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Figure 1: The screwdriver model is compressed from 54301 faces to 10000 faces with four different teclmiques. 

Abstract 

We present a new framework for generic and adaptive memoryless 
surface simplification. We show that many existing techniques of 
simplification based on the edge collapse I vertex split operations 
differ only in terms of memory-resident data used to improve run­
ning performance. By removing the need for this memory we are 
able to implement multiple simplification techniques on the same 
platform. Our generic platform can be used as a tool for the gener­
ation and evaluation of custom error metrics. We present two new 
error metries designed using our generic framework. We present 
a novel batched ordering teelmique based on the generic simpli­
fication framework, which allows for adaptive simplification and 
automatic level-of-detail generation. 
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1 Introduction 

We define a surface as an oriented 2-manifold, meaning a one-sided 
"skin" which is used to represent an object in a virtual environment. 
Surfaces such as those generated during the Michelangelo Project 
[11], can be simply too large to store, let alone transmit. A "virtual 
museum" consisting of on-line exhibits of such works of art would 
be of practical interest. Unfortunately, the storage and transmission 
time required for viewing such models is prohibitive. 

Surfaces can be simplified (or compressed) by iteratively remov­
ing information from the model while still retaining surface con­
nectivity and preserving attributes, such as topology, face orienta­
tion and volume. A large number of simplification techniques and 
error metrics have been presented based on "decimation" [15]. 

A common theme in these simplification techniques is the local­
ization of the affected region during each iteration of the process ­
only faces and vertices within the domain of simplification need to 
be changed in the current mesh after a single operation. We con­
sider only error measures and point placement strategies which are 
local in nature and depend only on the region within the edge col­
lapse domain. 

Error metrics for surface simplification based on the basic edge 
collapse operation are numerous and varied, but possess the same 
underlying algoritlunic structure. The main distinction between 
these techniques is the additional memory used to improve per­
formance. Comparing these different techniques under the same 
conditions is a difficult task. 

We exploit consistencies between the various simplification 
strategies to define a generic framework. By defining a novel 
batched ordering technique we are able to adaptively switch be­
tween simplification techniques during simplification, and automat­
ically produce a sequence of level of detail models. This framework 
has applications in error metric evaluation and adaptive compres­
sion. It allows a variety of output configurations including view­
dependent refinement and continuous or discrete level-of-detail se­
quences. Our fTamework also provides a valuable test-bed for the 



1. define candidates for the edge collapse operation, 

2. sort the candidates on some criterion (typically some error 
which is incurred after a vertex removal), 

3. perform the edge collapse operation, resulting in the removal 
of surface detail, 

4. update the remaining candidates in the list, and 

5. if there are still candidates, goto step 3. 

Figure 2: A generic algorithm for simplification. 

creation of custom error metrics, and we present two new error met­
Tics designed within our generic platform. 

2 Background 

A number of authors [!, 2, 3, 4, 6, 8, 12] have contributed to the 
broad spectrum of simplification techniques. The general algorithm 
governing iterative model simplification is shown in Figure 2. 

The above techniques make use of the edge collapse operations 
for simplification (see Figure 3), but differ fundamentally in three 
respects: 

• vertex placement - refers to the way in which the geometry 
and connectivity is updated after an edge collapse has been 
performed; 

• error metrics- refers to the ordering of operations. The or­
dering is determined by the error incurred after the application 
of a edge collapse; 

• memory overhead - refers to additional resources used to 
speed up error metric calculation. 

Figure 3: The edge collapse I vertex split. The vertex v1 and the 
edge between v1 and Vk are removed from the mesh after the edge 
collapse ecol has been applied. The inverse vertex split vsplit op­
eration reintroduces these attributes into the mesh. The region de­
picted is called the edge collapse domain, and consists of all edges 
and faces originating from the central verticesv• and v1. All vertices 
in the region besides vk and v1 are referred to the base points of a 
region. 

We require specific terminology to define vertices and faces 
which are used during simplification. We denote a mesh consisting 
of a set of vertices and their connectivity as M', where j indicates 
the current level of resolution. 

Since we reuse the vertex index of one of the vertices in the re­
gion of the edge collapse, we refer to the vertex we keep as vk, (see 
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Figure 3) while the vertex we lose is referred to as v1. For consis­
tency we orientate the figure so that v • is above v1 . 

We define the faces which are to be removed as the start face 
f, and the end face j •. We define the vertices vt, i = 1 ... t as 
the base points of the region, since their attributes do not change 
during decimation. In Figure 3 these are all vertices shown besides 
the vertices v• and v1. 

The set offaces surrounding the vertex Vk, excluding the two re­
moved faces f, and fe is referred to as the top fan domain, or TOP 
(in Figure 3 this would be defined as TOP = {f:"P, f~"P, J;"P} ). 
Similarly the set of faces surrounding v1 is referred to as the bottom 
fan domain, or BOT. Each set is constructed in an anti-clockwise 
manner about its focus point (vk or v1) from f, or fe respectively. 

Hoppe[6] defines a multi-resolution hierarchy during the simpli­
ficationprocess. Given a final mesh M =M", a sequence of inter­
mediate meshes M; can be found by incrementally applying edge 
collapse operations to each consecutive level of resolution, i.e. 

Each consecutive level of resolution only differs from the mesh pre­
ceding it by the presence of one or two faces. Hoppe also points 
out that this progressive format is invertible, and the original mesh 
can be reconstructed by applying the inverse vertex split operations. 
The progressive format of [6] is useful in view-dependent refine­
ment, continuous level-of-detail generation and progressive trans­
mission. A progressive mesh consists of a base mesh M 0 and the 
ordered sequence of n vertex split operations { vsplit1 , • .. , vsplit,,J 
necessary to restore the original mesh Mn . 

Error Metrics for Simplification 

Central to the resulting quality of models analyzed by local decima­
tion techniques is the error metric used to determine the locations 
of the vertices after each iteration. There are effectively three ap­
proaches to determining the position of the kept vertex Vk after the 
edge collapse. 

• Fixed placement: The simplest technique of vertex placement 
collapses the edge to only one fixed point, typically the mid­
point of Vk and v1. For reconstruction, only the correction Ovk 
needs to be stored, as 6vk = -iiv1• These three floating point 
values can be effectively Huffman encoded, and yield a high 
degree of compression, such as in Pajarola et al. [13]. When 
applied to largely convex surfaces this vertex placement will 
result in shrinkage of the overall volume of the surface. 

• Subset placement: A simple modification on fixed placement 
is to determine the error of a number of candidate vertices and 
choose the point which offers the least error. This was first 
introduced by Hoppe[6] and produces reasonable results -
the vertex is chosen from either a half-edge collapse (to either 
Vk or v1) or the midpoint of the two. In this case, only iivk 
and two additional bits needs to be stored with each vertex 
split operation to determine where the resultant vertex lies. 
As with fixed placement, subset placement results in volume 
shrinkage. 

• Optimal placement: The point position can be determined us­
ing optimization. Unlike the above two techniques, the resul­
tant point can lie anywhere on the model. The criteria for op­
timization varies from the distance from the nearby planes[4] 
to volume and triangle shape preservation[l2, 8]. This tech­
nique requires the storage of both iivk and iiv~o as the new 
vertex position is unconstrained. 



Hoppe[6] associate an error term with each edge collapse opera­
tion by determining the distance of the points of the current surface 
with that of the original surface M. Additional terms are added to 
this measure in order to ensure convergence of the simplification[9] 
and to preserve scalar attributes and discontinuities. The new po­
sition of the vertex Vk is then determined using a subset placement 
strategy. 

Garland et al. [3] use an unconstrained vertex placement strategy 
by minimizing the distance of the new point from the surrounding 
faces of the region. Essentially this is solved as an inverse problem, 
resulting in an optimal position for the new vertex and an error as­
sociated with collapsing to this point. The same technique can be 
modified to acconunodate attribute information such as vertex color 
values and surface normals[4]. 

Lindstrom et al. [12] introduce the concept of memoryless sim­
plification. They do not store any edge collapse history during dif­
ferent stages of the decimation procedure, except for the priority 
queue required to order the atomic operations. The vertex position 
is found by constraining the point position in three near-orthogonal 
planes, and optimizing the point location by means of up to three 
constraints, such as triangle shape preservation. signed and un­
signed volume preservation. The solution is found using quadric 
optimization. 

Generic Simplification 

Kobbelt et al. [10] introduce a "generic" simplification algorithm. 
They divide simplification criteria into distance measures- which 
attempt to minimize the deviation of the mesh after the application 
of a single simplifying operation- and fairness criteria- which 
ensure that the model is consistent (for example ensuring no triangle 
degeneracy). 

This distinction is unnecessary, as many simplification tech­
niques include a fairness component either implicitly[3] or 
explicitly[6, 8]. Rather than introduce a framework of generic sim­
plification, they classify existing simplification metrics into these 
two criteria, and introduce a new error metric based on this classi­
fication. 

Batched Operations 

Gtieziec et al. [5] present a method of automatic level-of-detail par­
titioning. By defining the "level" of a particular vertex during sim­
plification, they are able to apply refinement "batches" to create a 
level-of-detail model at a particular resolution. By using a graph of 
the refinements generated during simplification, they are able to se­
lectively modify the level-of-detail of different areas of the model. 

Our batched hierarchy does not permit the construction of a hi­
erarchy for dynamic level-of-detail partitioning, but guarantees that 
refinement operations at a particular level are independent. We also 
have considerably fewer levels of detail. as we use the maximum 
number of independent simplification operations at each level. Our 
technique also permits changing the simplification technique after 
the completion of a batch (in Section 6), as the priority queue of 
simplification operations is empty. 

3 Method Overview 

We present a novel framework which permits the implementation 
of multiple atomic compression strategies and error metrics on the 
same platform. The underlying principle behind the generation 
of decimation meshes is the iterative application of edge collapse 
(eco!) operations. This process continues until some user specified 
stopping criteria is reached, or no further simplification is possible. 
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Before compression, the model must be converted to a structure 
where the neighbors of each face must be stored (as in [7]), in or­
der to speed up traversal about faces of the mesh. Compression 
is initialized by inserting all valid edge collapse operations into a 
priority queue sorted on the error value associated with the opera­
tion. Multiple vertex placement techniques are acconunodated by 
considering each technique as unconstrained. Compression due to 
vertex placement is resolved at output time. 

Decimation takes place progressively, where the edge collapse 
with the smallest error is retrieved from the queue and applied to the 
mesh. All edge collapse operations within the edge collapse domain 
of that operation must either be updated or deleted (see Section 6). 
A batched hierarchy can be used to automatically generate level of 
detail sequences during simplification, and allows the error metric 
to be changed during surface simplification. 

4 Memoryless Error Metrics 

Error metrics are designed to assign a weighting to ecol; according 
to how much its application would affect the mesh. These weight­
ings are used to order the operations in such a way that the com­
pressed mesh appears as close as possible to the original model. 
Typically error metrics are constructed from a number of criteria. 

In the following sections we show how two commonly used error 
metrics, that of Hoppe[6] (Section 4.1) and Garland et a/.[3] (Sec­
tion 4.2) can be converted to a memoryless version. We also in­
troduce two novel error metrics designed within the generic frame­
work in order to show the versatility of our technique. Edge length 
(defined in Section 4.3) is a simple measure which can be used to 
regularize a mesh in terms of triangle area, and a hybrid scheme 
(defined in Section 4.4) which preserves normal attributes and mesh 
volume. 

4.1 Progressive Meshes (Epm) 

Hoppe[6] defines four error terms for surface simplification. Only 
two of the terms, Edist and Espring are relevant to surface geome­
try. Escalar is determined by scalar surface attributes, such as col or, 
while Eaisc is a term to allow the user to guide the simplification 
over regions of high curvature. 

The Eaist term, which measures the distance of the current sur­
face from the original surface, is difficult to replicate in a memory­
less form. However, Hoppe[8] states that it is sufficient to consider 
only the current configuration of the model when determining error 
measures, as quality is not worsened (in the case of [8] it was found 
that quality was actually improved). We define 

E{i{.,(v',.) = L: d2 (v!,, p;), P = {TOP U BOT} 
iE'P 

where p; is the plane representing triangle i in the surface. d 2 
( v, p) 

is the distance of point v from from the plane p. defined by 

2 n· q 
( )

2 

d (v,p)= lln·qll 

where n represents a normal to the plane p, and q is a vector from 
a point on the plane p to the point v. 

The spring term, Espring is independent of the original surface, 
and could be computed during each phase of the simplification. We 
define 

E:{, .. n 9(vk) = L: "ilv•- vbW, 
VbEB.A.SE 

where the set BAS £ are the vertices in the base points of a region. 
" is a scaling factor used to weight the importance of the Espring 
component. 



In our implementation, we simulate the error metric of Hoppe by 
using 

4.2 Quadrlc Error Metric (Equa.dric ) 

Garland and Heckbert[3] detemUne the position of v~ by minimiz­
ing the squared distance from the new point to the surrounding 
planes in the edge collapse domain, weighted by the area of each 
face. In order to accelerate the simplification process, the quadric 
matrix Q is stored for each vertex prior to simplification and up­
dated during the process. The quadric matrix for each edge col­
lapse is then the sum of the matrices representing the vertices v~; 

and 111. This results in an unnecessary weighting of the quadric 
error towards the two removed faces /e and /., as they would be 
represented in both matrices. 

A memoryless translation of this technique would require the 
calculation of a quadric matrix Q for each vertex each step of the 
simplification. Although this slows the process, excess memory 
usage is eliminated, and the incorrect weighting caused by the edge 
collapse domain described above is eliminated. Hoppe [8] finds that 
a memoryless version of the quadric error metric produces better 
results than the memory resident equivalent. 

4.3 Edge Length (Eedge) 

Probably the simplest criteria for determining the suitability of per­
forming an edge collapse is the length of the edge being collapsed. 
Simplifying with only edge length as a criteria ensures that vertices 
at each stage of the decimation are evenly clustered. This is sel­
dom a desirable property in mesh compression, since areas of high 
curvature are as simplified as areas without. However, edge length 
simplification can be successfully used to simplify dense models 
very qwckly, and can be used to produce a mesh which has a reg­
ular point density -i.e. along the surface points are kept roughly 
the same distance apart. 

We define our term Eedge as the squared distance between Vt 

and v~;. This term is independent of the new vertex position, so we 
collapse v1 and v~e to their midpoints. Although deceptively simple, 
a error metric based on edge length has a number of applications 
where degenerate triangles (called slivers) are highly undesirable. 
As will be shown in our results section, an error term based only on 
edge length although runs very quickly, and is suitable for the quick 
simplification of large models. 

4.4 A Hybrid Scheme (Ehybrid) 

Surface normals are a natural measure of the curvature of a sur­
face. Simplification algorithms commonly reduce detail in regions 
of low curvature, while retaining detail in areas of high curvature. 
We make use of a normal preservation term Enorm which is de­
rived from the maximum deviation from the normals of the planes 
in BOT and TOP to the normals of the equivalent triangles in the 
new region. This can be written more formally as: 

P = {TOP U BOT} 

where o; returns the original normal of the ith face, and n ; ( v~) 
returns the normal of face i after all instances of Vk and vr have 
been replaced by v~. Enorm produces a normalized term, with a 
value in the range (0 ... 1) -a value closer to 0 implies a small 
normal deviation. Note that this term can also be used to test for 
face flipping during simplification. A value of Enorm greater than 
1 would imply that the normals face in the opposite direction. The 
results of simplifying with only the Enorm shows that curvature is 
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(a) {b) 

Figure 4: The derivation of E.-.orm· In (a) the normals of the orig­
inal region o are shown, while in (b) the new normals n (i.e. after 
the edge collapse) are shown. 

preserved to a significant degree. However, it produces intolerable 
results due to the high degree of volume loss and triangle slivers. 
We apply a local volume preservation term in order to reduce the 
resulting error. 

Figure 5: The simplification region is separated into its component 
tetrahedral volume elements. The old region is indicated in a solid 
line, th.e new region indicated with a dashed line and shaded faces 
are removed after simplification. 

Lindstrom and 1\!rk[l2] perform local volume preservation by 
defining a signed volume component of their optimization. They 
divide the local edge collapse domain into representative tetrahe­
drons (see Figure 5), constructed from the three points of each tri­
angle, and the new vertex. We use the unsigned volume to measure 
the deviation of our models. We define 

Euvol = L Tet_Vol (v~, v; , v;, v;), 
i E'P 

P = {TOP U BOT} 

where v; indicates the jth vertex of the ith face, 

Tet. Vol ( v', vi, v~, ~~~) returns the volume of the tetrahedron 
formed by the four input points. We combine it with the term 
Enorm to yield 

Ehybrid (V~) = Euvol (I'~) .Enorm ( v/.) . 

5 Surface Simplification 

Error metrics are used to order edge collapse operations during sim­
plification and vertex placement after each operation. In order to 
construct a progressive mesh, we must reduce the full resolution 
mesh to a base mesh ~ and a sequence of vertex split operations 
necessary to retrieve the original model. We present two methods 
for producing an ordered sequence of vertex split operations: 

• A simple linear hierMchy, where operations must be per­
formed in the specified order (as in [61), and 



• a batch hierarchy, where independent operations are batched 
together - operations in the batch can be performed in any 
order, but no operation in a following batch can be performed 
until it's preceding batch has been completed. 

The batched hierarchy is useful when determining valid candidates 
for geomorph operations. This will be further discussed in Sec­
tion 6. 

Vertex Removal 

An edge collapse record, ecol;, is a tuple consisting of 
{k, l, s, e, •}, where k, l, sand e are the indices of Vk, vz, f• and 
le respectively (as in Figure 3), and ' is the error incurred by the 
removal of vz, f. and f,. The error term f depends largely on the 
error technique used. An ecol record is generated from every valid 
edge within the original mesh Mn. These are sorted, and the eco!; 
with the smallest error< is selected in turn. Each ecol; is then tested 
for validity according to the following criteria: 

Figure 6: Topology Change. The removal of the shaded face results 
in a two sided face and hence a non-manifold mesh. nz refers to 
a normal from the removed face, while nroP and nBor are the 
norrnals to the faces in the face sets TOP and BOT respectively. 

• Does removal of this edge result in a topological change? A 
general heuristic to determine the presence of mesh folding is 
to determine whether any face in TOP is a neighbor of any 
of a face in the set BOT The consequence of not performing 
this test is shown in Figure 6. 

• Does removal of this edge result in face flipping or folding? 
This problem is addressed in [6, 8]. We chose to perform a 
simple face orientation test - a rotation of a face more that 
1r /2 radians implies the face would flip (as in Figure 7). It 
should be noted that the determination of the normals at each 
iteration of the process is an expensive time overhead. 

~ 
ecol 

Figure 7: Face Flipping. Removal of the shaded faces results in a 
hidden or intersected face (indicated here with a dashed line). This 
can be avoided by testing the orientation of the faces in the ECD 
before and after the edge collapse operation. 

Failure to comply with either of these two tests results in ecol; be­
ing deleted from the queue without being performed. These partic­
ular edge collapse operations may be reinserted into the queue at a 

ll 

later stage, since operations within the edge collapse domain of all 
edge collapse operations are reinserted into the queue. 

If ecol; is considered valid it is applied to the current mesh. Once 
ecol; has been performed, a number of other ccolk records are up­
dated: 

• any ecolk containing f, or fe is erased, 

• the error ' in any ecolk containing any of the faces in the 
TOP or BOT of ecol; are updated, since faces in the TOP 
and BOT of ecolk have been removed, and 

• the error ' in any remaining ecolk in the edge collapse do­
main of ecol; is recalculated, since the orientation, shape and 
area of the faces in TOP and BOT of ecol; may have been 
altered. 

All affected records ecolk are updated by erasing and reinserting 
them into the queue. In Section 6 this is modified to accommodate 
the batch hierarchy. 

The inverse ( vsplit)i+t operation can be deduced from ecol;. A 
( vsplit) tuplc consists of 

{k, l, s, e, topo, topn, boto, botm, dvk, dvz}, where: 

• k, !, sand e are the indices ofvk, v1, f, and le respectively, 

• top0 and top, are the indices of the first and last faces in 
TOP, 

• similarly bot0 and bot m are the indices of the first and last 
faces in BOT, 

• dvk and d'v1 represent the values which must be added to the 
current location of Vk in the current mesh to losslessly restore 
the positions of v1 and v •. These can be efficiently encoded 
with Huffman or entropy encoding. 

Once there are no longer any valid ecol records, the process is ter­
minated - the resulting mesh represents the base mesh M 0

• The 
original mesh Mn can be reconstructed by applying the sequence 
of transformations { vsplit 1 , ... , vsplitn} in order. 

6 Batched Operations 

In order to ensure that operations in each batch are independent, 
edge collapse operations which are in the edge collapse domain of 
the operation being performed are not reinserted into the queue of 
valid operations. Once the queue is empty, a marker is written to the 
output file, and the edge collapse queue is rebuilt from the current 
version of the mesh. This process is continued until a batch process 
reaches completion without removing any vertices. The modified 
multi-resolution sequence becomes: 

B' 

{ 

vsplit1 } 
vsplit2 

vsplitP 
{ 

vsplitP+ 1 } 
voplitP+• 

vsplitp+q 

where p and q represent the number of vsplit operations in batches 
B 0 and B 1 respectively. 

Although any of the vsplit operations within B 0 can be applied 
at any time, every operation within B 0 must be completed before 
any within B 1 can be performed. Note that the batch sizes increase 
as the model resolution increases, where the largest batch is applied 
to reach the final mesh M". The independence of the vsplit opera­
tions in each batch increase the set of possible mesh configurations, 
compared to the standard linear hierarchy. 



Level Of Detail Generation 

The application of every refinement operation in a batch results in a 
view-independent refinement of the entire object. After each batch 
has been performed during simplification an intermediate model 
can be saved, providing an incremental and automatic level-of­
detail sequence. Typically the number of faces in a level of detail 
model Mi has half the number of faces in Mi+' (as in Figure 12). 
it should be noted that although the difference in the number of 
faces between models can be reduced by increasing the span of the 
edge collapse domain, it cannot be increased with this algorithm. 

Adaptive Simplification 

Batching also allows the metric to be changed during the simplifica­
tion, and allows for a form of adaptive simplification. Garland and 
Heckbert[3] use a subset placement strategy when optimal place­
ment positions Vk in an unsuitable position. This can occur in re­
gions of high curvature and irregular triangle size. This is an exam­
ple of adaptive simplification, where alternative vertex placement 
strategies are employed. 

This definition can be extended to include adaptive alteration of 
the error metric during batches of simplification. Obviously the 
error values which are used to sort the items in the queue cannot 
be adaplively changed if there are existing items in the queue with 
differing error methods, since the error e is differently scaled. The 
error metric can be changed when the queue is emptied after a batch 
has been completed. 

An example of adaptive simplification would be to start sim­
plification of a large model with Eedge due to it's quick running 
time, and switch to another error metric when the preservation of 
detail becomes important. In this way unnoticeable detail is re­
moved quickly, and feature preserving me tries can be applied when 
the mesh less complex. This type of technique would be useful in 
dense models such as those derived from laser scanning. 

Hoppe[6] finds that the shape preservation term E•pTing is most 
applicable during the start of the simplification, and diminishes in 
importance later. By decreasing the coefficient of Espring. K as our 
batch number increases, we can adaptively scale the importance of 
this term. This is ouly possible once the queue of edge collapse op­
erations is empty, otherwise inserted error terms may be improperly 
scaled. 

7 Implementation 

The GeMS (or Generic Memory less Simplification) tool was writ­
ten in C++, and produces quick, high quality progressive models 
suitable for compression and progressive transmission. Storage of 
the mesh M" and its subsequent levels is facilitated by a mesh 
class, similar to that used by Hoppe[7]. Like Hoppe, we speed 
up face traversal by determining the neighbors of each face before 
decimation begins. This process is traditionally slow (0(n2

)), but 
can be improved with the use of heuristics. 

In Figure 8, the basic algorithm for producing decimation 
meshes with linear dependence is shown. As described in Sec­
tion 5, the function generate_ecoLqueue() passes over the model 
M", creates ecol records from each valid edge, and inserts them 
into a heap. The function ecoLqueue.min() returns the first element 
in ecoLqueue and deletes it from the queue. The function valid() 
performs the tests described in Section 5 to deterruine the valid­
ity of an edge collapse. The functions ecoLqueue.update(k) and 
ecoLqueue.delete(k) update or delete the record ecolk in the heap 
respectively. currenLecol.ecd refers to the edge collapse domain 
surrounding currenLecol.ecd. 

In Figure 9, the algorithm for the generation of batched decima­
tion meshes is presented. Note that any eco! records representing 
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proc linear _hierarchy() 
begin main 

open outfile 
m=O 
ecoLqueue = generate_ecol..queue( M") 
while not ecoLqueue.empry() 

currenLecol = ecoLqueue.mindelete() 
if valid(currenLecol) then 

m++ 
M(n-m) = apply_ecol(current__ecol, M(n-m+l)) 

foreach ecol~o in currenLecol.ecd 
ecoLqueue.delete(k) 
ecoLqueue.update(k) 

endforeach 
write vspliti to outfile 

end if 
end while 
write M(n-m) to outfile 
close ou tfile 

end main 

Figure 8: An algorithm for generating decimation meshes with lin­
ear dependence in GeMS. 

proc batched_hierarchy() 
begin main 

open outfile 
m=L=count=O 
ecoLqueue = generate_ecol..queue( M") 
loop 

if ecoLqueue.empty() then 
if count==O then break 
else 

count= 0 
write marker to outfile 
ecoLqueue = generate_ecol_queue( M(n-m)) 

end if 
end if 
currenLecol = ecoLqueue.mindelete() 
if valid(currenLecol) then 

m++ 
count++ 
M(n-m) = app/y_ecol(currenLecol, M(n-m+I)) 

foreach ecolk in currenLecol.ecd 
ecoLqueue.delete(k) 

end foreach 
currenLvsplit = inverse(currenLeco!) 
write currenLvsplit to outfile 

end if 
end loop 
write M(n-m) to outfile 
close outfile 

end main 

Figure 9: An algorithm for generating the batched hierarchy. Note 
that it is similar in most respects to the linear hierarchy, except that 
ecol operations in the edge collapse domain (eci£) are not updated, 
but removed. Once the queue has completed processing the entire 
ecol..queue is rebuilt. 



edges within the edge collapse domain of currenLecol are erased 
(as described in Section 6). 

The framework allows the user to choose a simplification algo­
rithm from a number of atomic simplification schemes, so that the 
output is tailored to their specifications. The framework allows also 
for a number of termination criteria, such as restricting the number 
of faces or vertices, the size of the file, or the total error incurred. 

... 

~ ·::::·_·::?~ 
:;j :_:.l·:/ 

r---

er:ol_queue ecol_hash 

Figure I 0: The hashed priority queue used within the GeMS frame­
work. 

Like [6] (amongst others) GeMS uses a priority queue (as a heap) 
of edge collapse records for quick sorting and extraction of the 
smallest element. The heap is sorted on the error e of each edge 
collapse operation. 

Central to speed considerations during decimation is the access 
time of the priority queue ecoLqueue. This was implemented as a 
hashed priority queue. The hash table is built upon the indices of 
the start and end faces, f, and f,, and must be capable of rapidly 
determining whether an ecol is already present. For this reason, 
we modify the hashing technique to represent a linked list of all 
ecol references to which the hash function refers, so that we can 
determine whether the record is present (shown in Figure 1 0). This 
hash table stores the index within ecol..queue which contains f, and 
f,. Since the heap is constantly changing in size, this index value 
must be updated regularly. 

Results 

In Table 1 timing results are shown of the various error metrics 
implemented within our memoryless framework. It is clear from 
these results that simplification times differ greatly depending on 
the techniques used. The resulting model quality of these error met­
rics is shown in Figure 11 and Figure I for comparison purposes. 

It is clear from these results that the technique Eedge executes 
very quickly in comparison to the alternative techniques, but the 
resultant model quality (shown in the top left figure of Figure 11) 
disregards areas of high curvature and detail features on the mesh. 

In Figure 12 the batched hierarchy has been used to automati­
cally generate a level of detail hierarchy. Each consecutive level of 
detail has roughly half of the faces of the previous level, and are 
automatically generated during simplification. 

Metric Time Placement 
Eed9e 0.43 J.l-8 Fixed 
Epm 13.0,.8 Subset 
Ehybrid 90.5 J.l-8 Subset 
Equadric 218.0 J.l-8 Unconstrained 

Table 1: The times shown represent the average time taken to com­
pute a single error value, and are independent of the model being 
simplified. These values were generated on an Athlon 500Mhz pro­
cessor. 
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8 Conclusion and Future Work 

We have presented a novel generic memory less polygonal simpli­
fication framework for efficient compression and hierarchical de­
composition of triangular surface meshes. Necessary tests to pre­
vent mesh faults and a method of indicating operation dependencies 
have been described. 

Memoryless simplification offers an alternative to traditional ap­
proaches which use a simplification "history". Although running 
slower than the memory intensive equivalent, it requires less stor­
age and often produces better results. We show how two existing 
error metrics, that of Hoppe[6] and Garland and Heckbert[3], can 
be converted to a memory less derivative. We also present two new 
error metrics, Eedge and Ehylrrid which have been implemented 
within our framework. 

Our novel batched ordering technique presents an alternative to 
linear mesh reconstruction. We show that memory less error met­
rics and a batched ordering technique permit adaptive simplifica­
tion, where different simplification techniques can be used while 
simplifying a single model, and automatic level of detail genera­
tion. 

At present, the scheme does not change the models topology 
- the topology of the surface will be preserved during simplifi­
cation. Similarly, breaks in the surface (i.e. faces with no neigh­
hors) are also preserved. Unfortunately, a simple hole-filling algo­
rithm cannot guarantee satisfactory results, since tiling non-convex 
holes can produce flipped and hidden faces. In the future, we would 
like to extend the work of Popovic and Hoppe[14] or Garland and 
Heckbert[3] to allow unconnected vertices to be contracted duriug 
model simplification. 

Our framework is an ideal platform for the comparison of cur­
rent error metrics and techniques of vertex placement, as well as a 
convenient interface to design custom error metrics. We intend to 
analyze the results of the different techniques using our platform. 
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130997 faces 66455 faces 25055 faces 7020 faces 

Figure 11: A generic platfonn allows the comparison of various techniques under the same conditions. Here we show the four error metrics 
discussed in Section 4 at various levels of simplification. In thiR visuali7Jition the original model (233205 faces) has been alpha-blended over 
the simplified model in green. Simplified areas which differ from the original model in terms of vo.lume shrinkage are cleru-ly discernible. 
Note that volume shrinkage occurs over areas of diffe ring curvature depending on the error metric used. 

Level I (73626 faces) Level 2 (37830 faces) 

Onginal Model, Level 0 (144898 faces) 

Level 3 ( 17862 faces) Level4 (7348 faces) 

Figure 12: Batched ordering defines a natural level of detail hierarchy, where the model is compressed to half it's original size after each 
batch has been applied. 
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