
A Stateless Client for Progressive View-Dependent Transmission

Richard Southern Simon Perkins Barry Steyn Alan Muller Patrick Marais Edwin Blake

Collaborative Visual Computing Laboratory
University of Cape Town

Figure 1: Selective Refinement. The headrest is an object of African cultural heritage. In each frame the selected region is refined progres-
sively.

Abstract

We present a framework for real-time view-dependent refinement,
and adapt it to the task of browsing large model repositories on
the Internet. We introduce a novel hierarchical representation of
atomic operations based on a graph structure, and provide a corre-
spondence between the nodes of this hierarchy and a spatial rep-
resentation of these operations, called visibility spheres. Selective
refinement is achieved by performing a breadth first search on the
graph. We show that the graph representation allows for signifi-
cant space savings. The framework presented makes options avail-
able for performance tailoring. By efficient traversal of the graph
structure an ordered list of refinements can be generated which are
progressive and evenly distributed over the refinement area. This
list can easily be truncated to comply with polygon limitations in-
dicated by a client.

CR Categories: I.3.2 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modelling—Surfaces and
Object Representations

Keywords: triangle mesh simplification, view dependent trans-
mission, level of detail, Java 3D

1 Introduction

Applications for browsing online model repositories are becoming
more challenging to design. The improvement of laser scanning
to sub-millimetre resolution has provided extremely high quality
3D representations of both medical data[1] and works of art[8, 11].
Often models of such high quality are too big for the client to store
on their local machine, let alone to render, and for study purposes
it is not sufficient to view a simplified version of the model.

A simple solution to this problem is to store many level-of-detail
models on the server, and transmit to the client a model of sufficient
complexity that it complies with their system limitations. Unfortu-
nately, remote learning applications of highly detailed models typi-
cally requires a high degree of refinement (like the chisel marks of
Michelangelo).

An alternative is a selective or view-dependent transmission
framework, where only the details requested by a client are trans-
mitted and refined. Previous techniques of view dependent trans-
mission [15] have not made it possible for the client to avoid storing
regions of the mesh that they are no longer looking at.

Several requirements must be addressed for view-dependent
browsing of model repositories:
� Interactive Model Browsing: Clients require real-time in-

teraction with the models which they are viewing. Possible
problems could be limited rendering capacities of client ma-
chines, or bandwidth restrictions.

� Dynamic Model Updates: Changing the view point should
result in immediate refinement of the region which has be-
come visible.

� Minimal Transmission: Obviously to reduce the server load
and the client wait time, the less transmitted the better.

� Even Distribution of Refinements: A client should progres-
sively receive refinements spread evenly throughout the se-
lected refinement region.

We propose a framework for view-dependent refinement which
provides a solution to the problems stated above. Our client never

receives the entire model, only a coarse representation and a se-
quence of refinements necessary to increase the detail of a selected
region. We call this client stateless as it is completely dependent
on the server to maintain the state of the refinements on the client
model. We adapt the framework presented to allow for the browsing
of large model repositories on the Internet.

In Section 2 we discuss the work related to this paper, including
a short background of progressive meshes, view dependent refine-
ment and progressive transmission. Section 3 describes a technique
to perform view-dependent refinement, while it’s conversion into a
view-dependent transmission application is discussed in Section 4.
In Section 5 we describe our implementation in Java3D, the results
of which are discussed in Section 6. Finally we conclude and offer
suggestions for future work in Section 7.

2 Background

Progressive meshes [4] provide effective tools for multi-resolution
analysis. The model

��
is coarsened into a sequence of lower res-

olution representations by means of reversible atomic operations
which collapse individual edges of a model (see Figure 2). The ap-
plication of each individual edge collapse (ecol) operation results
in multiple representations of the original mesh

��������
,

������ � ecoln �	�
�� � ���� ecoln ���
�� ����� ecol �
	� � � ecol �
�� ��� �
The resulting sequence of meshes

� ��� ����� � ���
provide effective

view independent level of detail control, and also permit smooth
geometric transformations during the transformation between mod-
els (called geomorphs). We define the base points in Figure 2 to be
the points within the faces surrounding the vertices ��� and ��� which
are not affected during the edge collapse or vertex split operation.
An edge collapse or vertex split operation is considered to be legal
if the necessary faces and vertices are present.

v

f
f

f
fk

l
n1

n0

n2

n3

edge collapse
f

f f

f
v’k

n0

n1 n3

n2

vertex split

v

Figure 2: The reversible atomic operations used to produce a multi-
resolution representation of the original model. Vertices marked
with diamonds indicate the base points of the region which do not
change during the decimation.

2.1 View-Dependent Refinement

Most view dependent refinement schemes are distinguished by the
way in which the operations are ordered, and the determination of
which operations to apply. In [5, 15] a vertex hierarchy is con-
structed as a tree where every split vertex � � is represented by a
node where the left child of that node is the inserted vertex ��� and
the right child represents the split vertex at it’s new position ���� (as
shown in Figure 6). Xia et al. [16] construct a merge tree during the
simplification process, bottom up, by inserting the vertices present
in the final mesh

��
as leaf nodes. A subset of edge collapse op-

erations are applied to these vertices to produce a higher level of

vertices in the tree. Luebke et al. [10] uses an octree of clusters
of vertices and faces in order to collapse vertices together, allowing
topology independent simplification. Guéziec et al. [3] make use
of a directed acyclic graph (DAG) to store partial ordering of edge
collapse operations based on their dependencies. We make use of
a similar DAG to represent the ordering of the operations. This re-
duces the representation to roughly half of the nodes required to
represent a vertex hierarchy.

The hierarchy of Xia et al. [16] constructs the dependencies be-
tween the vertices in the merge tree on the premise that no faces
in the region of influence1 of two edge collapse operations can be
shared. Like Hoppe [5] we find this results in an unnecessarily
deep tree, i.e. refinements are seldom localised to the region se-
lectively refined, especially in smaller models. To reduce the num-
ber of dependent faces, and hence the depth of the tree, we require
only the presence of the faces neighbouring the face(s) being in-
serted/removed � � � � � ��� � � �� � � ��! and the vertex � � (according to
Figure 2).

Spatial subdivision for selective refinement on arbitrary surfaces
has been performed with octrees [10], bounding spheres [5] and
using subdivision (such as models provided by [7]). Atomic op-
erations cannot be applied to subdivision surfaces without losing
subdivision connectivity. While octrees provide rapid query times
for spatially unrelated objects, a hierarchy of bounding spheres re-
quires considerably fewer tests to be made when there are depen-
dencies between objects. We use a bounding sphere hierarchy as it
is also comparatively quick to construct.

2.2 Progressive Transmission

Typical progressive transmission strategies (e.g. [4, 14]) initially
transmit the base mesh

� �
to the client, followed by a sequence

of refinements necessary to restore
��

progressively (in [14] refine-
ments take the form of detail coefficients of increasing magnitude).
Guéziec et al. [3] make use of a compressed representation to pro-
vide a mapping between

��
and each consecutive level of detail.

To et al. [15] provide a platform for progressive, selective
(or view dependent) refinement by constructing a vertex hierarchy
(similar to [5, 16]). The hierarchy stored on the server also contains
the triangle fans of the faces surrounding the vertices at various
resolutions. These surrounding triangle fans are transmitted to the
client. In the event of an overlap of triangle faces, the triangles of
the highest resolution are chosen. This technique provides real-time
adaptive and progressive view-dependent refinement, and strictly
refines only the triangles within the view frustum (in [16, 5] vertex
dependencies typically extend beyond the view frustum). Because
reconstruction is patchwork in nature, the client would not be able
to make use of smooth transformations (geomorphs) between dif-
ferent levels of resolution. A change of the clients selection would
also imply the previously refined area would remain refined — a
considerable problem when rendering large models without expen-
sive hardware. The technique of To et al. provides a technique
to transmit a model selectively, but is not practical for the online
browsing of large model repositories (such as models from [8]) on
low end machines.

3 Method Overview

We construct our view-dependent framework upon the commonly
used [6, 4, 16, 5] atomic operations edge collapse (ecol) and vertex
split (vsplit). We associate each operation with a spatial represen-
tation called a visibility sphere, used to determine whether an op-

1Xia et al. define the region of influence of an edge collapse as all faces
adjacent to both vertices affected (in Figure 2 these are v � and v �).

eration is visible and needs to be performed. These have attributes
such as orientation, position, size and relative error (see Figure 3).

Initially we simplify the input mesh using progressive meshes.
The visibility spheres for each atomic operation are defined dur-
ing the simplification process. We construct these in a conservative
fashion in order to minimise error of the transmitted representation.
During the simplification process we also indicate which atomic op-
erations each vertex split is dependent on. This dependency infor-
mation is used to construct a directed acyclic graph of these vertex
splits, where the root nodes correspond to the coarsest possible rep-
resentation, while the terminal nodes correspond to the final mesh.
The visibility spheres at each node of this graph are defined as the
union of the visibility spheres bounding its children and the visibil-
ity sphere associated with the vertex split at that node.

Selective (or view dependent) refinement is accomplished using
a breadth first search of the DAG defined above. If the visibility
sphere of a parent node is found to be visible, then the nodes chil-
dren can also be visible and are tested.

3.1 Visibility Spheres

Considering the region of the atomic operations as a measurable
spatial entity is central to our technique. We use visibility spheres
in conjunction with our vertex split hierarchy to provide a fast tech-
nique of determining which vertex split and edge collapse opera-
tions need to be applied to refine the selected region.

We construct the visibility spheres during the surface simplifica-
tion process, like [16, 15], since during the simplification process
the current state of the mesh (which vertices and faces are present)
is known. This could be performed afterwards on any progressive
mesh form (as with [5]), but would require the reconstruction of the
model.

A visibility sphere consists of three separate components:

� a bounding sphere " �$# "�% � "'&)(, with centre "�% and radius" & , representing the position of one (or more) vertex split op-
erations,

� a floating normal cone * �+#), �.- (, with axis
,

and extent
angle

-
, bounding the normals and normal cones of one (or

more) vertex split operations, and

� an error value / representing the maximum distance between� � and � � of the bounded vertex split operations.

A vertex split operation not only inserts a vertex and one or two
faces into a surface mesh, but also adjusts the position of a vertex
within those faces and therefore their face normals. It is for this
reason that we centre our visibility spheres about the centre of the
region of the atomic operation (unlike [5]), specifically the centroid
of the base points in the region (we call this point " %). The deter-
mination of the radius of the sphere " is shown in Figure 3.

The orientation of a visibility sphere is represented by a floating
normal cone

#), �.- ((first introduced by Shirman et al. [13]) of
the resultant normal of the one or two faces removed as a result of
applying atom, and hence the orientation of the removed edge. The
error / associated with an atom is simply the distance between v �
(the vertex lost) and v � (the vertex kept).

A union operator 0 can now be defined for visibility spheres.
Given visibility spheres 1 and 2 ,

1�032 �4# "'5607"'8 � *95607*98 �;:=<)> # /.5 � /.8�(�(
We say that a visibility sphere is active if it is visible. A visibility

sphere is visible if and only if:

1. it is completely or partially within the view,

e SC

Sr

a

rS
SC

n

(a) (b)

Figure 3: The Visibility Sphere. (a) The determination of the at-
tributes of the visibility sphere. "'& represents the radius of a sphere
originating from the centroid of the base points of the region " % .
The error term / indicates the distance between the two points
which would be collapsed during the edge collapse operation. (b)
A visibility sphere consists of the sphere (representing the atomic
operation in space), and the cone of associated normals (for deter-
mining whether the sphere is forward facing in real-time).

2. it is not orientated away, and

3. the noticeable change caused by applying the enclosed vertex
split is larger than some tolerance (normally the screen pixel
height). This is normally referred to as screen-space error.

Outside View

We determine the visibility of a sphere in the same way
as Hoppe[5]. Given a visibility sphere with centre "?% �@ "BA% � "DC% � "BE%GF and radius " & , and a view frustum consisting of the
four bounding planes HJI �K#ML I �;N I �;O I �QP IQ(�;R �TS �����;U , the sphere
is outside the view ifL IV" A%XW N IV" C% W O IY" E%7W P IDZ
 "'& �\[^])_`<badc=R �$S ���e�;U�� (1)

Orientated Away

The normal cone with axis
,

and extent
-

is tested against the eye
vector e. The visibility sphere is back facing iff9g ,hih f hihjhkh , hihmlon;p a @ - F � (2)

Several recent documents [10, 12] have stressed the importance of
the silhouette for object recognition. Normally for visibility spheres
bounding high-detail refinements, the normal cone angle

-
is close

to (or equal to) zero. We introduce a minimum angle for the normal
cone extent

-
in order to ensure that most silhouette curvature is

restored.

Screen Space Error

Refinements to the model need not be performed if the deviation
caused by the insertion of the new vertex is smaller than the pixel
size (approximated by q), i.e. if the projected distance of the
edge inserted after a vertex split is smaller than the error toler-
ance q . This is achieved by approximating the orientation of the
inserted edge by the bounding normal cone

#), �.- (, and the maxi-
mum length / of the enclosed edges. Given the eye direction vectorf and eye position r , we define the angle between it and the normal
cone axis as s , and we define t as the length of the vector formed
by projecting

@ " %
 r F onto the eye vector f .
We approximate two screen space errors (in Equation 3), as the

farthest extents of the normal cone,

/ � � � /
tvu
] n @ s W - F <)a�w / � � /

txu
] n @ s
 - F (3)

If
:=<)> # / � � � / � (yZoq then no vertex split operations enclosed within

the tested visibility sphere would be noticeable when applied.

3.2 The Vertex Split Hierarchy

A vertex split operation cannot be performed until it is valid, i.e.
the necessary faces and vertices are present in the current model.
In order to ensure that refinements are ordered in such a way that
only valid vertex split operations are permitted, a hierarchy of these
dependencies must be constructed.

Although analogous to the vertex hierarchy of Hoppe [5, 15],
constructing the hierarchy of dependency information from the
atomic operations rather than the vertices themselves has various
advantages. We find a vertex split hierarchy is smaller, in both the
number of nodes as well as the total size.

vertex split

edge collapse

Figure 4: The dependent vertices for a vertex split are shown by the
white filled points. The black filled point indicates the vertex which
is lost after the edge collapse has been applied (earlier defined as� �).

Each node of the vertex split hierarchy contains a single atomic
operation, and a visibility sphere bounding it and all of its chil-
dren. We determine dependencies between the vertex split opera-
tions during the simplification process. We identify the dependen-
cies between atomic operations in a similar way to Hoppe, where
only the vertices within the faces � � � � � ��� � � �� � � ��! (Figure 2) need
be present before a particular vertex split can be performed (see Fig-
ure 4). Each vertex split operation can therefore have up to seven
parent vertex split operations — each parent introduces one of the
required vertices into the model. This is translated into a Directed
Acyclic Graph (or DAG) where each node corresponds to a vertex
split operation (or it’s inverse, edge collapse), and a nodes parents
correspond to the vertex split operations introducing one of the re-
quired vertices into the mesh. Each node has at most seven parents,
but can have any number of children. The root nodes of the graph
correspond to the vertex splits which are applied to the coarsest rep-
resentation of the model, while performing vertex split operations
at terminal nodes results in the reconstruction of the original model��

.
The spatial representation of each vertex split within the DAG is

defined by its associated visibility sphere (shown in Figure 5). The
determination of the visibility sphere associated with a vertex split
vsplitz is described as follows. Given
� a parent node vsplit z with representative visibility sphere vs z ,
�|{ children of vsplitz , vsplit } I �;R �~S ����� { , and
� the visibility spheres associated with the children vs } I �;R �S ���e� { ,

the visibility sphere associated with vsplit z is then

vs z 0 vs } � 0 ����� 0 vs } � �
This dependency structure results in a problem, shown in Fig-

ure 6. The actual spatial problem is shown in Figure 6(a) — a sin-
gle vertex (v �) is split twice into v and v ! , by vertex splits vs � and

Figure 5: Bounding spheres. These spheres represent the spheres
bounding the coarsest level of refinement associated with the root
nodes of the vertex split hierarchy.

vs respectively. The order in which these operations is performed
is important. Although the faces and vertices necessary for vs to
be performed may be present in the mesh before vs � has been per-
formed, the indices may be present in the wrong faces. In order
to avoid this problem, the vertex hierarchy (of Hoppe [5]) (in Fig-
ure 6(b)) propagates the vertex v � into v � � , thus preventing vs from
occurring before vs � . In a vertex split hierarchy (in Figure 6(c)),
this requirement is addressed by simply making the node vs � a par-
ent of vs . Note that both vs � and vs will have a shared parent (in
this case vs z) since they both originate from the vertex v � .
3.3 Selective Refinement

The vertex split hierarchy defined in Section 3.2 provides an ele-
gant correspondence between the visibility spheres defined in Sec-
tion 3.1 and the graph of atomic operations. We will now describe
how to use these structures to perform selective refinement.

Given a refinement region defined by a view frustum, we ini-
tialise our tree traversal by placing the root nodes of the graph in a
queue. We then test the first element of the queue. If the visibility
sphere associated with that node is active (i.e. it is visible), the node
is marked to be refined, and the nodes children are appended to the
end of the queue. If the visibility sphere is not active, it implies that
none of that nodes children will be active.

4 View Dependent Transmission

In Sections 3.1 and 3.2 we have described a framework to perform
selective refinement at real-time on progressive meshes. We now
present a view-dependent transmission technique and address the
problems inherent with browsing large model repositories.

Typically the client would request a model from a repository, and
after a base mesh has been sent, a refinement request is initiated
by the client transmitting the view frustum. The server determines
what needs to be transmitted using the method described in Sec-
tion 3.3. The server initially transmits the edge collapse operations
to un-refine nodes which are no longer visible and thereafter sends
the vertex split operations to refine what has entered the view.

Polygon Restrictions

In order to ensure interactive model browsing and relatively con-
stant frame-rates, we introduce a technique of polygon transmis-
sion restrictions (similar to those of [15, 10]). The client informs

vs vs

v

v v

1

2 3

1 2

vs

vs

v

v

v

1

2

3

1

2

v1

v1 �

�

�

vs2vs1

vsp

(a) (b) (c)

Figure 6: A comparison of a vertex hierarchy and a vertex split hierarchy. The initial problem is shown in (a), the vertex hierarchy solution in
(b) and the vertex split hierarchy solution in (c). In (c) the removed dependency is indicated by a dotted arrow.

the server of a polygon restriction during the initialisation of the
transmission. The server restricts the number of atomic operations
which are sent to the client such that the client does not exceed this
polygon limitation. Because refinements are also transmitted in the
order in which they are present in the hierarchy, (i.e. top down)
there is an even distribution of refinements within the viewed re-
gion (as is clear from Figure 9).

The client could decide to alter her view during transmission.
The server must be able to stop the current transfer and update the
transmission list immediately as the client changes her mind.

Coherence

Using model coherence within a view-dependent refinement tech-
nique is not new [5, 10], but the merits of maintaining a stateless
client have not yet been explored. There is typically a high de-
gree of frame-to-frame coherence between the view changes of the
client, especially when viewing specific regions of the model. By
transmitting edge collapse operations necessary to un-refine what
has left the view and then vertex splits only of the regions which
have entered the view, we are naturally exploiting this property. It
is clear from Figure 7 that the polygon count of a remotely viewed
model can be kept relatively constant when applying coherence.

Client Cache

In order to further improve client interactivity with the model, we
observe that only vertex split operations which have already been
transmitted can be collapsed. We create a cache on the client side
containing recently applied vertex split operations. We maintain the
same cache on the server side. Instead of transmitting a vertex split
or edge collapse to the client, it is sufficient to transmit only the
index number of the operation stored in the cache.

5 Implementation

Our web-based application is based on a classic client-server
model, and allows users to retrieve individual models selectively
from the Internet. The server is initialised with a sequence of spe-
cially formatted mesh files which reflect the hierarchy described
in Section 3.2. These files are the result of an external preprocess
which converts a version of the Progressive Mesh[4] format (i.e.
PM �K�)����� vsplit �e�������e� vsplit ���), modified such that each vsplit �
element includes the indices of the dependent vertices indicated in
Figure 4.

A client specifies a server, and requests a model from a list of
those available. The server spawns a new thread, and transfers the
base mesh � � to the client. Client then sends view parameters to

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

Frame Sequence Number

N
um

be
r

of
 V

er
te

x
S

pl
its

 to
 a

pp
ly

Figure 7: The benefit of coherence. The view frustum is moved
across a surface in a preset path. Crossed points indicates trans-
mission with refinement (vertex splits) only, while circled points
indicate transmission of both vertex split and edge collapse opera-
tions taking advantage of coherence between refined regions. With
no polygon limitations in place it is clear that un-refining sections
of the mesh drastically reduces the graphics load on machines with
poor rendering capabilities.

the server, to which the server responds with an ordered sequence
of refinements. The optimisations in Section 4 are also available to
the client.

We implemented our server and client with Java3D. It offers
high-performance graphics in addition to the portability offered by
the Java platform. The hierarchy was linearised to improve access
times of elements within the graph. The client process consists of
two threads, a listening thread and a main thread. The main thread is
used for interacting with the user and sending requests to the server,
while the listening thread waits for a responses from the server. The
communication between the client and the server is therefore asyn-
chronous. This allows the user to manipulate the mesh interactively.

We use TCP/IP sockets as the communication protocol between
the client and the server. BufferedOutputStream and Buffered-
InputStream classes are used to buffer the output and the input
socket streams in order to increase performance. We use an In-
dexedTriangleArray geometry class for the purposes of rendering
our meshes. Each time a sequence of atomic operations is applied
to the mesh, we generate a new IndexedTriangleArray object in-

stead of maintaining a single IndexedTriangleArray which con-
tains space for all of the mesh geometry. We do this in order to
minimise the number of triangles being processed for rendering.
We use Java3D’s mixed immediate-retained rendering mode since
we are constantly changing the geometry of our object. Unfortu-
nately the continuous modification to the models geometry did not
permit the optimisations gained by compiling retained mode Scene
Graph geometry.

We implement our cache using a fixed size queue and a hash
table. We use the queue to determine the age of the atomic opera-
tions within the cache. If there is no space in the queue, the atomic
operations at the front of the queue (i.e. the oldest operations) are
removed.

6 Results

The table below compares an unoptimised vertex hierarchy imple-
mentation with visibility spheres, with a similarly unoptimised ver-
tex split hierarchy. Both a vertex hierarchy and a vertex split hierar-
chy are quick (normally � @��]�� { F) to traverse, but since the vertex
list must be traversed every time in order to transmit the necessary
refinements, both run in � @ { F . It is clear that the vertex split hier-
archy has roughly half the number of nodes, and is about 70% of
the physical size of the vertex hierarchy.

Vertex Hierarchy Vertex Split Hierarchy
Mesh # nodes size (bytes) # nodes size (bytes)
bones 4143 99 146 1989 63 648
bunny 70 395 1 548 690 34 448 1 102 336
headrest 288 826 6 354 172 144 189 4 614 048

We find also that the cache maintained by both the client and the
server reduces the number of edge collapse operations which must
be transmitted to between 5% and 10% of the original number de-
pending on the degree of coherence between frames, and the size
of the cache. We used a cache of 5% of the total number of vertex
split operations in the original progressive mesh model.

The results of progressive and selective transmission are clearly
shown in Figures 1, 8 and 9. In Figure 9 the region surrounding
the eye of the bunny is refined with various polygon limitations. In
Figure 8 and 1 three selectively refined regions are shown in each
case.

7 Conclusion and Future Work

Our view-dependent refinement framework provides interactive,
progressive and selective transmission of polygonal meshes in large
model repositories. The stateless client system described gives the
client a great deal of flexibility with respect to interactivity and con-
trol of the transmission process. We are in the process of imple-
menting a web-based model repository of un-textured African art
models (such as those in Figure 1) using this technique. The tech-
niques described could also be integrated into existing web-based
3D applications.

In the future we would like to see the translation of the ap-
pearance preserving simplification representation of Cohen et al.
[2] and progressive hulls of [12] into a view-dependent refinement
technique. The partitioning system of [9] used for mesh simpli-
fication could also be applied to surfaces to provide selective re-
finement across surface patches of large models. Discontinuities
at seams of these patches would have to be addressed to prevent
unsightly cracks during selective refinement.

Acknowledgements

We would like to thank the Stanford repository for their use of the
bunny and bones models, and the Contemporary African Music and
Arts Archive (CAMA), Otto-Carl Marte, Caleb Lyness and Bryan
Wong for the use of the headrest model.

References

[1] M. J. Ackerman. The visible human project. In Proceedings
of the IEEE, 1998.

[2] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. In Proceedings of SIGGRAPH, 1998.

[3] A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial
maps for polygonal transmission of polygonal surfaces. In
VRML, 1998.

[4] H. Hoppe. Progressive meshes. In Proceedings of SIG-
GRAPH, 1996.

[5] H. Hoppe. View-dependant refinement of progressive meshes.
In Proceedings of SIGGRAPH, 1997.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. Technical report, Univer-
sity of Washington, Seattle, 1993.

[7] A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin.
Maps: Multiresolution adaptive parameterization of surfaces.
In Proceedings of SIGGRAPH, 1998.

[8] M. Levoy, S. Rusinkiewicz, M. Ginzton, J. Ginsberg, K. Pulli,
D. Koller, S. Anderson, J. Shade, B. Cirless, L. Pereira,
J. Davis, and D. Fulk. The digital michelangelo project: 3d
scanning of large statues. In Proceedings of SIGGRAPH,
2000.

[9] P. Lindstrom. Out-of-core simplification of large polygonal
models. In Proceedings of SIGGRAPH, 2000.

[10] D. Luebke and C. Erikson. View-dependent simplification
of arbitrary polygonal environments. In Proceedings of SIG-
GRAPH, 1997.

[11] C. Lyness, O.-C. Marte, and B. Wong. Model reconstruction
for a virtual interactive environment. Technical Report CS99-
11-00, University of Cape Town, 1999.

[12] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder. Silhou-
ette clipping. In Proceedings of SIGGRAPH, 2000.

[13] L. A. Shirman and S. Abi-Ezzi. The cone of normals tech-
nique for fast processing of curved patches. In Eurographics,
1993.

[14] E. J. Stollnitz, T. Derose, and D. Salesin. Wavelets for Com-
puter Graphics. Morgan Kaufmann Publishers, 1996.

[15] D. To, R. Lau, and M. Green. A method for progressive and
selective transmission of multi-resolution models. In ACM
Virtual Reality Software and Technology, 1999.

[16] J. C. Xia, J. El-Sana, and A. Varshney. Adaptive real-
time level-of-detail-based rendering for polygonal models. In
IEEE Transactions on Visualization and Computer Graphics,
1997.

Figure 8: Selective Refinement. Separate sections of the model are refined in each frame.

1000 polygons 1500 polygons 2000 polygons

Figure 9: Progressive Refinement. The bunny’s eye is progressively refined by setting the polygon limit to 1000, 1500 and 2000 polygons
respectively.

