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Abstract. At the expense of a small error in visibility classification, we remove
all invisible polygons. Thresholding and heuristics allows fine control over the
behaviour of this error. Our technique is applicable to both concave and convex
polygons. It exhibits sublinear computational complexity in the number of scene
polygons and logarithmic complexity in the number of cells, while effectively
exploiting graphics hardware.
The technique is classified as an aggressive from-region method in that it falsely
excludes a small subset of visible polygons and estimates visibility on a per cell
basis. A kd-tree hierarchy of visibility cells is built by sampling visibility across
their surfaces adaptively. Sampling is guided by a novel error heuristic and pro-
duces, by adaptive sub-division, a quad-tree like structure.
We have applied our technique to both a standard building scenes and a highly
complex natural scene. The results demonstrate that significant culling (94.5%
average) with low error rates (0.687% average) can be achieved with such scenes
in a reasonable period of time.

1 Introduction
Despite the power of modern graphics hardware, software techniques are still required
to reduce highly complex polygonal scenes to a manageable sizes. Visibility culling is
one such technique. Polygons which are not visible from a particular viewpoint do not
contribute to the final image, and may therefore be removed from consideration at an
early stage in the graphics pipeline. The challenge in visibility culling is to remove as
many unseen polygons as efficiently as possible.

Visibility culling may be solved as an (off-line) pre-process, at run-time, or as a
combination of the two. We advocate the use of a pre-processed visibility solution,
since a single (albeit lengthy) pre-process may yield considerable run-time improve-
ment. More importantly, a superior visibility solution demands non-trivial resources,
and cannot generally be implemented at run-time. However, one disadvantage of an
off-line solution is that dynamic scenes become more difficult to handle. As a conse-
quence, we only consider the pre-processing of static scenes.

An object can be deemed unseen if it is outside the view frustum or is occluded
by some combination of scene polygons. In this paper, we consider occlusion only,
since frustum culling may be applied at run-time. We note that, in a scene populated
by manifold (closed) objects, back-facing polygons are a subset of occluded polygons
because they are always blocked by the front faces of their associated object.

To date, there are no tractable exact visibility culling solutions for large models.
The difficulty of such a solution is briefly discussed in [14]. This has encouraged the
development of many approximations. In such solutions, two types of error occur:
false visibility, where invisible polygons are included (considered visible) and false
invisibility, where visible polygons are excluded (classed as invisible).
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False visibility errors result in sub-optimal performance caused by the unnecessary
rendering of unseen polygons. On the other hand, false invisibility errors result in sub-
optimal image quality due to the omission of visible polygons. Techniques which po-
tentially cause only false visibility errors are termed conservative. Traditionally, tech-
niques which potentially cause false invisibility errors have been called approximate
solutions [10]. However, the latter techniques usually result in both types of error. In-
stead, we refer to techniques which potentially cause false invisibility errors, but never
false visibility errors, as aggressive visibility solutions. The relationships between these
classifications is illustrated in Table 1.

Opt. Perf. Sub-opt. Perf.
Opt. Quality Exact Conservative

Sub-opt. Quality Aggressive Approximate

Table 1. Properties of our four visibility solution classifications.

It is impossible to explicitly process the infinite number of camera positions in
the view-point space (VPS). Visibility pre-processing techniques therefore partition the
VPS into a finite number of sub-spaces, or cells. We define the set of visible polygons
belonging to a cell as the union of the polygon sets visible from each and every point in
that cell. Our aggressive and conservative visibility terminology applies to both point
and cell based visibility. Cell based algorithms are also referred to in the literature as
from-region visibility techniques.

In this paper we outline a novel solution to visibility culling. Our approach is an
aggressive from region method. We pay special attention to pre-processing performance
and error minimization via adaptive techniques. Our principle contributions are:

1. Efficient culling. We use aggressive culling to remove all redundant polygons
from a cell’s visibility set.

2. Generality. No apriori scene structure is assumed. Our algorithm is applicable
to both convex and concave polygons.

3. Theoretical efficiency and scalability. Our novel sampling approach enables a
computational complexity which is logarithmic in the number of cells, where
other techniques are generally linear. Also, the computational complexity is
roughly sub-linear in the number of polygons rendered for a fixed number of
cells, as contrasted with usually linear to super-linear methods.

4. Exploiting hardware. We use the considerable polygon rendering capabilities of
modern graphics hardware to perform sampling rapidly. This aids both perfor-
mance and accuracy.

5. Error Control: We provide both a novel adaptive sampling method and an asso-
ciated error heuristic for controlling sample refinement. Sampling is only refined
in areas of potential error. This prevents redundant sampling.

1.1 Paper Overview

We begin with a critical discussion of previous work in the field of visibility pre-
processing. This is followed, in Section 3, by a demonstration of the use of adaptive
sampling to solve visibility from a two-dimensional rectangular region in space. In Sec-
tion 4, we discuss and justify our error estimation heuristic. In Section 5, we show how
this “from-2D-region” technique may be used to generate a top-down hierarchical sub-
division of a scene efficiently. An important optimization is presented in Section 6. In
Section 7, we analyze the scalability and complexity of this algorithm. In Section 8, we
present statistical results showing the performance and error results of our technique.
Finally, we conclude in Section 9.
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2 Previous Work
The field of visibility has advanced considerably over the past decade. It would be im-
possible, in this context, to cover the entire discipline adequately. Instead, we focus on
“from-region visibility pre-processing”. For an in-depth survey of the broader field, in-
cluding real-time techniques, analytic visibility and compression, the reader is referred
to the excellent surveys of Durand [7] and Cohen-Or et al. [5].

Cell-portal rendering attempts to establish the relative visibility of entire cells. Here,
the visibility of one cell from another depends on the existence of a line of sight be-
tween them intersected only by portals, which are non-opaque boundaries between
cells. Airey et al. [1] use an approximate ray-casting approach. Teller [16, 17] ex-
tend their work by deriving an analytic solution to the problem. These algorithms are
well suited to architectural scenes, but do not provide a general visibility solution.

Cohen-Or et al. [6] and Saona-Vásquez et al. [15] provide slightly more general
solutions restricted to convex occluders. They classify an object as invisible from a
particular view-cell if a single polygon occludes the object from all points inside that
view-cell. This is highly conservative and only achieves significant results if view-cells
are small relative to the size of scene polygons. For highly detailed scenes, this often
requires a large number of view-cells and hence prohibitively long run-times.

To counter this, it is necessary to consider aggregate occlusion by a set of smaller
occluders. It is worth mentioning that such occluder fusion was first treated (implicitly)
by the techniques of Airey [1] and Teller [16, 17]. Recent work has focused either on
fusing occluders, or on the construction of larger virtual occluders, which represent the
occlusion of multiple smaller occluders.

Durand et al. [7, 8] have recently developed a general solution to visibility culling,
using an extended projection operator. With respect to a view cell, this operator projects
occluders and occludees onto a selected plane. The extended projection of an occluder
is the intersection of its projections from all viewpoints within the current cell. The ex-
tended projection of an occludee, however, is the union of its projections. An occludee
is blocked if its extended projection is covered by that of an occluder. This is a natural
extension of point based to “from region” visibility.

With this technique it is possible to achieve occluder fusion by considering the union
of extended projections. In order to maximize the size of an extended projection (and
therefore occlusion), it is necessary to select multiple projection planes. Occlusion
is aggregated from preceding planes by using a reprojection operator which may be
implemented in hardware efficiently.

Koltun et al. [12] make use of separating lines to build larger, more effective virtual
occluders, which represent the occlusion of many smaller occluders. They note that by
building their virtual occluders as a pre-process and performing the occlusion culling
at run-time (on a per cell basis), the cost of storing the visibility sets for each cell is
removed. Unfortunately, they only implement a 2 �� D (height field) solution. Although
the theory extends to 3D separating planes, the general method is far more complex and
may not be tractable.

Law and Tan [13] use occlusion preserving simplification to generate lower level
of detail (and thus larger) polygon occluders. They show how occlusion preserving
simplification may be used to ensure the conservativity of this approach. This technique
improves occlusion culling, however, the occlusion achieved by the fusion of these
coarser representations is not considered. This technique may prove more efficient if
integrated with that of Wonka et al. [19].

Wonka et al. [19] have another 2 �� D solution which is not easily extensible to 3D.
They begin by shrinking a subset of occluders. They then sample visibility (effectively
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fusing occluders) along the surface of the view cells and aggregate invisible polygons.
Occluder shrinking allows the sampling process to maintain conservativity. There is
a trade-off between samples required and the degree of shrinkage. This algorithm is
highly conservative unless occluders can be aggregated before shrinking (as done for
their city model).

The techniques surveyed above are all conservative in nature. They provide optimal
image quality, but there is a large margin between the size of the visibility sets they gen-
erate and those of an exact solution. The extended projections of Durand et al. are most
likely to determine the tightest visibility sets of the techniques mentioned. However,
even here improvement is possible. In particular, the union of the extended projection
of many objects is at most, but generally not, as large as the extended projection of the
union of those same objects. Thus, the largest possible occluders are not being used
effectively. This is ameliorated by the use of reprojection on many planes. However,
their solution remains sub-optimal.

Recently, there has been concerted development of techniques that admit false in-
visibility errors. Run-time solutions which support approximate culling are provided
by Zhang et al. [20] and Bartz et al. [3]. Andújar et al. [2] use hardly visible sets
to cull or simplify scenes where only a small proportion of the geometry is visible.
Klosowski and Silva [11] present a prioritized layer projection algorithm, which estab-
lished a heuristic priority ordering that attempts to draw visible polygons first. This is
an excellent time-critical solution, since reasonable results are obtained if rendering is
prematurely terminated. The motivation behind these techniques is that rendering costs
may be reduced by removing objects which do not contribute significantly to the image.

Van der Panne and Stewart [18] investigate compression techniques for pre-computed
visibility data. As a reference algorithm they implement a naı̈ve bottom-up aggressive
technique which uniformly samples visibility using an item buffer.

Gotsman et al. [10] present a novel sample-based visibility solution. They use a 5D
sub-division over three spatial and two angular dimensions. Each 5D cell maps to a
beam in 3D space. The use of two angular divisions is intended to accelerate frustum
culling at run-time. To determine from-region visibility, rays are cast from a random
point in the cell to random points on an object’s bounding box.

A statistical model based on whether the rays do or do not reach the target object,
this is used to decide if the object is visible, invisible or whether more rays need to be
cast. Error thresholding allows a trade-off between pre-processing time and accuracy.
This is probably the most accurate solution to date.

In provenance our work is closest to that of van der Panne and Stewart [18] and
Gotsman et al. [10]. However, unlike the former our technique is adaptive and top-
down. With regard to the latter, our approach differs in several key respects: our cell
construction admits a logarithmic time dependence on the number of cells; we exploit
graphics hardware for visibility sampling (as do Wonka et. al. [19]) and this allows
rapid per triangle (instead of conservative per object) consideration; and our heuristics
focus directly on reducing error.

3 Sampling for “From-Region” Visibility
In this section our novel sampling approach to “from-region” visibility is outlined. We
describe a sampling method, which is based on the hemi-cube [4] and exploits rendering
hardware. We demonstrate its application in deriving an aggressive visibility set from a
rectangular region in 3D space. Finally, adaptive subsampling is introduced.

A point sample can be defined as the set of polygons visible from a given point.
A visibility cube (strongly related to a radiosity hemi-cube) is used to generate such
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samples. This is created by treating each of the six sides of a tiny cube enclosing the
(view) point as independent depth buffers onto which the scene is rendered. Depth
buffers are supported by modern graphics hardware and ensure that only the pixels of
polygons visible from the point in question are rendered. Each polygon is assigned
a distinct colour index and this allows a given pixel to be uniquely associated with a
visible polygon. The set of polygons which contribute to the frame-buffers of a visibility
cube is then treated as the set of visible polygons.

The concept of a “from-region” visibility set can be extended to encompass a rect-
angle. This is simply the union of all possible point samples in the rectangular region.
Since there are an infinite number of these points, an exact brute force evaluation is
infeasible. Instead, we form the union of a finite subset of points.

This is effectively a sampling over the rectangluar domain. Insufficient sampling
leads to aliasing artefacts, which manifest as the non-inclusion of visible polygons (false
invisibility error).

A naı̈ve solution is to perform uniform sampling (Figure 1a). With this approach,
under-sampling may result in unacceptable error, while over-sampling may lead to pro-
hibitive execution costs. An adaptive sampling method is called for.

To begin with, point samples are evaluated at the corners of the rectangle. Then
a decision is made whether to refine (subsample) the rectangle into four subregions
based on an error heuristic and user specified threshold (covered in Section 4). This
subdivision proceeds recursively, in a manner equivalent to the depth first generation of
a quad-tree. A rectangular subregion, with point samples at its four corners, is treated
as a node in the quad-tree. Corners are shared between parents and children and among
siblings in the quadtree, so it is important to cache point samples in order to prevent
redundant computation. A typical adaptive subdivision is illustrated in Figure 1b.

(a) (b)

Fig. 1. [a] A uniform distribution of visibility cubes on a 2D surface. [b] A non-uniform distribu-
tion of visibility cubes generated by an adaptive sub-division, which attempts to minimize error.
The sub-division effectively builds a quad-tree.

4 Error Heuristic
Adaptive subdivision requires a decision at each quad-tree node (rectangular subregion)
whether or not to continue subdividing. This decision is based on a heuristic error
measure, which seeks to establish, given four corner point samples, if any interior view
points are likely to contain error.

Platinga [14] proposes an algorithm with which exact visibility from a polygon may
be determined by enumerating and traversing all visibility events over the polygon.
These events define a sub-division over the polygon consisting of partitions of qualita-
tively equivalent visibility. Unfortunately, the algorithm proposed has �����
	���
������ time
complexity. Implicitly, our algorithm attempts to efficiently reconstruct this subset of
the aspect graph [9] through adaptive sampling.

Ideally, areas with high frequency fluctuations in visibility should be more highly
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sampled. Our first criteron, therefore, explicitly encodes the normalized difference be-
tween visibility samples. Given four point samples, ������� � ��� � ����� , we define:����� � �!�!"#" �$��%'&)(+*-,.� �/�0 � 1�2�3 �4 0 � � 4 22 � / 2 5 (1)

Equation 1 is & iff there are no elements common to all the visibility samples and 6
iff they are identical. Figure 2, demonstrates the use of an error threshold on Equation 1
to control 2D subdivision.
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(a) (b)

Fig. 2. [A] A 2D scene (plane view) consisting of hexagons and rectangles, bisected by a cell
boundary (the horizontal partitioning line) with J sample points (visibility cubes). Assuming an
error threshold allowing roughly a three edge disparity and beginning from samples K and L , the
subdivisions M - J are generated in order. The first sub-division results from the dissimilarity of
sample points K and L . Our error heuristic would return K to force a sub-division. [B] A binary
tree generated by this 2D adaptive subsampling along the cell boundary.

This metric admits an efficient implementation and works well in practice. How-
ever, it does not account for the angular distribution of error across the field of view.
If error does occur, a more uniform distribution of this error has perceptual merit, in
contrast to a clustered distribution.

The distribution problem can be solved by dividing each visibility cube into a fixed
number of angular sub-regions1. To ensure a uniform error distribution, the error among
corresponding sub-regions must fall below a certain threshold. Let ��NPO be the the vis-
ibility set of point sample Q in angular sub-region R . The revised error metric over S
sub-regions is defined as:�����$T � � �U"#" � ��%V*WQYX[Z\ 0 � 1 &)(+*-,.� �/�0 � 1]2�3 �4 0 � � 4 \ 22 � / \ 2 5^5 (2)

In practice, a distance restriction is needed to account for cases where an arbitrarily
small movement in the viewpoint results in a large change in visibility. Without this,
infinite sub-division may result. Although this implies that we may not refine areas of
very high change, we take the union of these samples when calculating the visibility set
for the cell thereby aggregating these differences.

Another means of improving the error heuristic is to exploit the properties of a
scene. For instance, many scenes consist of manifold objects with interiors that do not
represent valid viewpoint positions. In this case, each of the four point samples can
be classed as interior or exterior and Equation 2 is applied separately. Given the set of
interior ( _��a` ) and exterior (

� Xb` ) point samples and ,.�a`dc:e �$f ��ehg$i�S and
f Xb`dc:e �$f ��ehg$i�S ,

their respective error thresholds, we sub-divide iff. any of the following conditions hold:j 2 � Xb` 2 %k& . Since a single exterior point does not provide sufficient information
for a final decision.

1An angular sub-region is the direct analog of a (generally convex) region of the pixelated surface of the
visibility cube. We use only uniform rectangular partitions
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j 2 � Xb` 2ml & and
����� � � Xh`n� l f Xb`dcme �$f ��ebg$i S . This is the difference between

samples considered only at valid camera positions.j 2 _��a` 2
l & and
����� g � ��_��a`n� l ,.�a`dc:e ��f ��ehg$i�S . If the interior error is high, then

there is a good chance that intermediate point samples will be external. For ex-
ample, the interior samples might lie inside different objects.

To classify sample points as internal or external a half-space comparison is made
against the plane of any polygon in the visibility set. A point in the same half-space as
the normal of a visible polygon is considered exterior. Caveat: in practice discretization
errors typically cause a few pixels from backfacing polygons to be visible along edges
of an object’s exterior. To counter this, the polygon which contributes the most pixels is
chosen as the half-space classifier. This classifier selection can be efficiently integrated
into the processing of the visibility cube buffer.

5 Spatial Sub-division
We have shown how an adaptive algorithm may be used to sample visibility from a
rectangular surface. In this section, we detail how this algorithm can be applied to
traditional cell partitioning.

Firstly, consider a scene bounding box, op� This can be partitioned by a single rect-
angle, q:� , orthogonal to an axis of or� . Although the partition can be situated anywhere
along an axis, we have chosen for illustrative purposes, to generate a balanced subdivi-
sion with equal volumes. The two partitions are labelled o � and o � . Observe that all
sightlines from o � to o � must intersect q � . A polygon visible at the end of a sight line-
segment is visible from all points along it. It follows that any polygon which intersectso � and is visible from a point in o � , must be visible from q:� . If s denotes the set of
scene polygons, then the visibility, tu��o � � , from cell o � , may be calculated as:tu��o � ��%vtw� qx�$��y{z!X}|}s�~�X���o ��� (3)tu��q � � represents the visibility from the rectangle q � , and can be evaluated with the
method of Section 3. The set z!X}|�s�~�X:��o � � can be calculate with a simple polygon-
parallelepiped intersection algorithm. Finally, t���o � � may be found in a similar fashion.

In general, the visibility set, tw� ��� , of a cell, � , is the union of the intersection of
the scene with � and the visibility from the surface of � . The latter is pre-calculated
by previous subdivisions, except for visibility from the partitioning rectangle.

A 3D grid of cells is generated by alternating the axis of subdivision. Deeper levels
of recursion repeat the process on these sub-cells. This is effectively equivalent to
building a kd-tree (for �w%V� ), where only the leaf nodes are maintained.

The grid of cells is generally non-uniform, since sub-division is terminated when
the number of visible polygons falls below a set threshold, or triangle budget [11].
This threshold technique, adopted from Saona-Vásquez et al. [15], is a straightforward
solution to enforcing upper bounds on rendering computations (and hence frame rates).

Infinite subdivision will occur if the number of polygons visible from any point is
greater than the triangle budget. This is prevented by setting a maximum depth for the
implicit binary hierarchy. In practice, this event if very unlikely because the polygon
throughput for acceptable frame-rates is generally much greater than the number of
polygons visible from any single point (or small neighbourhood around a point).

An advantage of top-down hierarchical subdivision is that smaller sub-cells, which
do not contribute significantly to culling, are never evaluated (in contrast to the bottom-
up sub-division of van der Panne and Stewart [18]).
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6 Superset Simplification
This section covers an important optimization of the spatial subdivision process. In
theory, the set of polygons visible from a cell, � , is a super-set (allowing for potential
omissions due to aggressive sampling), of those visible from any viewpoint, � , within:tu� ������t�� ���a���^|}� . This allows the process of splitting a view cell to be optimized.
When generating samples on the splitting rectangle of a cell, only polygons visible from
that cell, tu� ��� , need be rendered. This implies that the cost of building a point sample
decreases as its depth in the binary hierarchy increases. As shown in Appendix A, there
appears to be an exponential decay, converging on a constant � (where � is the average
number of polygons visible from viewpoints in the scene).

Although this optimization can be applied to any “from-region” technique, the rate
of super-set decay is maximal for only exact and aggressive algorithms. As stated by
Cohen-Or et al. [6], shadow volume based from-region culling depends on the relative
size of cells and occluders. In the upper levels of a hierarchy, the cells are large. For
the original technique of Cohen-or et al. [6], evaluating visibility from such large cells
would prove pathological. They attempt to use a hierarchy, but find that only the deepest
levels closest to the leaves are beneficial. Occluder fusion could reduce this problem.
However, it is only the complete culling of an exact or aggressive solution which results
in the evaluation of a minimal super-set.

7 Scalability
This section briefly covers algorithm complexity in terms of the quantity of polygons
in the scene. Further details are provided in Appendix ??.

Our technique partitions the scene until the visibility set is reduced below a certain
size. Similarly, adaptive sampling proceeds until error drops below a user specified
threshold. In both cases subdivision depends on scene distribution and is difficult to
quantify. In order to obtain an average case estimate, we make several simplifying
assumptions. Given S , the depth of the partitioning hierarchy, and � , the number of
samples required (sufficient) for the first partition, we assume that:j Both partitioning and sampling subdivide uniformly.j A constant sampling rate is sufficient throughout the scene.j The scene bounding box is a cube.

From these assumptions it follows that ��������� polygons are rendered into item
buffers for the initial partition. We observe that every sample consists of six standard
perspective viewpoint renderings each with a ninety degree field of view. Applying a
good from-point visibility culling algorithm, such as hierarchical occlusion maps [20]
or the hardware occlusion test implemented on most high-end graphics cards, reduces
the complexity of rendering a visibility cube from ������� to ����*W� . In this case, * is
roughly proportional to the subset of polygons visible from the given sample point.
An average complexity of ������*}� rather than ��������� is achieved, where * is typically
much smaller than � and usually dictated by the type rather than size of the scene. For
scenes with high depth complexity this decoupling is an obvious advantage.

A crucial, and novel, aspect of the algorithm is the caching and reuse of point sam-
ples. Run Length Encoding is used to compress this cache. Further, the space complex-
ity of each cache element is ����*}� and is thus independent of scene size.

Point sample caching means that once t���q � � is determined, t���q � � can be ex-
tracted at no extra cost, so long as q � is a sub-rectangle within qm� . Although the total
surface area of cells doubles at each step in the partition hierarchy, the surface area of
unsampled cell walls, which do not overlap previously evaluated regions, is the same
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as the level above. Thus, � samples are needed for each of S levels (since a constant
sampling rate is assumed). Consequently, at most ��� ��*�S�� polygons need be rendered.

Uniform partitioning, and hence a balanced hierarchy, is assumed so that, for � cellsSu%���
���� , therefore ��� ��*���
����U� polygons are rendered. This logarithmic dependence
on � is a considerable improvement over the typically linear dependence.

The relation between � and � is difficult to establish precisely. This is discussed
in Appendix ??. The findings are that � ranges between ����&�� and �����m���� depending
on the polygon distribution of the scene. This leads to an overall average complexity
ranging from ����*���
����U� to ����*�� �����
����U� . To our knowledge, this is the only algorithm
which is sub-linear in � and logarithmic in � .

The cost of reading from the frame buffer imposes a large constant complexity
coefficient. However, in future we expect the excellent scalability of this algorithm and
the current rapid improvement in frame-buffer access speed to enable pre-processing of
the largest and most complex scenes.

8 Results
We report on the execution time, culling and error behaviour of our technique. Our
evaluation is based on two very different scene types: a conventional building scene
(moderate depth complexity), and a much larger forest scene (low to moderate depth
complexity). Low and high polygon count versions of each scene type were employed.

The building (Figure 3d) represents a typical scene common to visibility research.
As such it can be considered a performance benchmark. In contrast, the forest scene
(Figure 3a) is a very difficult case, representative of a natural environment. The 2 mil-
lion polygon forest scene is composed of 80 trees, each consisting of ����� polygons. To
our knowledge, only Durand et al. [8] attempt to tackle the complexity of natural scenes
with a forest comprising ����6�6 trees of &�� polygons each. Our forest scene is consider-
ably more complex as a consequence of the highly refined tree models (Figure 3b).

Our tests were conducted on a 650MHz AMD Duron processor with 768mb RAM
and a GeForce 2 GTS graphics accelerator. The results of our tests appear in Table 2.
See Figure 3c and Figure 3e for a visualization the resultant culling.

The occlusion culling (excluding frustrum culling) is averaged over all cells, is con-
siderable and the pre-processing times are good (note the relatively low-end platform).

The error heuristic of Equation 2 was used with S %¡�$¢ . Each scene was evalu-
ated over a walkthrough, with each polygon given a unique identifier. The error of an
individual frame was found by counting the number of pixels that were different be-
tween our culled image and the reference (unculled) frame. The error was expressed as
a percentage of the total number of pixels in a frame.

Scene Size Avg. Cull. Err. Thresh Avg. Err. Max Err. Pre-proc.
Forest2 2 M 91.46% 0.8 0.649% 2.837% 6h 2m
Building2 2 M 97.45% 0.5 0.725% 5.578% 6h 48m
Forest1 1 M 84.45% 0.75 0.15% 0.585% 1h 8m
Building1 1 M 91.32% 0.75 0.149% 1.52% 56m

Table 2. Results from pre-processing. The size in millions of polygons, average culling, error
threshold used, average error (over a walkthrough), maximum error and pre-processing time are
presented. Both scenes of 2 million polygons are sub-divided into 512 cells. The scenes of 1
million polygons are sub-divided into 64 cells.

Figure 4 shows the average error against a varying error threshold. The highest
threshold 6¤£ ¥�¥ is roughly equivalent to forcing a sub-division only when the samples
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(a) (b) (c)

(d) (e)

Fig. 3. [a] A view of the forest scene (2 million polygons). [b] A wireframe image of a single
tree (25 thousand polygons). The complexity of the model is clear. [c] Visibility classification
from the perspective of the yellow sphere. Polygons are classified as visible (green) or invisible
(red). [d] Building scene (2 million polygons). The building is populated with highly detailed
“art-works”. [e] The camera is a room at the bottom left. The green polygons are visible from
this viewpoint. The invisible polygons are drawn as red wireframes.

are completely different (disjoint visibility sets). The building scene responds well (avg.
err. = 0.209%, thresh. = 0.99) because the heuristic effectively forces sampling in rooms
which intersect a cell boundary. This property should extend to any scene comprised of
many sub-regions with nearly or wholly disjoint visibility. In the forest model, error is
very quickly dampened as the error threshold is reduced.

As the error threshold is reduced, more samples are generated, and processing time
increases. This dependency is shown in Figure 4b.

A concern regarding aggressive and approximate visibility techniques is that flicker-
ing or popping artifacts may occur when cell boundaries are crossed. The heuristics of
Equation 2 attempt to evenly distribute error across the image, thereby reducing percep-
tual artefacts. As a consequence, we experienced no popping during the walk-through
of our forest scene. There was very little popping in our building walk-though (avg. err.
= 0.725%), however we did experience the occasional artefact (max. err. = 5.578%). We
attribute this to the very high frequency changes and reversions of the visibility state of
polygons over the sampling domain in this model.

9 Conclusion
We have presented a new from-region visibility algorithm, which is classified as aggres-
sive and therefore admits image error in the interests of optimal culling. This allows the
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Fig. 4. Diamond and squared marked series corresponds to the forest and building scenes respec-
tively. [a] shows the error (in percent) plotted against the error threshold. [b] shows the time (in
minutes) plotted against the error threshold.

treatment of previously infeasible scenes.
The algorithm is applied to a conventional architectural scene and a highly complex

forest scene, which would be pathological to most other techniques. Both scenes (with��¦�&�6�§ polygons) are handled successfully, with an average of 97.45% and 91.46%
culling, respectively. We analyse the error and find that a readily acceptable average
error of 0.725% and 0.649% (respectively) is introduced. This low error is attributable
to our error heuristic which guide sub-division. All pre-processing is performed on a
relatively inexpensive PC (Section 8).

Frame buffer access penalties impose a significant but constant cost, although hard-
ware trends indicate that this is likely to decrease. The algorithm itself ranges between����*���
��¨�U� and ����*-� ��©��
����U� , effectively a sub-linear dependence on scene size ( � )
and a logarithmic dependence on the number of cells ( � ). It follows that this algorithm
is highly scalable and can pre-process visibility in even the largest scenes.

9.1 Future Work
We intend to continue improving our error heuristic so as to account for very high
frequency fluctuations in visibility. We foresee two primary areas of performance en-
hancements in this research:

Optimizations. Any point based rendering optimization would further accelerate
sampling. On-line visibility and frustum culling would enable efficient generation of
upper levels in the cell hierarchy. However, in lower levels the superset simplification
optimization is likely to dominate.

Recent graphics cards are capable of caching geometry in on-board memory to cir-
cumvent bus transfer delays. This is generally not possible with image-based visibility
algorithms, since large models cannot fit into the (relatively) negligible video memory.
However, superset simplification eventually results in sets which are small enough to fit
into higher performance memory. This may offer a significant performance boost for
the middle and lower levels of the hierarchy.

Parallelization. An attractive feature of our algorithm is the ease with which it
can be distributed over multiple inexpensive machines. This is a consequence of the
largely independent sampling process. In addition, this parallelization can be achieved
on low cost machines. Memory access is minimal and most computation occurs on the
graphics card, which only needs to support fast frame-buffer reading and high polygon
count rendering for flat shaded (unlit) polygons(available on inexpensive game cards).
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A Rate of Decay by Superset Simplification

Consider a path o , from root to leaf of the kd-tree defined in Section 5. o is a set of S
(depth) nodes in the kd-tree. We define o©ª to be the element of o at depth � . The path
contains: o � , the root node, and terminates at o Z , the leaf node. Each node, o ª , is the
set of visible polygons at depth � .

First let us assume: «¤¬ ~�¬­%¯® °�±!²�³´®® °�±¤® ����&mµ¶�+µ�S¨(}& . Since o ª�· � �¶o ª it follows

that 6�µ�¬ µ�& .
2 o ª 2 % 2 o � 2 ¦�¬ ª�¸ � converges to 6 at an exponential rate iff ¬ ¹�& .

The case where ¬º%»& corresponds to a scene with 6 depth complexity. That is, all
polygons are visible from all points in the scene. Scenes with low depth complexity are
however unlikely candidates for a visibility algorithm.

Assuming a uniform scene distribution and splitting planes that divide cells in half,
then ¬k%¼6b£ ��½�¾ . The 6b£ � term is due to the containment of half the volume, and
therefore half the polygons of the parent cell (by assumption of a uniform polygon
distribution). The ¾ value corresponds to the number of polygons visible from, but not
intersecting, the cell. For a high-depth complexity scene ¾ is generally much smaller
than 6b£ � , resulting in exponential decay.

In practice however, there are many points with a similar visibility within a local
neighbourhood. This is typical even of scenes with a high depth complexity. For ex-
ample, in our architectural model, visibility is similar for most points in any one room.
Clearly, the cells resulting from a sub-division occurring in this room would have visi-
bility similar to their parent cell. In our tests we have found ¬ to fall roughly between6¤£#��� and 6b£ ¿Y� . However, there always exists an À such that ¬�%Á® ° ±!²�³ ®® ° ± ® approaches &
when � l À . This À depends on how quickly the cells converge to fall within a region
of similar visibility. The existence of À can be easily proven, by observing that at least
one polygon is visible from any point in a non-empty scene and it this which prevents
cell visibility from converging to an empty set.

B Depedence of Â on Ã
It is difficult to determine the exact dependence of � (initial number of samples) on �
(size of scene). We make several simplifying assumptions to do so:j Both partitioning and sampling subdivide uniformly.j A constant sampling rate is sufficient throughout the scene.j The scene bounding box is a cube.

Let us consider two different possibilities for scene growth, where the relative distri-
bution of objects is maintained. Firstly, the scene may increase in detail, in that the sur-
face area per unit volume remains constant, while polygon granularity grows. Secondly,
the scene may expand spatially, growing in surface area but not polygon granularity.

For scenes which grow in detail, the relative structure of visibility events remains
roughly constant. In particular, the occluder and occludee relationship of all objects is
maintained, resulting in a similar distribution of visibility events. This implies that if �
was sufficient, prior to growth, it remains sufficient ( ����&�� growth).

For scenes which grow spatially, however, the situation is very different. In order
to accommodate spatial growth and maintain a fixed distribution, the volume of the
scene must increase. If we assume that volume is roughly proportional to the number
of polygons in the scene, then for a cuboidal scene, this implies that that surface area
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grows at a rate of � � � . Samples are taken on a surface and so � (the number of initial
surface samples) is therefore of order ����� ���� . It is worth mentioning, that in practice
we have found � to be about almost three orders of magnitude smaller than � .
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