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Particle Swarm Optimization with Spatially Meaningful Neighbours
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Abstract—Neighbourhood topologies in particle swarm opti-
mization (PSO) are typically random in terms of the spatial
positions of connected neighbours. This study explores the use
of spatially meaningful neighbours for PSO. An approach is
designed which uses heuristics to leverage the natural neigh-
bours computed with Delaunay triangulation. The approach is
compared to standard PSO sociometries and fitness distance
ratio approaches. Although intrinsic properties of Delaunay
triangulation limit the practical application of this approach to
low dimensions results show that it is a successful particle swarm
optimizer.

Index Terms—Delaunay Triangulation, Neighbour Topology,
Particle Swarm Optimization, Heuristics.

I. INTRODUCTION

ARTICLE swarm optimization is a powerful, yet simple
Ppopulation based optimization strategy, particularly well
suited for finding extrema in continuous non-linear functions
[1]. The approach is derived in part from the interesting way
flocks of birds and swarms in nature search for food. Kennedy
and Eberhart, developed the approach by streamlining and
adapting a simulation of flocking birds in 1995 [1].

In PSO a set of particles find an optimum through an
iterative process in which particles sample a search space and
then adjust their search directions to sample near to their fitter
neighbours. Neighbours are those particles which can share
information. The set of neighbour-connections between all of
the particles forms the swarm’s topology or sociometry [2]
and affects the swarms exploitation and exploration behavior
[3].

In standard PSO topologies there is no spatial significance
between neighbouring particles as neighbours are random in
terms of their relative positions. Neighbourhoods are also
typically static, being computed once-off during initialization.
This contributes to the standard PSO being a fast and simple
high dimensional optimizer. Spatially meaningful topologies,
on the other hand, have the additional overhead of computing
neighbours, though they do present some significant advan-
tages:

1) "Near neighbour interactions" introduce diversity in the
Fitness Distance Ratio (FDR) PSO through recombina-
tion of nearby particles. This is helpful for avoiding
premature convergence [4].

2) Sub-groups of particles near each other are able to
find and explore multiple local peaks in multimodal

Manuscript received May 28, 2008; revised July 19, 2008. This work
was supported in part by Edwin Blake’s NRF Grantholders Bursary
FA2007042600027.

James Lane and James Gain are with the Department of Computer Science
at the University of Cape Town, and Andries Engelbrecht with the Department
of Computer Science at the University of Pretoria, South Africa (email: {jlane,
jgain} @cs.uct.ac.za, engel@cs.up.ac.za).

problems, as demonstrated by the Fitness Euclidean
Ratio (FER) PSO [5].
3) Dynamic neighbour connections are beneficial for intro-
ducing diversity [6].
4) Dynamic topologies are useful for tackling multiobjec-
tive optimization problems [7].
5) Spatial neighborhoods facilitate the formation of niches
[8].
Current spatial approaches require quadratic time to find
neighbours [5]. Delaunay triangulation (DT) presents a means
of spatially subdividing a set of points in expected near linear
time in low dimensions, 2D and 3D [9]. This research explores
the use of Delaunay triangulation to achieve a spatial topology,
by computing the closest surrounding neighbours for each
particle. Our approach uses spatially meaningful heuristics
to leverage the set of local Delaunay neighbours to explore
diversely, work more immediately on common optima and as a
swarm converge on the global best position. Our contributions
include:

« researching Delaunay triangulation as a spatial sociome-
try in PSO and comparing it to standard approaches and
other spatial approaches (FER and FDR PSO) in low
dimensions (2D, 3D and 4D),

o heuristics which leverage Delaunay neighbours for ac-
complishing diversity, local exploitation and global con-
vergence,

e a new low-dimensional dynamic-spatial PSO with di-
rected connections and

« a classification schema for PSO sociometries.

A synopsis of DT is given next including a background of
PSO with a focus on neighbourhood topologies, a classification
schema for sociometries and related work. Our approach is
presented in section III and results in section IV. Technicalities,
limitations and application areas are then discussed. Conclu-
sions are drawn and future work suggested.

II. BACKGROUND
A. Delaunay Triangulation

Delaunay triangulation spatially sub-divides a set of points
into triangles in 2D (tetrahedra in 3D and simplices in 4D),
where the endpoints of the simplex (an n-dimensional equiv-
alent of a triangle) edges lie on the circumference of the
circumcircle (a circle with none of the other points inside
it) [10]. Figure 1, Shows an example of a 2D DT. The
Delaunay triangulation defines natural neighbours and is a
useful spatial data structure for finding the nearest surrounding
neighbours of a set of points. Delaunay triangulation has a
worst case time complexity of O(n[21+1), where d is the
dimension of the points. In practice though, computing DT is
significantly faster than this worst case which is experienced
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Fig. 1. Delaunay triangulation of a set of points.

for certain manufactured point sets [10]. In 2D the worst
case time complexity is O(nlogn) [9]. In 3D it is O(n?)
though “for all practical purposes three-dimensional Delaunay
triangulations appear to have linear complexity" [11]. In 4D
there are algorithms which compute the DT in O(n?) [9].

B. Particle Swarm Optimization

Particle swarm optimization is a population based search
strategy which finds an optimum by stochastically “flying"
a set of particles through a search space. Particles iteratively
sample a region between and beyond their own individual prior
best position and the position of their most successful neigh-
bour(s). In doing so, fitter positions may be found. Updating
their individual best positions, the particles change their search
directions to explore these new fitter positions. Through this
process the particles converge on the maximum/minimum.

Equation (1) is the commonly used constriction factor
velocity update equation for the standard (Canonical) PSO
[12]. The equation causes a particle ¢, to oscillate around
its individual best and neighbour best positions, dampening
the velocity, and influence of these terms by a constriction
factor x. The velocity update moves a particle to a random
position between and beyond its current position (X;), its
previous individual best position (P;) and its most successful
neighbour’s best position (P,,):

V,=x[Vi+ari(P; — X;) + cora(P, — X;)] (1)

where X; is the particles current position and V; is the
particles velocity. Components are point-wise multiplied with
each other. Typically x is set to 0.729, in combination with
cp = co = 2.05 [12]. ¢1, and co scale the individual and
neighbour contributions (which act as attractors) so that the
particle searches around them. r; and ry are tuples of uniform
random numbers in the range [0;1], which introduce the
stochastic component. A random number is computed for each
dimension being point-wise multiplied. Figure 2 illustrates
how this equation works. The neighbourhood best positions
(P,,) are computed each iteration before the velocity update
step by running through the set of particles which comprise
each particles neighbourhood and choosing the fittest of these.
Individual bests are updated each iteration for each particle
if the new position is fitter than the particle’s previous best
position.

The positions (X;) of the moving particles form an
“explorer-swarm" responsible for exploring the search space.

Possible
region to
which particle
could move

Particle oscillates
around this region

Fig. 2. A 2D illustration of the velocity update equation and the region
to which it will move a particle. The scaled, shifted and constricted velocity
results in a stochastic region to which a particle will move.

The personal bests (P;) of the particles may be thought of as
a “memory-swarm" [5]. The memory swarm is significantly
more stable than the explorer swarm, since it consists of the
best points found so far by the individual explorer particles
which are only updated if better points are found.

C. Neighbourhood Topologies

Figure 3 shows the most common topologies (neighbour-
hood structures) used by PSO: the star topology in which all
particles are connected to all others, the ring neighbourhood
for which each particle is connected to two others and the
Von Neumann topology where each particle links to four
others in a cubic-lattice type arrangement (this is essentially a
ring topology but with four neighbours) and on the far right,
Delaunay neighbours. Neighbourhood structure affects the
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Fig. 3. The standard Random-Static topologies (Star,Ring,Von Neumann)
and Spatial meaningful-Dynamic Delaunay neighbourhood structure.

performance and convergence of PSO significantly [13] since
it determines the rate at which information propagates through
the swarm. This greatly influences the swarm’s exploitation
and exploration behaviors. For instance, the fully connected
star topology exhibits fast convergence with little exploration,
best positions and fitness information being relayed directly to
the entire swarm. Slow convergence with greater exploration
is observed in the ring topology, which has few connected
neighbours, since it takes longer (several iterations) for infor-
mation to pass through the links to the other particles giving
the swarm "more time" to explore. This makes a PSO using
the ring topology less prone to being trapped in local extrema
[14].



Typically, neighbour particles are determined in the ring
and Von Neumann topologies simply by using the different
particle’s indices (particles are connected as neighbours based
solely on their array indices). This results in a spatially random
topology, since there is no correlation between a particle’s
position in relation to its neighbour’s positions. The random-
ness in terms of the related spatial layout between neighbours
in the ring and Von Neumann topologies juxtaposed to the
natural spatial neighbours found by Delaunay triangulation
is evident in figure 3. The star, ring and Von Neumann
topologies are static in that their neighbour connections are
set at initialization and do not change throughout the search,
even if the particles change position in relation to each other.
Static topologies have minimal computational overhead since
they do not require re-computation and only a single linear
pass is needed to update neighbourhood bests.

D. Classifying Topologies

Figure 4 summarizes and illustrates classification criteria for
PSO topologies. A topology structure may be static (neigh-
bours remain fixed throughout iterations) or dynamic. Neigh-
bouring particles are either spatially related or random in terms
of their spatial layout. Spatial neighbourhoods are inherently
dynamic because particles moving in relation to one another
may move past each other or closer to other particles, resulting
in topology changes. Another defining characteristic of a
topology is whether the inter-particle connections are directed
or undirected. Directed topologies allow one way information
sharing, i.e. A—B means A can access B’s information but not
vice versa. The above classifications are helpful for logically
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Fig. 4. Classification of PSO Topologies.

organizing and categorizing the vast related literature and
approaches to neighbourhood structures in PSO. Our approach
is an example of using a dynamic-spatial neighbourhood with
directed connections.

E. Related Work

Static random topologies with undirected connections such
as the star and ring neighbourhoods are the most commonly
used in PSO implementations [6]. The Von Neumann topology
has shown exceptional performance in the fully informed par-
ticle swarm (FIPS) PSO [15]. Directed connections have also
been used with these static-random topologies. Experiments
with random static topologies include the use of discrete
random undirected graphs and acyclic random links [16][17].

Dynamic random topologies for both directed and undi-
rected connections include variations such as: randomly in-
creasing the number of undirected neighbour connections
with successive iterations (moving the swarm from a state of
exploration to one of exploitation) [2][18], randomly chang-
ing unconnected neighbours [14] and using random discrete
structures and edge migrations for directed connections [17].
Experiments with different aspects of neighbourhoods and
network connections including effects of out degree and the
size of the population have been performed to help determine
the properties of topologies that make for successful societies
[14][61[3].

Dynamic spatial topologies in PSO are rare. Most likely
because computing neighbours is an additional overhead and
Euclidean distance is computationally expensive [18][14].
Examples of spatial neighbourhood approaches include: in-
creasing the number of connected closest neighbours [18]
and forming fully connected "clusters" after iterations based
on particles search-space locations. [19]. The FDR (Fitness
Distance Ratio) PSO computes a best neighbour position for
each particle in the swarm by maximizing the ratio between the
fitness difference of each particle for each dimension and the
absolute value of the difference between the particles position
in that dimension [4]. The Fitness Euclidean Ratio (FER)
PSO [5] is a modification of the FDR approach that uses
the Euclidean distance and memory swarm for the purpose of
finding multiple extrema in multimodal problems. The FDR
and FER are spatial approaches which parse the entire swarm
for each particle when computing best neighbours whereas our
approach uses the Delaunay neighbours and heuristics. The use
of Delaunay triangulation to compute and maintain spatially
meaningful neighbours is quite unlike current approaches and
is to our knowledge the first time that spatial data structures
are used to compute and manage neighbours for PSO.

Several miscellaneous spatial extensions have been pro-
posed for PSO including collision avoidance [20], a spatial
extension which causes particles to bounce off each other to
avoid clustering [21]. Richards and Ventura [22] have used
centroidal Voronoi tessellation for generating initial starting
points for a swarm but do not use tessellation during the actual
search.

III. NATURAL NEIGHBOURS APPROACH

The approach described below uses DT and heuristics to
leverage near neighbours to work together on nearby common
extrema. The heuristics and spanning property of DT are used
to cause the swarm to progressively converge on the global
extremum.

A. Finding Neighbours Using Delaunay Triangulation

DT is used as a first step in our approach to find a
subset of closest surrounding neighbours for each particle.
The Delaunay neighbours connect particles across the swarm
so that each particle is either connected indirectly by a path
through some set of other particles or directly to every other
particle in the swarm. This is necessary, since at some point
particles must be influenced by the global best for the swarm



to ultimately converge upon it. DT plays a role in distributing
the search in a spatially meaningful way by dividing space
into Voronoi(the dual of DT) cells between particle positions in
either the explorer or memory swarm. This is advantageous for
exploration because it slows convergence on the global best,
when there are sufficient particles and hence divisions through
which information has to travel. Since Delaunay neighbours
are the closest surrounding neighbours this means they may
more immediately search local regions of the search space with
other nearby neighbouring particles than random neighbours
could.

The set of neighbours DT provides is merely a point of
departure for our approach, since using all of the Delaunay
neighbours may result in a nearly fully connected swarm
which could lead to particles converging too quickly on a local
optimum. Figure 5 illustrates this problem in which the DT
neighbours form a topology very similar to a star topology.
The particles in the illustration will be drawn into the center
(local extremum) in the next iteration before the particles
have a chance to explore their own local regions, causing the
swarm to miss the global optimum. Particle k(Py), which is
very close to the global optimum needs some time or help
to search locally. A heuristic is required to meaningful break
connections.

Cooperating
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Fig. 5. Contour map with Delaunay neighbours forming an almost fully
connected topology.

B. Dynamic Connections and Heuristics

Dynamic connections present a means of introducing diver-
sity and are used to overcome the problem of over-connection
encountered when using all of the Delaunay neighbours.
A sociometry composed of natural neighbours undergirds a
framework (spatial context) which allows for the design of
meaningful dynamism. Our rules for choosing connections aim
to select neighbours from among the set of natural neighbours
to search together locally in common spatial regions near to
each other and yet ultimately tend towards the global optimum.
Spatially meaningful heuristics are used to accomplish this by
modulating connections.

1) Choosing Locally Cooperating Neighbours: Given a set
of Delaunay neighbours, only the connections between parti-
cles which are cooperating to find a common local optimum
are desired. The following rules are used to decide which
particles are working together:

1) if a particle P is following behind another particle Po
then a directed connection is made from P; to Ps.
This represents particles heading in the same general
direction for which the trailing particle is connected to
the leading one. Figure 6(left) illustrates this case.

2) If two particles, P; and P, are heading towards each
other (but not past one another) they are considered to
be cooperating and an undirected connection is made
between the two. This case is shown in Figure 6 (right).
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Fig. 6. A particle is connected to a neighbouring particle if it is following

or heading towards its neighbour. This is the case when V1 - Ujte2 > 0.

These two heuristics are implemented by testing when:
V1 'Ulto2 >0 (2)

In equation (2) V7 is Py’s velocity and Uiy is the offset
vector from P; to Py after a move (velocity update). Similarly,
this rule may be applied to test if Po is working with P;.
The black lines in figure 5 illustrate the subset of Delaunay
neighbours that these heuristics would choose.

Another meaningful heuristic for maintaining connections
between cooperating particles, is described immediately be-
low: Figure 7 shows the stochastic region of overlap for two
neighbouring particles. If this region is significantly greater
than a selected percentage threshold of the two combined
regions of motion, then the neighbouring particles are highly
likely to be working together in the same region. An undirected
connection is maintained between these neighbours in this
case. Alternatively the region between a particle’s personal
best and neighbour best, around which a particle oscillates,
may be used in this test, see figure 2. In our experiments
the stochastic region was used rather than the region of
oscillation. These heuristics reduce and vary the connections in

Region of Probable
Motion Overlap

Region of Probable
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Fig. 7. Stochastic region of overlap.

the swarm. After their application there may be particles with
no connections. Such particles are connected to the closest
fittest neighbour amongst their original set of Delaunay neigh-
bours so that no particles are left unconnected. Alternatively,
unconnected particles may be left to perform hill-climbing in
their immediate region.



2) Local Exploitation: Another useful spatial heuristic is to
attract particles to their “closest-fitter" neighbour. We aim to
cause particles nearby one another to work together towards
their closest peak, rather than their fittest peak. This slows the
rate at which the global best is passed through the swarm and
presents a way of getting local particles to work together to
improve a solution in their local vicinity. Figure 8 illustrates
this: P3 will move towards "closer fitter" particle P, working
locally with it, rather than being drawn away to a more distant
peak by Ps, even though this is the fittest neighbour. P, and
P, are responsible for exploring their common local peak.
This heuristic takes advantage of particles being spread across
space with interleaved sections between them. However, if
there are many particles in the swarm and a rugged function
landscape, this rule may slow the rate of convergence on the
global optimum (more iterations will be required to find the
global best).

Fig. 8. The "closest-fitter" heuristic will draw P3 towards P4 even though
P2 is P3’s fittest neighbour.

3) Convergence on the Global Best: Though particles
should investigate local extrema, they must ultimately progress
towards the global optimum. A meaningful measure for de-
ciding when to pull a particle away from a local peak is the
ratio of the distances between the "closest-fitter" and "fittest"
neighbours. It is also a measure of how well a peak has been
exploited. This is because particles which converge locally
on their "closest-fitter" neighbour, exploiting a local peak,
will get closer and closer to each other. This distance will
become significantly smaller than the distance to the local
fittest particle in cases where a fittest neighbour is on a
different higher neighbouring peak. Figure 9 illustrates this.
Particles P; and P» will converge on each other. As they
do, the distance to P3’s closest fitter neighbour becomes
significantly small in relation to its distance to Psg, its fittest
neighbour. Incorporating the swarm’s diameter into this test

Distance to Closest-Fitter Particle

4+ —>
Distance to Fittest

Fig. 9. The distance between closest fitter particles becomes increasingly
small in relation to the distance to the fittest neighbour if there is a fitter
neighbour on a higher peak.

allows particles to dynamically adapt the depth to which they
search as the swarm contracts. This is desirable because as the
swarm progresses towards the global optimum, peaks should

be examined more closely. A local exploitation ratio threshold
may be set to some factor of the swarm’s sparseness (né,
where n is the number of particles and d is the dimension).
Alternatively and more simply, the local exploitation ratio
threshold may be set to a fraction of the diameter. In our
tests we let particles explore to one hundredth of the swarms
radius. Additionally we test if the distance to the closest fitter
particle is less than the local exploitation ratio. This is also an
indicator of a peak being sufficiently exploited.

When the ratio is below the local exploitation ratio threshold
the fittest neighbour is used rather than the closest fitter
neighbour only if the velocity of the particle is at most
twice the distance to the closest neighbour. This is to prevent
arbitrary particles which land nearby the local peak from
disrupting a local search (see particle P5 and Pg). Only those
particles which are sampling the local peak with a small step
size should be allowed to move onto the fittest peak. This rule
and the spanning property of the DT (their is some path from
every neighbour to every other neighbour in the DT) results in
particles at some point converging on the global best particle.
The rate at which the particles tend to this point is slowed by
all of the rules and the spatial separation between the particles
resulting in greater exploration.

C. Integration into the Standard PSO Algorithm

Algorithm 1 Pseudo code for the PSO Natural Neighbours
algorithm.

Randomly generate initial population
Repeat
N = compute_delaunay(X; to population_size)
for ¢ = 1 to population_size do
P =X;
P,, = chooseBestNeighbour( N; )
for d = 1 to dimensions do
velocity_update()
position_update()
end
end
until termination criterion is met.

Algorithm 1 shows how the standard PSO algorithm is
modified to use natural neighbours and our heuristics. A
new step, “compute_delaunay", is added which returns the
Delaunay neighbours, IV, for the positions, X; of the particles,
in the swarm. In this work we concentrate on finding the DT
of the explorer swarm. An alternative would be to compute the
DT of the memory swarm and let explorer points contribute
to improving their closest memory swarm points.

Our heuristics are integrated into the "chooseBestNeigh-
bour" procedure, which returns a neighbouring best particle
(P,) for particle 4, from ¢’s set of Delaunay neighbours.
Algorithm 2 shows pseudo code for determining the best
neighbour using the heuristics. P is the position of the fittest
neighbour and P, the position of the closest fitter neighbour
individual bests are used rather than explorer positions.



Algorithm 2 Pseudo code for finding a particles best neigh-
bours.

input: N; Particle ¢’s closest neighbours
output: P, the best neighbour
Procedure chooseBestNeighbour ( NV; )
hasConnectedNeighbours = false
P; = min(Ny)
for k = 1 to neighbourset_size do
if working_together(P;, Py)and
dist(X; — P.) < dist(X; — Py)and
f(Pk) < f(Xl) then

P.=P;
hasConnectedNeighbours = true
end if

end
local ExploitationRatio = swarm.diameter /200
if hasConnectedN eighbours and
distance(X; — P.)/distance(X; — Py) >
local Exploitation Ratio and
Vi < 2 x distance(X; — P.) then

Pn = Pc
else

P,=P;
Return P,

end Procedure

IV. RESULTS

Internal tests comparing DT without heuristics, heuristics
with a fully connected swarm and a combination of DT with
heuristics showed that DT found solutions using the least
amount of iterations but was the least successful at finding
the global best. Using heuristics with a fully connected swarm
was comparative to DT with heuristics. It found solutions in
slightly fewer iterations but performed marginally worse at
finding the global extremum (more connections implies faster
convergence and less exploration).

The Delaunay approach with heuristics (DTH) was eval-
vated against the star (GB), Ring (LB2) and Von Neumann
(LB4) static topologies as well as the FER and FDR (112)
fitness ratio approaches. FDR (112) is used in our experiments,
as this was the best performer amongst the FDR variations
as reported by Veermachaneni et al [4]. Tests were run on
five of the most commonly used benchmark test functions for
testing neighbourhood structures [6][13][4], The commonly
used sphere function was omitted from our test bed, since
it is too simple in low dimensions, approaches always find the
global best. Tests were run in 2D, 3D and 4D. Thirty trials
were run for each topology on each of the test functions for
swarms of size 10, 20 and 30 particles. Trials were terminated
after 10000 iterations. Table I shows the functions used, the
initialization domain and the terminating criteria. The reader is
referred to [14] for a detailed description of these functions.
The terminating criterion serves as the finishing-line, it is a
value for a specific test function, which if reached indicates
that the swarm is on the global peak. All functions were tested

in 2D, 3D and 4D except for Schaffer which is a 2D function.

TABLE I
FUNCTIONS, STOP CRITERIA AND DOMAINS

Function Domain Criterion
Schaffer [-100;100] 0.00001
0.5+ (sin\/(z%+z§))2—045)

(140.001(z?+22))?2
Rastrigin =~ [-5.12;5.12] 0.01
n

> x2 + 10 — 10cos(27x;)
i=1

Rosenbrock [-30;30] 100
n—1
> 100(zit1 — 22)? + (x5 — 1)?
i=1
Griewanck [-600;600] 0.05
n n
2 EZIV
fracl4000i§1:ci — 1_l;llcos( ﬂ)mz +1
Ackley [-32;32] 0.01
zr if Y7 cos(2mz;)
204 e — 20e‘°‘2\/ e K

"Success rate" indicates the number of times an approach
reaches the criteria. It is chosen as the most significant measure
for evaluating the approaches, since it shows an approach’s
ability to find the global extremum [13].

“Number of iterations to reach the criteria" is a significant
independent measure of an approaches performance; the me-
dian of these values is used for successful trials (see [13]).
Table 2 shows success rates and the median number of itera-
tions to success. A -1 indicates that 50% or more of the trials
were unsuccessful. In our tests, initial velocities are random
with magnitude at most half the search space diameter. We
also execute the update of the individual bests before moving
particles and after adjusting velocities in order to help maintain
variation between individual bests and current position for
all the approaches. In 4D, DT computation occasionally fails
(possibly due to degenerate point sets) in which case the fully
connected neighbour graph is used.

Time tests were performed. The DTH approach, in 2D and
3D took a few seconds longer to find solutions than the other
approaches which typically finished in under a second. The
approach in 4D depending on the number of iterations-took
from a few seconds to several minutes to find solutions. It
must be taken into account that the approach was implemented
for proof of concept rather than optimized execution speed.

The results in Table 2 show that DTH and LB2 are in
terms of success-rate either as good or better than the other
approaches, with DTH performing better in 2D on the Schaffer
function and LB2 doing the best on Rastrigrin in 3D and 4D
for 10 and 20 particles. LB4 and FER are close contenders.

In terms of iterations to success, FDR strangely converges
the fastest with GB. This is possibly due to it making velocity
updates using not only the global best but also a neighbour
best which for low-dimensions is possibly very close to the
global best, giving each particle a greater weighting towards
the global best than towards its personal best position, hence
causing premature convergence. FER is the fastest of the more
successful approaches. Depending on the function, DTH and
LB2 (the slowest of the approaches) seem to be on par in 3D
and 4D with DTH being faster in 2D.



TABLE I
RESULTS - SUCCESS RATE & PERFORMANCE

Success rate % Iterations to criterion
| n |otH| B | LB2| B4l ForR|FERf DTH | B | LB2 | LB4 | FDR | FER
2D 2D

10 | 93 | 20 | 90 | 43 | 23 | 57 § 526 -1 20281 -1 -1 496

20 | 100 50 | 93 | 93 | 17 | 97 § 352 | 462 | 802 | 323 -1 482

Schaffer

30 ]100) 90 | 97 | 97 | 57 | 97 B 273 | 201 | 723 | 245 | 100 | 287

10 | 100 77 | 100 97 | 63 | 93 78 59 94 75 41 71

20 | 100] 100 | 100 | 100 | 97 | 1004 71 47 76 57 33 54

30 ] 100} 100] 100} 100 97 | 1000 64 38 66 54 24 49
10 | 100 100 | 100 | 100 | 100 | 100 6 5 6 8 5 T

100 100 | 100 | 100 | 100 | 100 2 3 4 4 3 4

30 | 100} 100 ] 100 | 100 | 100 | 100 3 2 3 3 3 3
10 | 100] 100 ] 100 | 100 | 93 | 100§ 66 50 70 61 34 68

20 | 100|100 ] 100| 100| 97 | 100§ 67 33 67 42 22 30

Griewank |Rosenbrock| Rastrigin
N
o

30 | 100] 100 | 100 | 100} 100 ) 100§ 51 38 39 46 18 37
10 | 100 ] 100 | 100 | 100 | 100 | 100 § 60 51 76 67 40 62

100] 100 | 100 | 100 ] 100 | 100§ 52 40 71 58 31 51

Ackley
N
o

30 ] 100) 100) 100 100 100 | 100§ 45 37 65 51 28 44
3D 3D

10 | 80 | 53 | 87 | 83 | 30 | 63 § 223 97 214 | 165 -1 195
20 | 97 | 77 | 100100 73 | 1000 224 | 111 | 177 | 148 61 129

30 | 100 97 | 100|100 | 77 | 97 § 204 83 129 | 114 49 105

10 | 100] 100 ] 100 100 | 100 | 100 § 22 20 29 23 14 24
100 ] 100 | 100 | 100 | 100 | 100§ 16 12 23 21 11 18

30 | 100|100 ] 100 100|100 | 100§ 13 10 23 17 10 14

10 | 100) 90 | 100 100 73 | 1004 300 | 103 | 161 | 131 96 178
20 | 100 100 ] 100 100 | 87 | 100 § 250 97 154 | 122 51 132

Griewank |Rosenbrock| Rastrigin
N
o
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V. DISCUSSION

A. Limitations and Drawbacks

The very Delaunay Triangulation which is so useful for
the approach becomes the obstacle to extending it to higher
dimensions. The approach is theoretically bound by its worst
case time and space complexity, making it computationally
practical only for low dimensions. Further computing Delau-
nay Triangulation in 4D and higher is commonly done by
finding the convex hull, which for degenerate point sets can
capriciously malfunction if sufficient numeric precision is not
used. The CGAL framework [23] used to compute Delaunay
triangulations in the implementation of this research proved to
be robust and very helpful. It supports LEDA [23], a library

of efficient data types and algorithms which handles exact
precision computation.

Though it may be possible to use approximate Voronoi
diagrams or linear programming (which may be used to find
Voronoi cell neighbours rather than compute the exact Voronoi
Diagram) to speed up computation of the Delaunay triangu-
lation and extend the approach to higher dimensions, there is
another issue: natural neighbours may only be meaningful in
higher-dimensions where the number of particles is significant
compared to the dimension. As dimension increases for a
fixed number of uniformly randomly distributed particles, the
particles become increasingly sparse. This means that, for a
small set of points as the problem dimensionality increases,
the Delaunay Triangulations will become more fully connected
tending towards a star topology. For example we counted
Delaunay neighbours for ten randomly distributed particles in
increasing dimensions: in 2D there were 21 neighbours, in 3D-
34, 4D-39, 5D-40 and by 6D the swarm was fully connected
with 45 neighbours.

However, any high-dimensional problem may be solved
by splitting it into many smaller dimensional problems as
is done for the cooperative PSO, provided that there are not
interdependencies among the dimensions [24].

B. Faster Neighbours

The time complexity of computing the Delaunay triangu-
lation in low dimensions is O(nlogn) in 2D and 3D. This
is an improvement and no worse than the fitness distance
ratio methods which are O(n?) though time tests suggest the
comparison is not this straightforward since our approach takes
longer (in seconds) per iteration for small numbers of particles.
This may be partly due to the approach’s heuristic tests which
require a pass through all of the neighbour connections.

A kinetic Delaunay data structure[23], could also be used
to significantly reduce the number of times the triangulation
has to be repaired. Locality is an important ingredient for
successful kinetic data structures (geometric data structures
designed to cater for motion) which our approach satisfies,
with its use of locally constrained motion and the idea of
particles working together locally.

Using the DT of the memory swarm, rather than the explorer
swarm could also cut computations since the DT would be
updated less often and extensively, only when fitter positions
are found.

C. Improving the Approach

DT has the potential for implementing dynamic velocity
updates: if each particle adjusted its velocity so that it searches
within its own Voronoi cell neighbourhood, it could result
in a more distributed and adaptive coverage of the search
space. Also, as particles converge, neighbourhood regions will
naturally contract and particles will slow down, performing
a finer search, while particles on the outskirts of the swarm
would search more broadly.



VI. APPLICATIONS

The additional overheads and complexity for computing the
DT are likely to preclude the approach to specialized low-
dimensional problems such as Mobile Robotics. One of our
aims is to use the approach for the scientific visualization of
geoscience data (typically 2D or 3D) to find and track multiple
extrema. In such applications the additional computational cost
of computing the Delaunay triangulation is a non-issue since
such spatial data structures often have to be computed in any
event. Currently we are using a memory swarm variant to find
multiple spatially distributed silhouette points.

VII. CONCLUSIONS AND FUTURE WORK

This research explored using Delaunay neighbours as a
spatial topology for PSO. Such a topology on its own results in
particles which converge too quickly. The spatial nature of this
topology however does facilitate meaningful spatial heuristics
which modulate the connections to accomplish local searching,
diverse exploration and overall convergence. Our approach
is comparatively successful to the Standard Ring and Von
Neumann topologies in 2D, 3D and 4D (though significantly
slower in 4D). The use of Delaunay Triangulation limits the
approach to low dimensions.

Future research should explore ways of leveraging spatial
topologies, including the use of FIPS PSO, which may perform
even better. Graph spanners may present an alternative to DT
for computing a subset of spatial neighbours. This or the use
of heuristics on their own may be a way of extending the
approach to higher-dimensions. Exploring the use of spatial
neighbours for multimodal and dynamic problems may also
prove to be fruitful.
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