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Abstract

Error metric comparisons based on quality are typically dealt with by using visual image
comparisons and model deviation measurement computations performed on the models
after simplification. Performance measures of simplification techniques are measured
based on computation time, regardless of the excess hardware resources used to improve
these results.

Comparisons of error metrics which are independent of algorithmic optimisations are
not possible, since these optimisations make it impossible to use the same platform for
different techniques. Due to the implementation specific nature of these simplification
schemes, image comparison as a form of metric evaluation has only been performed vi-
sually on the simplified model produced.

Although general error metrics provide good results during simplification, they may
not successfully deal with surface attributes such as normals, texture coordinates and color
values. Within the memoryless framework, new error metrics can quickly be devised and
tested under the same conditions to determine which performs best with the model being
simplified. This gives us the opportunity not only to evaluate various error metrics in
terms of their performance, but also allows us to draw conclusions about how surface
simplification is evaluated.

It is difficult to define an effective measure of the deviation of a surface from the
original model. Since models in three dimensions will be approximated on a screen in
two dimensions, a two dimensional image-based comparison (from many viewing angles)
would emulate how we would perceive error in the model. Unfortunately, an image based
comparison measure has many parameters (the size of the image plays a large part in
the magnitude of the error), and is difficult and slow to emulate on computers with no
specialised rendering hardware.

A number of techniques are available to assess model quality. Generally these model-
based techniques are considerably easier to compute than image based measures, as the
are independent of the graphics hardware. We evaluate a number of models during sim-
plification with both image-based and model-based measurements. Our results show that
the rate of decrease in model volume corresponds closely with our image-based error
measures.



1 Introduction

Essential for the overall quality of any simplified surface are the criteria for simplification.
These criteria are methods for vertex placement, and the error metrics used for simplifi-
cation. Surface simplification techniques have been compared in the literature [6, 2], but
these comparisons are either visual in nature (i.e. from a supplied picture) or derived
from a common simplification measurement, such as running time, Hausdorff distance or
surface distortion. No statistical conclusions have been drawn from these results. To date,
and to our knowledge, no document has yet compared subset placement strategies for
memoryless simplification or evaluated the performance of optimal against subset place-
ment. We also present a comparison of image-based metrics and model measurements
to determine which model measurements correspond the best with image distortion and
silhouette preservation.
We use experimentation to attempt to resolve the following:

e What are the applications for the various subset placement techniques? Volume
preservation is useful for precision in CAD/CAM and medical applications while
preventing triangle degeneracy is important for textured models. We attempt to find
the best subset placement technique for these criteria, as well as determining which
technique most accurately preserves visual attributes.

e |s unconstrained vertex placement (using the optimal placement of Garland and
Heckbert) significantly better than subset placement? It is commonly thought that
surface quality can be better retained by “optimal” vertex placement (such as [5]).
By allowing the vertex to be placed anywhere the storage required to reconstruct
the surface (in the case of a progressive representation) is significantly greater than
using a subset placement strategy. Hoppe[7] chooses to place the vertex at either
the midpoint or at either of the endpoints, requiring 2 bits of storage to indicate
which, while Pajarola et al. require the vertex to be placed at the midpoint of the
edge. We determine whether there is a significant visual improvement by increasing
the domain of the subset and the number of bits required in order to reconstruct the
vertices position.

e |s their a better surface measure for determining the visual quality of an object?
The Hausdorff distance is the most commonly used measure of surface quality,
but it is difficult to determine. We propose that measuring surface volume is a
better measure of visual degeneration of a compressed surface, and support this
with experimental results.

In Section 3 we describe different strategies of vertex placement, while in Section 4
we describe the memoryless simplification techniques which we have tested. In Section 5
we define the evaluation criteria used to evaluate the error metrics used for simplification,
and in Section 6 we state our hypotheses. In Section 7 we discuss the design of our
experiment, including how data was acquired, and how it was analyzed. In Section 8 we
discuss the experimental results, which are available in Appendix A, and in Section 9 we
discuss whether or not these results support our hypotheses. Finally we draw conclusions
in Section 9.2.



2 Background

In order to measure the accuracy of simplification schemes, models are commonly eval-
uated using geometric comparisons. For a geometric evaluation function K, evaluations
can take place in either of the following manners:

° K(M, M?7), a comparison of the current simplified model with the original model,
or

e K(MJ-t, M7), which is a comparison of the current simplified model with the
previous simplified model.

Although a comparison with the original model A7 is desirable, it is sometimes unavail-
able due to memory or speed considerations. For example, Lindstrom and Turk[11] use a
memoryless simplification technique, which does not depend on the original model.

2.1 The Hausdorff Distance

For Medical Imaging and Industrial Design applications the accuracy of a surface approx-
imation is directly dependent on the the spatial deviation of the simplified model from the
original. In these professional applications the slightest deviation can be intolerable (or
even fatal!) and an exact measurement of the error of the simplified surface is essential.
The maximal displacement of one surface from the other measures this deviation, and is
called the Hausdorff Distance.

We define the Hausdorff distance (sometimes called the L* norm difference) between
two input meshes M*! and M? as

Kpaus(M", M?) = max (dev(Ml, M?), dev(M?, Ml)) . where
dev(A, B) = max (d(p, B))
peEA

measures the deviation of mesh A from mesh B, and d(p, M) represents shortest distance
between point p and the surface M. It measures the worst case distance that a point on
one of the surfaces would have to travel to reach the other surface.

The Hausdorff distance provides a maximal geometric deviation between two shapes,
and is view-independent. The Hausdorff always captures the worst case situation, where
the ray cast from one mesh intersecting the other is orthogonal to the view direction.
Although a exact measure of model locality for professional applications, it is not neces-
sarily a good measure of shape similarity[14]. Some examples of undesirable Hausdorff
errors are depicted in Figure 1. The Hausdorff distance is also extremely slow to com-
pute, as it is dependent on the number of triangles within both meshes. Klein et al.
outline a method for controlling the Hausdorff error during surface simplification, reduc-
ing the computational overhead of evaluating the resultant surface quality. Cignoni et
al.[1] distinguish between positive and negative maximal error, as well as mean error (L)
and mean squared (L2) error in their surface comparison tool Metro. Using an efficient
method of surface partitioning and optimizations they are able to accurately approximate
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Figure 1: The Hausdorff Distance. Two pathological cases where the Hausdorff distance
may give misleading results. The two shapes in (a) are quite dissimilar, but the Hausdorff
distance measure will give a small result due to the similar overall shape of the model. In
(b) the bump will cause two otherwise identical models to have a large Hausdorff distance.

model error in tractable time. The Metro tool has been used to compare the compres-
sion of several compression algorithms[2] but provides no statistical interpretations of the
results.

2.2 Triangle Quality

In order to minimize lighting artifacts caused by per-vertex lighting (Gouraud shading)
it is desirable to make triangle faces in the mesh as equilateral as possible. Figure 2
highlights errors incurred by triangle “slivers”.

Figure 2: Triangle shape preservation. Per-vertex lighting is usually determined inde-
pendently from the shape or size of the triangles constituting the vertex normal. This
can cause unsatisfactory lighting artifacts, as the lighting value is interpolated across the
surface with Gouraud shading.

Several techniques try to ensure that the resultant triangles are not degenerate. Hoppe
et al.[9] regulate their optimization problem by placing springs at rest at across each edge
of the mesh. The tension of these springs penalizes edge collapse operations which result
in excessively long edges, but do not explicitly attempt to equalize triangle shape for
each operation. Lindstrom and Turk[11] introduce a triangle equalization term into their
optimization by determining the sum of squared lengths of edges incident on the new
(optimally placed) vertex.

Frey and Borouchaki[4] measure the mean quality of the triangles within a face set F



of mesh M7 as

) 1
Kppi(M7) = T > Qy, where
F| fer
6 S
Q= NEY I

defines the quality or aspect ratio of a given triangle f. S is the area of face f, pj is the
half-perimeter of f and & is the longest edge of f. The term @) ; returns a value between
0 (flat) to 1 (equilateral triangle), while K; is just the average of these values across all
faces in the set F.

2.3 \Volume

Several recent techniques[11, 8] use volume preservation as an approximation for the
deviation of the current model from the original surface. Intuitively, the volume provides
a less accurate form of error measure for model comparison, as shown in Figure 3. A
measurement of the deviation of model volume is also provided in the surface comparison
tool Metro[1].

Figure 3: Hausdorff Distance vs Volume Difference. In this pathological case, the image
on the left would yield a relatively low Hausdorff distance, while volume difference is
relatively high, as a large portion of the model is slightly shifted. The image on the right
yields a relatively high Hausdorff error while the volume difference might be low.

2.4 Image Comparison

Lindstrom and Turk[10] make use of image comparisons in order to determine what to
simplify. Taking evenly spaced image captures about the model, they compare these im-
ages to the original surface using the L? image difference. Vertices are weighted accord-
ing to this comparison, and areas of the surface which are obscured or hidden are heavily
simplified.

It has been shown experimentally[3] that for image compression the error incurred
should be measured in the integral sense (L') rather than the mean-squared (L?) sense.
Intuitively a higher norm rates higher deviations with a more significant weighting. For
this reason the commonly used L? error may produce misleading error values. To our
knowledge, no one has yet used images to evaluate the quality of the surfaces resulting
from simplification techniques.



3 Vertex Placement

The placement of a vertex is a major contributing factor to the storage required of a pro-
gressive mesh. Most commonly used placement techniques are to the midpoint of the
collapsed edge[13] or a selection between the half-edge collapse and the midpoint[7].
These techniques require 0 or 2 additional bits of storage respectively. We compare these
with the simple 1-bit placement (or half-edge collapse). These different configurations
are shown in Figure 4.

0-bit placement 1-bit placement 2-bit placement

Figure 4: The subset placement techniques which were tested. The circles represent the
possible positions of the collapsed vertex.

Unconstrained vertex placement does not require the resultant vertex to lie on the
edge, and relies on optimization to place the point. However, in a progressive mesh
format, storage of an unconstrained vertex would necessitate at least 24 additional bits
(for three quantized floating point numbers) of storage per vsplit record in order to store
the correction in the positions of vertices v, and v;.

4 Error Metrics

Error metrics are designed to assign a weighting to ecol; according to how much its appli-
cation would affect the mesh. These weightings are used to order the operations in such a
way that the compressed mesh appears as close as possible to the original model. For our
experiments we make use of the five memoryless error metrics described in [Afrigraph

paper], namely:

e E.4,. — Where the error term for the edge collapse is derived directly from the
length of the edge,

e F,,, — isameasurement of the unsigned volume of the removed volume,
e E,, — isamemoryless implementation of progressive meshes[7],

o Eyuairic — IS amemoryless implementation of the Quadric Error Metric of Garland
and Heckbert[5].



o Epyypria — IS @ metric derived from volume loss and the curvature of the affected
region.

Southern et al. [16] show average running times for the computation of these error mea-
sures.

5 Evaluation Criteria

We evaluate surfaces on several criteria We distinguish between error metrics based on
Model Criteria, which include measures based on the surface geometry, and Image-based
Criteria, which are measures based on the resulting image analysis.

5.1 Model Criteria
5.1.1 Surface Distance (K, etr0)

The Hausdorff distance is difficult and slow to determine. Due to the large number of
evaluations which we will be making, we make use of the Metro package, which is able
to quickly find the maximal (L), mean of averages (') and mean-squared (Z?) distance
between two surfaces. We use the mean error between two surfaces to measure mesh
distortion.

5.1.2 Enclosed Volume (K,.)

In modeling applications volume preservation can be essential to maintain an accurate
compressed representation of the original surface. We derive our term K, from the
Gaussian Divergence Formula,

where | F| represents the number of faces in mesh M and V; represents the 4, vertex in
face j of mesh M. We determine the volume of the mesh during the model simplification.
In order to simplify these results we normalize them by dividing by the original surface
volume. This yields a result within the range [0. . . 1], and still accurately reflects the rate
of decay of the volume during the simplification of the surface.

5.1.3 Sliver Ratio (Kyer)

We define our error measure K., Of mesh M to be a measurement of the deviation of
all triangles in M from true equilateral triangles. We use the principle that the ratio of
each edge in a equilateral triangle with each other edge is 1 to derive our error metric. We
divide the sum of all edge lengths in the triangle by three times the minimum edge length

in the triangle.
Kiver (M) = — s o\
tiver (M) | F| Zzzl 3 (min3 e;-)

Jj=1



where e;'- is the length of the j,, edge of triangle 7, i.e.
ezi = d(Vg,V;), eé = d(\/é,\/g), eg = d(Vg,Vzl)

We find that the value of K., typically ranges within the region of (1...2), where a
value greater than 2 indicates a poor model representation. We developed this evaluation
criteria independently of Frey et al.[4], where they measure triangle degeneration by using
the circumscribed circle. The method of Frey et al. produces a scaled value between
(0...1). We find our measure runs very quickly, and the results are equivalent.

5.2 Image-based Criteria

Since the ultimate goal of computer graphics is to represent a virtual object to the viewer
with the best quality, an image based evaluation is necessary.

5.2.1 ImageDistortion (K;: and K;:)

We evaluate both L' and L? image error by evaluating the pixel-wise image differences
between a image of the original mesh I; and an image of the compressed mesh I,. Like
[12] we make use a number N,;.,, of evenly spaced viewpoints about the object. We have
chosen to use N, = 42. We divide the resultant L' and L? error by the number of
pixels in the image which constitute the model, and extract a single error value for this
stage of the compression by averaging the results of all the N,;.,, image comparisons.

5.2.2 Silhouette Deviation (K ;)

The occluding contours (or internal and external silhouettes) of an image give us a great
deal of visual clues about the shape of an object[15]. Therefore a measurement of the
accuracy of the silhouette of a rendered image of the object would indicate the accuracy
of the technique. We measure the accuracy of the silhouette by determining the number
of pixels in I; (defined above) which are not in I, and visa versa. We average this by the
number of images being compared N;e.

6 Hypotheses

We formally define our hypotheses as follows:

1. Our first set of hypotheses is based on the comparison of memoryless subset place-
ment techniques. This is tested in Experiment 1.

(@) We believe that compression on the basis of unsigned volume (E,,,;) best
preserves the volume of the model during compression.

(b) We believe that compression based on the length of the edge (E.44.) minimizes
the number of degenerate triangles (slivers) during compression.

(c) We believe that our hybrid scheme (E},sriq) preserves visual attributes signif-
icantly better than other techniques.

7



Silhouette A Silhouette B

Resultant Silhouette

Figure 5: The determination of the silhouette deviation. The silhouette deviation between
Silhouettes A and B is indicated by the shaded region.

2. Our second hypothesis relates to the comparison of memoryless vertex placement
techniques. This is tested in Experiment 2.

e \We believe that unconstrained vertex placement offers no visual improvement
over any subset placement techniques.

3. Our final hypothesis compares image-based measurements and model-based mea-
surements. This is tested in Experiment 3.

e We believe that volume is as good as the Hausdorff distance as a predictive
measure of the visual difference from the original model.

7 Experimental Design

Our experimental design is divided into two distinct sections. Initially we discuss the
method in which the data was collected, and thereafter we outline our method of data
analysis.

7.1 Data Acquisition

Our experimental results are derived during the simplification process. We define the
number of models tested as N,,0qe; = 13, the number of tests performed on each model
as N;.s: = 10 and the number of techniques being evaluated as Ny, = 9. For our image
based measurements, we use a canvas of 512 x 512. The techniques are outlined in the



table below. Note that the field Test distinguishes between evaluations based on the error

Name Test Metric | Vertex Place
Eeqge | Technique | FEegge 0 bit
FEywor | Technique |  Eypor 2 bit
Equaaric | Technique | Eyyuadric 2 bit
E,, | Technique | E,, 2 bit
Ehybm'd TEChnique Ehybrid 2 bit
0-bit | Placement | Epyprig 0 bit
1_bit | Placement | Ejpypria 1 bit
2_bit | Placement | Epyprid 2 bit
Optimal | Placement | E,qqric | Unconstrained

Table 1: The Techniques which were Evaluated.

metric (Technique) or the vertex placement (Placement). Each model is simplified with
all of the above techniques. Tests are performed on the model once the model has reach a
fraction of its original size, defined by

where m represents the number of evaluations performed so far on the current model. At
each testing stage, the evaluation criteria defined in Section 5 are applied to the current
model. Note that the term K., IS determined by an external program execution, so
mesh files must be exported in a suitable mesh format at each step.

This testing process is a time consuming operation: Each of the V,,,4.; models must
be simplified with N, techniques, and evaluated /V,.,; times during the simplification
process. Also, evaluation requires an image comparison from a N, Views. An increase
in any of these terms drastically increases the running time of these technique evaluations
of each model. Although we attempt to use models of a large variety of sizes and topo-
logical configurations, simplification time is dependent on the size of each of the tested
models. For this reason, we chose not to evaluate excessively large models (300,000
faces+). Due to the restricted resolution of the image comparison window, differences
between frames of large models would not be noticeable until vertices are sufficiently
spaced. Note that only models which represent closed surfaces can be used when deter-
mining the error terms K: and K-, as an image comparison of frames containing holes
may produce inaccurate results.

7.2 Analysis of Results

The above analysis yields a matrix of results, with the number of rows equal to the total
number of tests, that is N,,ode1 X Niech X Niest. OUr tests With Ny,o4e1 = 13, Nieer, = 9 and
Niest = 11 yield over 1200 data points (ignoring null fields). The columns in this matrix
correspond to the values determined by the six different comparison techniques, outlined
in Section 5. Our statistical analysis of the results are discussed below.



7.2.1 Experiment 1

To compare the memoryless simplification techniques we have defined in Section 4,
we exclude results which correspond to our placement experiments, leaving +700 data
points. We analyse this data using a 1-way MANOVA, where the independent variable is
the error metric used, and the dependent variables are the results of the evaluation criteria.
The results are significant, with p << .05.

In order to evaluate these results, we perform a Scheffe Test on each of the evalua-
tion criteria. The Scheffe Test produces similar results to the more popular Least-Squares
Difference (LSD) Test, but is considered more conservative. We have included the resul-
tant matrices of the Scheffe Tests in Appendix A. Entries which are emphasized indicate
statistically relevant comparisons at p < .05.

7.2.2 Experiment 2

As in Experiment 1 above, in order to compare vertex placement techniques, we exclude
results which correspond to out error metric evaluation experiments. This leaves us with
roughly half the data. Again we analyse this in a 1-way MANOVA, with independent
variables being the placement technique and the dependent variables are the evaluation
criteria. The results are significant, with p < .05. We perform a Scheffe Test on each of
the evaluation criteria, the results of which are included in Appendix A. Italicized entries
indicate relevant comparisons at p < .05.

7.2.3 Experiment 3

We use all the data to determine what the correspondences between data collected us-
ing image based criteria and data determined directly from the surface. This is simply
achieved by calculating a correlation matrix between the evaluation criteria of the col-
lected data. We perform a correlation matrix on all the supplied data, as well as two
pathological cases, those of optimal placement and 2 bit placement. We include these
matrices in Appendix A, italicized results indicate a significant result at p < .05.

KLl KL2 Ky Kiver Kyl Ketro
K 1 0.923334249 | 0.737278283 | 0.419325856 | -0.764617075 | 0.319471487
Ki» 0.923334249 1 0.704498964 | 0.377429309 | -0.647060296 | 0.333703121
K 0.737278283 | 0.704498964 1 0.174642873 | -0.893368893 | 0.566995367
Koier | 0419325856 | 0.377429300 | 0.174642873 1 -0.236658579 | 0.156981695
Kool -0.764617075 | -0.647060296 | -0.893368893 | -0.236658579 1 -0.480305828
Koetro | 0.319471487 | 0.333703121 | 0.566995367 | 0.156981695 | -0.480305828 1

Figure 6: Matrix of Correlations of all data (1400 data points) for Experiment 3.
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8 Experimental Results

8.1 Experiment 1: Comparison of memoryless subset placement tech-
niques

We find that the error term E.4,. (Mean = .0160414) is statistically worse in the K, image
sense than F,,,; (Mean =.0102896), while it is statistically worse (Mean = 5.222827) than
Eyvor (Mean = 3.17403), E,,,, (Mean = 3,270291) and Ej, ¢ (Mean = 3.004087) in the
K2 sense. E.qq, is statistically worse (Mean = 167.4658) than all other techniques eval-
uated in terms of the silhouette measurement K;;, but is statistically better than all other
techniques in terms of the average triangle degeneracy, or K, (Mean = 1.293184).
E.q4¢ 1s also found to be statistically worse than all other tested techniques in terms of the
measurements K,,; (Mean =.9956310) and K, (Mean = .0007065).

8.2 Experiment 2: Comparison of vertex placement techniques

There was no statistical significance between the vertex placement techniques in terms of

the image-based measurements K1, K;» and K,;. There was also no statistical differ-
ence in the evaluation criteria K,,.r,. The placement techniques 1_bit (Mean =1.520909)

and 2_bit (Mean = 1.501823) were found to be statistically worse than 0_bit (Mean = 1.428884)
in terms of the triangle degeneracy measure K ;... Unconstrained (optimal) vertex
placement (Mean = .9993752) was found to be statistically better than 0_bit (Mean = .9977720)
placement in terms of volume preservation, or K.

8.3 Experiment 3: Evaluation of image based and model based mea-
surements

Including all measurements (n = 1400) yields a correlation matrix with all measures
correlated (i.e. p < .05) except K eiro and K giye-. Most notably, the term K, correlates
better with the image based measures K71 (r = —.76 vs r = 0.31), K72 (r = —.64 vs
r = .33)and K,; (r = —.89 vs r = .56). Using Fishers »' comparison we find that for
K1, 2z =7.7553, for K12, z = 4.7673 and for K;, z = 9.0572. Each of these values has
ap <1077,

K, correlated better with image based measures than K., in the pathological
case of unconstrained (optimal) vertex placement, but yields lower r values in our tests.
Fishers comparison yields that given the small sample size, no conclusions can be drawn.
For K;1, z = 0.6399, for K72, z = 0.6799 and for K;;, z = 0.3001. These values are not
significant, with p > 0.05. In the case of 2_bit vertex placement the situation is different,
with Fishers comparison yieldingap < 1078, For K11, 2 = 8.4777, for K2, z = 5.2745
and for K;, z = 10.7575 for the small data set tested.

11



9 Discussion of Results

9.1 Our Hypothesis

1. (a) Webelievethat compression on the basis of unsigned volume (E,,;) best pre-
serves the volume of the model during compression.
This statement cannot be justified from the statistical evidence gathered.

(b) We believethat compression based on the length of the edge (E.qq) minimizes
the number of degenerate triangles (slivers) during compression.
The results we have gathered through experimentation support our claim.
FE.q4. Was found to have a statistically lower average of degenerate triangles
than the other techniques tested.

(c) Webelieve that our hybrid scheme (E},-iq) Preserves visual attributes signif-
icantly better than other techniques.
Only E.q4 performed statistically worse in the visual sense than our tech-
nique Enyerig. This would indicate that all the remaining techniques tested
have equally good visual results.

2. e believe that unconstrained vertex placement has no statistical visual improve-
ment over any subset placement techniques.
Our experimental results support this claim. Statistically optimal vertex placement
is just as good visually as any of the tested subset placement techniques.

3. We believe that volume is as good as the Hausdor ff distance as predictive measure
of the visual difference fromthe original model.
From our statistical results, this claim is strongly supported. In fact, the volume
correlated almost twice as well with the image measures K;: and K- for our ex-
periments, and significantly better for the silhouette measure K ;.

9.2 Conclusions

We have presented a number of error metrics suitable for surface simplification using
subset vertex placement. These include E.u4e, Eypor and Epypriq. We have also shown
our memoryless derivatives of two commonly used techniques, E,,, and Eg,q4ric. We
have also presented several novel criteria for evaluating simplification techniques based
on image-space measurements instead of model-space measurements, specifically K1,
K;» and K.

We have stated five hypotheses, which we have attempted to support with experimen-
tal results. Using these evaluation criteria we analyzed the various simplification tech-
nigues on a large number of un-textured surface models. Some visual results are included
in Figure 9.1.

The results of these experiments are summarized in Section 9. These results have
several implications for the field of surface simplification.

12



0_bit

2_bit unconstrained

Figure 7: The 1 Wood. All models are compressed to one tenth of the original model size.
It is clear from the results of 0_bit, 1_bit, 2_bit and unconstrained placement that there is
very little visual difference between the resulting model quality.

13



o F.q is an effective error metric for applications requiring a quick method for sim-
plifying large untextured scenes (such as terrain models). Because of the speed (an
average of 4.3 x 10~"s for each calculation in our implementation) and the preven-
tion of degenerate triangles (according to Section 8) E.4. is a good technique of
approximating large surfaces by simpler versions.

e There is no visual improvement (according to our image-based criteria) in using an
unconstrained (or optimal) vertex placement technique over subset placement. Sub-
set placement is quicker to compute (2 bit subset placement with the error measure
E,.. takes only 6.56 x 10~ %s, while optimal vertex placement 0.000223s for each
error calculation), and in the case of a progressive representation is significantly
cheaper to store (as shown in [13]).

e While the Hausdorff distance is employed as a standard technique of evaluating
the quality of a compressed model in model space, it is not necessarily a good
measure of the visual quality of the model. We have shown that a simple metric
based on the volume of the compressed surface corresponds better with our visual
measures. A volume measure is significantly quicker to calculate than the relatively
cumbersome and slow Hausdorff calculation, and several techniques already use a
volume measure as a simplification metric.

14



Appendix A
This appendix contains all statistical results generated from the data gathered in the ex-

periments described above. All values in boldface indicate statistically relevant values at
p < .05.

Experiment 1: Evaluation of Memoryless Simplification Metrics

KLI Eedge Euvol Epm Equad’ric Ehybrid
Mean .0160414 .0102896 .0113115 .0140666 .0109296
Eeqge 0.031876959 | 0.12749286 | 0.869128644 | 0.079249494
FEyvor | 0.031876959 0.987373769 | 0.333604455 | 0.997921288

Epp, | 012749286 | 0.987373769 0.655655026 | 0.999728918

Equadric | 0.869128644 | 0.333604455 | 0.655655026 0.531428695
Epyiria | 0.079249494 | 0.997921288 | 0.999728918 | 0.531428695
Table 2: Scheffe test of K.

KL2 Eedge Euvol Epm Equadric Ehybrid
Mean 5.222827 3.174043 3.270291 4.298470 3.004087
Eedge 0.000125428 | 0.000325529 | 0.314223439 2.06E-05
Eyvor | 0.000125428 0.999672353 | 0.135180801 | 0.996928275

E,,, | 0.000325529 | 0.9996/2353 0.209154412 | 0.982888758

Equadric | 0.314223439 | 0.135180801 | 0.209154412 0.054494862
Enybria 2.06E-05 | 0.996928275 | 0.982888758 | 0.054494862
Table 3: Scheffe test of K.

Ksil Eedge Euvol Epm Equadm’c Ehybrid
Mean 167.4658 39.26492 37.96596 61.62542 36.83920
Eeqge 4.28874E-07 | 3.08148E-07 | 7.4201E-05 | 2.30699E-07
Eyvor | 4.28874E-07 0.999908271 | 0.89488399 | 0.999979258

Epy, | 3.08148E-07 | 0.999998271 0.873620272 | 0.999999046

Equadric | 7.4201E-05 | 0.89488399 | 0.873620272 0.853416562
Epybria | 2.30699E-07 | 0.999979258 | 0.999999046 | 0.853416562

Table 4: Scheffe test of K ;.
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K sliver

Eedge

Euvol

Ey,

Equadric

Ehybrid

Mean

1.293184

1.497499

1.484808

1512611

1.501823

Eedge
Eu'uol
Epm
Equadric
Ehybrid

4.09642E-25
3.06219E-22
1.04972E-28
4.00902E-26

4.09642E-25

0.972815454
0.949008822
0.999575198

3.06219E-22
0.972815454

0.657250404
0.922967434

1.04972E-28
0.949008822
0.657250404

0.985141158

4.00902E-26
0.999575198
0.922967434
0.985141158

Table 5: Scheffe test of Kyjper-

Kvol

Eedge

Euvol

Ep,

Equadm’c

Ehybria

Mean

.9956310

.9988992

.9985449

.9980779

.9984400

Eedge
Euvol
Epm
Equadric
Ehybrid

7.29815E-05
0.000685578
0.008446292
0.001260261

7.29815E-05

0.990505159
0.81723851
0.97486788

0.000685578
0.990505159

0.973248243
0.99992007

0.008446292
0.81723851
0.973248243

0.989677489

0.001260261
0.97486788
0.99992007

0.989677489

Table 6: Scheffe test of K ;.

Kmet'ro

Eedge

Euvol

Epp,

Equad’ric

Ehybria

Mean

.0007065

.0002565

.0001889

.0003158

.0001855

Eedge
Euvol
Epn
Equadric
Ehybrid

0.000977563
6.62617E-05
0.007281112
5.73799E-05

0.000977563

0.980428398
0.988104641
0.976591587

6.62617E-05
0.980428398

0.828010619
0.999999881

0.007281112
0.988104641
0.828010619

0.813828588

5.73799E-05
0.976591587
0.999999881
0.813828588

Table 7: Scheffe test of K,,cir0-
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Experiment 2: Optimal Placement vs Subset Placement

K 0_bit 1_bit 2_bit optimal
Mean .0104090 .0110861 .0109296 .0110307
0_bit 0.981387079 | 0.991356432 0.9854756
1_bit | 0.981387079 0.999758422 | 0.999989212
2_bit | 0.991356432 | 0.999758422 0.999934852
optimal 0.9854756 | 0.999989212 | 0.999934852
Table 8: Scheffe test of K.
Ki» 0_bit 1.bit 2_bit optimal
Mean 2.848524 3.035858 3.004093 3.090453
0_bit 0.966515839 | 0.98034966 | 0.931547105
1_bit | 0.966515839 0.999823689 | 0.99910897
2_bit | 0.98034966 | 0.999823689 0.996508896
optimal | 0.931547105 | 0.99910897 | 0.996508896
Table 9: Scheffe test of K;-.
K 0_bit 1.bit 2_bit optimal
Mean 61.79460 33.30919 36.83920 29.17824
0_bit 0.155906081 | 0.259727508 | 0.077066347
1_bit | 0.155906081 0.994054914 | 0.990557194
2_bit | 0.259727508 | 0.994054914 0.944402397
optimal | 0.077066347 | 0.990557194 | 0.944402397
Table 10: Scheffe test of K ;.
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Kiiver 0_bit 1.bit 2_bit optimal
Mean 1.428884 1.520909 1.501823 1.480909
0_bit 2.82727E-05 0.0017898 | 0.05270198
1_bit | 2.82727E-05 0.79107672 | 0.206741035
2_bit 0.0017898 | 0.79107672 0.740771949
optimal 0.05270198 | 0.206741035 | 0.740771949
Table 11: Scheffe test of K jper-
Kyor 0_bit 1 bit 2_bit optimal
Mean 9977720 .9985763 .9984400 .9993752
0_bit 0.394977659 | 0.560846627 | 0.008318375
1_bit | 0.394977659 0.993490338 | 0.401114076
2_bit | 0.560846627 | 0.993490338 0.258933127
optimal | 0.008318375 | 0.401114076 | 0.258933127
Table 12: Scheffe test of K.
Koetro 0_bit 1_bit 2_bit optimal
Mean .0003113 .0001785 .0001855 .0001290
0_bit 0.329014152 | 0.378934056 | 0.091423728
1.6t | 0.320014152 0.999747455 | 0.923752666
2_bit | 0.378934056 | 0.999747455 0.891075432
optimal | 0.091423728 | 0.923752666 | 0.891075432
Table 13: Scheffe test of K,,,ctro-
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Experiment 3: Image Space Measurements vs Model Space Measure-

ments

KL1 KL2 Ksil Ksli'uer Kvol Kmetro

K1 1| 0.923334249 | 0.737278283 | 0.419325856 | -0.764617075 | 0.319471487
K2 | 0.923334249 1| 0.704498964 | 0.377429309 | -0.647060296 | 0.333703121

K | 0.737278283 | 0.704498964 1| 0.174642873 | -0.893368893 | 0.566995367
Kiver | 0.419325856 | 0.377429309 | 0.174642873 1 | -0.236658579 | 0.156981695
K, | -0.764617075 | -0.647060296 | -0.893368893 | -0.236658579 1 | -0.480305828
Kipetro | 0.319471487 | 0.333703121 | 0.566995367 | 0.156981695 | -0.480305828 1

Table 14: Matrix of Correlations of all data (1400 data points).

KLl KL2 Ksil Kslz'ver Kvol Kmetro

K 1| 0.943714645 | 0.852700901 | 0.458925679 | -0.459163303 0.3069908
K- | 0.943714645 1| 0.804027355 | 0.433928295 | -0.464069664 | 0.310586453

K | 0.852700901 | 0.804027355 1| 0.308889452 | -0.438759019 | 0.368452094
Kaiver | 0.458925679 | 0.433928295 | 0.308889452 1| -0.146136935 | 0.296620384
Ko | -0.459163303 | -0.464069664 | -0.438759019 | -0.146136935 1 | -0.169713727
Koetro 0.3069908 | 0.310586453 | 0.368452094 | 0.296620384 | -0.169713727 1

Table 15: Matrix of Correlations of optimal placement (142 data points).

KLl KL2 Ksil Kslz'ver Kvol Kmetro

K 1| 0.948758781 | 0.826192601 | 0.594536846 | -0.817728917 | 0.379442881
K;» | 0.948758781 1| 0.771174652 | 0.582368998 | -0.698739705 | 0.373742517

K | 0.826192601 | 0.771174652 1| 0.367248164 | -0.893135404 | 0.458527565
Kiver | 0.594536846 | 0.582368998 | 0.367248164 1 | -0.373720696 | 0.304425906
Kyor | -0.817728917 | -0.698739705 | -0.893135404 | -0.373720696 1 | -0.404602033
Kpetro | 0.379442881 | 0.373742517 | 0.458527565 | 0.304425906 | -0.404602033 1

Table 16: Matrix of Correlations of 2-bit subset placement (142 data points).
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