
Redzone stream compaction: removing k items from a list in

parallel O(k) time

JOHAN BONTES , Computer science, University of Cape Town, Rondebosch, South Africa

JAMES GAIN , Computer science, University of Cape Town, Rondebosch, South Africa

Stream compaction, the parallel removal of selected items from a list, is a fundamental building block in

parallel algorithms. It is extensively used, both in computer graphics, for shading, collision detection, and ray

tracing, as well as in general computing, such as for tree traversal and database selection.

In this article, we present Redzone stream compaction, the first parallel stream compaction algorithm to

remove k items from a list with n ≥ k elements in O(k) rather than O(n) time. Based on our benchmark ex-

periments on both GPU and CPU, if k is proportionally small (k � n), Redzone outperforms existing parallel

stream compaction by orders of magnitude, while if k is close to n, it underperforms by a constant factor. Red-

zone removes items in-place and needs only O(1) auxiliary space. However, unlike current O(n) algorithms,

it is unstable (i.e., the order of elements is not preserved) and it needs a list of the items to be removed.

CCS Concepts: • Theory of computation → Massively parallel algorithms ;

Additional Key Words and Phrases: Stream compaction, list removal

ACM Reference Format:

Johan Bontes and James Gain. 2024. Redzone stream compaction: removing k items from a list in parallel O(k)

time. ACM Trans. Parallel Comput. 11, 3, Article 14 (August 2024), 16 pages. https://doi.org/10.1145/3675782

1

S

i

u

a

a

F

h

a

e

“

T

S

A

e

e

P

p

t

h

r

©

A

h

 Introduction

tream compaction, removing multiple elements from a list in parallel, is a fundamental primitive
n many parallel algorithms. In sequential algorithms, this is known as stable list removal. It is
sed when filtering data, for example, in collision detection [6] or when culling data elements that
re no longer needed, such as in Kd tree construction [27]. As a stable algorithm it operates on
 sequential array, where items to be deleted are marked, either in the array itself (as shown in
igure 1), using an auxiliary stencil array, or by a remove predicate.

Stable stream compaction needs one [23] or multiple [4 , 9 , 18] sequential read passes. Stability
as the benefit of preserving the order of elements, but comes at a cost. If the output is a contiguous
rray—and not, say, a linked list— then it must process at least n − k elements, because all these
lements need to be moved. If not using a keep list, then O(n) reads are required to distinguish
keep” from “remove” items, implying O(n

p
) parallel time on a machine with p processors.
his work was financially supported by the Hasso Plattner Institute for Digital Engineering, through the HPI Research

chool at UCT.

uthors’ Contact Information: Johan Bontes, Computer Science, University of Cape Town, Rondebosch, South Africa;

-mail: johan@digitsolutions.nl; James Gain, Computer Science, University of Cape Town, Rondebosch, South Africa;

-mail: james.gain@uct.ac.za.

ermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

rovided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

he full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

onored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

equires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

CM 2329-4949/2024/08-ART14

ttps://doi.org/10.1145/3675782

ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

https://orcid.org/0009-0001-6613-1009
https://orcid.org/0000-0002-1699-9619
https://doi.org/10.1145/3675782
mailto:permissions@acm.org
https://doi.org/10.1145/3675782
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3675782&domain=pdf&date_stamp=2024-08-27

14:2 J. Bontes and J. Gain

i

i

u

c

c

d

i

e

b

C

a

2

A
b
n
b

f
a

F

h

N

i

1

A

Contribution . Our Redzone algorithm is the first parallel stream compaction method to delete k
tems from a list A of size n in O(k) time rather than O(n). Operations need only O(1) space. The
nput is A and a list R containing k indices to be removed. It updates A in-place. However, it is
nstable in that it does not preserve the order of elements. Redzone cannot perform out-of-place
ompaction. If k � n, then it outperforms O(n) compaction by orders of magnitude.

Reference implementations in C ++ for both CPUs and NVidia’s CUDA, as well as the source
ode for our benchmarking experiments, are available on Github under an MIT license. 1

Article Structure . After the Introduction, Section 2 explains stream compaction, and Section 3
iscusses previous work on stream compaction. Section 4 details our proposed Redzone algorithm,
ts time and space complexity, synchronization issues, proof for its correctness, as well as how to
xtend the algorithm to add and remove items concurrently. The Experimental results in Section 5
enchmark Redzone against the current state-of-the-art using both GPU and CPU algorithms. The
onclusion summarizes, highlights some observed opportunities to improve performance, and lists
reas for future research.

 Concept

ssuming a keep predicate indicating elements to

e retained, stable stream compaction [19], run-
ing in O(n) sequential or O(n/p) parallel time can

e coded as follows (illustrated in Figure 1 , top):

Fig. 1. Stable stream compaction (top)

visits all items and copies valid ones to

the output preserving list order. Unstable

stream compaction (bottom) uses items

at the end of the list to replace deletions

elsewhere.

dest = 0

for a in A: if keep(a): A’[dest++] = a (1)

However, when k � n, traversing all n items is waste-
ul. Instead, a “remove” list can be used. Using such

 list, the element indexed by r is deleted as follows:

A[r] = A[- -n] (2)

ig. 2. Items in the red zone can be used to fill

This deletes the element at index r in O(1)
time by overwriting destination A[r] with source
A[n − 1] (see Figure 1 , bottom). Given a list R con-
taining k indices to be removed, all items in R can
be removed from A in O(k) time by using k tail
items to fill in holes. We call this tail the red zone

(Z).
The drawbacks are that removal is unstable,

causing elements to be reordered (see Figure 2), and
that writes are scattered, which may be computa-
tionally expensive.

Naïvely filling holes caused by deletions using
items in the red zone will work only so long as no
oles due to deletions outside the red zone (top).

aïvely filling holes this way fails if the red zone

tself contains an item (� b) to be deleted (bottom).

items in the red zone are deleted (Figure 2 , top).
This scheme fails when deleting items in the red

zone itself (shown in Figure 2 , bottom). In this ex-
ample, two errors occur, because red zone item

 https://github.com/JBontes/redzone.html

CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

https://github.com/JBontes/redzone.html

Redzone Stream Compaction 14:3

(

k

3

P

g

a
i

p

o

a

p

t

T

2

p

f

S

R

o

N

i

o

a

n

c

s

s

o

s

t

p

c

o

T

p

w

n

a

s

f

a

m

b) is incorrectly used as a source, causing keep item (c) to be discarded and remove item (� b) to be
ept. Our proposed algorithm solves this issue with extra bookkeeping.

 Background and Related Work

arallel stream compaction is a common primitive operation, widely used in contexts such as
raphics [6 , 8 , 24], simulation [17], and data stores [15 , 25]. It removes, in parallel, k elements from
 contiguous list A containing |A| = n items. The items to be removed can be marked within A

tself, using a Boolean stencil array of length n containing true for entries to be removed or by a
redicate function. In all these cases O(n), keep/remove queries are required. Stream compaction
utputs a list A

′ of length n − k with elements in the same order as A if the method is stable
nd in an arbitrary order if it is unstable. The primitive is so common that Segura et al. [20] even
roposed an implementation in GPU hardware.
Stream compaction is trivial to perform on a sequential machine (see Listing (1)). In parallel code,

he main problem is sequencing to ensure writes have no gaps or overlaps due to race conditions.
his can be done using atomic counters, but stability is easier to achieve with prefix sums [7 , 11 ,
2], also known as scans : running totals used to parallelize operations. Blelloch [5] shows how
refix sums can be used to parallelize tasks that seem inherently sequential.
Horn first published a stable compaction algorithm in 2005 for early GPUs without support

or scattered writes that operates in O(n log n) time for both prefix sum calculation and writes.
engupta et al. [21] reduced the time needed for prefix sums to O(n), leaving write time unchanged.
oger et al. [18] used GPU hardware support for scattered writes to improve write time and thus
verall time to O(n). This is the approach used by the remove stream compaction function in
Vidia’s Thrust library [2]. The above improvements were aided by advances in GPU architecture

n the early 2000s. GPUs now have feature parity with CPUs so many parallel algorithms can run
n both [12 , 14].
One important implementation detail of stream compaction is that multiple reads are required to

chieve global synchronization if parallel components do not have access to a low latency commu-
ication channel. This happens when multiple distinct processors or machines are used. In such a
ase, one read is needed to gather data for the prefix sum and another to collect valid elements and
tore them in the correct locations. Synchronization can be done by splitting execution phases into
ubprograms (known as kernels), each launched in sequence. However, launching kernels incurs
verhead. Hughes et al. [9] eliminate overhead in their InK-Compact algorithm by performing both
tages in a single kernel. Our experiments show that their approach performs well when deleting
he majority of items—on so-called sparse streams —but underperforms otherwise.

Moreira et al.’s Jumping Jack [13] is an unstable O(n) algorithm that scans the list, creates a
refix sum, and calculates the maximum allowable size to find elements that can be used to fill in
ontiguous sections marked for deletion. They report that, unfortunately, this does not work well
n sparse streams. Sun et al. [23] engineered a version that only needs a single read of the stream.
his approach is easy to apply if all parallel threads can efficiently communicate but requires com-
utationally expensive global synchronization if not. Billeter et al. [4] supplement the prefix sum
ith generation of a bitmask followed by a population count, thus reducing the number of sums
eeded. Shortly after their publication, GPUs supporting these operations in hardware became
vailable. Bakunas-Milanowski et al. [1] combine prefixes with atomic operations, which do not
equence threads, resulting in fast unstable O(n) compaction. Bernabé et al. [3] investigate the per-
ormance and power-efficiency of various O(n) stream compaction algorithms on different CPU
rchitectures and find that multiple low-cost computers perform better per watt than expensive
ulti-core CPUs.
ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

14:4 J. Bontes and J. Gain

ALGORITHM 1 : Redzone stream compaction. Code on the same line runs in parallel. Dotted

lines · · ·· mark synchronization points. This code needs low latency thread communication, such

as shared memory, requiring all threads to run on the same (multi)processor on a GPU or CPU.

Input: List A, Removals R

Output: A

′ ← A − R

1: if |R | = 0 or |R | = |A| then return

2: z ← | A| − | R| ; j ← 0; k ← 0 � red zone boundary

3: for r ∈ R do � phase 1: mark deleted items in Z

4: if r ≥ z then MarkAsDeleted (A[r])
5: for i ∈ {0 . . . |R | − 1 } do � phase 2: fill holes, record orphans

6: a ← A[z + i]; r ← R[i]
7: if r ≥ z and isDeleted (a) then do nothing � r ∈ Z and a is invalid

8: else if r ≥ z and not isDeleted (a) then � r ∈ Z, but a is valid

9: j ← j + PrefixSumToIndex (i)
10: Z

′ [j] ← a � keep orphaned a
11: else if r < z and isDeleted(a) then � r is valid, but a is not

12: k ← k + PrefixSumToIndex (i)
13: R

′ [k] ← r � keep orphaned r
14: else � both r and a are valid

15: A

′ [r] ← a � delete A[r]
16: for i ∈ {0 . . . j − 1 } do � phase 3: process orphans, note: | R

′ | = | Z

′ |

17: A

′ [R

′ [i]] ← Z

′ [i]

c

t

4

R

s

©

o

c

k

r

A

z

a

i

i

r

s

t

i

A

Interestingly, all the above papers view stream compaction in isolation without taking into ac-
ount the preparation work of collecting removal items. Considering that this can take more time
han the actual compaction, this leaves avenues for optimization unexplored.

Currently, no method for stream compaction is known that can remove items in O(k) time.

 Proposed Algorithm

edzone compaction achieves O(k) runtime, using three phases to: (1) mark elements as invalid
ources; (2) perform easy deletions immediately and schedule hard ones for later; and (3) clean up.

Algorithm 1 shows an overview of the code, which is explained below. Circled numbers, such as
2 , refer to line numbers in the algorithm. Dotted horizontal lines show synchronization points.

Redzone takes as input a list of n items A and a list R of k indices into A to be deleted and
utputs the result in-place into A

′ : the first n − k elements of A. The use of R differs from stable
ompaction algorithms that mark A itself or use a stencil array of Booleans (of length n) to denote
eep/remove items.
The algorithm deletes items from A by using k items from the tail of list A. This tail is called the

ed zone (Z) and contains source elements to overwrite the items slated for removal in R 15, 17 .
fter taking care of the trivial case where all or no items are to be deleted 1 ©, the start of the red

one is stored in variable z 2 ©. R is iterated over 3 © and any items A[r] pointing into the red zone
re marked as deleted 4 ©. This marking of red zone items is identical to the marking of deleted
tems in stable O(n) stream compaction and can be done in-place, provided that unused state space
s available in the data elements of A. This ensures that deleted items are not used as sources to
eplace deletions elsewhere, preventing the issue illustrated in Figure 2 . Because phase 1 performs
cattered writes, our experiments (see Figure 6) show this to be computationally expensive. Ideally,
his phase should be mixed in with work that generates the list of removal items R so the latency
ncurred by scattered writes can be hidden by other processing.
CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

Redzone Stream Compaction 14:5

Table 1. Possible States for Destination r and Source a and the Implications Thereof

case r a implications
A r � Z valid both a and r are valid, remove 1 item from both R v and Z v ;

delete A[r] ← a 15 .
B r ∈ Z deleted both a and r are invalid, remove 1 item from both R d and Z d ;

quietly discard a and r 7 .
C r � Z deleted r indexes a valid destination in A, but a is not a valid source,

delete 1 item from R v and another from Z d ; add orphaned r to

R

′ and discard a 13 .
D r ∈ Z valid r indexes the red zone and is not a valid destination, but a is a

valid source, remove one item from R d and another from Z v ;
add orphaned a to Z

′ and discard r 10 .

a

Z

m

f

a

q

i

l

fi

a

a

n

w

a

v

i

t

s

R

a

p

c

2

t

Next, the algorithm moves to phase 2. For every item in R 5 ©, a pairing is created between source
 : Z[i] and destination r : R[i] 6 ©. This is the last point where we read from input lists R and
, which allows us to reuse this space to store temporary data for orphans R

′ and Z

′ in-place,
aking Redzone an O(1) space algorithm.
The source a and destination r items can individually be either valid or invalid, giving rise to

our possible cases 7, 8, 11, 14 (detailed in Table 1).
If both are invalid, because (a) r ∈ Z (r ≥ z) is in the red zone and thus invalid as a destination,

nd (b) a is marked for deletion and thus invalid as a source, then no action is needed and both are
uietly discarded 7 ©.
If, however, r ∈ Z is not a valid destination, but a has not been marked for deletion 8 ©, then a

s a valid source without a destination: a source orphan . It is added to the in-place source orphan
ist Z

′ 10 © for later processing in phase 3. These stores can be run fully in parallel on a GPU by
rst creating a bitmask of all threads where the if-predicate is satisfied (ballot), then performing
n exclusive scan of the population count (Hamming weight) of these masks per warp

2 across
 block 9 © [4]. The starting index j per warp is the prefix sum supplemented by the preceding
umber of lanes in the bitmask; this is calculated as popcount(bitmask & (1 << laneId) - 1) ,
here laneId is 0 for the first and 31 for the last thread in a warp. Counters j and k 9, 12 might

lso be updated using atomic increments, but prefix sums are typically more efficient.
The symmetric case where r is not in the red zone and thus a valid destination, but a is not a

alid source because it is marked as deleted, gives rise to a destination orphan and is stored in-place
n R

′ for later processing

12, 13 . Note that counts j and k run fully independently; the outer loop
5..15 can run parallel batches of any width. Because every read of a, r frees one item in Z, R,
he write indices j, k into Z

′ , R

′ , respectively, never run ahead of read index i . In fact, because if
tatements 8 and

11 are mutually exclusive, j + k ≤ i , we could conceivably intersperse Z

′ and

′ . However, to simplify processing in phase 3, these two lists are stored separately.
If none of the three former cases apply, then both source a and destination r must be valid

13

nd a is moved to A[r] 14 .
Finally, in phase 3, every orphaned source a in Z

′ is moved to destination r in R

′ . As per the
roof in Section 4.5 , the number of source orphans equals the destination count: | Z

′ | = | R

′ | . Lines
10, 13 ensure that orphan lists contain only valid items, hence the default processing from line 15

an be repeated with the orphans 17 . No attempt is made to preserve the order of items in A

′ . In
 A warp (also known as a wavefront) is a group of 32 or 64 threads on a GPU with hardware support for data sharing, akin

o SIMD units in a CPU.

ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

14:6 J. Bontes and J. Gain

ALGORITHM 2 : Redzone compaction for high-latency IPC.

Input: List A, Removals R, Processors P

Output: A

′ ← A − R

0: s ←

⌈
|R |
|P |

⌉
; b p ← s; b | P | −1 ← | R | − s(| R| − 1); start p ← (p)s; j p ← k p ← 0 � s = batch size

� phase 1 is unchanged, note that lists start at zero

5: for p, i p ∈ P , { start p .. start p + b p } do � phase 2: data is segmented per block p
6: a ← A[z + i p]; r ← R[i p]
7: if r ≥ z and isDeleted (a) then do nothing � r ∈ Z and a is invalid

8: else if r ≥ z and not isDeleted (a) then � r ∈ Z, but a is valid

9: j p ← j p + PrefixSumToIndex (i p , p)
10: Z

′ [j p] ← a � keep orphaned a

11: else if r < z and isDeleted(a) then � r is valid, but a is not

12: k p ← k p + PrefixSumToIndex (i p , p)
13: R

′ [k p] ← r � keep orphaned r

14: else � both r and a are valid

15: A

′ [r] ← a � delete A[r]

16: C ←

⌈
j |P |
|P |

⌉
; t ← threadId() � phase 3: C = number of runs

17: J ← PrefixSum (j p); K ← PrefixSum (k p)
18: for c ∈ {0 .. C − 1 } do � phase 3: process orphans, note: | R

′ | = | Z

′ | on aggregate but not per

block

19: y p ← LoadBalance(J , t , s) � source address

20: x p ← LoadBalance(K , t , s) � destination address

21: A

′ [R

′ [x p]] ← Z

′ [y p] � delete orphans

22: t ← t + |P |

f

e

4

A

a

i

n

t

o

a

s

p

k

t

a

u

A

act, due to thread scheduling, the sequencing of output elements will likely differ between runs
xecuted with identical input.

.1 Redzone Algorithm for High-latency IPC

lgorithm 1 assumes fast interprocess communication (IPC) , such as shared memory, where
ll threads run on the same (multi-)processor. With a few adjustments, Redzone can run efficiently
n high-latency IPC environments.

Let us define a block as a collection of threads able to communicate over a low-latency IPC chan-
el, whereas inter-block communication happens over a high-latency IPC channel. To minimize
he need for intra-block communication, phases 2 and 3 switch to batched processing. At the start
f phase 3, the running totals of orphan counts per block are collated into two prefix sums, which
re used to pair up orphans and complete the deletions. Phase 1 is unchanged.

Phase 1 is unchanged

1..4 . Phase 2 switches to batched processing. Each block b p owns its own

lice of R and Z of length s = 	 |R |
|P |

. The final block b | P | −1 contains trailing elements 0 . Otherwise,

hase 2 matches Algorithm 1 5..15 .
Due to the batched processing per block, phase 3 receives two orphan counts per block, j p and

 p . Using these counts, each block redundantly generates prefix sums (J , K) 17 , so all blocks share

he same view but do not communicate. Given | P | blocks, we need C = 	
j |P |
|P |

 runs 16 to process

ll orphans. In each run c 18 , load balancing calculates destination (x p) and source indices (y p)
sing prefix J , thread counter t , and batch size s 19 . Because j and k do not line up, K is processed
CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

Redzone Stream Compaction 14:7

ALGORITHM 3 : Load balancing.

Input: Prefix sum of start indices per block S, thread counter t , block offset b
Output: Destination d

1: Start ← t/b
2: if Start > |S| then return out of bounds � all items have been processed

3: Index ← ReduceMin (S[Start], ≥ t) � get the smallest index ≥ t
4: for ever do � find the correct block index

5: if (t ≥ S[Index]) then Index ← Index + 1
6: else break � if k � | t | , loop will likely iterate only once

7: SubIndex ← t − S[Index]

8: return Index × b + SubIndex

s

b

s

i

a

a

p

4

P

n

1

a

r

g

t

G

a

m

l

a

o

a

c

t

c

t

s

i
eparately from J 20 . The orphans are paired up and A[r] is deleted

21 . Thread counter t tracks the
atches 22 . Note that loop

18 does not need any synchronization—even between threads. Global
yncs between phases allow memory writes to settle.

A simple load balancer (see Algorithm 3) assigns threads to source and destination orphans. This
s needed, because each batch has its own list of orphans and the counts per batch of destination
nd source orphans do not agree, although they do match on aggregate. Load balancing does not
ffect asymptotic runtime. If need be, then load balancing can be moved out of loop

18 so it is only
erformed once. Our CPU reference implementation of Redzone demonstrates this.

.2 Time Complexity

hase 1 performs k reads from R 3 and writes at best 0, on average k 2

n
, and at worst k entries to Z

4 , marking deleted items in the red zone. Phase 2 always reads 2 k items from R and Z combined

6 , and writes at best x = 0 , on average x = min (k 3 ,(n−k)3)

n 2
and at worst x = 1

2 k to both orphan lists
10, 13 , as well as up to k − x writes to overwrite deleted items in A 15 . Finally, phase 3 reads
o more than

1
2 k orphans from each list to delete items in A 17 . Redzone compaction performs

 + 2 + 2 (1 2) = 4 k reads and 1 + 2 (1 2) + 2 (1 2) = 3 k writes in the worst case and 1 + 2 + 0 = 3 k reads
nd 0 + 1 + 0 = k writes in the best case. Other operations track reads and writes at O(1) cost,
esulting in O(k) runtime. Writes to A /A

′ are scattered, other reads and writes are sequential,
reatly aiding efficiency.

When more than half of the list gets deleted (k
n
> 1

2), we have observed in our tests (see Figure 6)

hat scattered writes to mark deletions in phase 1 4 take up the majority of the runtime. The
PUs used in our experiments (as well as many other modern GPUs and CPUs) can only write to
 single cache line (e.g., a section of 256 contiguous bytes) per clock cycle. If scattered writes touch
ultiple cache lines, then writes are serialized, meaning that threads writing to different cache

ines are paused until earlier writes retire.
However, our marking of deleted items in only Z is identical to deletion marking required in

ll of A by O(n) compaction algorithms. These algorithms need to track deleted items in A itself
r use a stencil array. A fair comparison should count this cost for all or none of the competing
lgorithms. If so, then the generation of removal list R must likewise be included in performance
omparisons. However, this list is built up using contiguous writes and occupies a tiny fraction of
he time spent performing scattered writes. Marking deleted items in Z (or even all of A) may in-
ur a smaller penalty if the preparation features sufficient non-write operations to hide latency due
o scattered writes. Note that Redzone writes to A

′ in phases 2 and 3 are still scattered, whereas
table stream compaction need only perform contiguous writes in these phases. Depending on the
mplementation of scattered writes in hardware, this may bias performance for or against Redzone.
ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

14:8 J. Bontes and J. Gain

Fig. 3. Redzone compaction works in three phases. Phase 1 scans removals (R) and marks deletions (� 6 , � 4)

in the red zone (Z) as invalid sources. Phase 2 pairs every source element a ∈ Z with its destination sibling

r ∈ R. A destination that is invalid, because it points to the red zone (� 6) paired with a deleted source (� a),

is quietly discarded. Valid destinations (0) paired with unmarked sources (b) fill holes in A

′ . An orphaned

destination (1) paired to an invalid source (� c) is collected in R ′ ; an orphaned source (d) paired to an invalid

destination (� 4) is collected in Z

′ . Phase 3 pairs source orphans Z

′ with destination orphans R ′ (d, 1) so each

A

′ [r ′] ← z ′ .

4

R

a

B

l

a

i

O

4

T

(

n

p

T

T

R

w

w

f

i

n

l

4

F

a

l

p

A

.3 Space Complexity

edzone takes A and R as input. This requires n ← | A| , k ← | R| = n + k space. O(n) time
lgorithms take A and either use a predicate function, mark deletion items in place, or use a
oolean stencil. They need n space without or 2 n space with a stencil. Redzone’s intermediate

ists (Z , Z

′ , and R

′) take O(1) space. Input Z is an alias for the k tail items of A , output A

′ is
n alias for the front n − k items of A (see Figure 3). Orphan lists Z

′ and R

′ are stored in-place
n Z and R, respectively, as Redzone processes both lists. Ergo, apart from its input, Redzone has
(1) space complexity.

.4 Synchronization

hus far, we have glossed over synchronization needs. Algorithm 1 requires local synchronization
denoted by) between phases 5, 16 , local meaning inside the same (multi-)processor. Algorithm 2
eeds global synchronization (—), because writes must settle before entering a new phase. Inside
hase 2, both algorithms need local synchronization () to calculate the orphan indices j and k .
his synchronization cannot be skipped, even if prefix sums 9, 12 are replaced by atomic counters!
he reason for this is subtle. The reads of a and r in line 6 of both algorithms free up a slot in Z and
. However, without synchronization before writes 10, 13 to the orphan lists Z

′ and R

′ , a thread
ith index i = x may not yet have read its data before another thread with index j = x (or k = x)
rites an orphan to that same entry. This race condition is prevented by waiting after reads 6 be-

ore writes 10, 13 . In Algorithm 1 , the sync of the prefix sums 9, 12 performs this function implicitly.
If these sync points are removed, then a wait after 6 must be added. This can be a local sync

f each block reads and writes only from and to its own section—as in Algorithm 1 . Alternatively,
o synchronization is needed in phase 2 if 1

2 k auxiliary storage is used for each of the two orphan
ists, turning Redzone into an O(k) space algorithm.

.5 Proof | Z

′ | = | R

′ |
or Redzone to function correctly, both source and destination orphan lists must be the same size
t the end of phase 2: | Z

′ | = | R

′ | = k = j 16 . Lines 10, 13 ensure that these source and destination
ists contain only valid items. This allows the final loop

16..17 to process orphans correctly. The
roof for this requirement follows:
CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

Redzone Stream Compaction 14:9

t

Z

R

Z

c

t

i

D

(

i

e

L

s

o

c

4

U

a

t

a

e

o

d

r

5

T

a

c

T

t
In phase 1, R is traversed and if destination r ∈ Z (meaning r ≥ z) points into the red zone,
hen source Z[r − z] will be deleted and is thus not valid. We mark these sources as deleted:
[r − z] ← isDeleted

4 . At the start of phase 2, we thus have subsets of R, Z with deleted items:
 d ← {d r ∈ R | d r ≥ z} 13 and Z d ← {d z ∈ {Z ∩ R}} 10 .
Line 4 marks one element of Z as invalid for every r d ∈ R d that points into the red zone. Thus,
| R d | = | Z d | and because | Z| = | R| 2 , it follows that | Z v | = | R v | for the valid subsets of both lists

 v ← Z −Z d and R v ← R − R d .
In other words, every invalid destination in R d has exactly one invalid source twin in Z d and,

onversely, every valid source in Z v has exactly one valid destination twin in R v . We thus obtain
he following result:

Lemma 4.1. | R d | = | Z d | and | R v | = | Z v | .

Note that r ← R[i] where i increases monotonically from 0 to k − 1 3 , but r is an arbitrary
ndex

4 . This means that the red zone indices in R do not typically align with deleted items in Z.
ue to this misalignment, when both lists are traversed in phase 2 6 , the source/destination pairs

 Z[i], R[i]) can be in one of four states as shown in Table 1 .
Given two Boolean variables, four states (A to D) are possible as listed in Table 1 . Lemma 4.1

mplies that for every case C that pairs a valid destination with an invalid source (r v , z d) there
xists an opposite pairing D that matches (r d , z v). This can be proven as follows:

A draws equally from R v and Z v ; likewise, B draws equally from R d and Z d , neither violates
emma 4.1 .
C draws from R v and Z d , violating both parts of Lemma 4.1 , a single case C causes |Z v | =

|R v | + 1 and |R d | = |Z d | + 1 .
D symmetrically gives: | Z v | = | R v | − 1 and | R d | = | Z d | − 1 .
If Lemma 4.1 is to be maintained, then imbalances due to over-application of C can only be re-

tored if an equal number of cases D apply, and vice versa, ergo |D| = |C|: the number of destination
rphans in R

′ due to case C equal source orphans in Z

′ due to case D. This leads to our final result,
oncluding the proof.

Lemma 4.2. | Z

′ | = | R

′ | 10, 13

.6 Adding as Well as Removing Items

sers may wish to concurrently add and remove items from list A. For example, when modelling
 todo list where tasks are added and resolved, but—because Redzone is unstable—the order of
odo items does not matter. In this case, addition can be efficiently handled as follows: Add all
dditions (gains) G to the end of A, wait for writes to resolve and perform Redzone on the newly
xpanded list A + G. If | G| is small, then it can be buffered and fed to Redzone separately. This
rder optimizes memory access patterns and reduces the number of orphans—compared to first
eleting and then adding—although it does not change the O(j + k) asymptotic time to add j and
emove k items.

 Experimental Results

o evaluate the performance of Redzone, we benchmark GPU implementations of Algorithms 1
nd 2 as well as a CPU version of Algorithm 2 . Our GPU implementations of Redzone 1 and 2 are
oded in pure CUDA C ++ without any framework. The CPU version of Redzone 2 uses Intel’s
BB [10] library.
Our GPU code is compared against InK compaction [9] and NVidia’s Thrust::remove [2] func-

ion on an NVidia RTX 3070 GPU with 8 GiB of RAM running at 1.815 GHz, as well as on an NVidia
ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

14:10 J. Bontes and J. Gain

A

c

u

a

g

c

d

r

r

C

a

e

F

a

T

r

n

5

F

p

r

u
w

f

I

o

v

a
s

t

p

i

w

a

e

p

I

t

a

3

A

100 running at 1.41 Ghz in the MIG 4g-20gb configuration, which offers 4 × 14 = 56 multipro-
essors, 20 MiB of L2 cache, and 20 GiB RAM.

On the CPU, Redzone is compared against Stencil compaction [3] and std::remove from C ++20
sing dual Intel Xeon Gold 6330 CPUs running at 2 GHz with 2 × 28 = 56 cores. To aid comparison,
ll CPU algorithms use Intel’s TBB [10] library for thread scheduling. CPU code was compiled with
cc 11.2 using -Ofast -march = native settings, GPU code with CUDA 12.3 using -O3 flags, with
ompute/sm flags set to 80 for the A100 and 86 for the RTX 3070.

To test a range of inputs, we vary array size from 128 KiB to 2 GiB and fill arrays with random
ata of which 2% to 90% is marked for removal. This random data is generated using the MT19937
andom generator built into C ++20. Duplicates are prevented by drawing from list A without
eplacement. The overall wall clock time tc is measured using the CPU’s high-resolution timer.
lock cycles per phase on the GPU tд i are measured using the GPU’s clock64 function; these
re transformed to wall clock time using the CPU timer: t new

= t old ×
tc

Σtд i
. A fixed random seed

nsures all algorithms use the same data. Runs are repeated 20 × with 20 different random seeds.
igures 4 to 7 show the mean times per phase as well as the maximum observed total time. For an
pples-to-apples comparison, a phase 1 is added to all competing algorithms in our experiments.
he vertically stacked bar graphs display cumulative logarithmic time to make it easy to mentally
emove phase 1 time if needed. Horizontally stacked bar graphs show relative time per phase for
 = 2 GiB to visualize what percentage of its total time each phase occupies.

.1 Comparison of Algorithms on the GPU

igure 4 compares Redzone algorithm 2 against thrust::remove and InK compaction. InK com-
action is downloaded from Github

3 and written in plain CUDA C ++, thrust::remove and its
elated functions use NVidia’s cub library [16]. Runs are done on two Ampere GPUs: an A100
sing 57,344 threads and an RTX 3070 GPU using 47 , 104 threads. The A100’s memory bus is 20 ×
ider than the RTX 3070, speeding up contiguous, but not scattered, reads and writes.
InK is consistently slower than Thrust, because the latter groups reads and writes in cache-

riendly small batches, whereas InK reads all of A once, rereads it again, and only then writes.

n phase 1, InK and Thrust perform k scattered writes; here, Redzone only performs k 2

n
writes,

n average (see Section 4.2 for details, Section 5.2 for analysis). Later, Redzone phases re-

erse this advantage. On average, phase 2 does ≤ k − k 2

n
and phase 3 ≤ k 2

n
scattered writes;

ll writes in phase 2 of InK and Thrust are contiguous. Note that all algorithms do at least k
cattered writes. As can be seen in Figure 4 , such writes dominate runtime when k ≥ 50% . In
hese cases, InK and Thrust spend the majority of time in phase 1 running the simple for loop:
arallel for r in R: A[r] = deleted . Redzone is faster for k ≤ 50% , because, on average,
t performs 3 1 2 k contiguous reads, whereas Thrust and InK perform 2 n such reads (contiguous
rites are fire-and-forget and take negligible time). Redzone is only slightly slower than Thrust

t k = 90% , because scattered writes dominate runtime and both algorithms do k such writes (as
xplained in Section 5.2).

However, if an application is compute-rather than memory-bound, it may speed up stream com-
action by intermixing phase 1 marking with compute operations to hide scattered write latency.
f, say, all of the runtime of phase 1 can thus be hidden, then the phase 1 time segments of Figures 4
o 7 would disappear, and Redzone would underperform for k ≥ 10% .

For n < 8 MiB , constant factors dominate runtime; for this reason, we repeat the experiment on
 single GPU block.
 Downloaded from https://github.com/knotman90/cuStreamComp

CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

https://github.com/knotman90/cuStreamComp

Redzone Stream Compaction 14:11

Fig. 4. Time in microseconds for three compaction algorithms run on two GPUs. Input size (n) varies from

128 KiB to 2 GiB, removals (k) range from 2%, 10%, 50%, to 90%. Runs on the A100 (top) use 56 blocks of 1,024

(57,344) threads, those on the RTX 3070 (bottom) use 46 × 1 , 024 (47 , 104) threads. Logarithmic mean times

per phase are shown using stacked bars with Phase 3 (Redzone only) at the bottom, followed by phase 2

, and phase 1 on top . Lines atop each stack shows the maximum observed runtime. Horizontal

bars show relative time per phase at n = 2 GiB, with a divider at 20% intervals.

1

f

r

f

f

I

s
o

s

t

b

a

b

5

T

p

s

p

o

Figure 5 compares Redzone algorithm 1 with O(n) compaction on a single GPU core running
,024 threads. This setup puts less strain on the GPU’s memory subsystem, resulting in relatively
aster scattered writes; phase 1 takes up a smaller percentage of the time ∼60%–50% (at k = 90%)
ather than ∼90% of the time in Figure 4 . Due to reduced overhead, inputs < 8 MiB are processed
aster. The horizontal bars displaying relative time per phase at n = 2 GiB show that relative time
or Redzone’s phase 3 is maximized at k = 50% , as is explained in Section 5.2 .

Unfortunately, cub and thus Thrust only support compaction GPU-wide, not on a single block.
nK can be run on a single block, but then it superfluously reads A to calculate a prefix sum to
chedule multiple blocks. Removing this extra work yields the Single pass algorithm. Reading A

nly once results in a ∼1 . 8 × speedup of InK’s phase 2. Because this change to Thrust yields the
ame code, Redzone 1 is only compared against Single pass. This optimization can also be applied
o InK for multiple GPU blocks. InK splits work into batches [9]. Instead of counting removals per
atch in phase 2, we can do this while marking removals in phase 1 using atomic counters. This
dds negligible time to phase 1, but nearly halves InK’s phase 2 time. Figure 4 uses unaltered InK,
ut our Github code includes this optimization.

.2 Breakdown of Runtime per Phase

he relative time Redzone spends per phase depends on the number of elements to remove (k), the

ercentage of elements deleted (k
n

), the percentage of orphans in the red zone r = | Z
′ |

k
, and to a

mall extent the version (1 or 2) of the algorithm used. Figure 6 gives an indication of the runtime
er phase for different values of k and r . It shows the average time spent per phase as a percentage
f overall time for Redzone algorithm 2 .
ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

14:12 J. Bontes and J. Gain

Fig. 5. Time in microseconds for Redzone 1 vs. Single pass on a single block of 1,024 threads. The top half

shows times on the A100 GPU, the bottom half the same on the RTX 3070. Input size (n) varies from 512 KiB

to 2 GiB, removals (k) range from 2%, 10%, 50%, to 90% of n. Logarithmic mean times per phases are shown

using stacked vertical bars , lines show the max time. Phase 3 (Redzone only) is below, followed by

phase 2 , and phase 1 on top. Horizontal bars show relative time per phase at n = 2 GiB.

t

p
i

f

n

p

i

t

t
(

T

k

b

k

t

a

p

o

f

A

Figure 6 displays the observed workload per phase for non-uniformly distributed removals. In
his experiment, we run Redzone algorithm 2 using 57,344 threads on the A100 GPU over three

arameters. The size parameter n ranges from 512 KiB to 2 GiB and the removals parameter k
n

ncludes k = 2% , 10% , and 50% . The last parameter is r : the percentage of items to be removed
rom the red zone itself. It increments in steps of 25% from r = 0% to r = 100% .

Some modest spikes occur in relative runtimes, e.g., at the intersection of k = 10% , r = 50% , and
 = 32 MiB . This is due to phase data no longer fitting into the 20 MiB cache. Cache eviction in
hase 2 penalizes phase 3. For large n, the cache is exceeded throughout, restoring balance.
Interesting things happen for different values of r . At r = 0% , no red zone items need marking

n phase 1, and hence no orphans will be created. Phase 2 scatters k red zone items into A

′ . Note
hat phase 1 will still read all of R and phase 3 will synchronize, incurring a small fixed cost. At
he other extreme, r = 100% , all items in the red zone will be marked as orphans. Due to line 7

case B in the proof), phase 2 will quietly discard all these orphans and no writes take place here.
his sounds very efficient, but alas, because Redzone cannot detect this case, phase 1 still does
scattered writes to mark red zone items, phase 2 still reads all of R and Z, and phase 3 runs

ookkeeping and syncs. For k = 50% , overall performance varies little between these extremes. At
 = 10% and below, the effect is more noticeable: r = 0% takes the most overall time, as r increases,
he total time decreases. The opposite holds for the time taken in phase 1; phase 1 time is minimal
t r = 0% and increases with higher percentages of r .

An application can potentially hide—some of—phase 1 time (as discussed in Section 5.1). Later
hases depend on phase 1 and thus cannot easily be mixed with compute work. For this reason,
nly phase 1 and total time are included in the left panel of Figure 6 . This shows that the potential
or phase 1 savings grows as r and k increase.
CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

Redzone Stream Compaction 14:13

Fig. 6. Comparison of relative time per phase due to k : the percentage of A that is removed and r : the

percentage of red zone items to be removed. This is run on an A100 GPU for Algorithm 2 using 57,344

threads. In the large right panel, the absolute times per phase in microseconds are displayed as colored lines

. Shaded gray regions show the percentage of time occupied by each phase. The small left panel shows

the total time with different line types as well as the phase 1 time for the various values of r ,

phase 2 is omitted. Not shown is k = 90% , because r > 88% for that value of k , meaning that r = 75% and

below cannot occur.

5

F

p

6

l

a

t

a
i

i

b

o

s

6

R

p

c

O

c

.3 Comparison of Algorithms on the CPU

igure 7 compares Redzone 2 against Algorithm 2 (Stencil) from Bernabé et al.’s CPU compaction
aper [3] as well as std::remove from the standard C ++ algorithms library on a dual Intel Xeon
330 CPU with 2 × 28 = 56 threads. To aid comparison, all three algorithms use Intel’s TBB [10]
ibrary. Stencil compacts A in three phases. Phase 1 marks off deleted elements, not in A, but in
n auxiliary Boolean stencil. Phase 2 reads the stencil and generates a prefix sum with counts per
hread for scheduling. In phase 3, Stencil uses this data to compact the list. Unlike Redzone, InK,

nd std/thrust::remove , Stencil is an out-of-place algorithm. It also becomes more efficient as k
n

ncreases, which is useful for sparse lists. Having multiple threads write to a 1-bit Boolean stencil
s known to perform poorly due to false sharing, however, implementing the stencil using 8- or 32-
it integers did not meaningfully affect Stencil’s performance. As per our remark on InK at the end
f Section 5.1 , Stencil’s phase 2 can be fully eliminated, in which case, we expect it to outperform
td::remove .

 Conclusion

edzone stream compaction is the first parallel O(k) algorithm for stream compaction. It out-
erforms existing O(n) algorithms if a number of factors align: Unstable but in-place stream
ompaction is required (Redzone cannot perform out-of-place compaction without performing
(n − k) extra work); a list of items to be deleted, R, can be generated (R must not have dupli-

ates) and, on average, fewer than half of the items are deleted: k < 50%.

n

ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

14:14 J. Bontes and J. Gain

Fig. 7. Time in microseconds for three CPU-based algorithms. Input size varies from 512 KiB to 2 GiB, re-

movals (k) range from 2%, 10%, 50%, to 90% of n. Runs are performed on a dual Intel Xeon 6330 CPU. Loga-

rithmic means for the times per phase are shown using stacked bars with Phase 3 (Redzone and Stencil) at

the bottom, followed by phase 2 , and phase 1 on top . A line atop each stack shows the maximum

observed runtime. Horizontal bars show relative time per phase at n = 2 GiB.

c

a

r

m

A

In such circumstances, we have empirically determined that Redzone performs on par with

ompeting O(n) algorithms on the GPU and CPU when

k
n
= 50% and outperforms them by roughly

n order of magnitude when

k
n
= 2% .

All code used in this article is available under an MIT license at: https://github.com/JBontes/
edzone.html

Possible optimizations . Redzone has optimal time complexity O(k), but constant factor improve-
ents are possible.

—Write latency in phase 1 can be hidden by combining it with compute work in earlier stages
of the application. If, at this time, deletion count is unknown, then this does not imply all k
removals must be marked. The running count of keep items (n − k) marks the start of the
red zone. Only items beyond this bound need to be marked.

—If k is small, then processing can be sped up using fast memory (such as shared memory
on a GPU). Rather than storing orphans in-place in R

′ and Z

′ , these can be stored using
2 (1 2)k fast memory. This reduces latency in lines 4, 10, 13, 17 , performs only a single read

from R rather than two

3, 6 , and allows reads from Z and R to be annotated as “do not
store in cache.”

—Data can be prefetched from main into fast memory before it is needed. This is especially
advantageous if the hardware features asynchronous memory transfer [26]. If care is taken
to have each thread prefetch its own elements, i.e., only those the same thread will use later
on, then no synchronization is required, but a per-thread barrier suffices. Experiments show
up to a 30% reduction in runtime in our GPU tests.

—Rather than storing all orphans 10, 13 early, this can be delayed until counts for both are
known at 13 . We can then pair up m = min(j, k) orphans, delete the items associated with
these m paired orphans, and store any unpaired leftover orphans in either R

′ or Z

′ . This
reduces the number of orphans written in phase 2 and re-read in phase 3 17 , and processes
most of them early in phase 2 instead, reducing cache contention. In our system, phase 3—
without load balancing—occupies between 1% and 14% of total runtime (see Figure 6). Ex-
periments show that about half this time can be saved by processing orphans early.
CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

https://github.com/JBontes/redzone.html
https://github.com/JBontes/redzone.html

Redzone Stream Compaction 14:15

z

o

l

n

u

o

c

A

C

H

c

c

R

[

[

[

[

If k
n
> 1

2 , then Redzone is a poor choice, due to extra I/O needed to achieve O(k) runtime. Red-
one performs 3 . 5 k reads on average, meaning that an O(n) algorithm reading 2 n elements will
utperform it in such cases.

Future work . For sparse compaction, the algorithmic inverse to Redzone may generate a new
ist A

′ given a preserve list P containing p items to preserve. This would effectively remove all
on-preserve items from list A, taking only O(p) time, rather than O(n − p) as Redzone does. An
nstable out-of-place algorithm, where the output A

′ does not overlap with input list A, is trivial:

for i in {0..p - 1}: A’[i] = A[P[i]] . (3)

However, no in-place algorithm is currently known. Ideally, it would need only O(1) space during
peration and run in O(p) time for an unstable algorithm. A stable O(p log p) in-place algorithm
an be obtained by sorting list P first.

cknowledgments

omputations were performed using facilities provided by the University of Cape Town’s ICTS
igh Performance Computing team: https://ucthpc.uct.ac.za . Prof. Bernabé kindly made the source

ode used in his paper [3] available. Finally, the authors wish to thank the reviewers for their
onstructive comments.

eferences

[1] Darius Bakunas-Milanowski, Vernon Rego, Janche Sang, and Chansu Yu. 2017. Efficient algorithms for stream com-

paction on GPUs. Int. J. Netw. Comput. 7, 2 (2017), 208–226.

[2] Nathan Bell and Jared Hoberock. 2012. Thrust: A productivity-oriented library for CUDA. In GPU Computing Gems

Jade Edition . Elsevier, 359–371. DOI: https://doi.org/10.1016/B978- 0- 12- 385963- 1.00026- 5

[3] Gregorio Bernabé, Manuel E. Acacio, and Harald Köstler. 2018. On the parallelization of stream compaction on a

low-cost SDC cluster. Sci. Program. 2018 (Jan. 2018), 1–10. DOI: https://doi.org/10.1155/2018/2037272

[4] Markus Billeter, Ola Olsson, and Ulf Assarsson. 2009. Efficient stream compaction on wide SIMD many-core archi-

tectures. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on High Performance Graphics , Stephen

N. Spencer, David K. McAllister, Matt Pharr, Ingo Wald, David P. Luebke, and Philipp Slusallek (Eds.). Eurographics

Association, 159–166. DOI: https://doi.org/10.1145/1572769.1572795

[5] Guy E. Blelloch. 1990. Prefix Sums and Their Applications . Technical Report. School of Computer Science, Carnegie

Mellon University Pittsburgh, PA, USA.

[6] Alexander Greß, Michael Guthe, and Reinhard Klein. 2006. GPU-based collision detection for deformable parameter-

ized surfaces. Comput. Graph. Forum 25, 3 (2006), 497–506. DOI: https://doi.org/10.1111/j.1467-8659.2006.00969.x

[7] Mark Harris, Shubhabrata Sengupta, and John D. Owens. 2007. Parallel prefix sum (scan) with CUDA. GPU Gems 3,

39 (2007), 851–876.

[8] Jared Hoberock, Victor Lu, Yuntao Jia, and John C. Hart. 2009. Stream compaction for deferred shading. In Proceedings

of the Conference on High Performance Graphics (HPG’09) . Association for Computing Machinery, New York, NY, USA,

173–180. DOI: https://doi.org/10.1145/1572769.1572797

[9] David Meirion Hughes, Ik Soo Lim, Mark W. Jones, Aaron Knoll, and Ben Spencer. 2013. InK-compact: In-kernel

stream compaction and its application to multi-kernel data visualization on general-purpose GPUs. Comput. Graph.

Forum 32, 6 (2013), 178–188. DOI: https://doi.org/10.1111/cgf.12083

10] Intel Corporation. 2024. oneAPI Threading Building Blocks. Retrieved from: https://github.com/oneapi-src/oneTBB

11] Peter M. Kogge and Harold S. Stone. 1973. A parallel algorithm for the efficient solution of a general class of recurrence

equations. IEEE Trans. Comput. 22, 8 (1973), 786–793. DOI: https://doi.org/10.1109/TC.1973.5009159

12] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur Satish,

Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. 2010. Debunking

the 100X GP U vs. CP U Myth: An evaluation of throughput computing on CPU and GPU. SIGARCH Comput. Archit.

News 38, 3 (June 2010), 451–460. DOI: https://doi.org/10.1145/1816038.1816021

13] Pedro Miguel Moreira, Luís Paulo Reis, and A. Augusto de Sousa. 2009. JUMPING JACK-A parallel algorithm for

non-monotonic stream compaction. In Proceedings of the International Conference on Computer Graphics Theory and

Applications , Vol. 1. SCITEPRESS, 137–146. DOI: https://doi.org/10.5220/0001785001370146
ACM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

https://ucthpc.uct.ac.za
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1155/2018/2037272
https://doi.org/10.1145/1572769.1572795
https://doi.org/10.1111/j.1467-8659.2006.00969.x
https://doi.org/10.1145/1572769.1572797
https://doi.org/10.1111/cgf.12083
https://github.com/oneapi-src/oneTBB
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.5220/0001785001370146

14:16 J. Bontes and J. Gain

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

A

14] Goran S. Nikolić, Bojan R. Dimitrijević, Tatjana R. Nikolić, and Mile K. Stojcev. 2022. A survey of three types of

processing units: CP U, GP U and TP U. In Proceedings of the 57th International Scientific Conference on Information,

Communication and Energy Systems and Technologies (ICEST’22) . IEEE, 1–6.

15] Corey J. Nolet, Divye Gala, Alexandre Fender, Mahesh Doijade, Joe Eaton, Edward Raff, John Zedlewski, Brad Rees,

and Tim Oates. 2023. cuSLINK: Single-linkage agglomerative clustering on the GPU. In Machine Learning and Knowl-

edge Discovery in Databases: Research Track - European Conference, ECML PKDD 2023, Turin, Italy, September 18–22,

2023, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 14169) , Danai Koutra, Claudia Plant, Manuel Gomez-

Rodriguez, Elena Baralis, and Francesco Bonchi (Eds.). Springer, 711–726. DOI: https://doi.org/10.1007/978- 3- 031-

43412-9 _ 42

16] NVIDIA Corporation. 2024. CUB - Cuda UnBound. Retrieved from: https://nvidia.github.io/cccl/cub/

17] Paul Richmond, Simon Coakley, and Daniela M. Romano. 2009. A high performance agent based modelling framework

on graphics card hardware with CUDA. In Proceedings of the 8th International Conference on Autonomous Agents

and Multiagent Systems - Volume 2 (AAMAS’09) . International Foundation for Autonomous Agents and Multiagent

Systems, 1125–1126. DOI: https://doi.org/10.5555/1558109.1558172

18] David Roger, Ulf Assarsson, and Nicolas Holzschuch. 2007. Efficient stream reduction on the GPU. In Proceedings of

the Workshop on General Purpose Processing on Graphics Processing Units .

19] Mohsen Safari and Marieke Huisman. 2022. Formal verification of parallel prefix sum and stream compaction algo-

rithms in CUDA. Theoret. Comput. Sci. 912 (2022), 81–98. DOI: https://doi.org/10.1016/j.tcs.2022.02.027

20] Albert Segura, Jose-Maria Arnau, and Antonio González. 2019. SCU: A GPU stream compaction unit for graph pro-

cessing. In Proceedings of the 46th International Symposium on Computer Architecture (ISCA’19) . Association for Com-

puting Machinery, New York, NY, USA, 424–435. DOI: https://doi.org/10.1145/3307650.3322254

21] Shubhabrata Sengupta, Aaron Lefohn, and John D. Owens. 2006. A work-efficient step-efficient prefix-sum algorithm.

In Proceedings of the Workshop on Edge Computing Using New Commodity Architectures .

22] Harold S. Stone. 1975. Parallel tridiagonal equation solvers. ACM Trans. Math. Softw. 1, 4 (1975), 289–307. DOI: https:

//doi.org/10.1145/355656.355657

23] Qiao Sun, Chao Yang, Changmao Wu, Leisheng Li, and Fangfang Liu. 2016. Fast parallel stream compaction for IA-

based multi/many-core processors. In Proceedings of the IEEE/ACM 16th International Symposium on Cluster, Cloud

and Grid Computing (CCGrid’16) . IEEE, 736–745. DOI: https://doi.org/10.1109/CCGrid.2016.112

24] Ingo Wald, Christiaan P. Gribble, Solomon Boulos, and Andrew Kensler. 2007. SIMD Ray Stream Tracing - SIMD Ray

Traversal with Generalized Ray Packets and On-the-fly Re-Ordering . Technical Report. Informe Técnico, SCI Institute.

25] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili. 2012. Kernel weaver: Automatically

fusing database primitives for efficient GPU computation. In Proceedings of the 45th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’12) . IEEE Computer Society, 107–118. DOI: https://doi.org/10.1109/MICRO.

2012.19

26] Xinyao Yi, David Stokes, Yonghong Yan, and Chunhua Liao. 2021. CUDAMicroBench: Microbenchmarks to assist

CUDA performance programming. In Proceedings of the IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPS Workshops’21) . IEEE, 397–406. DOI: https://doi.org/10.1109/IPDPSW52791.2021.00068

27] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. 2008. Real-time KD-tree construction on graphics hardware.

ACM Trans. Graph. 27, 5, Article 126 (Dec. 2008), 11 pages. DOI: https://doi.org/10.1145/1409060.1409079
eceived 29 November 2023; revised 13 April 2024; accepted 18 June 2024

CM Trans. Parallel Comput., Vol. 11, No. 3, Article 14. Publication date: August 2024.

https://doi.org/10.1007/978-3-031-43412-9_42
https://doi.org/10.1007/978-3-031-43412-9_42
https://nvidia.github.io/cccl/cub/
https://doi.org/10.5555/1558109.1558172
https://doi.org/10.1016/j.tcs.2022.02.027
https://doi.org/10.1145/3307650.3322254
https://doi.org/10.1145/355656.355657
https://doi.org/10.1145/355656.355657
https://doi.org/10.1109/CCGrid.2016.112
https://doi.org/10.1109/MICRO.2012.19
https://doi.org/10.1109/MICRO.2012.19
https://doi.org/10.1109/IPDPSW52791.2021.00068
https://doi.org/10.1145/1409060.1409079

	1 Introduction
	2 Concept
	3 Background and Related Work
	4 Proposed Algorithm
	4.1 Redzone Algorithm for High-latency IPC
	4.2 Time Complexity
	4.3 Space Complexity
	4.4 Synchronization
	4.5 Proof
	4.6 Adding as Well as Removing Items

	5 Experimental Results
	5.1 Comparison of Algorithms on the GPU
	5.2 Breakdown of Runtime per Phase
	5.3 Comparison of Algorithms on the CPU

	6 Conclusion
	7 Acknowledgments
	Referencesendgraf

