Artificial jellyfish: evolutionary optimization of swimming

V. Savchenko
Hosei University
vsavchen@hosei.ac.jp

V. Lazunin
Hosei University
lazunin@gmail.com

ABSTRACT

Jellyfish, also known as "medusae", move by rhythmically contracting and expanding their bell-shaped bodies and are the
earliest known animals to achieve locomotion through the muscle power. Development of a generalized dynamical model of
medusan swimming is of interest to biologists as well as engineers. In this paper we present a new approach to modeling the
swimming behavior of a jellyfish. Due to the axial symmetry of the creature we used a 2D cross-section for the calculation with
the surface of the bell represented by two hemi-ellipsoidal curves. A simplified approach based on non-linear deformations of
a geometric object is used to model the bell contraction-expansion cycle. We used a particle-gridless hybrid method for the
analysis of incompressible flows, with averaging velocities field by the Shepard’s method (partition of unity). To the best of
our knowledge this is the first work where the optimal contraction and expansion parameters for the jellyfish movement were

found by solving the optimization problem of maximizing the speed while minimizing the energy loss.

Keywords

Fluid dynamics, jellyfish, vortex, elasticity, optimization

1 INTRODUCTION

Jellyfish are the earliest known animals to use muscle
power for swimming [DCCO7]. They swim by contract-
ing and expanding their mesogleal bells. The swim-
ming muscles contract to expel a portion of water rear-
ward out of the subumbrellar cavity, thus generating a
thrust force to move the animal forward. The bell is
refilled when it restores its shape after deformation it
received during the thrust phase. The bell consists of a
fiber-reinforced composite material called "mesoglea".
The elastic characteristics of the mesogleal tissue were
studied, for example, by Megill et al. [MGBO0S5]

The contractile muscle fibers of the medusae are only
one cell layer thick, so the forces that they can pro-
duce do not scale favorably with the increasing medusa
size. For a medusa with the bell of diameter D, the
mass of water that needs to be expelled from within the
bell scales as D, while the muscle force only scales as
D'. Therefore the force required for jet propulsion in-
creases with the animal size more rapidly than the avail-
able physiological force [DCCO07]. Thus, the swimming
performance may change dramatically with the increase
of the medusan body size, and it is impossible to predict
the optimal swimming parameters based on the geomet-
ric and kinematic similarity.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The physics of jellyfish swimming is not well under-
stood. Existing animation techniques use combinations
of sinusoidal curves to specify the deformations. How-
ever, it is important for animation to achieve a real-
istic movement depending on the size and shape of a
bell. We assume that "realistic" also means "optimal",
as the movements of the real jellyfish were "optimized"
by the process of natural evolution, and we, therefore,
would be able to find realistic movements for an artifi-
cial 3D model of jellyfish by means of artificial evolu-
tion. Other applications, such as computational biology,
soft robotics and development of new propulsion tech-
niques can benefit from development of a generalized
model of jellyfish swimming.

In this paper we present a system for finding opti-
mal swimming parameters for jellyfish models, based
on our previous work where we studied vortex simula-
tion for jellyfish [LS10]. The system consists of two
main parts: simulated swimming and motion optimiza-
tion. We introduce a simple technique based on radial
basis functions (RBF) to model deformations of the jel-
lyfish bell and a particle-gridless hybrid method for the
analysis of incompressible flows. We modeled the in-
teraction between the fluid particles and the surface of
the bell in a form of elastic collision and reflection of
the fluid particles off the boundary surface. The swim-
ming efficiency was estimated for the bell and its par-
ticular movement specified by a set of control points.
Genetic algorithms were used to find the optimal swim-
ming pattern. To the best of our knowledge, this is the
first work where the optimal swimming parameters for
the jellyfish movement were found by solving the op-
timization problem. Throughout the paper we refer to
two other paper concerning computational simulation

of jellyfish ([LMOQ9] and [RMO09]), but neither of those
employs any numerical optimization.

The remainder of the paper is divided into 7 sections.
In section 2 we discuss related work. We describe our
approach in sections 3 to 5 and outline the algorithm in
section 6. In section 7 we outline the specifics of our
prototype implementation and report of the experimen-
tal results, and in section 8 we conclude and describe
directions of future work.

2 RELATED WORK
2.1 Studies of real life jellyfish

Experimental studies, including dye injection, filming
and analyzing the resulting flow, indicate that smaller
prolate medusae create strong jets during their bell con-
traction stage. Bigger oblate medusae, however, pro-
duce substantially less distinct jets and broad vortices at
the bell margins. A hypothesis proposed by Colin and
Costello [CC02] [DCCO7] [DCCO3] [DCCGOS] is that
oblate species are using their bell’s margins as "pad-
dles", thus utilizing a paddling, or rowing, mode of
swimming. According to the model presented by Dabiri
et al. [DCCO7], big oblate medusae are not capable
of swimming via jet propulsion. There is, however, a
study of McHenry and Jed [MJ03] which suggests that
the jetting model still provides more accurate approxi-
mation of swimming in oblate jellyfish.

The flow generated by oblate medusa’s pulsatile jets
consists mostly of radially symmetric rotating currents
called vortex rings. To better understand the vortex for-
mation and their effect on swimming performance, nu-
merous experimental studies of real live jellyfish were
performed [CC02] [DCCO07] [MJ03] [DGO03] [DCCO03]
[DCCGO5]. Researches using mechanical jet genera-
tors demonstrate that there is a physical limit — called
the "vortex formation number" — for the maximum size
of the vortex rings. Once this number is reached, no
bigger vortex formation is possible, and the extra wa-
ter creates a trailing current behind the vortex. The en-
ergy cost for generating this current is higher than that
of creating the vortex ring, so it is optimal to generate
the largest possible vortex without any trailing current
[DCCO03]. Both thrust and efficiency increase in direct
proportion with vortex ring volume [DCCGOS5]. Lip-
inski and Mohseni [LMO09] used digitized motions of
two real hydromedusae to computationally simulate the
flows. Their results confirm the hypothesis proposed by
Colin and Costello and demonstrate that distinct type
of jellyfish ("jetting" and "paddling") produce substan-
tially different kinds of vortices.

2.2 Fluid-solid interaction

Miiller et al. proposed a particle-based method for in-
teraction of fluids with deformable solids [MSTT04].

In their method they model the exchange of momen-
tum between Lagrangian particle-based fluid model and
solids represented by polygonal meshes with virtual
boundary particles to model the solid-fluid interaction.

Lipinski and Mohseni [LMO09] used digitized mo-
tions of two real hydromedusae to computationally sim-
ulate the flows. They used a new arbitrary Lagrangian-
Eulerian method with mesh following the boundary be-
tween the fluid and the jellyfish body.

Yoon et al. presented a particle-gridless hybrid
method for the analysis of incompressible flows
[YKO99]. Their numerical scheme included La-
grangian and Eulerian phases. The moving-particle
semi-implicit method (MPS) was used for the La-
grangian phase, and a convection scheme based on
a flow directional local grid was developed for the
Eulerian phase.

Chentanez et al. presented a method for simulating
the two-way interaction between fluids and deformable
solids [CGFOO06]. The fluids were simulated using
an incompressible Eulerian formulation where a linear
pressure projection on the fluid velocities enforces mass
conservation, whereas elastic solids were simulated us-
ing a semi-implicit integrator implemented as a linear
operator applied to the forces acting on the nodes in
Lagrangian formulation.

Hirato et al. proposed a method for generating ani-
mations of jellyfish with tentacles [HKO03]. They used
a simplified computational model based on the MPS
method to simulate the fluid. Their work is mainly fo-
cused on visually plausible modeling of tentacles.

Rudolf and Mould created a system for physically-
based animation of jellyfish [RMO09]. Their approach
may look very similar to ours, as they also exploited the
radial symmetry, simulating only a 2D cross-section,
and then creating a 3D bell for the visualization. The
main difference between the approach proposed in
[RMO09] and the one discussed in this paper is that
Rudolf and Mould did not employ any optimization,
instead assigning a visually plausible set of parameters
manually, by trial and error. They used a spring-mass
system to represent the body of a jellyfish and a
grid-based immersed boundary method for fluid-solid
coupling. As they note in their work, there is still
very little knowledge about physical properties of real
jellyfish. Thus, we didn’t feel necessary to employ
something as complex as a spring-mass system, since
the actual physical accuracy of the model would still
be uncertain. Moreover, modeling a multi-layered
structure of the jellyfish bell with only one layer
of springs attached directly to the opposite sides of
the bell does not look realistic. Some fugures from
[RMO09] demonstrate drastic change of both area and
linear size of the umbrella cross-section during the
contraction, something we failed to observe in real
species, such as presented in experiments of Colin

and Costello [DCCGO5]. Instead of a spring-mass
system, we use a simpler approach, with the umbrella
of the jellyfish represented in 2D as two spline curves,
deformed by RBFs. Instead of a grid-based method,
for fluid simulation we used a particle-based method
[YKO99] with elastic collision and reflection of the
fluid particles off the boundary surface to prevent fluid
leaking across the boundary. Finally, [RM09] employs
a very primitive visualization technique, an issue we
were trying to address with a GPU-based parallel ray
tracer, capable of representing transparency, reflectivity
and venous structure.

2.3 Optimization

The problem was studied by many researchers from the
computer graphics and animation community, but we
have no room for the comprehensive referencing, so we
will mention only a few we found most relevant to out
work.

Sims was one of the pioneers of artificial evolution.
In his work [Sim91] he used genetic algorithms to
create evolving images, textures, animations and
plants, represented by procedural geometry, with hu-
man aesthetical selection instead of a fitness function.
In [Sim94] he used similar approach to artificially
evolve both morphology and behavior of articulated
(e. g. composed of rigid parts and connecting joints)
creatures, which were evolved and trained to perform
specific tasks, like walking, jumping, following a light
source, competing for a ball with other creatures etc.

Terzopoulos et al. [TTG94] modeled artificial fish
as NURBS and spring-mass systems, using simulated
annealing to find efficient moving patterns. Based on
simulated sensory input, their fish could learn complex
group behaviour, such as schooling, mating etc.

Tan et al. [TGTL11] used covariance matrix adap-
tation to find optimal swimming motion for fish, frog,
turtle and even some fictional creatures, represented as
articulated bodies; however, they stated that their simu-
lation method is unsuitable for soft body creatures, such
as jellyfish.

The works, discussed in this section, inspired our at-
tempt to create a combined approach suitable for mod-
eling and optimizing jellyfish. We emphasize that our
work unites two themes of different research history:
generation of time-dependent shapes and estimation of
dynamical characteristics of the generated models.

3 BELL SIMULATION

To simulate the bell contraction-expansion cycle we
used a simplified approach based on non-linear defor-
mations of a geometric object. Because the model
of jellyfish has radial symmetry, we used a 2D model
(cross-section) with the surface of the bell represented
by two hemi-ellipsoidal curves — the upper and the
lower. For our model we used a piece-wise linear

approximation with the initial number of nodes equal
40. A space mapping technique based on RBFs (see
[SS01], and references therein) was used for non-linear
approximation of shape deformations in numerous ap-
plications. Space mapping in R" defines a relation-
ship between each pair of points in the original model
and the model after geometric modification. Let an
n-dimensional region © C R" of an arbitrary configu-
ration be given, and let Q contain a set of arbitrary
control points {g; = (¢}.4},....q,) : i = 1,2,...,N}for the non-
deformed object, and {d;,=(d},di,...,d}):i=1,2,...N}for
the deformed object. By assumption, the points ¢; and
d; are distinct and given on or near the surface of each
of two objects. The goal of the construction of the
deformed object is to find a smooth mapping function
that approximately describes the spatial transformation.
The inverse mapping function can be given in the form

gi = f(di) +d, (D

where the components of the vectorf(d;) are volume
splines interpolating displacements of initial points g;
(see Appendix for the details).

4 FLUID-SOLID COUPLING

Using a grid-based approach for jellyfish is possible,
but poses a number of problems. Using a regular grid,
as in [TGTL11] for an elastic body with varying thick-
ness will result either in a huge computational overkill
(if the grid is dense enough to accomodate the thin
edges), or in a poor accuracy of the computation (if
the grid is more sparse). Using an irregular grid, as
in [LMO09] requires solving a mesh warping/re-meshing
problem. Solving Navier-Stokes equations with mov-
ing boundary is a hard problem. For simplicity, we
chose a particle-based method. Particle-based meth-
ods became a de-facto standard for a class of prob-
lems where high precision is not required. For mod-
eling we used almost the same scheme as proposed by
Yoon, Koshizuka and Oka [YKO99]. They proposed a
particle-gridless hybrid method for the analysis of in-
compressible flows, where tracing of virtual moving
particles is used instead of solving nonlinear equations
of velocity field. A particle interacts with other particles
according to a weight function w(r), where r is the dis-
tance between two particles. The weight function used
by Koshizuka et al. is

—@2r/r)?+2 (0<r<0.5r,)
w(r) =14 (2r/r.—2)? 0.5r,<r<r.) (2
0 (re<r)

Density for a particle is calculated as the sum of
weights of its interactions with the other particles (all
interaction happens only within the radius r,):

<”>i=ZW(|Vj—Vi|)~ 3)

Note, that, unlike in the MPS method, the particle num-
ber density here is not required to be constant. A gra-
dient vector between two particles i and j possessing
scalar quantities ¢; and ¢; at coordinates 7; and r; is
equal to (¢; — ;) (r; —r;)/|r; — ri|*. The gradient vec-
tor at the particle i is given as the weighted average of
these gradient vectors:

)i =) Z

JFi |r1

—ripw(lrj=rl)|, @

rl|2

where d is the number of space dimensions and 7 is
the particle number density.

Diffusion is modeled by distribution of a quantity
from a particle to its neighbors using the weight func-
tion:

0 Z ri)]v (5)

J#

where A for a two-dimensional case with Equation (2)
as the weight function is equal to 13410 3 This model is
conservative, because the quantity lost by the particle i
is obtained by the particle j.
The continuity equation for incompressible fluid can
be written as follows:
Dp

o = P(V-u)=0. (6)

The velocity divergence at the particle i is given by:

(uj—u;)-(rj—ri)

no): o = @
J#

Then the pressure is calculated as:

u —u; 1 il
T (VP , 8
(VP ®)
V2Pn+1i:£ V. *i 9
(V2P = B9y, ©)

where u™* is the temporal velocity obtained from the ex-
plicit calculation and u;* is the new-time velocity. The
left side of (9) is calculated using the Laplacian model
(5). The right side is the velocity divergence, calcu-
lated by (7). We use variable r, to avoid cases where
some particles near the boundary will have very few
neighbours to interact with. It gives a system of lin-
ear equations represented by an unsymmetric matrix,
which is solved by an unsymmetric-pattern multifrontal
method [Dav04]. Solving (9) may seem computation-
ally expensive, but with jellyfish, the most important
fluid-solid interaction often happens near the very thin
edges of the bell, so calculating accurate pressure field
is necessary.

Instead of using a higher-order gridless convection
scheme as it was proposed by Yoon et al. [YKO99] to
approximate flow directions, we applied averaging of
the velocities field by a simple scheme, based on Shep-
ard’s method (partition of unity) [She68].

Boundary conditions are perhaps the most important
factor influencing the accuracy of the flow computation.
The manner in which the boundary conditions are im-
posed influences the convergent properties of the solu-
tion. Usually in particle-based methods boundary par-
ticles are used to approximate the no-penetration con-
dition [MST+04] [PTB"03]. Repulsion and adhesion
forces between the particles are used to simulate the
no-penetration, no-slip and actio = reactio conditions
on the boundary of the solid.

In our work contour points represent the geometry of
the model and also define fluid boundaries. That is, the
solution points are defined by the fluid particles and the
particles located on the boundary of the bell. For each
boundary particle we can calculate the boundary normal
vector, pointing outwards, into the flow domain. For
the no-slip condition, only the normal speed compo-
nent of any boundary particle is used, while the tangen-
tial speed component is discarded. The no-penetration
condition is modeled in a form of elastic collision and
reflection of the fluid particles off the boundary surface.
The motion of the bell was computed using only trans-
lational parts in y direction. One component of the force
F on a rigid body is a derivative of linear momentum
my of the gravitational center. It is assumed that jelly-
fish body density is equal to the density of the water.
Thus m is a volume occupied by the jellyfish.

The force F' also invokes fluid and rigid body inter-
action. Points on the curve used to represent the bell
can be considered as rigid particles. When the bell is
deformed, distances between boundary particles may
change, so we put a new set of boundary particles af-
ter each deformation, by evenly subdividing the curves.
The strategy of using rigid particles we followed was
first proposed in [CMTO04]. The forces on rigid parti-
cles are computed by assuming the rigid body as a fluid.
Therefore, for a particle i with the pressure p;, mass
density p; and speed v;, the force from the fluid acting
on the node particle £/ = 7" 4 s is calculated
by using the physical values of the neighbor particles as
follows [DC96]:

F7 ==Y (pitpj) /20, Viw]! (10)
i#]
£ == Y1 Vwy) (11
iZ]
where
o _(C.uij+2.ui2j)/p-j ui; <0

thij = { 0 ui; >0 (12)
Wij = evijrij/ (rf; +0.01¢7), pj =0.5(pi+p;j).

r,-j:ri—rj,vij:v,-—vj

S OPTIMIZATION

In techniques based on the error functional minimiza-
tion it may become necessary to solve highly non-linear

problems. Minimization by standard techniques re-
quires high computational effort. Minimization of a
simplified functional, for example a quadratic one, is
reduced to solving a simple system of linear equations.
However, it leads to iterative minimization that depends
on a sufficiently good initial guess. It seems to us that
an attractive way of attacking this problem is to use op-
timization techniques based on genetic algorithms, pro-
posed by Mahfoud and Goldberg in [MG92]. In this
work we used an algorithm with simulated annealing
type selection.

The application of the genetic algorithm starts with
initially selecting a set of M variable control points
{d; = (dyi,dai,d3i,...) i =1,2,...,M} for the definition
of the space transformation generating the deformed
object. Actually, the user defines points g; on the ini-
tial image of the bell in its rest state with correspond-
ing points d; on the model of fully contracted bell (Fig.
1). The collection of coordinates d; and the contraction
time f.,,, define a creature. The algorithm begins by
randomly distorting the initial creature and generates s
creatures, which form the initial population. Now, the
genetic algorithm with sequential simulated annealing
is applied to this initial population to minimize the fit-
ness function.

|
|
e\

Figure 1: An example of a creature: the right half of the
bell cross-section in two states (initial and deformed)
and the deformation vector

The spline f(P), determined by the set of N vari-
able control points d; which constitute a creature, used
for global space mapping, provides a minimization of
quantity /A=, that is called "bending energy". 8
points belonging to the border of the bounding box and
two additional points in the center of the bell (x = 0) on
the upper and lower curve are used as anchor points. &
destination points define general deformation of the jel-
lyfish bell. A~! is the bending energy matrix, which is
the inverse N x N upper left submatrix of T, and &; are
so-called heights and N = 10 + k. Space transformation
h; is the difference between the coordinates of the ini-
tial and destination point placements as shown in Fig. 1.
The bending energy of a general transformation is the
sum x’A~'x 4 y'A~1y of the bending energy of its hori-
zontal x-components, modeled as a "vertical" plate, and

the bending energy of its vertical y-component, mod-
eled similarly as a "vertical" plate.

In our simulation we used the "economy" principle:
the jellyfish is striving to reach maximum speed with
minimum deformation of the bell. Thus, one of the fit-
ness function component is the bending energy E”. In
the numerical analysis we also measured two quanti-
ties characterizing jellyfish locomotion, i. e. distance
D passed by a body which is defined by swimming
speed v and energy loss E'. Energy loss is assumed
to be equal to surrounding water energy. Following the
"economy" principle, we define the fitness function as
follows:

Fitness =wy-D—wy,-E? —w, - E' (13)
where wj, is the weight for RBF energy, w, is the weight
for kinetic energy of a particle, wy is the weight for the
object velocity. These parameters are set by the user to
choose a mode of movement.

6 ALGORITHM

Initially, the 2D contour of the bell cross-section is
specified as an array of points. Deformations are as-
signed to the bell margin points. Particles are placed at
aregular interval (on a regular grid) inside the bounding
box, except the inner area of the bell. Then, the follow-
ing steps are performed iteratively for each step of the
contraction/expansion cycle:

1. The averaged density is calculated for every parti-
cle. A ball is generated for every particle, and the
density is defined as the volume of the ball divided
by the number of particles inside the ball. The ball
diameter is not constant, and is adjusted so that all
balls contain roughly similar number of particles.

2. The bell margin points are moved by a step along the
deformation vectors. For the rest of the points their
displacement vectors are calculated using RBFs.

3. A cardinal spline is fit through the displaced bound-
ary points. Because some segments may become
too long, we discard the boundary points and insert
them again by subdividing the spline curve evenly,
so that all the distances between neighboring points
are mostly equal.

4. A Poisson equation in a matrix form (unsymmetric,
about 10000 linear equations) is solved, giving new
values of pressure for each particle.

5. Gradient vectors are calculated applying equation
(4). For every particle, the speed vector is calcu-
lated, and the particle is then moved along the vector
by the time step At.

6. New pressure values for the displaced particles are
interpolated back to the nodes of the regular grid.

Number of sub-steps | Time (sec) | Path (m)
6 7 0.02

10 13.14 0.032

14 18 0.031

18 23.99 0.033

20 26.6 0.038

40 25.39 0.039

Table 1: Performance results

7. Distance passed and energy lost at this step are cal-
culated for the creature.

At the end of a swimming cycle, we have a fitness for
the creature according to (13). A population of 10 such
creatures is evolved until convergence within 10%. The
best creature is then selected as "optimal".

For animation, we created a 3D model out of the 2D
contour, and then visualized by ray tracing. At first,
the mesh was created by rotational extrusion and tes-
sellation of the original 2D contour. Finally, we used
Blender 3D modeling suite to create a roughly simi-
lar 3D model with some embellishments, such as inner
"veins", inward-oriented "velum" and several tentacles.
Rotation of the original 2D contour was still used to put
anchor points at some interval around the bell. The an-
chor points were used as a "skeleton" for RBF-based
deformations of the entire bell model in 3D, including
the veins, at each animation step. Some random per-
turbations were added to the anchor points to make our
jellyfish look less artificial (Fig. 2). The tentacles were
modeled as soft cloth with one side attached to the bell
and deformed separately. The cloth structure was rep-
resented by a triangular mesh, with nodes affected by
the water flow.

7 RESULTS AND DISCUSSION

We implemented this method and used it to find the op-
timal swimming parameters for a simple oblate jelly-
fish similar to Aurelia aurita [DCCGOS5]. The program
was written in C++ and CUDA C. UMFPACK library
[Dav04] was used for solving large sparse systems of
linear equations. The algorithm terminates when a sat-
isfactory fitness level has been reached for the popula-
tion. In practice it happens when the number of gen-
erations is approximately 30. As Table 1 shows, the
path differs at the 3rd decimal digit. In our implementa-
tion we typically used 14 substeps with the calculation
time of about 10 minutes on a single core of an Intel
Core 2 Quad computer. The size of the simulation area
is 20x20 cm, with the resoultion of 100x100 particles.
The bell diameter is 10 cm.

In the particular case (see Fig. 2) weights (lazy mode)
wp = 0.3, w, = 0.3 and w; = 0.4 were used. The vor-
tices produced by the simulation (Fig. 3) were similar

to those observed for real jellyfish, showing that appli-
cation of the no-slip condition looks reasonable.

A GPU-based parallel ray tracing system was devel-
oped for the visualization (Fig. 2). We used recursive
ray tracing to visualize the bell as a transparent object
with refraction and reflection. Each primary ray hitting
the bell was spawning several secondary rays, so the an-
imation performance varied depending on the number
of primary rays hitting the bell, and, thus, on the dis-
tance from the camera to the jellyfish and on the view-
ing angle. Our ray tracer produced 20-30 frames per
second on a GeForce GT 540M GPU. See the supple-
mentary video for an example of animation. We must
add, that experience in areas such as 3D art and texture
painting would add significantly to the observed real-
ism of the animation, but that is beyond the scope of
this work.

To validate our results, we compared them with ex-
perimental data received by Colin and Costello [CCO02]
[DCCGO5]. The distance passed by our model during
one full contraction-expansion cycle (which is roughly
equal to the bell radius) and the resulting water flows
seem to be in agreement with their data.

8 LIMITATIONS AND FUTURE WORK

We employed our simulation software to find the opti-
mal movement for a very simple 2D model, swimming
straight ahead. A more thorough validation of our tech-
nique, using a variety of sizes and shapes, as well as
robustness and sensitivity studies are required and are
subjects of future work. A few control points were used
to specify bell contraction, and the movements of the
bell margins were set by only two axially-symmetric
vectors. Real jellyfish have no brain or eyes (although
some of them have photosensitive spots on their bells)
and do not deliberately choose any complex swimming
trajectory, so we think our simplification has no big im-
pact on the results veracity for jellyfish. However, fol-
lowing complex paths would be crucial for jellyfish-like
robots. To simulate such behavior, it may be necessary
to perform the simulation in 3D and with larger number
of (possibly asymmetric) control points.

We did not, either, take into account jellyfish feed-
ing behavior and tentacles. Real jellyfish have an oral
opening inside the bell. Some of them also have nu-
merous tentacles spread in the water. The tentacles add
drag force and decrease swimming performance, but
are used to catch prey. Jellyfish create water flows to
carry their prey through the tentacles or into the oral
cavity itself. Modeling such behavior is important for
computational biology. Additional parameters for it can
be incorporated into the fitness function.

Another possible future work would be optimization
of the shape itself, e. g. finding both optimal movement
and optimal shape, satisfying constraints imposed by a
3D designer.

Figure 2: Animation sequence of two contraction steps (left) and two expansion steps (right) for a jellyfish with
floating tentacles and small additional deformations applied to the bell.

Figure 3: Vortex formation

o
o
=

Velocity (m/sec)
o o o o o
=3 o o o o
N w B w (=]

o
=)
=

0985 02 04 06 08 To
Time (sec)
Figure 4: Velocity change for a jellyfish during the ini-
tial swimming cycle (10.00 cm diameter, 0.39 sec con-
traction time, 0.61 sec expansion time)

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful
comments.

10 APPENDIX

We consider a mapping function as a thin-plate inter-
polation. For an arbitrary area €, the thin-plate inter-
polation is a variational solution that defines a linear
operator T when the following minimum condition is
used:

/Q Y, ml/a\(D%f)*dQ — min, (14)

|or|=m

where m is a parameter of the variational function and

« is a multi-index. It is equivalent to using the RBFs

o(r) =rlog(r) or r* for m=2 and 3 respectively,
where r is the Euclidean distance between two points.

The volume spline f(P) having values k; at N points

P is the function
f(P)=

A0 (|P —P;|) + p(P), (15)

=

1

J

where p = vy + Vix + Voy + V3zis a degree-one polyno-
mial. To solve for the weights A; we have to satisfy the
constraints 4; by substituting the right part of Equation
(15), which gives

N
hi=Y 4;0(|P.—Pi|)+ p(P).

j=1

(16)

A and v are the coefficients that satisfy a linear system
Tx = b, where

T
T — A B
B D a7
x=[11712,...,AN,V(),...,V3]T,
b= [hi,hy,....hy,0,0,...,0]”

For 2D and 3D cases we call f(P) a volume spline.

REFERENCES

[CCO02] S. P. Colin and J. H. Costello. Morphol-
ogy, swimming performance and propul-
sive mode of six co-occuring hydrome-
dusae. The Journal of Experimental Biol-
0gy, 206:427-437, 2002.

N. Chentanez, T. G. Goktekin, B. E. Feld-
man, and J. F. O’Brien. Simultaneous
coupling of fluids and deformable bodies.
Eurographics/ ACM SIGGRAPH Sympo-
sium on Computer Animation, pages 83—
89, 2006.

M. Carlson, P. J. Mucha, and G. Turk.
Rigid fluid: Animating the interplay be-
tween rigid bodies and fluid. ACM Trans-

actions on Graphics, volume 23, pages
377-384, 2004.

[CGFOO06]

[CMTO04]

[Dav04]

[DCY6]

[DCCO03]

[DCCO7]

[DCCGO5]

[DGO3]

[HKO3]

[LMO09]

[LS10]

[MG92]

[MGBO5]

T. A. Davis. Umfpack, an unsymmetric-
pattern multifrontal method. ACM
Transactions on Mathematical Software,
30(2):196-199, June 2004.

M. Desburn and M. P. Cani. Smoothed
particles: A new paradigm for animating
highly deformable bodies. Computer ani-
mation and simulation, pages 61-67, 1996.

J. O. Dabiri, S. P. Colin, and J. H. Costello.
Fast-swimming hydromedusae exploit ve-
lar kinematics to form an optimal vortex

wake. The Journal of Experimental Biol-
0gy, 206:3675-3680, 2003.

J. O. Dabiri, S. P. Colin, and J. H. Costello.
Morphological diversity of medusan lin-
eages constrained by animal-fluid interac-
tions. The Journal of Experimental Biol-
0gy, 210:1868-1873, 2007.

J. O. Dabiri, S. P. Colin, J. H. Costello,
and M. Gharib. Flow patterns generated
by oblate medusan jellyfish: field measure-
ments and laboratory analyses. The Jour-
nal of Experimental Biology, 208:1257—
1265, 2005.

J. O. Dabiri and M. Gharib. Sensi-
tivity analysis of kinematic approxima-
tions in dynamic medusan swimming mod-
els. The Journal of Experimental Biology,
206:3675-3680, 2003.

J. Hirato and Y. Kawaguchi. Calcula-
tion model of jellyfish for simulating the
propulsive motion and the pulsation of
the tentacles. 18th International Confer-
ence on Artificial Reality and Telexistence,
2003.

D. Lipinski and K. Mohseni. Flow struc-
tures and fluid transport for the hydrome-
dusae Sarsia tubulosa and Aequorea victo-
ria. The Journal of Experimental Biology,
212:2436-2447, 20009.

V. Lazunin and V. Savchenko. Vortices
formation for medusa-like objects. Pro-
ceedings of Fifth European Conference on
Fluid Dynamics (ECCOMAS CFD 2010),
June 2010.

S. W. Mahfoud and D. E. Goldberg. A ge-
netic algorithm for parallel simulated an-
nealing. Parallel problem solving from na-
ture, 2:301-310, 1992.

W. M. Megill, J. M. Gosline, and R. W.
Blake. = The modulus of elasticity of
fibrillin-containing elastic fibres in the
mesoglea of the hydromedusa polyorchis
penicillatus. The Journal of Experimental

[MJO3]

[MST*04]

[PTB103]

[RMO9]

[She68]

[Sim91]

[Sim94]

[SSO1]

[TGTL11]

[TTGY94]

[YKO99]

Biology, 208:3819-3834, 2005.

M. J. McHenry and J. Jed. The ontoge-
netic scaling of hydrodynamics and swim-
ming performance in jellyfish (aurelia au-

rita). The Journal of Experimental Biology,
206:4125-4137, 2003.

M. Miiller, S. Schirm, M. Teschner, B. Hei-
delberger, and M. Gross. Interaction of flu-
ids with deformable solids. Computer An-
imation and Virtual Worlds, 15:159-171,
2004.

S. Premoze, T. Tasdizen, J. Bigler,
A. Lefohn, and R.T. Whitaker. Particle-
based simulation of fluids. Computer

Graphics Forum, 22(3):401-410, 2003.

D. Rudolf and D. Mould. Interactive jelly-
fish animation using simulation. Interna-
tional Conference on Computer Graphics
Theory and Applications (GRAPP), pages
241-248, 2009.

D. Shepard. A two-dimensional interpo-
lation function for irregularly spaced data.
Proceedings of the 23th Nat. Conf. of the
ACM, pages 517-523, 1968.

K. Sims. Artificial evolution for computer
graphics. Computer graphics, pages 319—
328. ACM SIGGRAPH, July 1991.

K. Sims. Evolving virtual creatures. Com-
puter graphics, pages 15-22. ACM SIG-
GRAPH, July 1994.

V. Savchenko and L. Schmitt. Reconstruct-
ing occlusal surfaces of teeth using genetic
algorithm with simulated annealing type
selection. 6th ACM Symposium on Solid
Modeling and Applications, pages 39—46,
June 2001.

J. Tan, Y. Gu, G. Turk, and C. K. Liu. Ar-
ticulated swimming creatures. Computer
graphics, volume 30. ACM SIGGRAPH,
July 2011.

D. Terzopoulos, X. Tu, and R. Grzeszczuk.
Artificial fishes: autonomous locomotion,
perception, behavior, and learning in a
simulated physical world. Artificial Life,
1(4):327-351, 1994.

H. Y. Yoon, S. Koshizuka, and Y. Oka. A
particle-gridless hybrid method for incom-
pressible flows. International Journal for
Numerical Methods in Fluids, 30:407-424,
1999.

