
Generic Memoryless Polygonal Simplification

Richard Southern Patrick Marais Edwin Blake

Collaborative Visual Computing Laboratory
University of Cape Town

E edge

Equadr ic

Figure 1: The screwdriver model is compressed from 54301 faces to 10000 faces with four different teclmiques.

Abstract

We present a new framework for generic and adaptive memoryless
surface simplification. We show that many existing techniques of
simplification based on the edge collapse I vertex split operations
differ only in terms of memory-resident data used to improve run­
ning performance. By removing the need for this memory we are
able to implement multiple simplification techniques on the same
platform. Our generic platform can be used as a tool for the gener­
ation and evaluation of custom error metrics. We present two new
error metries designed using our generic framework. We present
a novel batched ordering teelmique based on the generic simpli­
fication framework, which allows for adaptive simplification and
automatic level-of-detail generation.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling-Geometric Transformations;
1.3.5 tComputer Graphics]: Computational Geometry and Ob­
ject Modeling-Qbject Hierarchies; 1.3.6 [Computer Graphics];
Methodology and Techniques-Graphics Data Structures

Keywords: triangle mesh simplification, level of detail, error met­
ric comparison

'Permission to make digilai<Jr hanl copies of all or part of this work for
personal or cla~srnorn use is granted "'~ thout fee provided that copies
arc not made o r distributed for profit or commercial ndvantagc and that
copies bear thi~ notice and the tull citation on the ii rst pagt:. To copy
otherwist:, tu republish, to post on servers or to redistribute t(> lists,
rcquir~s prior spccilk permission and/or a fee.
AtRIGRAPH 2001 Cnpctmv11 South Africa
Copyright ACM 2001 1-58113-446-0/0111 1. .. $5.00

7

1 Introduction

We define a surface as an oriented 2-manifold, meaning a one-sided
"skin" which is used to represent an object in a virtual environment.
Surfaces such as those generated during the Michelangelo Project
[11], can be simply too large to store, let alone transmit. A "virtual
museum" consisting of on-line exhibits of such works of art would
be of practical interest. Unfortunately, the storage and transmission
time required for viewing such models is prohibitive.

Surfaces can be simplified (or compressed) by iteratively remov­
ing information from the model while still retaining surface con­
nectivity and preserving attributes, such as topology, face orienta­
tion and volume. A large number of simplification techniques and
error metrics have been presented based on "decimation" [15].

A common theme in these simplification techniques is the local­
ization of the affected region during each iteration of the process ­
only faces and vertices within the domain of simplification need to
be changed in the current mesh after a single operation. We con­
sider only error measures and point placement strategies which are
local in nature and depend only on the region within the edge col­
lapse domain.

Error metrics for surface simplification based on the basic edge
collapse operation are numerous and varied, but possess the same
underlying algoritlunic structure. The main distinction between
these techniques is the additional memory used to improve per­
formance. Comparing these different techniques under the same
conditions is a difficult task.

We exploit consistencies between the various simplification
strategies to define a generic framework. By defining a novel
batched ordering technique we are able to adaptively switch be­
tween simplification techniques during simplification, and automat­
ically produce a sequence of level of detail models. This framework
has applications in error metric evaluation and adaptive compres­
sion. It allows a variety of output configurations including view­
dependent refinement and continuous or discrete level-of-detail se­
quences. Our fTamework also provides a valuable test-bed for the

1. define candidates for the edge collapse operation,

2. sort the candidates on some criterion (typically some error
which is incurred after a vertex removal),

3. perform the edge collapse operation, resulting in the removal
of surface detail,

4. update the remaining candidates in the list, and

5. if there are still candidates, goto step 3.

Figure 2: A generic algorithm for simplification.

creation of custom error metrics, and we present two new error met­
Tics designed within our generic platform.

2 Background

A number of authors [!, 2, 3, 4, 6, 8, 12] have contributed to the
broad spectrum of simplification techniques. The general algorithm
governing iterative model simplification is shown in Figure 2.

The above techniques make use of the edge collapse operations
for simplification (see Figure 3), but differ fundamentally in three
respects:

• vertex placement - refers to the way in which the geometry
and connectivity is updated after an edge collapse has been
performed;

• error metrics- refers to the ordering of operations. The or­
dering is determined by the error incurred after the application
of a edge collapse;

• memory overhead - refers to additional resources used to
speed up error metric calculation.

Figure 3: The edge collapse I vertex split. The vertex v1 and the
edge between v1 and Vk are removed from the mesh after the edge
collapse ecol has been applied. The inverse vertex split vsplit op­
eration reintroduces these attributes into the mesh. The region de­
picted is called the edge collapse domain, and consists of all edges
and faces originating from the central verticesv• and v1. All vertices
in the region besides vk and v1 are referred to the base points of a
region.

We require specific terminology to define vertices and faces
which are used during simplification. We denote a mesh consisting
of a set of vertices and their connectivity as M', where j indicates
the current level of resolution.

Since we reuse the vertex index of one of the vertices in the re­
gion of the edge collapse, we refer to the vertex we keep as vk, (see

8

Figure 3) while the vertex we lose is referred to as v1. For consis­
tency we orientate the figure so that v • is above v1 .

We define the faces which are to be removed as the start face
f, and the end face j •. We define the vertices vt, i = 1 ... t as
the base points of the region, since their attributes do not change
during decimation. In Figure 3 these are all vertices shown besides
the vertices v• and v1.

The set offaces surrounding the vertex Vk, excluding the two re­
moved faces f, and fe is referred to as the top fan domain, or TOP
(in Figure 3 this would be defined as TOP = {f:"P, f~"P, J;"P}).
Similarly the set of faces surrounding v1 is referred to as the bottom
fan domain, or BOT. Each set is constructed in an anti-clockwise
manner about its focus point (vk or v1) from f, or fe respectively.

Hoppe[6] defines a multi-resolution hierarchy during the simpli­
ficationprocess. Given a final mesh M =M", a sequence of inter­
mediate meshes M; can be found by incrementally applying edge
collapse operations to each consecutive level of resolution, i.e.

Each consecutive level of resolution only differs from the mesh pre­
ceding it by the presence of one or two faces. Hoppe also points
out that this progressive format is invertible, and the original mesh
can be reconstructed by applying the inverse vertex split operations.
The progressive format of [6] is useful in view-dependent refine­
ment, continuous level-of-detail generation and progressive trans­
mission. A progressive mesh consists of a base mesh M 0 and the
ordered sequence of n vertex split operations { vsplit1 , • .. , vsplit,,J
necessary to restore the original mesh Mn .

Error Metrics for Simplification

Central to the resulting quality of models analyzed by local decima­
tion techniques is the error metric used to determine the locations
of the vertices after each iteration. There are effectively three ap­
proaches to determining the position of the kept vertex Vk after the
edge collapse.

• Fixed placement: The simplest technique of vertex placement
collapses the edge to only one fixed point, typically the mid­
point of Vk and v1. For reconstruction, only the correction Ovk
needs to be stored, as 6vk = -iiv1• These three floating point
values can be effectively Huffman encoded, and yield a high
degree of compression, such as in Pajarola et al. [13]. When
applied to largely convex surfaces this vertex placement will
result in shrinkage of the overall volume of the surface.

• Subset placement: A simple modification on fixed placement
is to determine the error of a number of candidate vertices and
choose the point which offers the least error. This was first
introduced by Hoppe[6] and produces reasonable results -
the vertex is chosen from either a half-edge collapse (to either
Vk or v1) or the midpoint of the two. In this case, only iivk
and two additional bits needs to be stored with each vertex
split operation to determine where the resultant vertex lies.
As with fixed placement, subset placement results in volume
shrinkage.

• Optimal placement: The point position can be determined us­
ing optimization. Unlike the above two techniques, the resul­
tant point can lie anywhere on the model. The criteria for op­
timization varies from the distance from the nearby planes[4]
to volume and triangle shape preservation[l2, 8]. This tech­
nique requires the storage of both iivk and iiv~o as the new
vertex position is unconstrained.

Hoppe[6] associate an error term with each edge collapse opera­
tion by determining the distance of the points of the current surface
with that of the original surface M. Additional terms are added to
this measure in order to ensure convergence of the simplification[9]
and to preserve scalar attributes and discontinuities. The new po­
sition of the vertex Vk is then determined using a subset placement
strategy.

Garland et al. [3] use an unconstrained vertex placement strategy
by minimizing the distance of the new point from the surrounding
faces of the region. Essentially this is solved as an inverse problem,
resulting in an optimal position for the new vertex and an error as­
sociated with collapsing to this point. The same technique can be
modified to acconunodate attribute information such as vertex color
values and surface normals[4].

Lindstrom et al. [12] introduce the concept of memoryless sim­
plification. They do not store any edge collapse history during dif­
ferent stages of the decimation procedure, except for the priority
queue required to order the atomic operations. The vertex position
is found by constraining the point position in three near-orthogonal
planes, and optimizing the point location by means of up to three
constraints, such as triangle shape preservation. signed and un­
signed volume preservation. The solution is found using quadric
optimization.

Generic Simplification

Kobbelt et al. [10] introduce a "generic" simplification algorithm.
They divide simplification criteria into distance measures- which
attempt to minimize the deviation of the mesh after the application
of a single simplifying operation- and fairness criteria- which
ensure that the model is consistent (for example ensuring no triangle
degeneracy).

This distinction is unnecessary, as many simplification tech­
niques include a fairness component either implicitly[3] or
explicitly[6, 8]. Rather than introduce a framework of generic sim­
plification, they classify existing simplification metrics into these
two criteria, and introduce a new error metric based on this classi­
fication.

Batched Operations

Gtieziec et al. [5] present a method of automatic level-of-detail par­
titioning. By defining the "level" of a particular vertex during sim­
plification, they are able to apply refinement "batches" to create a
level-of-detail model at a particular resolution. By using a graph of
the refinements generated during simplification, they are able to se­
lectively modify the level-of-detail of different areas of the model.

Our batched hierarchy does not permit the construction of a hi­
erarchy for dynamic level-of-detail partitioning, but guarantees that
refinement operations at a particular level are independent. We also
have considerably fewer levels of detail. as we use the maximum
number of independent simplification operations at each level. Our
technique also permits changing the simplification technique after
the completion of a batch (in Section 6), as the priority queue of
simplification operations is empty.

3 Method Overview

We present a novel framework which permits the implementation
of multiple atomic compression strategies and error metrics on the
same platform. The underlying principle behind the generation
of decimation meshes is the iterative application of edge collapse
(eco!) operations. This process continues until some user specified
stopping criteria is reached, or no further simplification is possible.

9

Before compression, the model must be converted to a structure
where the neighbors of each face must be stored (as in [7]), in or­
der to speed up traversal about faces of the mesh. Compression
is initialized by inserting all valid edge collapse operations into a
priority queue sorted on the error value associated with the opera­
tion. Multiple vertex placement techniques are acconunodated by
considering each technique as unconstrained. Compression due to
vertex placement is resolved at output time.

Decimation takes place progressively, where the edge collapse
with the smallest error is retrieved from the queue and applied to the
mesh. All edge collapse operations within the edge collapse domain
of that operation must either be updated or deleted (see Section 6).
A batched hierarchy can be used to automatically generate level of
detail sequences during simplification, and allows the error metric
to be changed during surface simplification.

4 Memoryless Error Metrics

Error metrics are designed to assign a weighting to ecol; according
to how much its application would affect the mesh. These weight­
ings are used to order the operations in such a way that the com­
pressed mesh appears as close as possible to the original model.
Typically error metrics are constructed from a number of criteria.

In the following sections we show how two commonly used error
metrics, that of Hoppe[6] (Section 4.1) and Garland et a/.[3] (Sec­
tion 4.2) can be converted to a memoryless version. We also in­
troduce two novel error metrics designed within the generic frame­
work in order to show the versatility of our technique. Edge length
(defined in Section 4.3) is a simple measure which can be used to
regularize a mesh in terms of triangle area, and a hybrid scheme
(defined in Section 4.4) which preserves normal attributes and mesh
volume.

4.1 Progressive Meshes (Epm)

Hoppe[6] defines four error terms for surface simplification. Only
two of the terms, Edist and Espring are relevant to surface geome­
try. Escalar is determined by scalar surface attributes, such as col or,
while Eaisc is a term to allow the user to guide the simplification
over regions of high curvature.

The Eaist term, which measures the distance of the current sur­
face from the original surface, is difficult to replicate in a memory­
less form. However, Hoppe[8] states that it is sufficient to consider
only the current configuration of the model when determining error
measures, as quality is not worsened (in the case of [8] it was found
that quality was actually improved). We define

E{i{.,(v',.) = L: d2 (v!,, p;), P = {TOP U BOT}
iE'P

where p; is the plane representing triangle i in the surface. d 2
(v, p)

is the distance of point v from from the plane p. defined by

2 n· q
()

2

d (v,p)= lln·qll

where n represents a normal to the plane p, and q is a vector from
a point on the plane p to the point v.

The spring term, Espring is independent of the original surface,
and could be computed during each phase of the simplification. We
define

E:{, .. n 9(vk) = L: "ilv•- vbW,
VbEB.A.SE

where the set BAS £ are the vertices in the base points of a region.
" is a scaling factor used to weight the importance of the Espring
component.

In our implementation, we simulate the error metric of Hoppe by
using

4.2 Quadrlc Error Metric (Equa.dric)

Garland and Heckbert[3] detemUne the position of v~ by minimiz­
ing the squared distance from the new point to the surrounding
planes in the edge collapse domain, weighted by the area of each
face. In order to accelerate the simplification process, the quadric
matrix Q is stored for each vertex prior to simplification and up­
dated during the process. The quadric matrix for each edge col­
lapse is then the sum of the matrices representing the vertices v~;

and 111. This results in an unnecessary weighting of the quadric
error towards the two removed faces /e and /., as they would be
represented in both matrices.

A memoryless translation of this technique would require the
calculation of a quadric matrix Q for each vertex each step of the
simplification. Although this slows the process, excess memory
usage is eliminated, and the incorrect weighting caused by the edge
collapse domain described above is eliminated. Hoppe [8] finds that
a memoryless version of the quadric error metric produces better
results than the memory resident equivalent.

4.3 Edge Length (Eedge)

Probably the simplest criteria for determining the suitability of per­
forming an edge collapse is the length of the edge being collapsed.
Simplifying with only edge length as a criteria ensures that vertices
at each stage of the decimation are evenly clustered. This is sel­
dom a desirable property in mesh compression, since areas of high
curvature are as simplified as areas without. However, edge length
simplification can be successfully used to simplify dense models
very qwckly, and can be used to produce a mesh which has a reg­
ular point density -i.e. along the surface points are kept roughly
the same distance apart.

We define our term Eedge as the squared distance between Vt

and v~;. This term is independent of the new vertex position, so we
collapse v1 and v~e to their midpoints. Although deceptively simple,
a error metric based on edge length has a number of applications
where degenerate triangles (called slivers) are highly undesirable.
As will be shown in our results section, an error term based only on
edge length although runs very quickly, and is suitable for the quick
simplification of large models.

4.4 A Hybrid Scheme (Ehybrid)

Surface normals are a natural measure of the curvature of a sur­
face. Simplification algorithms commonly reduce detail in regions
of low curvature, while retaining detail in areas of high curvature.
We make use of a normal preservation term Enorm which is de­
rived from the maximum deviation from the normals of the planes
in BOT and TOP to the normals of the equivalent triangles in the
new region. This can be written more formally as:

P = {TOP U BOT}

where o; returns the original normal of the ith face, and n ; (v~)
returns the normal of face i after all instances of Vk and vr have
been replaced by v~. Enorm produces a normalized term, with a
value in the range (0 ... 1) -a value closer to 0 implies a small
normal deviation. Note that this term can also be used to test for
face flipping during simplification. A value of Enorm greater than
1 would imply that the normals face in the opposite direction. The
results of simplifying with only the Enorm shows that curvature is

10

(a) {b)

Figure 4: The derivation of E.-.orm· In (a) the normals of the orig­
inal region o are shown, while in (b) the new normals n (i.e. after
the edge collapse) are shown.

preserved to a significant degree. However, it produces intolerable
results due to the high degree of volume loss and triangle slivers.
We apply a local volume preservation term in order to reduce the
resulting error.

Figure 5: The simplification region is separated into its component
tetrahedral volume elements. The old region is indicated in a solid
line, th.e new region indicated with a dashed line and shaded faces
are removed after simplification.

Lindstrom and 1\!rk[l2] perform local volume preservation by
defining a signed volume component of their optimization. They
divide the local edge collapse domain into representative tetrahe­
drons (see Figure 5), constructed from the three points of each tri­
angle, and the new vertex. We use the unsigned volume to measure
the deviation of our models. We define

Euvol = L Tet_Vol (v~, v; , v;, v;),
i E'P

P = {TOP U BOT}

where v; indicates the jth vertex of the ith face,

Tet. Vol (v', vi, v~, ~~~) returns the volume of the tetrahedron
formed by the four input points. We combine it with the term
Enorm to yield

Ehybrid (V~) = Euvol (I'~) .Enorm (v/.) .

5 Surface Simplification

Error metrics are used to order edge collapse operations during sim­
plification and vertex placement after each operation. In order to
construct a progressive mesh, we must reduce the full resolution
mesh to a base mesh ~ and a sequence of vertex split operations
necessary to retrieve the original model. We present two methods
for producing an ordered sequence of vertex split operations:

• A simple linear hierMchy, where operations must be per­
formed in the specified order (as in [61), and

• a batch hierarchy, where independent operations are batched
together - operations in the batch can be performed in any
order, but no operation in a following batch can be performed
until it's preceding batch has been completed.

The batched hierarchy is useful when determining valid candidates
for geomorph operations. This will be further discussed in Sec­
tion 6.

Vertex Removal

An edge collapse record, ecol;, is a tuple consisting of
{k, l, s, e, •}, where k, l, sand e are the indices of Vk, vz, f• and
le respectively (as in Figure 3), and ' is the error incurred by the
removal of vz, f. and f,. The error term f depends largely on the
error technique used. An ecol record is generated from every valid
edge within the original mesh Mn. These are sorted, and the eco!;
with the smallest error< is selected in turn. Each ecol; is then tested
for validity according to the following criteria:

Figure 6: Topology Change. The removal of the shaded face results
in a two sided face and hence a non-manifold mesh. nz refers to
a normal from the removed face, while nroP and nBor are the
norrnals to the faces in the face sets TOP and BOT respectively.

• Does removal of this edge result in a topological change? A
general heuristic to determine the presence of mesh folding is
to determine whether any face in TOP is a neighbor of any
of a face in the set BOT The consequence of not performing
this test is shown in Figure 6.

• Does removal of this edge result in face flipping or folding?
This problem is addressed in [6, 8]. We chose to perform a
simple face orientation test - a rotation of a face more that
1r /2 radians implies the face would flip (as in Figure 7). It
should be noted that the determination of the normals at each
iteration of the process is an expensive time overhead.

~
ecol

Figure 7: Face Flipping. Removal of the shaded faces results in a
hidden or intersected face (indicated here with a dashed line). This
can be avoided by testing the orientation of the faces in the ECD
before and after the edge collapse operation.

Failure to comply with either of these two tests results in ecol; be­
ing deleted from the queue without being performed. These partic­
ular edge collapse operations may be reinserted into the queue at a

ll

later stage, since operations within the edge collapse domain of all
edge collapse operations are reinserted into the queue.

If ecol; is considered valid it is applied to the current mesh. Once
ecol; has been performed, a number of other ccolk records are up­
dated:

• any ecolk containing f, or fe is erased,

• the error ' in any ecolk containing any of the faces in the
TOP or BOT of ecol; are updated, since faces in the TOP
and BOT of ecolk have been removed, and

• the error ' in any remaining ecolk in the edge collapse do­
main of ecol; is recalculated, since the orientation, shape and
area of the faces in TOP and BOT of ecol; may have been
altered.

All affected records ecolk are updated by erasing and reinserting
them into the queue. In Section 6 this is modified to accommodate
the batch hierarchy.

The inverse (vsplit)i+t operation can be deduced from ecol;. A
(vsplit) tuplc consists of

{k, l, s, e, topo, topn, boto, botm, dvk, dvz}, where:

• k, !, sand e are the indices ofvk, v1, f, and le respectively,

• top0 and top, are the indices of the first and last faces in
TOP,

• similarly bot0 and bot m are the indices of the first and last
faces in BOT,

• dvk and d'v1 represent the values which must be added to the
current location of Vk in the current mesh to losslessly restore
the positions of v1 and v •. These can be efficiently encoded
with Huffman or entropy encoding.

Once there are no longer any valid ecol records, the process is ter­
minated - the resulting mesh represents the base mesh M 0

• The
original mesh Mn can be reconstructed by applying the sequence
of transformations { vsplit 1 , ... , vsplitn} in order.

6 Batched Operations

In order to ensure that operations in each batch are independent,
edge collapse operations which are in the edge collapse domain of
the operation being performed are not reinserted into the queue of
valid operations. Once the queue is empty, a marker is written to the
output file, and the edge collapse queue is rebuilt from the current
version of the mesh. This process is continued until a batch process
reaches completion without removing any vertices. The modified
multi-resolution sequence becomes:

B'

{

vsplit1 }
vsplit2

vsplitP
{

vsplitP+ 1 }
voplitP+•

vsplitp+q

where p and q represent the number of vsplit operations in batches
B 0 and B 1 respectively.

Although any of the vsplit operations within B 0 can be applied
at any time, every operation within B 0 must be completed before
any within B 1 can be performed. Note that the batch sizes increase
as the model resolution increases, where the largest batch is applied
to reach the final mesh M". The independence of the vsplit opera­
tions in each batch increase the set of possible mesh configurations,
compared to the standard linear hierarchy.

Level Of Detail Generation

The application of every refinement operation in a batch results in a
view-independent refinement of the entire object. After each batch
has been performed during simplification an intermediate model
can be saved, providing an incremental and automatic level-of­
detail sequence. Typically the number of faces in a level of detail
model Mi has half the number of faces in Mi+' (as in Figure 12).
it should be noted that although the difference in the number of
faces between models can be reduced by increasing the span of the
edge collapse domain, it cannot be increased with this algorithm.

Adaptive Simplification

Batching also allows the metric to be changed during the simplifica­
tion, and allows for a form of adaptive simplification. Garland and
Heckbert[3] use a subset placement strategy when optimal place­
ment positions Vk in an unsuitable position. This can occur in re­
gions of high curvature and irregular triangle size. This is an exam­
ple of adaptive simplification, where alternative vertex placement
strategies are employed.

This definition can be extended to include adaptive alteration of
the error metric during batches of simplification. Obviously the
error values which are used to sort the items in the queue cannot
be adaplively changed if there are existing items in the queue with
differing error methods, since the error e is differently scaled. The
error metric can be changed when the queue is emptied after a batch
has been completed.

An example of adaptive simplification would be to start sim­
plification of a large model with Eedge due to it's quick running
time, and switch to another error metric when the preservation of
detail becomes important. In this way unnoticeable detail is re­
moved quickly, and feature preserving me tries can be applied when
the mesh less complex. This type of technique would be useful in
dense models such as those derived from laser scanning.

Hoppe[6] finds that the shape preservation term E•pTing is most
applicable during the start of the simplification, and diminishes in
importance later. By decreasing the coefficient of Espring. K as our
batch number increases, we can adaptively scale the importance of
this term. This is ouly possible once the queue of edge collapse op­
erations is empty, otherwise inserted error terms may be improperly
scaled.

7 Implementation

The GeMS (or Generic Memory less Simplification) tool was writ­
ten in C++, and produces quick, high quality progressive models
suitable for compression and progressive transmission. Storage of
the mesh M" and its subsequent levels is facilitated by a mesh
class, similar to that used by Hoppe[7]. Like Hoppe, we speed
up face traversal by determining the neighbors of each face before
decimation begins. This process is traditionally slow (0(n2

)), but
can be improved with the use of heuristics.

In Figure 8, the basic algorithm for producing decimation
meshes with linear dependence is shown. As described in Sec­
tion 5, the function generate_ecoLqueue() passes over the model
M", creates ecol records from each valid edge, and inserts them
into a heap. The function ecoLqueue.min() returns the first element
in ecoLqueue and deletes it from the queue. The function valid()
performs the tests described in Section 5 to deterruine the valid­
ity of an edge collapse. The functions ecoLqueue.update(k) and
ecoLqueue.delete(k) update or delete the record ecolk in the heap
respectively. currenLecol.ecd refers to the edge collapse domain
surrounding currenLecol.ecd.

In Figure 9, the algorithm for the generation of batched decima­
tion meshes is presented. Note that any eco! records representing

12

proc linear _hierarchy()
begin main

open outfile
m=O
ecoLqueue = generate_ecol..queue(M")
while not ecoLqueue.empry()

currenLecol = ecoLqueue.mindelete()
if valid(currenLecol) then

m++
M(n-m) = apply_ecol(current__ecol, M(n-m+l))

foreach ecol~o in currenLecol.ecd
ecoLqueue.delete(k)
ecoLqueue.update(k)

endforeach
write vspliti to outfile

end if
end while
write M(n-m) to outfile
close ou tfile

end main

Figure 8: An algorithm for generating decimation meshes with lin­
ear dependence in GeMS.

proc batched_hierarchy()
begin main

open outfile
m=L=count=O
ecoLqueue = generate_ecol..queue(M")
loop

if ecoLqueue.empty() then
if count==O then break
else

count= 0
write marker to outfile
ecoLqueue = generate_ecol_queue(M(n-m))

end if
end if
currenLecol = ecoLqueue.mindelete()
if valid(currenLecol) then

m++
count++
M(n-m) = app/y_ecol(currenLecol, M(n-m+I))

foreach ecolk in currenLecol.ecd
ecoLqueue.delete(k)

end foreach
currenLvsplit = inverse(currenLeco!)
write currenLvsplit to outfile

end if
end loop
write M(n-m) to outfile
close outfile

end main

Figure 9: An algorithm for generating the batched hierarchy. Note
that it is similar in most respects to the linear hierarchy, except that
ecol operations in the edge collapse domain (eci£) are not updated,
but removed. Once the queue has completed processing the entire
ecol..queue is rebuilt.

edges within the edge collapse domain of currenLecol are erased
(as described in Section 6).

The framework allows the user to choose a simplification algo­
rithm from a number of atomic simplification schemes, so that the
output is tailored to their specifications. The framework allows also
for a number of termination criteria, such as restricting the number
of faces or vertices, the size of the file, or the total error incurred.

...

~ ·::::·_·::?~
:;j :_:.l·:/

r---

er:ol_queue ecol_hash

Figure I 0: The hashed priority queue used within the GeMS frame­
work.

Like [6] (amongst others) GeMS uses a priority queue (as a heap)
of edge collapse records for quick sorting and extraction of the
smallest element. The heap is sorted on the error e of each edge
collapse operation.

Central to speed considerations during decimation is the access
time of the priority queue ecoLqueue. This was implemented as a
hashed priority queue. The hash table is built upon the indices of
the start and end faces, f, and f,, and must be capable of rapidly
determining whether an ecol is already present. For this reason,
we modify the hashing technique to represent a linked list of all
ecol references to which the hash function refers, so that we can
determine whether the record is present (shown in Figure 1 0). This
hash table stores the index within ecol..queue which contains f, and
f,. Since the heap is constantly changing in size, this index value
must be updated regularly.

Results

In Table 1 timing results are shown of the various error metrics
implemented within our memoryless framework. It is clear from
these results that simplification times differ greatly depending on
the techniques used. The resulting model quality of these error met­
rics is shown in Figure 11 and Figure I for comparison purposes.

It is clear from these results that the technique Eedge executes
very quickly in comparison to the alternative techniques, but the
resultant model quality (shown in the top left figure of Figure 11)
disregards areas of high curvature and detail features on the mesh.

In Figure 12 the batched hierarchy has been used to automati­
cally generate a level of detail hierarchy. Each consecutive level of
detail has roughly half of the faces of the previous level, and are
automatically generated during simplification.

Metric Time Placement
Eed9e 0.43 J.l-8 Fixed
Epm 13.0,.8 Subset
Ehybrid 90.5 J.l-8 Subset
Equadric 218.0 J.l-8 Unconstrained

Table 1: The times shown represent the average time taken to com­
pute a single error value, and are independent of the model being
simplified. These values were generated on an Athlon 500Mhz pro­
cessor.

13

8 Conclusion and Future Work

We have presented a novel generic memory less polygonal simpli­
fication framework for efficient compression and hierarchical de­
composition of triangular surface meshes. Necessary tests to pre­
vent mesh faults and a method of indicating operation dependencies
have been described.

Memoryless simplification offers an alternative to traditional ap­
proaches which use a simplification "history". Although running
slower than the memory intensive equivalent, it requires less stor­
age and often produces better results. We show how two existing
error metrics, that of Hoppe[6] and Garland and Heckbert[3], can
be converted to a memory less derivative. We also present two new
error metrics, Eedge and Ehylrrid which have been implemented
within our framework.

Our novel batched ordering technique presents an alternative to
linear mesh reconstruction. We show that memory less error met­
rics and a batched ordering technique permit adaptive simplifica­
tion, where different simplification techniques can be used while
simplifying a single model, and automatic level of detail genera­
tion.

At present, the scheme does not change the models topology
- the topology of the surface will be preserved during simplifi­
cation. Similarly, breaks in the surface (i.e. faces with no neigh­
hors) are also preserved. Unfortunately, a simple hole-filling algo­
rithm cannot guarantee satisfactory results, since tiling non-convex
holes can produce flipped and hidden faces. In the future, we would
like to extend the work of Popovic and Hoppe[14] or Garland and
Heckbert[3] to allow unconnected vertices to be contracted duriug
model simplification.

Our framework is an ideal platform for the comparison of cur­
rent error metrics and techniques of vertex placement, as well as a
convenient interface to design custom error metrics. We intend to
analyze the results of the different techniques using our platform.

Acknowledgments

We would like to thank Cyberware ™ for their support of this field
of research by making their teeth, screwdriver andfemalei models
available to us. We would also like to extend our thanks the mem­
bers of the Collaborative Visual Computing Laboratory, for con­
tributing to the inspiring and creative energy of our research group.

References

[1] D. Cohen-Or, D. Levin, and 0. Remez. Progressive compres­
sion of arbitrary triangular meshes. In IEEE Visualisation,
pages 67-72, San Fransisco, 1999.

[2] C. Erikson and D. Manocha. Gaps: General and automatic
polygonal simplification. In Symposium of Interactive 3D
Graphics, pages 79--88, 1999.

[3] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In Proceedings of SIGGRAPH (Com­
puter Graphics), pages 209-216, 1997.

[4] M. Garland and P. S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In IEEE Visual­
isation, pages 263-270, 1998.

[5] A. Gueziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial
maps for progressive transmission of polygonal surfaces. In
ACM VRML, pages 25-31, 1998.

[6] H. Hoppe. Progressive meshes. lnProceedingsofSIGGRAPH
(Computer Graphics), pages 99 -108, 1996.

[7] H. Hoppe. Efficient implementation of ptogressive meshes.
Technical Report MSR-TR-98-92, Microsoft Research, Jan­
uary 1998.

[8] H. Hoppe. New quadric metric for simplifying meshes with
appearance attributes. In IEEE Visualisation, pages 59-66,
1999.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimizatio. In Proceedings ofSIGGRAPH
(Computer Graphics), pages 19-26, 1993.

[10] L. Kobbelt, S. Campagna, and H.-P. Seidel. A general frame­
work for mesh decimation. In Graphics Interface, pages 43-
50, 1998.

[11] M. Levoy, S. Rusinkiewicz, M. Ginzton, J. Ginsberg, K. Pulli,
D. Koller, S. Anderson, J. Shade, B. Cirless, L. Pereira,
J. Davis, and D. Fulk. The digital michelangelo project:
3d scanning of large statues. In Proceedings of SlGGRAPH
(Computer Graphics), pages 131-144,2000.

[12] P. Lindstrom and G. Turk. Fast and memory efficient polyg­
onal simplification. In IEEE Visualisation, pages 279-286,
1998.

(13] R. Pajarola and J. Rossignac. Compressed progressive
meshes. Technical Report GTT-GVU-99-05, Georgia Institute
of Technology, 1999.

(14] J. Popovic and H. Hoppe. Progressive simplicial complexes.
In Proceedings of SIGGRAPH (Computer Graphics), pages
59-66, 1997.

[15] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation
of triangle meshes. In Proceedings of SIGGRAPH (Computer
Graphics), pages 65-70, 1992.

14

130997 faces 66455 faces 25055 faces 7020 faces

Figure 11: A generic platfonn allows the comparison of various techniques under the same conditions. Here we show the four error metrics
discussed in Section 4 at various levels of simplification. In thiR visuali7Jition the original model (233205 faces) has been alpha-blended over
the simplified model in green. Simplified areas which differ from the original model in terms of vo.lume shrinkage are cleru-ly discernible.
Note that volume shrinkage occurs over areas of diffe ring curvature depending on the error metric used.

Level I (73626 faces) Level 2 (37830 faces)

Onginal Model, Level 0 (144898 faces)

Level 3 (17862 faces) Level4 (7348 faces)

Figure 12: Batched ordering defines a natural level of detail hierarchy, where the model is compressed to half it's original size after each
batch has been applied.

15

