a
constraint network. We will call this coordinator, the lp-coordinator. The other coordinator
solves a constraint network by putting the constraints in a form that can be handled by a
numerical solver. We will call this one, the num-coordinator.

Suppose, that there is a collection of constrainables, constraints, and the two coordina-
tors, and that the constraint network corresponding to the existing entities is known to the
lp-coordinator. Furthermore, we assume that for every constraint entity in the constraint
network, there is a solver entity that can calculate a local solution for that constraint and
there is a separate solver that uses some numerical technique to solve a set of constraints.

When the state of a constrainable changes, this entity will raise the E-changed event. This
event is received by the constraints that operate on this constrainable. (The raised E-changed

10



is picked up by the Communication Server and placed in the event memories of all constraints
that operate on the constrainable.)

The triggered constraints will start their validity checking procedure. They will �rst raise
the E-solving-mode event to put their operands in solving mode and lock them from message
passing. After that, each constraint will raise the event E-state-needed and send identi�ers to
its operands through P-commserv-out, in order for the Communication Server to create the
channels.

When a constraint has received the object states, it will check its validity. If it is still
valid, it will raise the E-normal-mode to unlock the constrainables and no further action is
taken. If the constraint is violated, however, it will raise the event E-violation which is picked
up by the lp-coordinator.

The lp-coordinator will �rst raise the event E-solving-mode to put all constrainables in
solving mode. Next, for each constraint that raised the E-violation event, the corresponding
solver (that can calculate a local solution) has to be triggered. A solver is triggered by a
connection to its P-constraints-in port. The coordinator requests the Communication Server
to create this channel by raising the E-constraints-avail event and sending the solver identi�er
through P-commserv-out.

A local solver should leave the state of the changed constrainable untouched. Therefore,
the identi�er for this constrainable is sent to the solver. The coordinator retrieves this
identi�er from the constraint that raised E-violation, via the P-param-in port, and sends it to
the solver via the P-param-out port (by raising the appropriate events for the Communication
Server).

A solver that is triggered reads a constraint identi�er from P-constraints-in and one or
more constrainable identi�ers from P-param-in. Next, it fetches the constrainable identi�ers
from the constraint (via the E-constrainable-needed event) and subsequently the states of these
constrainables (via the E-state-needed event). When the solver has calculated a solution, it
assigns the new states to the constrainables (via the E-state-avail event). If the solver could
not compute a solution, no assignment to the constrainables is done.

Meanwhile, after having triggered all solvers, the lp-coordinator starts fetching the results
of the calculations. A result is obtained via the P-param-out port of a solver and contains the
identi�ers of the constrainables that the solver changed or, in case no solution was found, an
indication that solving failed.

Consulting its internal constraint network, the lp-coordinator (based on the changed con-
strainables) determines which constraints have to be solved next. It then triggers the local
solvers that should calculate a solution for the newly found constraints. These steps are
repeated, until no more constraints are determined.

When the lp-coordinator is �nished with its algorithm, it raises the E-normal-mode event
to put all constrainables back to normal mode.

In general, a local propagation algorithm cannot handle cycles in a network. Local prop-
agation only tries to �nd local solutions for each constraint, but does not maintain a global
overview of the network. As a result, the algorithm can wind up in an endless loop if it
continuously tries to �nd local solutions for constraints in a cycle. A way to avoid this, is to
analyze the network and isolating constraints in a cycle, before initiating the local propaga-
tion algorithm. These isolated constraints can then be solved in some other way, using more
sophisticated solvers.

11



The lp-coordinator in our example will use the num-coordinator for solving constraints
that are in a cycle. Before executing the local propagation algorithm, it analyses the network
and marks all constraints that are in a cycle. When, during propagation, a marked constraint
is reached, all constraints in the cycle are collected and send to the num-coordinator. The
num-coordinator is triggered by the connection to its P-constraints-in port and will subse-
quently trigger the numerical solver to try and �nd a solution for the constraints.

The sending of constraints and parameters to the num-coordinator, as well as fetching
the results afterwards, is done in the same way as triggering a solver. This implies that for
a coordinator, there is no di�erence in triggering a solver or another coordinator. In this
way, hierarchies of coordinators can be easily built and solver and coordinator entities can
be interchanged without having to change a coordinator that triggers these entities.

3 Implementation

We have implemented a prototype of the conceptual model. This prototype was built on
the language MANIFOLD which enabled us to build an ideal implementation. Ideal meant
(1) a clear separation between the object oriented world and the constraint world and (2)
communication among the entities of the model via events and data ows. Using the language
constructs of MANIFOLD (see below), a one-to-one mapping between the conceptual model
and implementation could be achieved.

Because focus was aimed at building an ideal implementation in order to study the be-
haviour of the model, performance issues, such as the e�ciency and speed of the system, were
not considered during the design process.

In the next section, we will describe MANIFOLD. Section 3.2 presents an overview of the
implementation.

3.1 Manifold

MANIFOLD is a coordination language for managing complex, dynamically changing inter-
connections among sets of independent, concurrent, cooperating processes ([AHS93]). The
language is based on the IWIM (Idealized Worker Idealized Manager) model of communica-
tion ([Arb96]). This model describes a communication protocol which makes a distinction
between worker processes, i.e. processes that perform a computational task, and manager

processes, i.e., processes that manage communications. The IWIM model separates compu-
tation from communication concerns and establishes that no process is responsible for its own
communication with other processes. It is always the task of a manager process to arrange
necessary communication among a set of worker processes. Furthermore, a manager pro-
cess may itself be considered as a worker process by another manager process, which allows
hierarchies of communicating processes to be built.

The basic concepts in the IWIM model are processes, events, ports, and channels. A
process is a black box with well-de�ned ports of connection through which it exchanges units
of information with other processes in its environment. Interconnections between ports are
made through channels, which are communication links that carry units of information.
Independent of the communication via channels, there is an event mechanism for information
exchange in IWIM. Events can be broadcasted into the environment and picked up by any
process.

12



Constraint System

Manifold system

Constraint
processes

Constrainable Coordinator

Application
component

Admini-
strator
component

processes processes
Solver

processes

Figure 3: Overview of the implementation.

MANIFOLD is an implementation of the IWIM model and each of the basic concepts of
process, event, port, channel in IWIM corresponds to an explicit language construct. Every
process has an individual set of ports which serve as connection points for the channels (called
streams in MANIFOLD). A process can raise events and can also decide for which events it is
sensitive.

A manager process, called a manifold, is always written in the MANIFOLD language.
Worker processes can be written in any other language, such as C, C++, Fortran, etc.
Corresponding to the IWIM model, a manager process does not di�erentiate between worker
processes and manager processes. A manager process, written in the MANIFOLD language,
has a number of `states'. A state consists of a state label and a state body. A state label
speci�es a pattern of event occurrences that may cause a transition to that state. In the
state body, processes and streams can be created and removed. The notions of manner
(comparable to procedures in conventional languages) and nested states provide means to
write well-structured code.

3.2 Implementational model

The implementation of the conceptual model is subdivided into four main components (see
Figure 3).

� The application component,
� the constraint system,
� the administrator component,
� the MANIFOLD system.

The application component is an object oriented application (OO-application) in which
objects communicate with each other via message passing. Some objects, the ones on which
constraints should be imposed, are extended with additional functionality, which allows them
to communicate with the constraint system (see below). These extended objects are called
the constrainables. When no constraint solving is at hand, the constrainables behave as
ordinary objects. During constraint solving, message passing is locked and communication
takes place via events and data ows.

13



The application component also provides constraint objects. A constraint object speci�es
a relation among constrainables. All calculations for checking the constraint's validity or
constraint solving are done in the constraint system.

The constraint system consists of a collection of MANIFOLD processes. Four kinds of
processes can be di�erentiated:

� Constrainable processes,
� Constraint processes,
� Solver processes,
� Coordinator processes.

For each constrainable in the OO-application on which a constraint is imposed, there
is a Constrainable process in the constraint system. Similarly, for every constraint in the
application there is a Constraint process. There are Solver processes to calculate valid so-
lutions for the constraints and Coordinator processes for guiding the Solvers. Creation and
removal of the Constrainable and Constraint processes are dynamically controlled by the OO-
application. The management of Solvers and Coordinators (in the current implementation)
is done by the administrator component.

The administrator component manages all administration concerning creation and re-
moval of Constrainable, Constraint, Solver, and Coordinator processes. This also entails
providing some functionality to facilitate the communication between the OO-application
and the constraint system.

Finally, the MANIFOLD system is the underlying system that manages initialization and
termination of the system, all event handling, stream creation and removal, and process
creation and removal.

The implementation maps to the conceptual model in the following way. The admin-
istrator with the MANIFOLD run-time system comprise the Communication Server. The
Constraint, Solver, and Coordinator processes of the implementation map directly to the
corresponding entities of the conceptual model. The constrainable entity consists of two
parts: the part that communicates via message passing is implemented as constrainable ob-
ject in the application. The part that communicates via events and data ows is implemented
as a Constrainable process in the constraint system.

In the next subsections, we will treat each component in more detail. Sections 3.3 and 3.4
present an application that has been built on this model.

3.2.1 Application component

The application is written in an object oriented programming language, in this case C++.
There are three C++ classes that enable a programmer to use the constraint system. These
classes are Constrainable, Constraint, and CommHandler. Class Constrainable provides
the functionality for constrainable objects. A constrainable object consists of two parts:
the �rst part is implemented as the C++ object in the application, the second part is the
MANIFOLD process. During `normal' operation, the C++ object communicates with other
objects via message passing. When constraint solving is at hand, the state of the object is
copied to the MANIFOLD process which then communicates with other processes via events
and data ows.

14



An application programmer is not concerned with the MANIFOLD part of a constrainable
object. If a new class has to be created for objects on which constraints will be imposed,
this new class has to inherit from Constrainable. If there is an already existing class, and a
programmer wants to be able to impose constraints on objects of this class, a new class has
to be created that inherits from both the existing class and Constrainable.

A class inheriting from Constrainable has to implement a method frame data() that
is required for class Constrainable and has to (re)implement methods that must trigger
constraint solving. In the method frame data(), messages of super-class Constrainable

are used to indicate the internal variables that are involved in constraint solving. A method
that has to trigger constraint solving must call the message commit(). commit() is a special
message of class Constrainable that, when executed, locks the calling object and copies its
state to its MANIFOLD counterpart.

Class Constraint provides the functionality for imposing constraints on constrainable
objects. An actual constraint consists of two parts; one part resides as an object in the
C++ application and one is a MANIFOLD process in the constraint system. The constraints
in the application specify the relation among a set of constrainables. When a constraint is
speci�ed, the correspondingMANIFOLD processes are created in the constraint system. Once
these processes are set up, only these are used during constraint solving.

Class CommHandler is the class that takes care of the communication between the sequen-
tial C++ application and the set of concurrent MANIFOLD processes. The application has
exactly one object of this class. Created constraints are registered to the CommHandler ob-
ject which communicates them to the constraint system. During run-time, the CommHandler
object gets control when a new constraint is created or when a constrainable object performs
its commit() function. When in control, it handles requests from MANIFOLD processes. In
the case of constraint creation or removal, this involves requesting the constraint object to
send its type and operands. In the other case, this involves requesting constrainables to send
or receive states.

3.2.2 Constraint system

For each entity that occurs in a component of the conceptual model, there is a MANIFOLD
process in the implementation. This means that there are constrainable processes, constraint
processes, solver processes, and coordinator processes. Constrainable and constraint processes
correspond to constrainable and constraint objects in the C++ application. Solver and
coordinator processes are instantiated by the administrator component at the initialization
of the system.

A constraint process is created as soon as a constraint object is created in the application.
At the same time, also the constrainable processes are created that are the operands of the
constraint. After successful creation, the newly created constraint processes are registered to
the coordinator (by the administrator).

Every process is only sensitive for a speci�c set of event types. At process creation
time, this is initialized by the administrator. A constrainable process only detects events
from constraint processes and coordinator processes that operate on it. A constraint process
detects events from the constrainables it operates on and the coordinator process that is
concerned with solving that constraint. Finally, a coordinator process can detect events from
the constraint processes it administers.

15



The operation of the constraint system is as described in the conceptual model. I.e.,
when the user of the application changes one of the objects, the corresponding constrainable
process in the constraint system raises the E-changed event. This event is picked up by the
constraints that operate on the object. Constraints that are violated, raise the E-violation
event and in this way trigger the coordinator to start its solving strategy. The coordinator,
after having put all constrainables in solving mode via the E-solving-mode event, triggers the
solvers or other coordinators. When �nished, it raises E-normal-mode to put all constrainables
in normal mode and let them proceed their `ordinary' operation.

A constrainable process in the constraint system is responsible that it has the most recent
state of the corresponding constrainable object in the application. Therefore, the constrain-
able process fetches the state of the object when it has to switch to solving mode (i.e., when
it receives the E-solving-mode event). When it switches back to normal mode again, it copies
the state back to the object. Since during normal operation, the constrainable process doesn't
change and, during constraint solving, the constrainable object is locked, this guarantees that
the state of the constrainable entity is always consistent.

3.2.3 Communication Server

The Communication Server, as described in section 2.1, is implemented by the administrator
component and MANIFOLD. The administrator performs the administration tasks, such as
storage of references to all created processes. MANIFOLD takes care of all the event handling,
stream creation and removal, and the actual process creation and removal.

The system is initiated by a small MANIFOLD program which invokes the administrator.
The administrator then starts the coordinators, solvers, someMANIFOLD processes that han-
dle communication, and �nally the application. The MANIFOLD processes that are activated
by the administrator are `manager' processes (see section 3.1), which take care of the com-
munication with the `worker' processes that represent the entities of the conceptual model.
E.g., there is a manager process that handles communication with the administrator itself,
a manager process for the application and a process for the coordinator, and there will be
manager processes for the created constraint processes.

When a constraint is declared in the application, the CommHandler object raises an event
which is picked up by the administrator. The CommHandler object then exchanges (via
streams) the constraint data to the administrator. The latter orders MANIFOLD to create
constraint and constrainable processes. After MANIFOLD has created the processes, it also
creates streams from the administrator to the newly created processes in order to initialize
them. Finally, the coordinator has to be noti�ed of the newly created constraint. This is done
by raising an event, upon which MANIFOLD creates a stream between the administrator and
the coordinator, and sending the constraint data through this stream (by the administrator).
The same sequence is executed when a constraint is removed in the application.

3.3 Example: local propagation

The application component is an object oriented system, written in C++, for drawing and
modifying geometrical objects. A user can draw and modify circles, rectangles, lines, etc.
and impose constraints among them, such as touch, equal area, etc. The main activities of
the application are the interaction with the user and the administration of the user-created
objects.

16



The network that is formed by the objects and constraints is solved by a coordinator that
uses a simple local propagation algorithm, similar to the one described in section 2.6. For
each constraint, there is a solver which can compute a local solution for that constraint. In
the current implementation, we combined a constraint and its solver into one MANIFOLD
process, for convenience.

The constraint mechanism is activated by a constrainable that raises the E-changed event.
Here upon, violated constraints will raise E-violation, which will trigger the local propagation
coordinator to start its solving algorithm. The coordinator will subsequently trigger solvers
that compute local solutions. Since constraint and solver are combined in one MANIFOLD
process, it is not necessary for the coordinator to send a constraint identi�er to the solver
(indeed, in the current implementation, the local solver is a part of the constraint). The
coordinator triggers a solver by sending a constrainable identi�er to the entity's P-param-in
port.

A local solver computes a solution that satis�es the constraint. In case more solutions
are possible (e.g., a constraint that speci�es that a circle and rectangle should touch, has an
in�nite number of solutions, even if one of the objects is �xed), the local solver picks one.
Currently, the solution chosen obeys the `principle of least astonishment'. I.e., the solver
tries to �nd a solution that the user would expect. E.g., in case of a touch constraint, the
solver calculates the shortest vector between the two constrainables, and translates one of
them over this vector. This behaviour could be adapted by sending additional data for the
solver through the P-param-in port. E.g., data that indicates that the solver should not take
the shortest vector, but should resize the object.

If a solver calculated a solution which validated the constraint, the constrainables are
updated by the solver and the identi�ers of the changed operands are sent to the coordinator.
If a local solver did not change any operands (either because it could not �nd a solution, or the
constraint wasn't violated), a noti�cation is sent to coordinator. In that case, the coordinator
will not propagate to constraints that come after the corresponding constraint.

The simple local propagation coordinator cannot handle cycles. In case there are cycles in
the network, it can happen that the coordinator winds up in a loop, continuously triggering
constraints around the cycle. Endless looping is prevented by marking each constraint that
is triggered. If a constraint is marked more than a certain number of times (currently, this
number is arbitrarily set to 5), the constraint will not be triggered again.

3.4 Example: cooperating coordinators

An extension of the previous implementation demonstrates the cooperation of two coordi-
nators. Again, the application component consists of a graphical system where geometrical
objects can be created, modi�ed, and removed, and in which constraints can be imposed on
these objects.

The geometrical objects that occur in this application are points and lines. Constraints
among these objects state that one point should intersect another, that a point should in-
tersect a line, lines should be horizontal, a cloud of points should have a certain center of
gravity, etc. The common characteristic of all these constraint types is that all constraints
can be translated into a set of linear equations.

The network that is formed by a set of constraints and constrainables is now solved by
two coordinators. The �rst coordinator tries to solve the network by local propagation, as

17



described in section 3.3. As was pointed out, this coordinator cannot handle cycles in the
network. If it encounters a constraint that is in a cycle, it collects all constraints in that cycle
and sends them to the second coordinator. To detect, whether a constraint is in a cycle or
not, the local propagation coordinator does a pre-processing step before starting the actual
local propagation algorithm. In this pre-processing step, the constraint network is analyzed
and for each constraint is indicated whether it is part of a cycle or part of a tree.

The second coordinator can solve constraint networks in which the constraints are rep-
resented by linear equations. When solving the network, it �rst extracts all equations from
the constraints and sends all these equations to a numerical solver. This solver uses some
numerical method (LU-decomposition), to �nd a solution for the variables. Again, in the
implementation, for convenience, we combined the numerical solver and the coordinator into
one MANIFOLD process.

If the numerical solver �nds a solution for the constrainables, it assigns the new states to
them and sends identi�ers through the P-param-port to indicate the constrainables that were
changed during solving. In case no solution could be found, no assignments are done and the
�rst coordinator is noti�ed that solving failed.

The �rst, i.e. the local propagation coordinator, after having triggered all solvers and
possibly the numerical coordinator, then collects from all triggered entities the constrainables
that were changed and continues the algorithm. Finally, the local propagation coordinator
ends, when it doesn't �nd new constraints to be solved.

3.5 Evaluation

The system we implemented is a simple application for manipulating geometrical objects that
allows constraints to be imposed on the objects. When an object is adapted, the constraints
are solved by local propagation.

The system maintains a strict separation between the C++ application and the constraint
framework. In the application, the objects can only communicate with each other via mes-
sages. On the other hand, constraint and solver entities have direct access to the object's
internal state through the MANIFOLD interface. Furthermore, all of the elements of the con-
ceptual model, such as constrainables, constraints, data ows, events, etc., explicitly appear
in the implementation.

Having implemented the system, it turns out that a major drawback for using it as an
interactive drawing tool is the long delay time needed each time the constraints have to
be solved. This delay is caused by the fact that for each constrainable, constraint, and
coordinator entity, several MANIFOLD processes are instantiated which have to communicate
with each other via MANIFOLD streams that are constantly being created and removed.
These activities produce an overhead which makes the system take several seconds to solve
the constraints.

A solution to reduce the overhead can be achieved by reducing the number of independent
processes that need to communicate during constraint solving. However, doing this would
obscure the `one-to-one' mapping between the system and the conceptual model. As was
indicated before, e�ciency concerns were not taken into consideration when the system was
designed. Rather, the goal was to study the behaviour of the individual entities of the model
and to demonstrate that the proposed model of communication indeed separated the message
passing activity from the data ow communication used for solving the constraints. This has

18



successfully been illustrated.

4 Conclusion

In this paper, we presented a conceptual model for combining object oriented programming
with constraint programming, and described an implementation. The combination is achieved
by separating the object oriented framework from the constraint framework and let the com-
munication be managed by a third party. In the implementation all elements of the model
are clearly distinguishable programming constructs, and independent concurrent processes.
The communication takes place via events and data ows.

By separating the two programming paradigms, it is possible to maintain the power of
both without sacri�cing any of the typical characteristics. Furthermore, it provides a con-
trolled way of dealing with the information hiding conict and isolates the imperative object
oriented code from the code that has to maintain the declarative constraints. Separation en-
ables a modular design, which facilitates the design, debugging, modifying, and maintenance
of systems. As a result, code can be re-used more easily, allowing for solvers to be re-used and
plugged into other systems. Finally, the model o�ers a scheme which allows for modelling
several solvers that operate concurrently.

Currently, research is concerned with implementing the conceptual model into an existing
object oriented animation system. Now, the constraint management system that is developed
has to meet the high performance requirements of an interactive animation system. There-
fore, the ideal implementation in the separate coordination language will be deserted. The
implementational model will still show the conceptual elements, but actually the events and
data ows are implemented in the language of the animation system.

References

[AHS93] F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its im-
plementation. Concurrency: Practice and Experience, 5(1):23 { 70, February
1993.

[Arb96] Farhad Arbab. The iwim model for coordiantion of concurrent activities. In
Coordination Languages and Models, Lecture Notes in Computer Science, volume
1061, pages 34{56. Springer, 1996.

[CBL91] Eric Cournarie and Michel Beaudouin-Lafon. Alien: a prototype-based con-
straint system. In La�ra et al. [LBdMP95], pages 92{110.

[Dav91] Jacques Davy. Go, a graphical and interactive C++ toolkit for application data
presentation and editing. In Proceedings 5th Annual Technical Conference on

the X Window System, 1991.
[FBB92] Bjorn N. Freeman-Benson and Alan Borning. Integrating constraints with

an object-oriented language. In O. Lehrmann Madsen, editor, Proceedings

ECOOP'92{European Conference on Object-Oriented Programming, Utrecht,

1992, Lecture Notes in Computer Science 615, pages 268{286. Springer-Verlag,
1992.

[GoP93] Bull{Imaging and O�ce Solutions. GoPATH 1.2.0 | A Path To Object Oriented

19



Graphics, a public domain environment for graphical and interactive application
development, 1993.

[HB94] Quinton Hoole and Edwin Blake. OOCS - constraints in an object oriented
environment. In Proceedings 4th Eurographics Workshop on Object-Oriented

Graphics, Sintra, Portugal, pages 215{230, 9 { 11 May 1994.
[LBdMP95] C. La�ra, E. H. Blake, V. de Mey, and X. Pintado, editors. Object Oriented

Programming for Graphics, Focus on Computer Graphics. Springer, 1995.
[LvdB91] Chris La�ra and Jan van den Bos. Propagators and concurrent constraints.

OOPS Messenger, 2(2):68{72, April 1991.
[Ran91] John R. Rankin. A graphics object oriented constraint solver. In La�ra et al.

[LBdMP95], pages 71{91.
[Sut63] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication sys-

tem. In Proceedings of the Spring Joint Computer Conference, Detroit, Michigan,

May 21-23 1963, pages 329{345. AFIPS Press, 1963.
[VK95] Remco C. Veltkamp and Richard H. M. C. Kelleners. Information hiding and

the complexity of constraint satisfaction. In Remco C. Veltkamp and Edwin H.

Blake (eds), Programming Paradigms in Graphics, pages 49{66. Springer-Verlag,
ISBN 3-211-82788-9, 1995.

[Wil91] Michael Wilk. Equate: an object-oriented constraint solver. In Proceedings

OOPSLA'91, pages 286{298, 1991.

20


