

University of Cape Town

SignDIn: Designing and assessing a
generalisable mobile interface for

SignSupport

Marshalan Reddy

RDDMAR006

Minor Dissertation presented in partial fulfilment of the

requirements for the degree of

Master of Science (Information Technology)

Faculty of Science

University of Cape Town

February 2015

Supervised by Professor Edwin Blake

i

Declaration
I, Marshalan Reddy (RDDMAR006), hereby declare that the work on which this Dissertation is based is

my original work (except where acknowledgements indicate otherwise) and that neither the whole

work nor any part of it has been, is being, or is to be submitted for another degree in this or any other

University. I empower the University of Cape Town to reproduce for the purpose of research either

the whole or any portion of the contents in any manner whatsoever.

M Reddy

13 February 2015

ii

SignDIn: Designing and assessing a generalisable mobile interface for SignSupport

Marshalan Reddy
MSc Thesis, Department of Computer Science
University of Cape Town

Abstract
SignSupport is a collaborative project between the Computer Science departments of the University

of Cape Town (UCT) and the University of the Western Cape (UWC), South Africa. The intention of the

software is to assist Deaf users to communicate with those who can hear in domain-specific scenarios.

The penultimate version of this software is a mobile application that facilitates communication

between Deaf patients and hearing pharmacists through the use of Sign Language videos stored locally

on the mobile device. In this iteration, adding any new content to the mobile application necessitates

redevelopment, and this is seen as a limitation to SignSupport. The architecture hinders the addition

of new domains of use as well as extending the existing domains.

This Dissertation presents the development and assessment of a new mobile application and data

structure, together called SignDIn, and named as an amalgamation of the words ‘Sign’, Display’ and

‘Input'. The data structure facilitates the easy transfer of information to the mobile application in such

a way as to extend its use to new domains. The mobile application parses the data structure, and

presents the information held therein to the user. In this development, the Dissertation sets out to

address the following:

1. How to develop a generalisable data structure that can be used in multiple contexts of Sign

Language use.

2. How to test and evaluate the resulting application to ensure that parsing the data structure

does not hinder performance.

The first objective of this research aims to develop a data structure in a generalised format so that it

is applicable to multiple domains of use. Firstly, data structure technologies were evaluated and XML

selected as the most appropriate out of three candidates (Relational Databases and JSON being the

other two) with which to build the data structure. Information was collected from the International

Computer Driver’s Licence (ICDL) and Pharmacy domains and an XML data structure designed passing

through three stages of development. The final outcome of the data structure comprises two XML

types: display XMLs holding the display information in a general format of screen, video, image,

capture and input; and input XMLs holding the list of input options available to users.

The second objective is to test the performance of the mobile application to ensure that parsing the

XML does not slow it down. Three XML parsers were evaluated, SAX Parsing, DOM Parsing, and the

XML Pull Parser. These were evaluated against the time taken to parse a screen object as well as the

screen object throughput per second. The XML Pull Parser is found to be the most efficient and

appropriate for use in SignDIn.

The SignDIn application design and supporting XML data structure has facilitated a means for the easy

application of SignSupport to other domains of use without the necessity for reprogramming or

rewriting the mobile application code. This research makes it possible to add new content to

iii

SignSupport without building a new mobile application. By gathering and building new SASL content,

SignDIn can be used to allow Deaf people to cope in more environments where the dialogue can be

abstracted appropriately.

iv

Contents
Declaration ... i

Abstract ... ii

Contents ... iv

List of Figures .. vii

List of Tables .. viii

Acronyms ... ix

Chapter 1: Introduction .. 1

1.1 Background ... 1

1.1.1 Deafness as a Cultural Denomination ... 2

1.1.2 Deaf Community of Cape Town (DCCT) .. 3

1.1.3 Previous work with DCCT .. 3

1.1.3.1 Looijenstein’s Work... 4

1.1.3.2 Mutemwa’s Work ... 4

1.1.3.3 Chininthorn’s Work ... 5

1.1.3.4 Motlhabi’s Work ... 5

1.2 Motivation ... 6

1.3 Research Question .. 6

1.3.1 Generalisability: How to develop a generalisable data structure that can be applied in

multiple contexts of Sign Language use. ... 7

1.3.2 Speed: How to test and evaluate the resulting application to ensure that parsing the

data structure does not hinder performance. .. 7

1.4 Dissertation Outline .. 8

Chapter 2: Literature Review and Background ... 9

2.1 Sign Language on Mobile .. 9

2.1.1 TISSA and Relay Systems ... 9

2.1.2 Mobile ASL .. 9

2.1.3 Mobile Sign Language and Device Interaction .. 10

2.2 Data Structures ... 11

2.2.1 Relational Databases and Structured Query Language (SQL) 11

2.2.2 JavaScript Object Notation (JSON) .. 12

2.2.3 Extensible Markup Language (XML) .. 12

2.3 Conclusion ... 13

Chapter 3: An Evaluation of Mobile and Data Structure Technologies .. 14

3.1 Android as a Platform – to CH 3 .. 14

v

3.2 Requirements of SignDIn .. 15

3.3 Evaluation ... 16

3.3.1 RDB and SQL suitability to SignDIn ... 16

3.3.2 JSON vs XML and the suitability to SignDIn .. 17

3.4 XML Parsers ... 18

3.4.1 Evaluating XML Parsers ... 18

3.5 Conclusion ... 19

Chapter 4: The Experimental Design and Methodology ... 20

4.1 Assumptions and Exceptions .. 20

4.2 Environment.. 20

4.2.1 The Physical Device and Development Software .. 20

4.2.2 The Android OS ... 21

4.3 Methods .. 21

4.3.1 Development of the XML Data Structure ... 21

4.3.2 Development of the XML Parser ... 25

4.3.3 Comparing XML Parsers for Android... 25

4.4 Conclusion ... 26

Chapter 5: Results ... 27

5.1 The XML Data Structure .. 27

5.1.1 Storage of Assets ... 27

5.1.2 The Display XML documents ... 29

5.1.3 The Input XML Documents.. 31

5.1.4 An Example of SignDIn Applied to Two Different domains. ... 32

5.2 SignDIn and the XML Parser .. 34

5.3 Comparing XML Parsers for Android .. 37

5.3.1 Time per Screen Object ... 37

5.3.2 Parsed Screens Throughput .. 37

5.4 Discussion .. 38

Chapter 6: Synthesis and Conclusion .. 40

6.1 Key Outputs ... 40

6.1.1 Generalisability ... 40

6.1.2 Parser Efficiency .. 41

6.2 Evaluation of the Research Design and Methodology .. 41

6.2.1 Data Structure Limitations .. 41

vi

6.3 Future Directions .. 41

6.3.1 User Testing .. 41

6.3.2 Other mobile platforms .. 42

6.4 Main Conclusions .. 42

Bibliography .. 43

Appendix A: XML v3a – Display Screens – Pharmacy patient example .. 45

Appendix B: XML v3b – Input Options example - diseases ... 48

Appendix C: Results from 1000 Cycle Parser Test .. 49

JDOM Parser ... 50

SAX Parsers ... 51

XML Pull Parser ... 52

vii

List of Figures

Figure 1.1 SignSupport’s Conceptual Design Architecture [6] .. 2

Figure 1.2:Creating new content for SignSupport, implemented in two stages 6

Figure 2.1: Example of JSON Code .. 12

Figure 2.2: Example of XML code .. 12

Figure 4.1: Stage 1-3 of XML Data Structure Design ... 24

Figure 4.2: The XMLParserTester Welcome Screen .. 26

Figure 5.1: How SignSupport Stores its Assets ... 28

Figure 5.2: Display XML of (a) a Pharmacy screen and (b) an ICDL screen ... 30

Figure 5.3: Gender.xml as an example of an input XML ... 31

Figure 5.4: The Inputs Parser - Refer also to Figure 4.1 .. 32

Figure 5.5: The Resulting Design of the SignDIn Application .. 36

Figure 5.6: Parsing Speeds in average seconds per XML Document over 1000 cycles. 37

Figure 5.7 Number of Screen Objects parsed in 0.2 Seconds ... 38

Figure C.1: Variance in time to parse a screen object in seconds for the JDOM Parser 50

Figure C.2: Variance in time to parse a screen object in seconds for the SAX Parser 51

Figure C.3: Variance in time to parse a screen object in seconds for the PULL Parser 52

viii

List of Tables

Table 1.1 Summary of SignSupport work from 2009 to current ... 4

Table 1.2 Summary of objectives, required data and methodology .. 7

Table 3.1: Requirements of the SignDIn Data Structure ... 16

Table 3.2: DOM vs SAX Comparison ... 18

Table 4.1: Mobile Device Specification ... 21

Table 5.1: Parser Throughput (number of Screens parse-able in 0.2 Seconds) 38

Table C.2: Parsing Speeds in Average Seconds per XML Document ... 49

ix

Acronyms

ADT Android Development Tools

API Application Programming Interface

ASL American Sign Language

AVD Android Virtual Device

BSL British Sign Language

CSV Comma Separated Values

DCCT Deaf Community of Cape Town

DOM Document Object Model

GPS Global Positioning System

HCI Human Computer Interaction

HTC High-Tech Computer Corporation

HTML Hypertext Markup Language

ICDL International Computer Driving Licence

ICT Information and Communication Technologies

IM Instant Messaging

iOS Apple's Mobile Operating System for I-Devices

JDOM Java's Document Object Model

JSON JavaScript Object Notation

MobileASL Mobile American Sign Language

NGO Non-Governmental Organisation

OS Operating System

OSX Apple's Desktop Operating System (Literally Operating System Ten)

PC Personal Computer (desktop/laptop)

RSS Really Simple Syndication

RDB Relational Database

SASL South African Sign Language

SAX Simple API for XML

SDK Software Development Kit

SMS Short Message Service

SQL Structured Query Language

TISSA Telephone Interpreting Service of South Africa

UCT University of Cape Town

URL Uniform Resource Locator

UWC University of The Western Cape

XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language

1

Chapter 1: Introduction

1.1 Background

SignSupport is a collaborative software development project between the Computer Science

departments of the University of Cape Town (UCT) and the University of the Western Cape (UWC) [1],

South Africa. The intention of the software is to assist Deaf users in communicating with the hearing

in domain-specific scenarios. “Domain-specific” means that the context is within a specific scenario,

the benefit of which is that the application needs to accommodate a limited vocabulary and range of

responses. The application does this by using pre-recorded video-clips and images stored locally on a

mobile device, negating the need for network connectivity. SignSupport serves as a means of

communication between Deaf people and the hearing while empowering the Deaf with the freedom

to communicate in their own language in a range of environments.

According to Reagan et al. there are two approaches to providing assistance to Deaf people [2]. The

first views Deafness as a medical condition providing solutions to assist a Deaf individual to cope as a

hearing person would through the use of hearing aids or lip-reading. Reagan et al. refers to this as the

“pathologized” approach. It aims to allow the Deaf individual to function in a hearing-centric society

by providing solutions and tools to cope with the state of Deafness in much the same way as a disabled

person copes with his or her disability. The alternative approach incorporates a sociocultural

perspective on deafness: viewing Deaf people as individuals who are members of a cultural and

linguistic minority. This approach calls for solutions that assist Deaf people to function in a dominant

culture, in much the same way as a minority language or culture would [3]. This is the view that this

paper, and SignSupport follow.

The earliest version of SignSupport, (circa 2009), is a computer based application and essentially a

proof of a concept [4]. All iterations since then have been hard-coded to work only in specific

environments and use a fixed store of information. The penultimate version, built by Motlhabi [5]

works only in a pharmacy environment and is restricted to a fixed set of questions and answers

(between the pharmacist and the Deaf patient), thus limiting the list of diseases and treatments that

can be utilised and, in the case of the Deaf patient, limiting the information that can be collected

through the questioning process. In its current format, SignSupport cannot easily accommodate any

future growth, meaning that it cannot be adapted to any new environment, nor can it be extended to

include more information in the current pharmaceutical domain. Completely new iterations of the

software would have to be developed every time a new domain of expertise is added or an existing

one extended.

This limited capability to change means that the application must be further developed to be able to

accommodate other domains without extensive software development. It is possible to facilitate this

through the use of an authoring tool. This tool, as it is represented in the middle layer of Figure 1.1, is

a PC-based application that enables domain specialists like pharmacists or teachers to build content

for SignSupport by collating sets of media containing videos, images and text in the form of

instructions and questions. These media can be transferred to the mobile device in such a way as to

facilitate the sequencing and filtering of the media to make it more presentable to the user. A

generalisable and consistent medium of transfer as well as a speed-efficient mobile application are

2

prerequisites for the Authoring Tool represented as the “XML” Interface layer in Figure 1.1. This study

provides a unique approach to addressing the problem of the transfer medium and the mobile

application by building both a data structure and a mobile application which will render the

information held in the data structure as screens which are presented to the Deaf user. With regard

to Figure 1.1, this study seeks to provide a solution for the “XML” Interface and ”Mobile App”

components of SignSupport. The actual development of the authoring tool falls outside the scope of

this study, but some requirements for the authoring tool can be established from this paper. The

remainder of this chapter will enlarge upon the background to SignSupport to provide the context for

the user environment in which the mobile application can be used.

Figure 1.1 SignSupport’s Conceptual Design Architecture [6]

1.1.1 Deafness as a Cultural Denomination

From the perspective of this Dissertation and supporting research in SignSupport, the term “Deaf”

with a capital D indicates a cultural denomination [7, 8].To further elaborate on this, the correct way

to refer collectively to the Deaf is as “Deaf people” as opposed to simply, “the Deaf.”

Deaf South Africans have their own language namely South African Sign Language (SASL). This has not

yet been recognized under the South African Constitution as one of the official South African

languages. Deaf people are for the most part functionally illiterate [9, 10]. For people who can hear

3

and who rely on a spoken language as their first language, the ability to read and write is merely a

secondary form of communication. For Deaf people, however, learning to read and write, more closely

resembles learning another language in its entirety. Literacy issues amongst Deaf South Africans are

expanded in Chapter 2, the Literature Review.

Further hindrances to the literacy and communication skills of Deaf South Africans can be attributed

to South Africa’s history of poor education for the Deaf Community. South Africa’s policies of

segregation caused SASL to develop differently in the segregated communities, besides a number of

other causes [11]. These historical circumstances affecting the development of SASL call for the socio-

cultural approach to deafness, as described earlier. Because of the variations in SASL in context and

circumstance, SignSupport has been built on a foundation of fixed dialogues in relation to specific

domains. These are filmed as SASL videos and then stored locally on the mobile device. The videos can

be referred to as “canned” videos because they are stored locally and no dynamic change to them is

possible. Using an active, mobile, SASL translation system which films a Deaf person’s Sign Language

and then attempts to translate it is far more difficult given the complexity of SASL, because of its

inherent variations for the reasons given above. Section 2.1 of the literature review expands on the

factors which affect Deaf Literacy as an explanation for the use of canned videos in SignSupport.

1.1.2 Deaf Community of Cape Town (DCCT)

The SignSupport project is being carried out in collaboration with the Deaf Community of Cape Town

(DCCT), a non-governmental organisation (NGO), which not only serves Deaf people but is also almost

exclusively staffed by Deaf people [12]. While Information and Communication Technology (ICT) is not

DCCT’s primary purpose, the NGO has a productive history of using ICT to enable and empower its

members. For example, the NGO is a registered International Computer Driver’s Licence (ICDL) Centre

which currently offers the ICDL course to the Deaf Community. The DCCT has a long history of

cooperation with UCT and UWC in the development of telecommunication aids [4, 5, 13-15].

University Researchers and Academics who have worked with DCCT still play an integral part in the

progress and development of its ICT platform. Today, these researchers use DCCT to build new content

for the SignSupport application, attempting to apply it to new domains, while also extending its

current domains.

1.1.3 Previous work with DCCT

For almost a decade, UCT and UWC have worked closely with the DCCT to build electronic

communication aids for Deaf people. [16]. The following section examines only the most recent and

relevant work in line with the SignSupport application. It shows how the application evolved from PC

to mobile and how the principles have been applied to different fields. The work done in previous

iterations is summarised in Table 1.1 below.

4

Table 1.1 Summary of SignSupport work from 2009 to current

Year Author Title Platform Environment Comments

2009[4] Looijenstein The design of a
deaf-to-hearing
communication
aid for South
Africa

PC

Doctor/Hospital Proof of PC
concept

2010[14] Mutemwa A mobile deaf-
to-hearing
communication
aid for medical
diagnosis

Symbian S60
Browser

Doctor/Hospital Mobile Device
*Also had an
authoring tool on
PC.

2012[17] Chininthorn Communication
tool design
from deaf to
hearing in
South Africa

Android Pharmacy Android Device –
design focused

2013[5] Motlhabi Usability and
content
verification of a
mobile tool to
help a deaf
person with
pharmaceutical
instruction

Android Pharmacy Hard-coded.
Cannot
extend/add new
videos or apply to
new domains.

1.1.3.1 Looijenstein’s Work

The earliest version of SignSupport is a proof of a PC-based concept. The context of this version is a

doctor and patient scenario and facilitates two-way communication between the doctor and the

patient. The scope of this context later proved to be far too large to build structured conversations.

The Deaf patient is asked questions about his/her symptoms by means of SASL videos. The answers to

these questions are presented to the doctor in text format. Using a dictionary of predefined responses,

the doctor can then draw up his response, which is presented to the patient in SASL.

1.1.3.2 Mutemwa’s Work

Mutemwa’s iteration involves adapting Looijenstein’s version to run completely on a mobile device.

Two Nokia Smartphones are used, the E71 and N82. The phones run the Symbian Series 60 Operating

System (OS) and the application is run through the phone’s browser. Because of this, Mutemwa used

a combination of Adobe Flash and Extensible Hypertext Markup Language (XHTML) to present the

application to the user. His application was not native to the Symbian OS and hence could not make

use of all the features of the phone. At the time, the latest Android iteration was Froyo (V2.2) the use

of which was not as widespread as more recent Android iterations [18]. Mutemwa also introduces a

content authoring tool, a PC-based application to help build conversations and catalogue SASL videos

so that different conversations can be loaded for the appropriate scenarios. This is the first

introduction of an Authoring tool. Mutemwa’s application can only facilitate one-way communication

from the patient to doctor. This is a major functional shortcoming, and in addition to the shortcomings

of the phone and the (OS), makes the application difficult to use and impractical. At this stage in the

5

SignSupport life cycle, it also becomes evident that a doctor’s office environment is too large and

difficult a context to program in the SignSupport solution. The sequences and variances in

conversation require too large a database of SASL videos. The next iteration, by Chininthorn deals with

some of these shortcomings, but some are still carried over to Motlhabi’s 2013 iteration.

1.1.3.3 Chininthorn’s Work

Chininthorn’s first major contribution to extending SignSupport is its application to a pharmacy

context. A pharmacy context has a far narrower scope of dialogue and it is thus easier to program this

application. A pharmacist communicates a very specific and repeatable set of facts to his/her patient

such as dosage amounts, frequency of dosage and side-effects. Chininthorn’s background is in

Industrial Design, therefore her contribution does not include the development of the software itself,

but it does set a framework for the use of the software and what is required of it. This stage was

important progress, as it focuses the Sign-support application on one domain that is specific enough

to establish the bounds of a reasonably strict dialogue.

1.1.3.4 Motlhabi’s Work

In his 2013 iteration of SignSupport, Motlhabi extended the application by developing it for the

Android OS. For the first time, the application runs on a Samsung Smartphone in the native language

of the OS (Java). The application can, and does make use of an Application Programming Interface

(API) native to the Android OS to facilitate phone-specific features like vibration feedback when

making a selection and even the use of the camera. The new phone is a major improvement to the

previous one. It has enough local memory to hold a large database of videos. At the necessary

resolution, Motlhabi’s database of videos takes up 327 Megabytes on a phone that has approximately

25Gigabytes of local storage ̶ which was also extendable. This set of videos provides an excellent

source from which a start can be made to designing the data structure required in the first objective,

which is set out in Section 1.3.1 and addressed later in Section 3.3.

At this stage, SignSupport can collect information from the Deaf user through the use of SASL videos.

This iteration also involves the recording and transcribing of these videos after collecting data from

the pharmacists and patients. The phone is then handed to the pharmacist, who inputs the necessary

medications and dosage regime and can even include a picture of the medication (taken with the

phone’s camera). Finally, a Deaf patient can select the prescribed medication and view the instructions

in sign language videos. Motlhabi has produced and tested these videos extensively for content

verification.

Motlhabi’s result is a self-contained application in that it does not require a desktop computer or even

a wireless or data network connection. The major downside is, however, that it is very difficult to build

any new dialogue for this application. In this iteration, it caters for a limited number of diseases and

medications and in the pharmacist’s domain only. Adding a new disease or medication requires the

developer to create a new version of the software. Extending SignSupport to further domains involves

changing the application logic at an even deeper level. Furthermore, no Authoring tool is used in this

iteration.

6

1.2 Motivation

SignSupport is on its way to becoming a usable platform to facilitate Deaf communication. One

obstacle in its development is the process involved in creating new content. The process still contains

a number of challenges which need to be addressed. When any new domain is added, researchers

must build a dialogue, translate it to SASL, film the SASL dialogue videos, and then verify the content.

After this, the videos must be linked to their supporting content. (Stage 1 of Figure 1.2). These

challenges must be addressed by a Desktop-based Authoring Tool. The deployment of all this content

to a mobile device remains a further challenge. Once the dialogue is built and videos filmed, the mobile

application must accept the information and a usable interface created for the Deaf user to be able to

consume the content. A channel to facilitate the transfer of this information from Authoring Tool to

mobile device must also be developed (Stage 2 of Figure 1.2).

Future researchers and content contributors will be able to expedite the deployment of content if the

mobile application is built in such a way that the transfer of data is a simple and repeatable process.

This means building a mobile application that can be extended merely by transferring new content to

the local storage on the mobile device. With the right content, the application can be adapted and

enlarged for use in a variety of ways. If the concern for mobile data usage can be set aside or

overcome, the application can even be extended to collect this information from an online resource.

This Dissertation aims to address this gap in the current versions of SignSupport.

SUPPORTING CONTENT:DOMAIN:

Dialogue

VIDEOS:

 Video 1

 Video 3

 Video 2

 Images, Text and
Sequencing

 Images, Text and
Sequencing

 Images, Text and
Sequencing

Verified by SASL
Interpretor

INTERFACE

Stage 1 Stage 2

INTERFACE

Gender

Previous Next

Male
Female

Are you Male or Female?

Male

Figure 1.2:Creating new content for SignSupport, implemented in two stages

1.3 Research Question
The overall aim of this Dissertation is to build on previous iterations of SignSupport by building an

application to act as a data transfer channel between the PC based Authoring Tool and the mobile

user. The application will accept information outputted by the Authoring Tool and display it in a logical

and usable sequence to the Deaf user. If and when necessary, the application will prompt for and

collect user inputs. In short, this mechanism will facilitate the Display of information to a user and

Input of user information. It will henceforth be referred to as SignDIn and named as an amalgamation

of the words ‘Sign’, Display’ and ‘Input'. Any future reference to SignSupport therefore refers to the

7

entire suite of applications, or the entire SignSupport project. This research aims to address the

following question:

Can a display and input mechanism which is both generalisable and fast be built for SignSupport?

This question can be broken down into two primary objectives:

1.3.1 Generalisability: How to develop a generalisable data structure that can be applied in

multiple contexts of Sign Language use.

1.3.2 Speed: How to test and evaluate the resulting application to ensure that parsing the data

structure does not hinder performance.

To achieve the first objective, this Dissertation describes the process necessary to build a generalisable

data structure in a medium or language that can be transferred between a PC and mobile device. In

the context of this study, to “generalise” the data structure means to build the data structure in a

general format so that it is broadly applicable to new domains. The data structure can therefore hold

the general contents of the information from any domain (videos and supporting content) and also

facilitate the display and sequencing of the content. The data structure holds the contents passed

from the Authoring Tool to the mobile device. This process is illustrated in Figure 1.2. Stage 1 of Figure

2 falls under the realm of the Authoring tool and its user, the domain specialist. Stage 2 will be fulfilled

with the data structure and the mobile application, together called SignDIn.

To achieve the final objective, a mobile application is built to parse the data structure and display its

contents in a format that does not hinder responsiveness to any great extent. Various types of parsers

are evaluated for their responsiveness, and the most appropriate one used in the final product.

This research will create the foundation for future researchers to extend SignSupport because it will

establish a systematic, standardised means of transferring data from the Authoring tool to the mobile

application. The simple, generalised data structure this Dissertation proposes will facilitate the

addition of new domains and SASL videos to SignSupport, should subsequent researchers wish to do

so, without having to redesign the logic of the mobile application. Table 1.2 gives a conceptual

overview of this Dissertation, along with the data required to achieve each objective and the

methodology followed to acquire it.

Table 1.2 Summary of objectives, required data and methodology

Objective Required Data Methodology

1. Generalisability A data structure capable of
holding content from multiple
domains, built with an
appropriate technology

 Justify the technology to
be used

 Design the data structure

2. Speed An application tested against
appropriate measurement
criteria

 Collate and assess data.

8

1.4 Dissertation Outline

This chapter provides the context and background for the SignDln application.

In Chapter 2 the supporting literature is analysed critically to give a general idea of the state of Sign

Language translation, then other attempts at mobile translation are examined to compare and assess

their shortcomings and ascertain whether there is any opportunity for enhancement and extension.

Chapter 2 also introduces three potential technologies for use as a data structure.

In Chapter 3 important preliminary information is provided before approaching the two main

objectives of this paper, namely, the evaluation of three suitable technologies for data structures and

the justification of one for this Dissertation. The goal here is to facilitate the achievement of the first

objective, by explaining why the chosen technology was deemed the most appropriate for the SignDIn

data structure. The Chapter gives a detailed description of the requirements for the data structure,

then evaluates each technology against these requirements. Finally, parsers specific to the chosen

technology are introduced and their significance in achieving the second objective is explained.

In Chapter 4 the data structure above is implemented for the development of an experimental design

for the purposes of achieving the research objectives. The chapter covers the design, development

and use of a mobile application utilising the data structures and related data and demonstrating how

the objectives are achieved. This chapter also describes the prevailing exceptions and assumptions,

and the environment in which the design is carried out. The methods used to solve the objectives of

SignDln are fully elaborated.

In Chapter 5 the results of the previous chapter are discussed. Here, the reader gains a deeper

understanding of what exactly the SignDIn application does and how it fits into SignSupport.

In Chapter 6 the Dissertation is concluded and insight is given into the limitations of the work and the

potential for future research and development.

9

Chapter 2: Literature Review and Background

This chapter gives an overview of Sign Language translation on Mobile. Firstly, a brief coverage of Sign

Language is given and an explanation why translation is done in this particular way. Section 2.1 looks

at other attempts at Sign Language translation. Section 2.2 introduces data structures, looking at

Relational Databases, (RDBs) JavaScript Object Notation and Extensible Markup Language. And finally,

Section 2.3 concludes this chapter.

The obvious question raised when considering sign language translation is why it is even necessary for

computer aided Sign-Language translation when a Deaf user could simply use text to text

communication as in the case of a Short Messaging Service (SMS), Instant Messaging (IM) or email?

In his research, Stokoe [19] outlines the visual communication systems of American Sign Language

(ASL) and shows that sign language is not universally identical. It is as unique in different countries or

communities as any native languages and cultures are. There are subtle intricacies (like gestures) that

at the very least must be communicated by video or audio. Furthermore, he explains that sign

language can develop in parallel to a community’s culture and language. This explains why American

Sign Language (ASL) and British Sign Language (BSL) can and does differ to a large extent from South

African Sign Language (SASL). The cultural inputs and experiences of the Deaf person have shaped

their specific language. Deaf readers may have more trouble comprehending the written word than

do hearing readers [20]. The phonological reading theory provides an explanation for this, associating

reading skills with phonological abilities. Basically the ability to hear or sound out a word facilitates

reading that word. This significantly affects the reading ability of those with prelingual deafness, such

as those Deaf from birth. Other factors such as the context or emotion may be lost in text or SMS. This

also explains why it is so difficult to create software that can translate Sign Language actively. The

subtleties in expression and wide variety of context-specific definitions make this far too complex a

task.

2.1 Sign Language on Mobile

2.1.1 TISSA and Relay Systems

A common approach in developed countries is to use a relay system to provide non-textual mobile

communication service for Deaf users. The Telephone Interpreting Service for South Africa, or TISSA

was intended to be such a system. The service was intended to provide access to government services

in SASL. A SASL interpreter would be contactable by telephone or videophone and act as a bridge

between the Deaf person and the hearing party. The pilot study for the system was carried out in

2002, but no successful implementations resulted. This is probably due firstly to the cost of

implementation, and use, and secondly to the availability of landline phone systems over mobile [21-

23].

2.1.2 Mobile ASL

In 2006, in the United States, Cavender et al. [24] recognise that access to the American mobile

network for Deaf people is largely limited to text messaging (SMS). This forces the Deaf to Deaf

communication to be conducted in written English as opposed to American Sign Language (ASL) [24].

This early work suggests that mobile devices should be used to transmit video calls to assist Deaf

people. Today there are systems able to facilitate this, e.g. Apple’s Facetime (exclusive to Apple iOS

10

and Apple OSX devices) and Microsoft’s Skype (almost platform independent) to name two. What

Cavender et al. foresee in 2006, is, however, hindered by the prevailing technology. 3G networks were

not ubiquitous enough at the time to carry the transmission of video calls; neither were many

Smartphones equipped with front-facing cameras. Another shortcoming of the system Cavender

evaluates is that it is necessary to place the phone in front of the user on a stand of some sort to hold

it. Many of the problems foreseen in this study are later resolved by mobile tablets, more advanced

Smartphones, and faster and more widespread mobile Internet connections. However, Cavender’s

study does not resolve the issue of how Sign Language can be translated to the spoken word and vice

versa, which is resolved by SignSupport, thereby facilitating communication between Deaf people and

those that can hear.

In 2011, Kim et al. evaluate a software program, which enables sign language video on mobile devices

over conventional cellular networks in the United States [25]. By 2011, the technological deficiencies

in Cavender’s work, to a certain extent, had been overcome, but the software (MobileASL) did not

fully overcome newer shortcomings. The experiment participants are given a HTC Tytn II Smartphone

with the MobileASL application preloaded onto it. The phone itself is partly to blame for some of the

shortcomings. Users complain in specific that the battery life is drastically shortened when using

MobileASL. This is largely because all the processing required to record, transmit, and play the video

back is carried out by the phone. SignSupport on Android overcomes this because the processing is

carried out on the SignSupport back-end. To quote the text:

“Participants also pointed out that the phone was too big and the tilt of the
screen needed to go further. They also mentioned wanting a touch-screen
interface more easily controlled by a fingertip than a stylus.” [25]

Later model Smartphone devices meet these demands by offering an extended battery life, better

touch screen interfaces and an overall improved HCI design. It should also be noted that MobileASL

does not provide any translation mechanism, but only a Deaf to Deaf communication tool.

2.1.3 Mobile Sign Language and Device Interaction

In 2010, Jayant et al carry out a study demonstrating that V-Braille can be used by Deaf people and

those who are both deaf and blind to read individual characters and sentences on mobile devices [26].

The methodology facilitates a touch screen divided equally into six parts, to mimic the six dots in a

single braille cell. This is a unique example of Human Computer Interaction (HCI), although it is not

universally applicable to Deaf users. The users know which cell they are using and which Braille icon

they are typing by means of vibration feedback. This gives an interesting take on HCI for the sensory-

impaired. No other literature in the review covers the use of touch as a method of feedback. The study

shows that V-Braille has the potential for use by both deaf and blind people to interact with the world

through mobile technology as an alternative method of communication.

In a similar approach, Azenkot et al develop GoBraille, two related Braille-based applications that

provide feedback on public transport systems [27]. Go-Braille was codesigned by a deaf-blind person

which resulted in a minimalist interface, with short input and output messages. The application works

in two parts, firstly to provide real-time bus arrival information and secondly crowd-sourced

information about bus stop landmarks. The key to this approach is that the crowd-sourced information

is provided by GoBraille users, who are themselves sensory-impaired, and therefore provide only the

relevant information needed to help other users. The main drawback of this approach is that it

11

requires the addition of a Wi-Fi-enabled Braille display. The work is important to this research, as it

shows how important simple interfaces are for Deaf people.

A study by Jones and Johnson [28] points out that even fully capable (non-sensory-impaired) users can

only focus on a certain number of tasks at one time. Mobile users, in specific, want to carry out

atomized tasks as quickly and efficiently as possible. The study proposes that the design should focus

on specific, functional tasks. This supports the view of much of the other literature in this section; i.e.

that simple and user-friendly design should be at the core of the Android SignSupport application. This

is even more valid when designing for the sensory-impaired.

The literature covered thus far shows the failures of attempting to implement relay systems in

developing countries. The technological setbacks experienced in MobileASL are accommodated in the

newer Samsung Galaxy SIII. Also of importance, is designing a simple, standardised interface. What

follows provides a general overview of the history of SignSupport and its current shortcomings and

scope for growth.

2.2 Data Structures

What SignSupport lacks is the ability to be refreshed or updated as new requirements are set. This can

be done with the use of a data structure, which is a particular way of storing data so that it can be

easily and efficiently used [29]. As part of this experiment, three technologies are evaluated for

suitability as a data structure, against the benchmark requirements of SignDIn.

Chapter 3 evaluates the three established technologies in the field, Relational Databases and SQL;

JavaScript Object Notation (JSON); and Extensible Markup Language (XML). The following paragraphs

are an introduction to these topics.

2.2.1 Relational Databases and Structured Query Language (SQL)

A Relational Database (RDB) is one where information is stored about the data as well as how the data

relates to other data. All data relationships are represented as two dimensional tables [30].

A Relational Database Management System (RDMS) is essentially software that controls the reading,

writing and modification of the Relational Database. The RDMS achieves this through the use of

Structured Query Language, or SQL.

Relational Databases comprise collections of related tables with each table holding information in

rows and columns. Each row equates to an entry in the database and can be linked to information in

another table. Much of the purpose of Relational Databases is to allow for connections and

correlations to be built between large and complex sources of information.

12

2.2.2 JavaScript Object Notation (JSON)

{

 "Root": {

 "child1": {

 "tag1":"text",

 "tag2":"text"

 }

 }

}

Figure 2.1: Example of JSON Code

Figure 2.1 above shows a sample of JSON text containing the same data as the XML document in Figure

2.2. JSON is an open-standard format using human-readable text to transmit data objects in attribute

value pairs. JSON is used to transmit data over the Internet, in a server-client scenario. As in the case

of XML, JSON is language independent. It is a popular alternative to XML, because it offers benefits in

performance when used in a client/server scenario, i.e. where transmission is over a network interface

[31]. Although this is not applicable to SignDIn, it should be noted that there is no formalised schema

system for JSON, as there is in the case of XML.

2.2.3 Extensible Markup Language (XML)

XML Stands for Extensible Markup language and is a text-based markup language derived from SGML

(Standard Generalized Markup Language). The XML document is used to display and organise data.

XML tags in the document can be used to identify individual elements of data. XML does not qualify

as a programming language because it does not instruct a computer to perform any task. It is usually

stored as simple text files and processed by software capable of interpreting (or parsing) XML.

Figure 2.3 shows a simple XML document. For the purposes of SignDln, this describes all the necessary

characteristics of an XML document. Line one is standard in most XML documents. This is the XML

declaration which declares to any parser or compiler, that this is an XML document. Line 3 starts with

the first and only element of this document, called the Root. The Root element ends on line 8 and

contains an element called child 1. Child 1 has two further child elements called Tag1 and tag2, each

containing a string called “text”. This XML document can be said to have one element, and go down

to a depth of 3 levels. The document can be described as being well-formed, because the tags nest

within tags, and do not overlap. No Document Type Definition (DTD) is applicable to this document,

neither is there one applicable to the XMLs used by SignDIn.

<?xml version="1.0" encoding="UTF-8"?>

<Root>

 <child1>

 <tag1>text</tag1>

 <tag2>text</tag2>

 </child1>

</Root>

Figure 2.2: Example of XML code

XML was developed by an XML Working Group under the World Wide Web Consortium in 1996. The

design goals of XML provide a strong case for implementing it in a project such as SignDIn.

The goals, taken from www.w3.org are outlined below:

http://www.w3.org/

13

1. XML shall be straightforwardly usable over the Internet.
2. XML shall support a wide variety of applications.
3. XML shall be compatible with SGML.
4. It shall be easy to write programs, which process XML documents.
5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.
6. XML documents should be human-legible and reasonably clear.
7. The XML design should be prepared quickly.
8. The design of XML shall be formal and concise.
9. XML documents shall be easy to create.
10. Terseness in XML markup is of minimal importance.

This has resulted in a markup language with three important characteristics making it useful in a
variety of systems and solutions.

1. XML is extensible: XML essentially allows you to create your own language, or tags, that suit
your application.

2. XML separates the data from the presentation: XML allows you to store content without
regard to how it will be presented.

3. XML is a public standard: It is available as an open standard.

The following section concludes the literature review.

2.3 Conclusion
The literature has shown sufficiently, the current state of the discipline into which SignDIn fits. The

reasons for using domain-specific dialogue and the resulting canned videos are justified. Android is

demonstrated to be the platform of choice when developing this software. There has also been

sufficient coverage of a number of other approaches to using mobile communication to facilitate

conversation between Deaf people and the hearing. TISSA is merely one example of an

unaccomplished relay system in developing countries.

Examples such as MobileASL and GoBraille show how difficult pre-SignSupport attempts at Deaf-

mobile usage proved to be. MobileASL also establishes why it is more practical to store videos locally

on a mobile device rather than stream them over the Internet or have them sent to the phone.

Three options for data structures are introduced, namely Relational Databases, JSON and XML with

brief descriptions of how they work.

Before attempting to fulfil the Dissertation objectives, it is necessary to evaluate Relational Databases,

JSON and XML, fully, as potential solutions to a data structure for SignDIn. Chapter 3 also justifies the

use of this technology in delivering these requirements to the SignDln application. Chapter 4 looks at

fulfilling the objectives of this Dissertation.

14

Chapter 3: An Evaluation of Mobile and Data Structure

Technologies

Chapters 3 and 4 cover the strategies used to fulfil the research objectives. Before approaching the

two objectives (dealt with in Chapter 4), Chapter 3 examines the reasons why Android is the chosen

platform and explains how the most appropriate technology is selected for the data structure.

Alternatives are evaluated and the evaluation criteria explained. This chapter also introduces the main

types of parsers used to satisfy the final objective of this Dissertation. In short, the chapter gives

preliminary answers to the first research question, and introduces the parsers to be used in satisfying

the second research question.

Section 3.1 of this chapter looks at why Google’s Android is the platform of choice for the SignDIn

system. Section 3.2 of this chapter commences with an explanation of the main functionality that the

data structure fulfils. These requirements are abstracted from the research questions. In Sections 3.3

to 3.4, the three data structures, Relational Databases (RDB), JSON, and XML are evaluated according

to a set of priorities. These technologies are introduced in Section 2.2 of the literature review. In

Section 3.3, each technology is evaluated against the SignDIn requirements to establish the most

appropriate one for providing the data structure. After establishing the technology of choice, chapter

three introduces the XML parsers to be evaluated later in Chapter 4.

3.1 Android as a Platform – to CH 3

The 2011 paper, “Smart Smartphone Development: iOS versus Android” [32] attempts to establish

which of the two operating systems: Apple’s iOS, or Google’s Android is the most appropriate for

teaching the development of mobile applications. This research indicates that the Android mobile

operating system is the most practical software platform for teaching and that it is also the best

operating system for use in research.

The writers establish first, that the hardware requirements for the respective Software Development

Kits (SDK) favour the development on Android as the Android SDK (known as Eclipse) is compatible

with the Microsoft, Apple, and Linux operating systems. On the other hand, iOS SDK (known as XCode)

is only compatible with the Apple Mac operating system from the OSX 10.6 Snow Leopard version

onwards, and then only on Apple Mac computers with an Intel processor (these are the later and

sometimes more expensive iterations).

Secondly, the paper establishes that at some stage, iOS development requires an iDevice (iPad, iPhone

or iPod Touch) for full usability testing. This is because the simulator included in the XCode SDK does

not include the complete simulation of features like a Global Positioning System (GPS), the

accelerometer, compass or camera. In contrast with this, the Android SDK provides a comprehensive

desktop simulator which allows for creating features on Android Virtual Devices (AVDs) which can be

instantiated with different screen resolutions and memory sizes while also being subjected to GPS

readings and other inputs.

In terms of programming language, iOS applications are written in Objective-C. An object-oriented

language based on C. Android models and controllers are written in Java, but Scripting Language for

15

Android (SL4A) provides the access to the Android API through Python and other languages. Both

Eclipse and XCode adopt the Model-View-Controller methodology.

Both operating systems have a large number of on-line resources: instructional videos and books

including books to assist professional developers.

In terms of cost, Apple's model of selling the operating system and hardware as a single product has

closed the market for competitors wishing to provide cheaper iOS platforms. In most cases, this makes

iOS devices more expensive than the Android devices. On the other hand, Google provides its Android

OS as an open-source product. This, again, opens up the market to allow manufacturers to provide a

variety of handsets - all running the Android operating system. This means that while it is possible to

buy an Android device at much less cost than an iOS device, this is not necessarily a guarantee of Apple

comparable features and quality. However, it does provide the same operating system at a lower cost.

The approach to the penultimate SignSupport version seems to align with Goadrich’s findings [32] as

researchers choose to develop their Sign Language applications for the Android Operating System.

Goadrich’s work puts forward a compelling argument for the use of Android rather than iOS, especially

in a University or research environment.

3.2 Requirements of SignDIn

Table 3.1 provides a summary of the requirements for the SignDIn data structure. There are 11

requirements sorted in a descending order of priority, and in an ascending order of importance within

each priority. The Priority rating is classified as follows:

 Priority A: The feature is necessary for the functioning of the data structure.

 Priority B: The feature can be considered desirable and beneficial for the developers and

researchers working on SignDIn.

In order to meet Priority A, the ability to hold data in plain text is necessary because SignDIn holds

information that is generalisable to all the domains of SignSupport. Storing this information in plain

text makes it far easier for the parser to handle or utilise the data. It also makes the development of

the parser easier. This aligns with the first objective of this Dissertation, which is to make the data

structure generalisable. In this context, future proofing means ensuring that the data structure is able

to accommodate new information for the foreseeable future. Compatibility with native Android

frameworks is necessary, as SignSupport is currently only available on Android devices. This is justified

and explained in Section 3.1. Readability, easy adaptability, and the prevalence of the data structure

lowers any barriers of entry to future developers who may wish to work with SignDIn. This is a benefit

for any future undergraduate or post-graduate students wishing to work with the system, who would

otherwise be hindered by its complexity.

To elaborate on the Priority B items, the ability to test different parsers easily fulfils the second

objective of this Dissertation, which is to evaluate the final mobile application for the speed of screen

changes. The ability to test the alternative methods in accessing the data, in turn, allows the best data

reading or parsing method to be selected, and the less suitable alternatives to be discarded. Priority

16

B items are not necessary for the functioning of SignDIn, but are considered favourable because they

will assist developers and researchers who may work on this in the future.

Table 3.1: Requirements of the SignDIn Data Structure

Priority Item
Number

Description

A I Able to hold Data in the form of strings in a generalisable format

 II Provides a degree of future proofing
- Extensible to other domains
- Extensible to other mediums
- Generally universal

 III Compatible with the Native Android Framework

 IV Easy to read and, if necessary to be built manually

 V Easy to build applications that use the information in the data structure

 VI Universal enough to be easily accepted in the mobile development
community

 VII Able to provide all the features in one solution.

 VIII Must be freely available and widespread enough to source information
easily.

B IX Easy and simple to test different software parsers/readers

 X No APIs or third party plug-ins for these parsers

 XI Software to work on and build the data structure must be freely
available in complete forms

3.3 Evaluation

This section evaluates the three technologies and provides the necessary information as an answer to

the first research objective, of generalisability (Section 1.3.1).

The rest of this section evaluates the performance of each technology in meeting the requirements

outlined in Table 3.1. Section 3.3.1 discusses the Relational Database, and Section 3.2 discusses JSON

versus XML.

3.3.1 RDB and SQL suitability to SignDIn

Referring to the Priority A items from Table 3.1, Relational Databases are able to hold information in

the forms of strings, as required by SignDIn. RDBs can also lock content types to hold only information

in strings of certain formats or lengths. RDBs provide a degree of future proofing, as they are prevalent

in modern day databases and data structures. The native Android Operating System includes

frameworks for working with SQL databases, which are stored locally on the phone. This is a benefit

for SignDIn, as it means that no data transfer over a network connection is necessary. However,

Relational Databases may not meet SignDIn’s requirements for readability and the ability to be built

manually. A Relational Database is necessary, when large amounts of information need to be accessed

and worked with. Large databases cannot be manually populated through a process entailing content

building for SignSupport. SignSupport’s video and content sources are not yet large enough to justify

the use of RDBs. Also, the SignSupport data does not change frequently enough to justify this. In terms

of the ease of building applications using SQL, this is not an impossible task, as Android already

17

contains the necessary framework, and all the developer needs to do is build the necessary knowledge

to work with the database actively.

SQL does not need testing with different types of plug-ins or parsers, (Priority B) as it is typically used

for Relational Databases. Testing its efficiency falls outside the scope of this work and will not

necessarily be of benefit to SignDIn. There are many software options such as MySQL which work

directly with SQL and provide a high level of functionality free of charge.

Relational Databases offer the ability to rapidly modify data in large quantities, as well as the ability

to manipulate data. Overall, however, RDBs and the reliant SQL do not fulfil the requirements of the

SignDIn data structure sufficiently, as the scoring in Table 3.2 reflects.

3.3.2 JSON vs XML and the suitability to SignDIn

JSON is an elegant solution to many of the challenges faced in designing a data structure. The major

shortcoming of JSON, however, is that it is less readable than XML. XML contains a simple tag and

content design, while JSON makes use of nested brackets and an attribute value syntax. JSON also

does not use a Schema, so considering that SignDIn’s content will be manually built in the early stages,

it would make troubleshooting difficult. JSON’s major improvement over XML should also be noted. It

is smaller and thus more efficient when used in a client-server relationship. XML’s verbosity is largely

due to the use of tag names to open and close every element that is not empty. The duplication of the

opening and closing tag results in a higher utilisation of bandwidth and processing power.

XML is less efficient than JSON, but efficiency in bandwidth usage and processing requirements has

not been identified as a major requirement for SignDIn. There are three core reasons for this, firstly,

all videos are stored locally, (no bandwidth usage), and secondly, the data structure only needs to be

created or updated when new material is required. As explained in Motlhabi’s work [5], this is not a

simple process, neither is it a frequent occurrence. Lastly, if there is a limit to the processing power, it

is reasonable to expect that this limit will be reached when the SignDIn videos are played, rather than

when the data structure is parsed. In certain circumstances, XML does offer benefits over JSON. Firstly,

XML allows the user to validate whether an XML document is correct before transmission. This can be

included as a requirement in the Authoring Tool, to ensure the XML being transferred has been

validated. Secondly, XML can hold rich data types, like dates, date time, etc., while JSON can hold only

strings, numbers, Booleans or arrays. Currently, this is not required by SignDIn, but XML does allow

for it, should the need arise. XML is an easier data structure to read and build manually, because of its

close resemblance to HTML and its clear, simple use of a tag and value syntax. Considering that most

of the developers working on SignSupport are graduate students who may not have professional

experience with data structures, XML provides a simple introduction to this. There is one type of JSON

parser for Android, because parsing JSON is much simpler than parsing XML. This is not ideally suitable

for SignDIn, as it offers no alternatives when the speed of the parser is being assessed. Any assessment

of speed is actually an assessment of the code implementing the parser, rather than the parser itself

and this does not offer any benefit for future developers implementing this parser on other platforms.

To summarise, XML has been chosen as the data structure of choice because it of its easy readability,

and because it allows for the evaluation of multiple parser technologies.

18

3.4 XML Parsers

The second objective of this Dissertation is to assess the speed between the screen changes in the

SignDIn mobile application. To a large extent, this involves assessing the speed at which the application

parses the XML. The next section introduces the different types of XML parsers.

3.4.1 Evaluating XML Parsers

When software reads an XML document, it is described as parsing. There are essentially two

differentiated parsing methods for XML: SAX (Simple API for XML) parsing [33] and DOM (Document

Object Model) parsing [34]. Table 3.2 briefly describes the core differences between SAX and DOM

Parsing. The Android mobile operating system natively supports both parsing methods, and can also

include third party parsers, like JDOM, (Java Document Object Model). Third party parsers offer

benefits such as being easier to code, improved readability or better compatibility with the native

software. They may vary widely depending on their implementation, which can influence the speed

between implementations, but not the speed between different types of parsers. Regardless, it should

be noted that this Dissertation does not assess the parsers or their suitability for SignDIn or the

Android framework, but simply assesses them in terms of their speed relative to one another as

outlined in the second research objective.

Table 3.2: DOM vs SAX Comparison

 DOM SAX

Type of Parsing Object-based Event-based

Object Model Created Automatically Must be actively created

Sequencing Able to sequence elements Cannot sequence elements

Memory use Higher Lower

Speed of parsing Slower Faster

Ability to update XML Yes No

3.4.1.1 SAX Parser

The key characteristic of SAX Parsing is that it is event driven. It looks for relevant information in the

XML document and processes it on a per-item basis. As such, SAX Parsing can be less memory-

intensive than DOM parsing. Since it is not storing any data while it is scanning, it can parse an entire

XML document faster than a DOM parser.

3.4.1.2 DOM Parser

The DOM parser uses object-orientated methodologies for working with information once it is parsed

from the XML. It allows for the representation and manipulation of elements within the XML

document as if they were objects [34].

3.4.1.3 JDOM Parser

The JDOM parser is an example of a third party parser that can easily be included in the Android SDK.

It makes use of the Document Object Model, but uses a different set of classes to handle the data. It

is built specifically for Java so it is easier for a Java developer to write and understand than other

parsers.

3.4.1.4 XML Pull Parser

The XML pull parser is built into the Android framework. Pull parsing treats the XML document as an

iterative object. It can step logically through the XML and automatically extract data such as tags and

values iteratively. For this reason, a pull parser is easier to maintain than a SAX parser.

19

3.5 Conclusion

This chapter discusses the data structure functionality required by the SignDIn application. All SignDIn

requirements have been abstracted from the research objectives, then explained and categorised into

two sets of priorities. Based on the evaluation of the two sets of priority requirements, and a

discussion of XML versus JSON as a suitable data structure, XML is deemed to be the most suitable

technology to be used in building the SignDIn application. Its features: readability, ease of use, and

lack of reliance on other software make it most appropriate for the SignDIn application.

The objective of this chapter is to provide the necessary information required to address the first

research objective (Section 1.3.1). Before testing for generalisability, the technology to be used in

developing the data structure had to be established. All references to the data structure from this

point onwards imply that it is based on XML.

The following chapter covers the core methodology and design of the experiment used to address the

two objectives of this Dissertation. Chapter 4 builds on Chapter 3 by explaining how the XML data

structure is populated to provide generalisability and how the mobile front-end of SignDIn is assessed

for speed.

20

Chapter 4: The Experimental Design and Methodology

This chapter covers the strategies used to fulfil the research objectives. In specific, it examines the

development of the Android mobile application aspect of SignDIn. This is the feature of SignDIn

responsible for parsing and rendering the information held in the data structure designed in Chapter

3. First, an explanation is given of the general assumptions and exceptions in the experiment. Section

4.2 provides an understanding of the environment in which the design of the software takes place and

the methodologies used. Section 4.4 examines the individual steps in the methodology used to answer

each research question along with describing the software designed to resolve the problems.

4.1 Assumptions and Exceptions

The following section describes the scope of the application and what is not covered or tested.

Firstly, the SASL videos are prerecorded and supplied by other, supporting UCT/DCCT projects, such

as Motlhabi’s work. [5]. It is beyond the scope of this experiment to establish the required dialogues

used in the specific environments, or to film SASL videos relevant to these dialogues. Nor is it relevant

to test the videos for correctness of content.

Secondly, the mobile application is designed for use almost exclusively by Deaf people. This gives rise

to a unique set of usability requirements. It is out of the scope of this project to assess the usability of

the graphical user interface by Deaf people.

Lastly, the Authoring Tool discussed earlier (See Section 1.1) is not an objective of this Dissertation.

This paper does involve the development and assessment of the data structure, and the Android

mobile application that parses the data structure and displays it to the user.

4.2 Environment

4.2.1 The Physical Device and Development Software

The following section describes the development environment used in designing and developing the

Android application and XML data structure.

The XML parser was designed and tested on a Samsung Galaxy SIII mobile device. The specifications

are included in Table 4.1. No virtual devices were used for testing, only the physical device.

The XML parser was developed using the Android Development Tools or ADT bundle (Version 0.4.2)

for Apple OSX Mavericks (Version 10.9) and Microsoft Windows 7. The ADT bundle includes Eclipse

(Version 4.3). The programming language used was Java (Version 1.6).

The development of the XML structure was carried out with Sublime Text (Version 2.0.2): a simple text

editor. At this stage, the XML data fed into the application was put together manually. In future, it is

anticipated that the Authoring Tool will automatically build the XML documents and transfer them to

the application.

21

Table 4.1: Mobile Device Specification

Device Samsung Galaxy SIII

Operating System Android V4.3 (JellyBean)

Internal Storage (Gigabytes) 24

External Storage Up to 64 GB with SD card, not used in
experiment.

CPU Quad core 1.4Ghz

RAM 1GB

Display Size 4.8” or 720x1280pixels

4.2.2 The Android OS

In the development of applications for the Android OS, each view, or screen viewed by the user is

called an Activity. The first Activity starting the application is called the Main Activity. An activity

displaying a list of items is a ListActivity. The screen activity used in SignDIn is a FramelayoutActivity.

Activities have what is termed a “lifecycle”, where the Activity transitions between different states. At

each of these transitions, the activity makes use of certain methods of the Activity Class, as listed

below, in the order in which they would typically occur:

 onCreate() - called when the activity is created(on application start-up)

 onStart() – called when the activity is made visible to the user.

 onResume() – called when the activity is in the foreground and the user is interacting with

it.

 onPause() – called when the activity is partially obscured by another activity and cannot

receive inputs or execute code.

 onStop() – called when the activity is completely hidden from the user and considered to

be running in the background.

 onDestroy – called when the activity is destroyed

The developer can align these methods with certain functions in the application. The XML parser in

SignDIn runs inside the onCreate method for its parent activity. This is why testing the parser for

speed is necessary (as in objective 3, Section 1.3.3), as a sluggish parser presents itself to the user as

a momentary pause when the user is shifting between screens on the mobile device.

4.3 Methods

On commencement of this project, the architecture of the SignSupport suite of applications is as

described in Chapter 1, Figure 1.1. Context of Use implies the different domains in which SignSupport

can be applied. The Authoring Tool is the PC based application that allows a super user or domain

specialist the ability to build content for the mobile application. The XML Interface is the medium

through which information is passed to the mobile application.

The following sections of the methodology will deal with how the XML data structure is designed,

and how the mobile application is designed to parse and display information from the XML.

4.3.1 Development of the XML Data Structure

This section presents the methodology applied to address the first objective of generalisability in

SignDln through the design of an appropriate XML data structure. The development of the XML data

22

structure can be broken down into three stages (Figure 4.1) with the end stage producing the final

version used in SignDIn. In the first stage, all the information must be collected from all the current

domains served by SignSupport. In the second stage, the information is differentiated into Display and

Input categories in order to separate out the incompatible formats and to reduce or remove

redundancy altogether if possible. The goal of the third and final stages is to achieve a means to link

the display and input categories dynamically.

4.3.1.1 Stage 1

The first iteration of the XML data structure involves the input of each aspect of the SignSupport suite.

This involves collecting data from different sources for each domain of SignSupport and establishing a

broad set of requirements for the XML data structure. The inputs are from the pharmacy and ICDL

domains. Research into building the ICDL domain ran in parallel but largely independent of this study.

The three types of required inputs are described below, and illustrated in Figure 4.1, under required

inputs.

To collect data from the pharmacy domain, the work of Motlhabi [5] was especially useful, as

described in Section 2.4.4. Motlhabi had already built a sufficiently large collection of SASL videos. His

work provides a template for the general layout of the screens. These form the basis of the content of

the XML document. Also useful in Motlhabi’s work, was the dialogue he designed. There are three

parts to this. First, requesting information from the Deaf patient, secondly asking the pharmacist to

fill out the prescription, and lastly presenting that prescription to the Deaf patient. The key

requirement discovered from investigating this domain is that it is heavily dependent on non-

repetitive inputs.

On examination of the ICDL domain, it was established that the XML has to hold and display only

sequential information. The ICDL information proved to be quite extensive, but linear in format. Little

user input is required, but unlike the case of the pharmacist domain, there is a requirement to hold

occasional images. The key requirements from this domain are that inputs are not required and that

the data was purely sequential.

The third arena of required inputs involves viewing the video footage from Motlhabi’s work to find

other information that can be accommodated such as other dialogues or interactions.

All the information is captured as a set of tags and values in one XML document. This is XML Version

1 and will be the basis for further refinement of the XML.

4.3.1.2 Stage 2

In Stage 2, the work of the previous stage is further refined as illustrated in Figure 4.1. The objective

of this stage is to reduce redundancies and remove any incompatible formats held in one XML. The

one large XML document is first categorized into User-inputs and Display. All the documents under

Display have an identical structure, which can then be parsed identically. All documents under User-

inputs are identical in structure, but are able to accommodate a range of predetermined inputs. As in

the case of the display documents, the structure of the input documents is identical throughout. The

reason for storing the display and input formats in separate documents, is to ensure that the parsing

of information from either XML is as simple and repeatable as possible. Creating simpler XMLs has the

secondary benefit of increased readability, and also reduces the complexity of work required from the

Authoring Tool.

23

4.3.1.3 Stage 3

In this, the final stage, a means to link the display and inputs is developed, so that the appropriate

options can be shown to the users when they are prompted for input. To carry out this stage,

modification of the structure of the Display XML was necessary to accommodate an “input” tag. The

value of this tag is limited to one of the names of the input XML files (e.g., Diseases.xml). The input

XML file then contains the options available to the user for selection. In the case of Diseases.xml, it

contains a list of all the available diseases that can be accommodated by SignSupport. It is important

to note that all the navigation through the application is sequential, according to the order in the

Display XML. Stage 3 provides the user with information on user selection options only when an input

is required.

This stage also necessitates the careful, coordinated storage of the resources on the phone. All

SignSupport resources fall into a local folder at the root of the phone’s local storage, called

SignSupport. All Input XMLs are contained in their own folder, as are the display XMLs. Domain specific

content such as videos and images are placed in domain-specific folders. The entire file structure is

presented in the results section of this Dissertation (Chapter 5).

24
RDDMAR006

Capture as set
of XML Tags &

Values

Required
Inputs:

Process: Output:

Single XML Document
of all possible,
unique values.St

a
ge

 1

Pharmacy domain:
Fields of possible
questions from
pharmacists and
answers from
patients.
(UserInputs)

Videos:
Assess already
recorded videos to
see what other
dialogues or
interactions can be
supported.

ICDL:
Lesson Structures,
sequences and
relations

XML Version 1

Process:

Output:

Dynamically link
the display XMLs
to the UserInputs
XMLs so that they

present the
correct potential
answers to users,
using data pulled
from one of the
UserInputs xml

files.

XML Version 3:
Categorized XMLs that accommodate

UserInputs

Diseases.xml

MaleorFemale.xml

Recommendations.xml

YesorNo.xml

Medication.xml

Warnings.xml

TypeofMedication.xml

NrOfPills.xml

NrOfDays.xml

IntakeTime.xml

Frequency.xml

A: Display

DeafPatient.xml

ICDL o2_lesson.xml

ICDL E6_lesson.xml

Pharmacist.xml

B: Inputs

Process:
Output:

Generalize XML
data into 2
categories,
each of
identical, an
universal data
structures:
Input and
Display

St
a

ge
 2

Diseases.xml

UserInputs

MaleorFemale.xml

Recommendations.xml

YesorNo.xml

Medication.xml

Warnings.xml
TypeofMedication.xml

NrOfPills.xml
NrOfDays.xml

IntakeTime.xml
Frequency.xml

Display
DeafPatient.xml

ICDL o2_lesson.xml
ICDL E6_lesson.xml
Pharmacist.xml

XML Version 2: Categorized XMLs

St
a

ge
 3

Output:

Figure 4.1: Stage 1-3 of XML Data Structure Design

25

4.3.2 Development of the XML Parser

At the end of the XML data structure design stage, requirements are established for an Android

application that will parse two types of XML document to display information and gather inputs. XML

parsers are introduced in the previous chapter, Section 3.4.1. The following section aims to fulfil the

second objective of this Dissertation or more specifically, speed.

The purpose of the display parser is to read through the display XML, and store the root items “screen”

in a list, with each screen having a value for “video_frame”, “video_caption”, “image” and “input”. A

Screen object is created in Java with the necessary attributes to hold these values. The values of each

asset are stored in the XML as the file location of that asset on the mobile device’s local storage. These

values are pulled from the XML text and stored as a string.

The inputs parser is designed to search through a Folder of XML documents first to find the referenced

range of inputs stated in the Display XML. Then to parse the document holding those inputs into a

drop-down menu, so as to display the necessary choices for the user.

4.3.3 Comparing XML Parsers for Android

The XML parser was tested for speed. The main reason for this is that the parser runs during the “on

create ()” methods of each Android activity (as soon as the activity is created). At this point, if the

parser takes too long to read through the XMLs and capture all the information, it would delay the

display of the next Activity. Timing each parser in this same method, provided comparable results

without considering the actual performance of the device. The Android App store requirements and

Developer Library state that if an activity is not launched within 15 seconds, the OS will terminate the

application automatically. It goes on to say that 200ms is the threshold beyond which users will

perceive slowness in an application. SignDIn is designed to fulfil these requirements.

The test for choosing the best XML parser involved the evaluation of three different types of XML

Parsing; SAX Parsing, DOM Parsing (Using the third party framework, Java Document Object Model

(JDOM)) and Android’s native XML Pull Parsing.

A new mobile application illustrated in Figure 4.3, called the XMLParserTester is built for the purposes

of testing the XML parsers. Testing is completed on the same device for which SignDln is developed,

the Samsung Galaxy SIII (described in the beginning of this chapter). The main screen contains three

buttons only, each programmed to use a specific type of parser to parse an XML Document closely

resembling the display XMLs created in the previous section. The display XML is chosen because it

holds significantly more information in different sizes and complexities than the input XMLs. The

display XMLs contain strings pointing to assets in the Android file structure, and also contain tags at

different levels in the XML Structure. The input XMLs contain strings only, all at one level below the

root. The inputs can also vary from holding values of a few characters, to holding values of entire

sentences.

The display XML is evaluated in four different sizes. One contains one screen only, taking

approximately 10 lines in XML code, another containing 10 screens, then 100 screens, then 1 000

screens. This is done to establish how much information the parser can parse and how long it takes to

do this.

To ensure there are no anomalies and that parsing is consistent, each parser runs in a loop and parses

the entire XML document a thousand times. A logger class is added to the application to capture the

26

time when the parser commences and ends each cycle, calculating the time difference in milliseconds

to an accuracy of 0.001 seconds. The logger saves this data to a CSV file, which is subsequently

analysed to answer two questions:

1. How many (milli-) seconds does it take to parse a Screen object from each XML document?

2. How many screens can be parsed per second, per XML document?

These questions help establish which parser is best suited for the SignDln application.

Figure 4.2: The XMLParserTester Welcome Screen

4.4 Conclusion

This chapter breaks SignDIn’s mobile application down into three parts and outlines the approach

taken for each one individually. To achieve the first objective of generalisability, the strategy in

designing the XML data structure is described in three stages. Information is gathered from all the

available domains, then broken down into common elements, then differentiated into inputs and

display, and linked accordingly. The second objective is achieved by building a parser testing

application and testing each parser for speed. In doing so, this chapter outlines how the XML parser is

selected, evaluated and tested for use in the SignDIn mobile application.

The next chapter presents the results of this work and the output from the design process.

27

Chapter 5: Results

This chapter presents and discusses the results and outcomes of the methodology described in the

previous chapter (Chapter 4). The chapter presents the details of the actual content of the XML data

structure and the folder structure of the assets stored locally on the Android device. It goes on to

discuss the architecture of the Android application and its parser. Lastly, this chapter will set out the

results collated in testing the different types of XML parser, and indicate which parser is used for

SignDln.

5.1 The XML Data Structure
The following section describes the resulting XML data structure created from Section 4.3.1 of the

methodology. This section addresses the first and second research objectives. It starts with an

explanation of how the assets (videos, images and XML documents) are stored on the device, then

gives descriptions of the XML documents filtering and presenting those assets.

5.1.1 Storage of Assets

As mentioned earlier, all SignSupport assets are stored locally on the mobile device. These assets

include SASL videos, images and XML documents. The following section gives a brief description of the

folder structure holding these assets. The SignSupport folder is the root of this file system. Each

domain has a dedicated folder. Figure 5.1 shows how the information for the ICDL and pharmacy

domains are held in their respective folders. Each domain folder holds domain-specific data separated

according to the format. In addition, three folders are domain independent; the StarterXML folder,

the Inputs folder, and User Data folder. The StarterXML is so called because it is the first folder parsed

for content. These are the options available to the user in the first screen seen by the user. The inputs

folder holds all the possible ranges of inputs, each in individual XML documents. This is to separate

the input functionality from what is displayed. Finally, the user data folder holds the user information

captured from the application in a text file.

28

SignSupport

SASL Videos

ICDL Pharmacy StarterXML User DataInputs

images

Videos

XML

XML Documents

Images

Diseases.xml

MaleorFemale.xml

Recommendations.xml

YesorNo.xml

Medication.xml

Warnings.xml

TypeofMedication.xml

NrOfPills.xml

NrOfDays.xml

IntakeTime.xml

Frequency.xml

DeafPatient.xml

ICDL o2_lesson.xml

ICDL E6_lesson.xml

Pharmacist.xmlPharmacist
Videos

Patient
Videos

Background
videos

SASL Videos

SASL Videos

SASL Videos

Captured
User Data.txt

Figure 5.1: How SignSupport Stores its Assets

29

5.1.2 The Display XML documents

Based on the outputs of stage 3 of the design process (Section 4.3.1.3), it is established that each

screen displayed to the user is represented in an XML file (Appendix A) in a <screen> tag (Figure 5.2

a and b). The layout of the actual screen is based on Motlhabi’s [5] work. The screens have a next and

back button, and each screen shows a unique title or screen ID, a video, a video caption and an image

resource where necessary. These screens are represented sequentially in the XML document. The

<screenID> tags contain the unique id of the screen. The <video_frame> tag contains the file

path to the actual video. The <video_caption> contains a simple text string that is displayed on

the screen. These three tags are all used in both domains. The 

<input>MorF.xml</input>

</screen>

/SignSupport/Inputs/MorF.xml

Gender

Previous Next

Male
Female

Are you Male or Female?

Male

https://www.dropbox.com/sh/4gaubnswzed9ynt/AABJwA2OJ6YtEP26J0lJTiHDa?dl=0

<screen>

<screenID>Introduction</screenID>

<video_frame>

SignSupport/icdl/video/02_introduction.mp4/background_videos/sex.mp4

</video_frame>

<video_caption>Welcome to ICDL</video_caption>



<input></input>

</screen>

Introduction

Male

A. Pharmacy screen example:

B. ICDL screen example:

Welcome to ICDL

NextPrevious

Figure 5.2: Display XML of (a) a Pharmacy screen and (b) an ICDL screen

31

5.1.3 The Input XML Documents

Figure 5.3 shows one of the User Input XML documents developed in stage 3 of the design. This one

gives the option of gender choice. Another example is provided in Appendix B, that of the list of

available diseases. At the time of the data structure design, there was no requirement for the ICDL

screens to take input. As such, the input tag can be populated optionally. When a content creator is

building a screen for display, and wants to prompt the user for a response to his/her gender, the name

of this XML file (gender.xml) is included as a value under the <input> tag. The parser built into

SignDIn then locates the file with that name (in the inputs folder), parses it and displays the

appropriate options to the user in a drop down menu (Figure 5.4). Furthermore, the inputs are not

parsed from a single, fixed, XML document, but from a folder holding these XML documents. The

parser automatically knows where to find the input XML documents, and merely needs to be told

which document to reference. If a content author wishes to create a new type of input, he/she must

save the range of choices that populate the dropdown menu in a XML document, give it a unique title

and store it in in the inputs folder locally on the Mobile Device.

The following section presents the final, comprehensive representation of the SignDIn application to

show how the XML parsers are connected to the Android Activities and the SignSupport XML

documents and assets.

<items>

 <item>Male</item>

<item>Female</item>

</items>

Figure 5.3: Gender.xml as an example of an input XML

32

XML Version 3 A:
Display XML

XML Version 3 B:
Inputs XML

Display Parser

Inputs Parser

Gender

Previous Next

Male
Female

Are you Male or Female?

Male

ListOfScreens

Gender
Pregnant
Food Allergies
Medicine Allergies
Current Medication
Other Sicknesses
Smoke
Alcohol
Food
Water
Finished

Figure 5.4: The Inputs Parser - Refer also to Figure 4.1

5.1.4 An Example of SignDIn Applied to Two Different domains.

This section presents an example of how the XML data structure can be applied to two different

domains, specifically, the ICDL and pharmacy domains. Figure 5.5 below gives a brief example of an

XML data structure holding information for the ICDL domain. Here, the screens appear in the same

sequence in which they are represented in the XML data structure. For the purposes of this example,

there are only three screens: “Introduction”, “Examples” and “Task Description”. None of the screens

use an image resource, so it is not necessary to populate the input tag. In this case, the screen is

populated with a default image, or none at all. Figure 5.6 presents the XML data structure for the

pharmacy domain. When parsed by the XML parser, it displays three videos, in the sequence of the

XML data structure. The main difference between the pharmacy and ICDL Data content is that the

pharmacy domain requires user input. In this case, the patient is prompted for “Gender”, “Pregnancy”

and “Allergy”. This is why the input tags are populated here. These tags are populated with the

filenames of the input XMLs (see figure 5.4). These XMLs hold a simple list of options that are

presented to the patient.

33

<?xml version="1.0" encoding="UTF-8"?>

<screens>

<screen>

 <screenID>Introduction</screenID>

 <video_frame>

 SignSupport/icdl/video/O2_introduction.mp4

 </video_frame>

 <video_caption>Introduction</video_caption>

 

 <input></input>

</screen>

<screen>

 <screenID>Examples</screenID>

 <video_frame>

 SignSupport/icdl/video/O2_examples.mp4

 </video_frame>

 <video_caption>Examples</video_caption>

 

 <input></input>

</screen>

<screen>

 <screenID>Task Description</screenID>

 <video_frame>

 SignSupport/icdl/video/O2_task_description.mp4

 </video_frame>

 <video_caption>Task Description</video_caption>

 

 <input></input>

</screen>

</screens>

Figure 5.5: The ICDL Domain stored in SignDIn’s XML Data Structure

34

<?xml version="YorN.xml.0"?>

<screens>

<screen>

 <screenID>Gender</screenID>

 <video_frame>

 /SignSupport/Pharmacy/background_videos/sex.mp4

 </video_frame>

 <video_caption>Are you male or female?</video_caption>

 

 <input>MorF.xml</input>

 </screen>

 <screen>

 <screenID>Pregnant</screenID>

 <video_frame>

 /SignSupport/Pharmacy/background_videos/pregnant.mp4

 </video_frame>

 <video_caption>Are you Pregnant?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Food Allergies</screenID>

 <video_frame>

 /SignSupport/Pharmacy/background_videos/

 food_allergy.mp4

 </video_frame>

 <video_caption>

 Do you have a food allergy?

 </video_caption>

 

 <input>YorN.xml</input>

 </screen>

</screens>

Figure 5.6: The Pharmacy domain stored in SignDIn’s XML Data Structure

5.2 SignDIn and the XML Parser
Figure 5.5 is an illustration of the completed design of the SignDIn application. As such, almost all the

information provided for the user is pulled dynamically from the XML documents. There are two parts

to the application that are fixed in all domains – the welcome screen video and the “Next” and

“Previous” buttons on the Screen Detail Activity. It is anticipated that the welcome video will provide

a short welcome, and prompt the user to select one of the items in the list below that. Each list item

in the welcome screen (A in Figure 5.5) is placed dynamically when the application creates this first

screen and looks at the StarterXML folder to see what needs to be displayed.

When a user selects an item on this list, the next screen is called the List Activity (e.g. DeafPatient.xml

in B of Figure 5.5). As this screen is created, it calls up the XML pull parser and parses the relevant XML

document, to display each Screen as an item in a list. Remember, that “Screen” is its own class and

each screen is stored as a Screen object, with a value for Screen ID, Video_frame, Video_caption,

Image and input. These items are all stored in memory as Screen objects.

35

When a user selects an item in this List Activity, a new Activity is created, the Screen Detail Activity (C

in Figure 5). This activity pulls together all the values for this particular screen and displays all

information. All browsing through the Display XMLs is done in this one activity. If any of the fields in

the XML are left blank, the value is ignored. If any of the fields point to a non-existent file, the user is

alerted by a pop up prompt called a “Toast”, but the application continues to work anyway. The

application uses this one activity to perform all the video viewing and inputs. This is the core of the

application, and the user is allowed to browse back and forth with the permanent “previous” and

“next” keys permanently onscreen. These keys are built into the application and are not pulled from

the XML documents. Using the recursive arrow on the phone will take the user up one level, back to

the previous activities, until he/she returns to the first activity, and eventually exits from the

application.

The input options on each Screen are displayed in a drop-down menu called a Spinner. A spinner can

take a list of objects, in this case, strings, and display them for the user to select. This list of objects is

pulled from a List, populated from a second parser called the “Items Pull Parser” which looks at the

inputs folder and, depending on the value held in the Display XML under <input>, finds the XML

document of the same name and parses its content into the list feeding the Spinner.

Each time the user makes a selection in the Spinner, the application records his/her selection in a text

file held in the folder “/SignSupport/User Data”. Once the user has come to the end of the list of

Screens, he/she is presented with a new Activity: the Results Activity. This activity shows the results

just captured, and gives him/her the option to review previous text files that have been captured.

These user data-files are persistent, and are saved with a time stamp. This makes them useful for

further study and analysis; say for example if SignDIn is used to collect surveys from Deaf people.

36

<screen>

<screenID>Gender</screenID>

<video_frame>

/SignSupport/Pharmacy/

background_videos/sex.mp4

</video_frame>

<video_caption>

Are you male or female?

</video_caption>



<input>MorF.xml</input>

</screen>

Welcome Screen

Deaf Patient.xml

Pharmacist.xml

E6_lesson.xml

O2_lesson.xml

03_lesson.xml

Inputs

MorF.xml

...

Otherinputs.xml

StarterXML

DeafPatient.xml

O2_lesson.xml

E6_lesson.xml

Pharmacist.xml

List is populated
from local folder

List of Screen Objects,
each with a value for:
<screenID>,
<video_frame>,
<video_caption>,


 <input>MorF.xml</input>

 </screen>

 <screen>

 <screenID>Pregnant</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/pregnant.mp4</v

ideo_frame>

 <video_caption>Are you Pregnant?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Food Allergies</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/food_allegy.mp4

</video_frame>

 <video_caption>Do you have a food allergy?</video_caption>

 

46

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Medicine Allergies</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/med_allergy.mp4

</video_frame>

 <video_caption>Do you have a medicine allergy?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Current Medication</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/curr_meds.mp4</

video_frame>

 <video_caption>Are you on any current

medication?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Other Sicknesses</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/med_allergy.mp4

</video_frame>

 <video_caption>Do you have any other sicknesses?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Smoke</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/smoke.mp4</vide

o_frame>

 <video_caption>Do you smoke?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Alcohol</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/drinker.mp4</vi

deo_frame>

 <video_caption>Do you drink alcohol?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

47

 <screenID>Food</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/food.mp4</video

_frame>

 <video_caption>Do you eat 3 meals a day?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Water</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/water.mp4</vide

o_frame>

 <video_caption>Do you have access to drinkable

water?</video_caption>

 

 <input>YorN.xml</input>

 </screen>

 <screen>

 <screenID>Finished</screenID>

<video_frame>/SignSupport/Pharmacy/background_videos/end.mp4</video_

frame>

 <video_caption>Thank you, you are done. Please press next to see

your results.</video_caption>

 

 <input></input>

 </screen>

</screens>

48

Appendix B: XML v3b – Input Options example - diseases
<?xml version="1.0"?>

<items>

 <item >Toothache </item>

 <item></item>

 <item >Stroke</item>

 <item >Spinal Injury</item>

 <item >Sinus</item>

 <item >Shingles</item>

 <item >Sexually transmitted disease STI</item>

 <item >Ringworm</item>

 <item >Respiratory Infection</item>

 <item >Pulmonary tuberculosis TB</item>

 <item >Piles</item>

 <item >Mumps</item>

 <item >Meningitis</item>

 <item >Lice</item>

 <item >Jaundice</item>

 <item >Insomnia</item>

 <item >Influenza</item>

 <item >Indigestion</item>

 <item >HIV</item>

 <item >Hepatitis B</item>

 <item >Hepatitis</item>

 <item >Heartburn</item>

 <item >Heart Disease</item>

 <item >Gout</item>

 <item >Food Poisoning</item>

 <item >Fever</item>

 <item >Eczema</item>

 <item >Diarrhea</item>

 <item >Diabetes</item>

 <item >Dementia</item>

 <item >Dehydration</item>

 <item >Dandruff</item>

 <item >Constipation</item>

 <item >Chickenpox</item>

 <item >Cellulitis</item>

 <item >Cancer</item>

 <item >Burns</item>

 <item >Bulimia</item>

 <item >Bipolar</item>

 <item >Arthritis</item>

 <item >Anxiety</item>

 <item >Anorexia</item>

 <item >Anaemia</item>

 <item >Ulcer</item>

 <item >Alcohol Poisoning</item>

 <item >Acne</item>

</items>

49

Appendix C: Results from 1000 Cycle Parser Test
Table C.2: Parsing Speeds in Average Seconds per XML Document

Parser Type: 1 Screen Ave 10 Screens Ave 100 Screens Ave 1000 Screens Ave

XMLPULLPARSER 0.000698699 0.001644645 0.011520521 0.121603604

JDOM PARSER 0.001515516 0.006896897 0.061236236 0.60381982

SAX PARSER 0.000903904 0.003325325 0.03094995 0.309600601

50

JDOM Parser

Figure C.1: Variance in time to parse a screen object in seconds for the JDOM Parser

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

6
9

7

7
2

6

7
5

5

7
8

4

8
1

3

8
4

2

8
7

1

9
0

0

9
2

9

9
5

8

9
8

7

Time to parse each item in XML

No of Tests run

JDOMPARSER

1

10

100

1000

51

SAX Parsers

Figure C.2: Variance in time to parse a screen object in seconds for the SAX Parser

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

6
6

8

6
9

1

7
1

4

7
3

7

7
6

0

7
8

3

8
0

6

8
2

9

8
5

2

8
7

5

8
9

8

9
2

1

9
4

4

9
6

7

9
9

0

No of Tests Run

SAXPARSER

1

10

100

1000

52

XML Pull Parser

Figure C.3: Variance in time to parse a screen object in seconds for the PULL Parser

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

6
2

5

6
5

1

6
7

7

7
0

3

7
2

9

7
5

5

7
8

1

8
0

7

8
3

3

8
5

9

8
8

5

9
1

1

9
3

7

9
6

3

9
8

9

Time to Parse

No of Tests run

PULL PARSER

1

10

100

1000

53

