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Moving Least-Squares Reconstruction
of Large Models with GPUs

Bruce Merry, James Gain, Member, IEEE, and Patrick Marais, Member, IEEE

Abstract—Modern laser range scanning campaigns produce extremely large point clouds, and reconstructing a triangulated surface
thus requires both out-of-core techniques and significant computational power. We present a GPU-accelerated implementation of
the moving least-squares (MLS) surface reconstruction technique. We believe this to be the first GPU-accelerated, out-of-core
implementation of surface reconstruction that is suitable for laser range-scanned data. While several previous out-of-core
approaches use a sweep-plane approach, we subdivide the space into cubic regions that are processed independently. This
independence allows the algorithm to be parallelized using multiple GPUs, either in a single machine or a cluster. It also allows data
sets with billions of point samples to be processed on a standard desktop PC. We show that our implementation is an order of
magnitude faster than a CPU-based implementation when using a single GPU, and scales well to 8 GPUs.

Index Terms—Moving least squares, surface reconstruction, GPU, out of core

1 INTRODUCTION

ASER range scanning is a useful tool in recording a
digital model of a building or large site, but the huge
amount of data produced by modern scanning campaigns
means that efficient processing remains a challenge. With
billions of point samples, practical software tools must use
out-of-core techniques to deal with limited RAM, and must
also be extremely efficient. We have implemented a GPU-
accelerated reconstruction system that is able to process
massive data sets (billions of points). Although our system
extends standard algorithms, to our knowledge it is the first
surface reconstruction implementation that is simulta-
neously GPU-accelerated, out-of-core, and suitable for use
with range-scanned data. It also supports execution using
multiple GPUs, either in a single machine or in a cluster.
Our data are often noisy and contain small alignment
errors which must be smoothed, making methods that
simply triangulate the given sample points unsuitable. To
produce an accurate historical record, it is important that
gaps in the scanner coverage are not filled in using
interpolation, which rules out methods based on an
indicator function [1], [2], [3]. We chose the moving least-
squares (MLS) surface definition as it handles noise well
without the oversmoothing associated with Poisson recon-
struction, is able to deal with holes in the surface, and the
quality is frequently better than other modern surface
reconstruction techniques [4].
Our system assumes that scans have already been cleaned,
registered, and transformed to a common coordinate system
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[5]. We also assume that each scan sample has an associated
oriented normal and an estimate of the local sample
spacing—if not already present, these are easily computed
using information such as the position of the scanner and the
layout of the scanning grid. We refer to such augmented
samples as splats. Each splat has a sphere of influence which
defines a local neighborhood: The sphere is centered on the
sample position and the radius is the sample spacing
estimate scaled by a global user-provided smoothing factor.

To handle the huge data sizes, we spatially partition the
data into bins which are small enough to be processed on a
GPU. Plane-sweep approaches can require up to 10 percent
of the data set to be resident in memory at once, which is
infeasible for our largest data sets; hence, we use variably-
sized cubic bins [6]. The MLS surface is an implicit surface,
so we apply an isosurface extraction algorithm to each bin
to produce a mesh. The per-bin operations all run on a GPU,
and are discussed in more detail in Section 3. Once all the
bins have been processed, these per-bin meshes are stitched
together and further processed to produce the output file.
This is covered in Section 4.

Even using a GPU for acceleration, a large data set can
take hours to process. To further accelerate processing, we
can distribute different bins to different GPUs. In Section 5,
we describe our implementation for multiple GPUs in a
single machine or in a cluster.

Section 6 shows that our single-GPU implementation
provides an order-of-magnitude speedup over previous
CPU-based approaches, with billions of samples processed
in hours rather than days; furthermore, our multi-GPU
implementation achieves almost linear speedup with up to
8 GPUs on large data sets. This is achieved while providing
a hard bound on GPU memory usage.

2 BACKGROUND

Surface reconstruction from point clouds is a well-studied
field, and it is not possible to provide a complete survey
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here: Interested readers are referred to previous surveys [4],
[7]. We will list only a few key contributions, focusing on
the methods we have implemented.

Surface reconstruction methods generally fall into one of
two categories. Interpolation methods use the point samples
as vertices in the reconstruction, and compute a triangula-
tion of the point samples. Because scans are not always
perfectly aligned, interpolation methods may also create
new vertices in overlap regions, but the majority of vertices
are still placed at the point samples. Approximation
methods define a smooth surface that does not pass exactly
through the samples. The smooth surface is often defined
implicitly and so standard isosurface extraction methods
are used to produce an explicit representation. Approxima-
tion methods (including the MLS method we used) are
better able to handle noise in the data.

Kil and Amenta [8] use constrained Delaunay triangu-
lations to compute edges, from which they extract and
triangulate polygons. This interpolation-based scheme is
noteworthy as it is the only scheme we are aware of that
is both GPU-accelerated and supports out-of-core opera-
tion. However, it requires the points to be locally
uniformly distributed, which makes it inapplicable to
range-scanned data.

The Poisson approach takes points with oriented
normals, interpolates a normal field, and uses a discretized
Poisson equation to solve for the indicator function. This
algorithm has been extended to support parallel and out-of-
core execution [2], [9] and GPU-based acceleration [3].
Because it computes the indicator function, it is guaranteed
to produce a water-tight surface. While this is useful for
filling small holes, it is unable to reconstruct open surfaces
such as those shown in Fig. 11.

Another approximation method that has proven popular
is MLS. As this is the method implemented in our work, it is
covered in more detail in the next section.

2.1 Moving Least-Squares Surfaces

Alexa et al. [10] define an implicit surface using MLS data
approximation. The MLS approach is based on local
approximations to the surface. From an initial point x, a
surface patch is defined that approximates the surface in the
neighborhood of x. A projection operator P maps x onto
this local approximation. The MLS surface is defined as the
set of points x such that P(x) =x. There are many
variations on this basic formulation, which mostly differ
in how the local patches are defined.

MLS techniques use a per-sample Gaussian-like weight
function to determine the importance of each sample at a
point in space, based on the distance to that sample. Some
authors use a Gaussian [10], [11], [12], while others use
functions with a similar shape but finite support [13], [14].
The function parameters may also vary per sample. We use
w; to denote the function applicable to sample 4; in some
cases, we also use w; to mean the value of this function.

The standard deviation of the weight function is either
global, or set per-sample based to the local sampling
density. Cuccuru et al. [15] and Fiorin et al. [12] also scale
the weight function based on an estimate of the sample
quality, to prevent low-quality, potentially inaccurate
samples from adversely affecting the reconstruction.

Fig. 1. Projection operation for APSS. The hollow circles represent
splats, with arrows representing normal direction and arrow length
representing the weight w;(x). The initial point x is projected onto the
fitted sphere to give P(x).

2.1.1 Algebraic Point Set Surfaces

Guennebaud and Gross [13] introduce algebraic point set
surfaces (APSS), which we use in our implementation. As
with other MLS methods, the surface is defined in terms of
a projection procedure. The difference is that the surface is
locally approximated by a sphere rather than a plane or
polynomial patch. Compared to a plane, a sphere is better
able to capture curvature in the original surface. Given a
point x in space near the surface, the projection P(x) is
computed as follows (see Fig. 1):

1. The splats in the local neighborhood of x are
identified, i.e., those for which x falls within the
sphere of influence of the splat.

2. The splats are weighted based on their distance from
x, using the weight functions w;.

3. A sphere is fitted to the splats, using weighted least
squares to match the positions and normals. The
sphere is represented in an algebraic (implicit) form,
which simplifies the fitting procedure and robustly
decays to a plane.

4. x is projected onto the sphere.

The MLS surface is defined as the set of points for which
P(x) =x. P is not a true projection: In general, P(x) #
P(P(x)) because the weights at P(x) are not the same as at
x. Alexa et al. [16] describe several iterative procedures for
projecting points onto the MLS surface.

The sphere is described by a vector u of five parameters,
defining the implicit surface

0=S,(x) = (x" x'x 1)u (1)

Since a sphere can be described by four parameters, there is
an extra degree of freedom: Specifically, Au describes the
same surface for any A > 0. The gradient of the implicit
function is

VSu(x) = (I3 2x O)u. (2)

For each splat with position p; and normal n;, we have two
linear constraints:

Su(pi) =0, 3)

The normal constraints are necessary to compensate for the
extra degree of freedom, because the position constraints
are trivially satisfied by u = 0. Guennebaud et al. [17] solve
for the normal constraints first to compute four of the
coefficients, and then use the position constraints only to
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compute uy (which determines the radius of the sphere).
They give the following explicit formulae:

s — Cw) (Y wipin) — (Zwipi)T(Zwmi) )

(S w) (T wiplp,) — (D wp,) (T wip;)

4o _ Yowin; — 2uz Yy wip;

(251 ) (6)
Uz Zwl
_ N T
g — —(urt2tis) 3 wip; — s 3 wip i )
2w

APSS is attractive for data-parallel implementation because
each projection step is given by closed formulae, and hence
the number of operations does not depend on the data.

2.2 Out-of-Core Reconstruction

Fiorin et al. [18] sort the samples in each scan in Morton
order [19] and construct an in-memory octree over them.
The sort ensures that each octree node corresponds to a
contiguous part of the file. Octree leaves are then loaded on-
demand for MLS-based reconstruction. Because each
sample is stored in only one octree node, evaluating the
MLS projection may require many nodes to be in memory at
once. There is no analysis of the cache size necessary to
prevent excessive loading and unloading of octree nodes.

Cuccuru et al. [15] also perform out-of-core MLS recon-
struction, but use a streaming approach. The points are
sorted along an axis, then processed in a single pass, keeping
an active set in memory. Bolitho et al. [2] also use a streaming
approach but use a Poisson method for reconstruction. A
major limitation of streaming approaches is that the in-core
memory requirements are heavily data-dependent, and can
be as much as 10 percent of the entire data set [20].

Bernardini et al. [21] extend their ball-pivoting algorithm
to run out-of-core by processing the data in slices. Since the
algorithm assumes a global bound p on the radius of a
neighborhood, it is a simple matter to determine which
points must be memory resident. Rather than sorting the
points along an axis, they load a complete scan when it
intersects the active slice, potentially requiring even more
memory than streaming approaches.

2.3 Acceleration Using GPUs

Graphics processing units (GPUs) were originally devel-
oped for rendering 3D graphics, but have since been used
for more general-purpose processing due to their high
performance on data-parallel tasks. Our implementation
uses OpenCL [22] to target GPUs for the performance-
critical steps in surface reconstruction. In OpenCL termi-
nology, computation is done at three scales: kernel, work-
group, and work-item. Each time the API is invoked to
execute code on the GPU, it executes a single kernel (piece
of code) on multiple work-groups, each of which contains
multiple work-items. Work-groups are significant because
the work-items in a work-group can share data and
synchronize with each other. Readers more familiar with
CUDA [23] may substitute thread-block and thread for
work-group and work-item, respectively.

While OpenCL is portable across a range of devices
(including CPUs), maximizing performance still requires
tuning for a particular architecture. We have targeted the
NVIDIA Fermi architecture [23]. Fermi devices contain up
to 16 compute units, each of which contains an L1 cache
and a fast local memory space that is shared by a work-
group. Work-items are scheduled in groups of 32, called
warps, which execute in lockstep. Divergent flow control
within a warp is inefficient as both sides of the branch are
executed. Tens of thousands of threads are required to fully
saturate a device. The design, thus, encourages data
parallelism, where large numbers of work-items run the
identical sequence of operations. Memory transactions are
also performed at the warp level, with fewer transactions
(and hence greater throughput) if the work-items in a warp
all access the same cache line rather than performing
scattered accesses.

3 IN-CORE PROCESSING

We start by describing our algorithm for a subset of data
that can be held and processed entirely within GPU
memory. The input is a cuboid volume to process along
with all samples whose spheres of influence intersect this
volume, and the output is a triangle mesh for the portion of
the MLS surface that falls inside the volume. This forms the
basis for our out-of-core algorithm, which divides the full
data set into bins that can be processed by this in-core
portion. A bin is further subdivided into cubic cells, which
form the grid used for isosurface extraction.

A key goal in our design is to bound GPU memory
usage. Thus, some design choices are made for their worst-
case rather than average-case memory usage. In particular,
we limit not only the number of splats, but also the spatial
dimensions of bins. By default our system imposes a
maximum bin size of 256 x 256 x 256 cells.

We use APSS (see Section 2.1.1) to define the implicit
surface. Although APSS has been implemented on a GPU
before [17], tuning for GPU architectures has not previously
been discussed in detail.

We initially used the following weight function:

fa=-a»)t ifd<1,
o(d) = {0, otherwise, )
1 -
i) = o (20, o)

where ¢ is an approximation to a Gaussian (but with finite
support), 7; is the sample spacing estimate around point i,
and h is a global smoothing factor. We later modified this
function slightly to avoid numerical instabilities, as de-
scribed in Section 3.2.

The algorithm is driven by a fully refined octree built
over the point samples (see Section 3.1). Section 3.2
describes how we measure the implicit function that
defines the MLS surface. We combine this with Marching
Tetrahedra to produce a triangle soup (see Section 3.3),
which is then converted to a triangle mesh by welding
shared vertices (see Section 3.4). The box marked “GPU” in
Fig. 2 shows the data flow between these stages.
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Fig. 2. Data flow in the system. The blue boxes represent independent
threads connected by queues, while italics indicate data on disk.

3.1 Octree Construction

When sampling the implicit function giving the signed
distance to the MLS surface, we have a point x in space and
need to iterate over all samples whose spheres of influence
intersect x. This is a standard spatial indexing problem,
which can be accelerated by a variety of data structures. We
use an octree as it is simple both to construct and to query,
and has successfully been used in previous work on surface
reconstruction [2], [15].

Guennebaud et al. [17] investigated several octree
implementations for MLS projections on a GPU, and found
that a “redundant pyramid” gives high performance and
low construction times. The term “pyramid” indicates that
the octree is fully refined, with each level stored as a dense
array in memory. It is “redundant” in that each splat may
be listed in multiple nodes, so that all the splats intersecting
a leaf are listed in that leaf or an ancestor. This makes the
data structure larger, but eliminates the need to consult
neighbors during a walk of the tree. Although Zhou et al.
[3] have since devised a practical nonredundant octree

5

representation for GPUs, we use a redundant pyramid as
the octree query time is critical to performance, and a
pyramid has good worst-case memory usage.

We depart from previous work in performing queries
bottom-up rather than top-down, which avoids the need to
determine which child to visit as there is only a single
parent. When assigning each node an index, we use Morton
order [19], which has better spatial coherence than a scan-
line ordering, and allows the index of the parent to be found
using simple arithmetic on the index. Because the memory
usage increases exponentially with the depth of the octree,
it must be bounded: this is why we impose a maximum
spatial size on bins.

We must still decide at which nodes of the octree to place
each splat. Similarly to Guennebaud et al., we list each splat
in the nodes it intersects on a single level of the tree, chosen
as the finest level whose nodes’ side length is greater than
the diameter of the sphere of influence. In effect, the sphere
is rasterized into a grid at the chosen resolution. Fig. 3
shows a 2D example. This choice guarantees that the sphere
will intersect at most eight nodes, and hence the required
memory per splat is bounded. This choice of level is also
invariant to the alignment of the octree, which is important
as it ensures that queries at the boundary between two bins
will return samples in a fixed order, independent of which
octree is consulted.

We designed the octree encoding to allow the relevant
sample IDs to be examined in parallel. A single array of
integers, the sample ID array, contains both the sample IDs
for each node and metadata indicating the start and end of
each node. Specifically, a node with A samples is
described by a contiguous block of M +2 integers, as
shown in Fig. 4:

1. the index of the last integer in the block (end index);
2. the sample IDs of the samples contained in node;
and
3. the index of the start of the nearest nonempty
ancestor node, or —1 if there is none (parent index).
This metadata allows walking from a node upward
through the tree, but additional information is needed to
start a walk. A start array is indexed by the Morton code of
a leaf, and indicates where to begin a walk in the sample
ID array.
This octree structure is produced in parallel on the
GPU. First, each sample is examined to determine the

%9“3 5 | 5

A 0 |«

1,2

J 04| 0

0

> 4

(a) Spheres of influence (b) Octree level 0

(c) Octree level 1 (d) Octree level 2

Fig. 3. Example 2D analogue of an octree. Levels are shown fine-to-coarse from left to right. Numbers in the nodes are the IDs of samples that

should be considered when visiting the node.
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Fig. 4. Sample ID array (top) and start array (below) for the example above. In the sample ID array, underlined numbers encode indices within the
array (indicated with arrows) while the other numbers index the actual samples. Above the command array, gray arrows point from the start to the
end of the array region corresponding to one octree node, while black arrows point from the end of one node to the start of the nearest nonempty
ancestor. Colors delineate portions of the array specific to each level. The start array contains indices into the command array (shown by arrows),

and the indices (Morton order) are shown below.

octree nodes in which it will be entered; these are written
as eight entries in an array of node indices, with a
sentinel value used to fill unused slots. This array is then
used as sort keys to radix-sort a corresponding array of
sample IDs, such that all sample IDs for a node are
sorted together.

At this point the sample IDs are in the correct order, but
the end and parent indices are missing. To make space for
them, we make use of a parallel prefix sum [24]. We first
determine the appropriate gap in the final array between
each sample ID and the next, namely 3 for the final sample
ID in a node and 1 elsewhere. We then prefix-sum these
gaps to obtain the correct location for each sample ID.
Subsequent passes copy the sample IDs to these locations
and then compute the end and parent indices.

This construction algorithm has similarities with that of
Zhou et al. [3], but it is simpler as the nodes do not store
information about children or neighbors, and our encoding
is different.

3.2 Computing Signed Distances

We use Marching Tetrahedra [25] to reconstruct the surface,
which means that we must sample a signed distance field
across a regular grid. Rather than computing an exact
projection onto the MLS surface, we use a single iteration
and take the distance from x to P(x). We found that this has
little impact on quality, confirming previous work [15].

To perform the calculations on the GPU, we use one
work-item per grid point. Achieving high performance is
challenging, as each grid point has a different neighbor-
hood, possibly with a different size, and so computations
are not purely data-parallel. We reduce these effects and
also save memory by using a lower resolution octree. Each
octree leaf corresponds to an 8 x 8 x 8 set of cells, and we
also use this as the work-group size. This loss of
resolution leads to more point-inside-sphere tests, but
since the octree walk is now common to all work-items in
a work-group it can be amortized across them. Within
each octree cell, we alternate between loading up to 256
sample IDs in parallel to local memory, and processing
those sample IDs—see Algorithm 1. The value 256 was
found experimentally to give a good balance between
providing enough parallel work for latency-hiding and not
using too much local memory; this is likely to be quite
hardware-specific.

Compute Morton code ¢ for work-group;
p < start[c];
if p > 0 then
e < IDs[p];
pp+1
while p < e do
n < min(256, e — p);
foreach i € [p,p +n) do in parallel
Read IDs[i] to local mem;
Read position and radius to local mem;
pptmn;
if p > e then
p < IDsle];
if p > 0 then

‘ e < IDs[p];

pp+1

else

| e —o0
foreach cell corner in work-group do in parallel

foreach splat in local mem do
if cell corner inside splat then
| Process splat;

// end position

// parent index

// end position

Algorithm 1: Walking the octree to find neighbors. This
code describes the actions for a work-group, with the work-
items used to parallelize the loops marked as parallel.

When using a 3D work-group, the Fermi architecture
arranges the work-items using a scan-line order, causing
each warp to cover an 8 x 4 x 1 region. We instead use
Morton ordering to manually map a work-item ID to 3D
coordinates, giving a 4 x 4 x 2 region per warp. This
compact shape is more likely to branch coherently in point-
inside-sphere tests and so performance is improved. Note
that while there is some cost to decoding the Morton code,
this is done only once per work-item and is insignificant
compared to the cost of iterating over the neighborhood.

Standard isosurface extraction will create a watertight
surface that separates the inside from the outside. However,
it is common for there to be gaps in scanner coverage,
making it necessary to have holes in the output. We achieve
this by using a sentinel value, namely, floating-point not-a-
number (NaN), to indicate that a cell corner has neither
positive nor negative distance and that no geometry should
be generated for the incident cells. We use this in a number
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Fig. 5. Misalignment of scans causes a discontinuity in the signed
distance. The dashed lines represent the two different scans of the
same surface, which have been misaligned. Query points a and b are
close, but a projects onto the lower sheet and is considered outside,
while b projects onto the upper sheet and is considered inside.
Isosurface extraction infers a spurious isovertex between « and b.

of cases. First, if fewer than four splats are found in the
neighborhood (which can only happen far from
the surface), the fitting problem can become ill-conditioned.
IlI-conditioning is also a problem if all but a few weights are
very close to zero: To prevent this, we truncate the weight
function to

b(d) = { (1—d?)", if &> <0.99, (10)

0, otherwise.

While this introduces a discontinuity in ¢, it is very small
and we observed no ill-effects.

We found that in some cases the signed distance function
becomes discontinuous far from the surface. Where the
discontinuity causes a sign change, the isosurface extraction
incorrectly interpolates a vertex. Fig. 5 shows how poorly
registered scans can cause this, although we found it to be a
problem in other cases as well. The issue usually occurs at a
large distance from the surface, so we solve it by replacing
any distances greater than the cell diameter with NaN. The
isosurface extraction only requires distances at the corners
of cells that intersect the isosurface, so larger distances can
safely be discarded without introducing holes.

The final case in which we use NaN is for explicit
detection of boundaries, to prevent extrapolation. While the
finite support of ¢ limits extrapolation, Fig. 6 shows that it
remains a problem. We use the same approach as Adamson
and Alexa [14]: a point v on the isosurface is classified
based on its distance to the weighted mean p of its

(b) With pruhing

(a) No prunAing

Fig. 6. Without boundary pruning there are significant artifacts.
Boundary pruning eliminates the artifacts, although it also opens up
some holes that were otherwise filled.

o P3

v P4
Fig. 7. Boundary detection. Given a point v on the MLS surface, the
neighborhood p; is used to compute a weighted mean p. If v lies outside

the boundary, the neighborhood will be skewed to one side of v and so p
will be far from v.

neighboring samples. If v is in the interior of the surface,
then p will be close to v, but if v lies outside the boundary
(as in Fig. 7) then they will be far apart.
To make the test scale-invariant, we classify P(x) as
‘ > wi(x)p; _

extrapolated if
\/Z wi(30) [ =

2 wi(x) 2 wilx
Here, v is a tuning factor which allows the user to either
increase boundary removal to obtain more certain results, or
reduce it to cause more small holes to be filled. The default
valueisy = 5;33{5 ; the derivation of this value can be found in
the appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.118. Note that we have used w;(x)
rather than w;(P(x)): while marginally less accurate, it is
significantly faster as it allows all the sums computed for (5)-
(7) to be reused without a second pass over the neighbor-
hood to compute new weights.

3.3 Isosurface Extraction

To keep the implementation simple, we avoid using an
isosurface extraction technique that adapts its resolution to
the sample density. In many cases, the variations in
sampling density are unwanted, such as oversampling
where scans overlap and undersampling in hard-to-reach
areas, and adaptive reconstruction will lead to unnecessary
detail in the former and visible edges in the latter. This
assumption can still be a limitation, such as when a building
is to be reconstructed at high resolution while a large area of
surrounding landscape needs only low resolution.

We chose Marching Tetrahedra for isosurface extraction
as it is simple to implement while avoiding the ambi-
guities in Marching Cubes [26]. It also interpolates more
vertices and hence potentially gives a smoother surface for
the same number of distance field evaluations. As in
standard Marching Cubes implementations, the sign of
the distance field at each corner of a cell is used to build
an 8-bit cell code, which is used to index lookup tables
defining the geometry.

Isosurface extraction is performed on the GPU, in a
manner similar to previous work [3], [27]. Since the
isosurface extraction accounts for less than 20 percent of
runtime, we have not done any extensive optimization or
comparison of alternative techniques.

Most cells in the grid produce no geometry, and using a
work-item for every cell would waste a large number of

Plx e

(11)
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work-items. Instead, we do an initial pass to build a list of
all cells that will produce geometry (see Algorithm 2), and
following passes use a work-item per element in this list. As
described in the previous section, cell corners may have the
distance set to NaN to signal a hole: This is handled in this
pass by skipping cells where at least one corner is a NaN.

Data: N": table of number of vertices per cell code
Data: N': table of number of triangles per cell code
Input: D: distance field
Input: [z, z1): range of slices to process
Output: L: list of non-empty cell coordinates
Output: SY: number of vertices per slice
Output: S*: number of triangles per slice
foreach cell in slices [z, z1) do in parallel
Generate cell code ¢ from D;
if ¢ # 0 and ¢ # 255 and no corner is a NaN then
Append cell to L;
Increment S, , by NY;
Increment St . by Nf;
Algorithm 2: GPU isosurface preprocessing (Generate
Cells). This runs on the GPU, with a separate work-item
per cell.

Subsequent passes determine the number of vertices and
triangles per cell, compute prefix sums of those counts, and
generate the geometry to output buffers. The triangles
generated within a single cell form an indexed mesh, but
vertices on cell boundaries are duplicated for each
available cell. While this increases the number of inter-
polations, it ensures that cells can be processed in parallel
without dependencies. Another pass, described in the next
section, is used to merge the shared vertices and produce a
connected mesh.

There is not enough GPU memory to guarantee that an
entire 256°-cell bin can be processed in a single pass: In the
theoretical worst case, each cell will generate 13 vertices and
36 indices, or 300 bytes per cell. Instead, we process the bin
in swaths of N =24 slices at a time. Since unextended
OpenCL does not allow writes to 3D images, we store
the distance field in a 2D image with slices packed along the
Y-axis; using N = 24 guarantees that this image will not
exceed 8,192 pixels in the Y direction (the minimum
required support for OpenCL). We alternate between
computing the distance field for NV slices and generating
geometry for those slices. Note that since each slice has
corners both above and below, we actually need N +1
slices of the distance field at a time. The extra slice is copied
from the previous swath.

Even with this reduction in memory requirements, we
still do not have enough memory for the worst case. We
allocate enough memory to hold the worst case for just two
slices, which in actual use is usually sufficient to hold the
output for the entire bin. As we prepare a swath, we count
the number of vertices and triangles that will be emitted for
each slice, and if necessary we subdivide the swath into
manageable pieces. This is shown in Algorithm 3. If the
buffers are not large enough to hold the output for the
entire bin, the bin is split. Each sub-bin produces a separate
mesh, with boundary vertices duplicated. We deal with
stitching the meshes back together as part of our out-of-core
algorithm in Section 4.2. In our test cases, fewer than

10 percent of bins are split, and fewer than 0.01 percent of
swaths are subdivided.

Input: [z9,21): a range of slices to process
Input: D: distance field
In/Out: BY, B': buffers for vertices/triangles
L,S% S' < GenerateCells(zg,21);
C' + B'.capacity;
C" + B".capacity;
if Y5 >C"or YS! > C" then
a <— 2o,
while a < z; do
// Find range [a,b) that fits
b+—a+1;
while 32° §? < ¢V and 3" §7 < C* do
b+—b+1;
if b = z; then break;
DoSlices (D, a, b, BY, BY);
a<+ b

else
R' + B'.remaining;
R’ < BY.remaining;
if Y5 > R” or ) S! > R' then
Split bin at zo;
// Also clears the buffers
MakeGeometry (D, L, B, B)

Algorithm 3: CPU code for processing a range of slices
(DoSlices). Splitting the bin means completing the rest of
the GPU pipeline (particularly welding, Section 3.4) on the
currently buffered geometry and emitting a completed
mesh, before clearing the buffers and starting a new mesh.

3.4 Welding

Our isosurface extraction algorithm emits only a partially
indexed mesh for each bin: Vertices shared between cells are
duplicated, and must be unified. When a bin is complete,
either by splitting or at the normal completion of a bin, we
postprocess the buffers on the GPU to achieve this.

During the isosurface extraction, we emit a 64-bit vertex
key alongside each vertex. Each vertex is generated by
interpolation along an edge, so we use the coordinates of
the midpoint of the edge to form the vertex key, encoded in
fixed-point and packed into the 64-bit integer. Since the
vertex key depends only on the edge and not on the cell that
generated the vertex, duplicates can easily be identified as
they have the same key.

The welding process is performed on the GPU using
several passes. The vertices are first sorted by key, then
compacted to preserve only one copy of each vertex.
Vertices are stored with their original index in the otherwise
unused w component, which we use during compaction to
build a table mapping the original to the compacted index.
This table is then used to rewrite the triangles in-place to
use the compacted IDs.

4 OuT-0oF-CORE PROCESSING

To extend the in-core algorithm from the previous section to
an out-of-core algorithm, we partition the space into cubic
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bins and then process each bin in-core. To process a bin
correctly, we must load all samples whose spheres of
influence intersect the bin, even if the sample point lies
outside the bin. This causes boundary samples to be loaded
multiple times. We, thus, wish to minimize the size of the
boundaries, which we do by choosing the bin sizes
adaptively to maximize use of the available memory.

The in-core algorithm is run independently on each bin
to produce a mesh. The per-bin meshes are then stitched
together to produce a single output mesh. The in-core
algorithm needs to be carefully implemented to avoid
introducing cracks at the boundaries between bins, which
can easily happen if floating-point computations are not
performed identically.

The process runs in three phases, shown in Fig. 2:

e Phase 1. The splats are read to compute a bounding
box, and to identify runs of splats that lie close to each
other. This phase is normally I/O-bound, although
we have observed it to be CPU-bound when using a
high-performance distributed filesystem.

e  Phase 2. Most of the work occurs in this phase. The
bins are computed and their splats loaded, the in-
core algorithm is run and the resulting per-bin
meshes are postprocessed and written to disk. This
phase is usually GPU-bound.

e  Phase 3. The per-bin meshes are loaded from disk.
Spurious components are removed, and the remain-
ing geometry is written to the output file. This phase
is normally I/O-bound.

4.1 Binning

The technique used for binning is described in our previous
work [6]; we provide only a brief overview here. The
bounding box is divided into a grid, with a sufficiently high
density that the majority of grid cells will be small enough,
both spatially and in number of splats, for the in-core
algorithm. We have found heuristically that making this
grid 63 times coarser than the isosurface extraction grid
works well. During Phase 1, we determine which grid cells
contain each splat, and use run-length encoding to compress
runs of splats that intersect the same grid cells. At the start
of Phase 2, we build a hierarchical histogram over this grid,
and use it to select the bins. Each bin is a cube of grid cells.
In some cases, a single grid cell will intersect too many
splats, in which case it is recursively reprocessed using a
higher resolution grid covering only the original cell.

After bins are chosen, the runs are reprocessed to build a
list of splat IDs per bin. To process a bin, we use this list to
load the splats from disk and then apply the in-core
pipeline described in Section 3.

This approach minimizes I/O bandwidth by avoiding an
external sort, but at the cost of more random accesses to the
original data. The efficiency of the I/O operations improves
with larger bins: in the limit, there would be only one bin,
and all the points would be loaded in a single pass.
However, the number of splats per bin is constrained by the
GPU memory requirements of the in-core algorithm, which
needs space for not just the splat data but also the octree.
We found that I/O performance was improved by grouping
bins together for loading: As bins are generated, they are

(a) Before removal

(b) After removal

Fig. 8. Removal of isolated components.

held in a buffer until a threshold on their combined splat
count is reached. The splat ID lists for these bins are then
merged to generate a list of ranges to load from disk to CPU
memory, after which the splats are distributed to their
respective bins.

This batching process causes incoming splat data to
become available in bursts with long gaps in between,
which could easily stall the GPU processing. To smooth out
the delivery of data to the GPU, we use a large buffer on the
CPU, and a separate upload thread which transfers samples
from this buffer to GPU memory a bin at a time, as GPU
memory becomes available.

4.2 Stitching

After the bins are processed, we have a stream of mesh
fragments that need to be stitched back together into a
whole mesh. Note that the boundaries are already consis-
tent, as the fragments are pieces of the same global surface’;
the stitching is needed only to unify the boundary vertices
that are duplicated in the respective fragments. At this
stage, we also apply another cleaning step: there are often
spurious isolated pieces of surface disconnected from the
main body, as shown in Fig. 8. We follow Meshlab [28] in
removing components whose size (in vertices) falls below a
threshold percentage of the total. Since the total is not
known until the end of Phase 2, it is not possible to do this
pruning until after Phase 2 is complete.

The stitching is distributed across two phases. Most of
the work is done in Phase 2, in parallel with GPU
processing. Phase 2 is dominated by the GPU work and
so this part of the stitching has minimal impact on overall
runtime. In Phase 3, we are able to quickly determine which
components are to be retained, and the bulk of the work
consists of reading this geometry from temporary storage
and writing it to PLY files.

The stitching process shares some similarities with the
intra-bin welding described in Section 3.4, particularly the
idea of a vertex key. We modify the definition of vertex keys
used in that step so that the top-most bit indicates whether a
vertex is internal or external. External vertices are those on
the boundary of the bin, and hence may be duplicated in a
neighboring bin. Setting the top bit in the vertex key causes
the external vertices to be sorted together, making it easier
to extract them. The stitching works on the premise that the
bins are large enough that there are relatively few external
vertices, and hence information about them can be kept in-
core while internal vertices are kept out-of-core.

1. This does require careful implementation to ensure that floating-point
computations are performed identically on each side of the boundary.
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= s

Fig. 9. Identifying components. The thick lines delineate bins, and each
clump is given a different color. The external vertices are marked with
dots. Note that global information is required to correctly identify small
components for deletion: The blue clump (bottom) contains only one
triangle, but is a part of the largest global component.

As each per-bin mesh fragment is received during
Phase 2, we apply several processing steps. First, we
identify components within the fragment; we call these
clumps (see Fig. 9). Each component of the entire model
consists of one or more clumps, joined together by their
duplicated external vertices, and we arrange them in a
disjoint set data structure [29]. To update this data
structure, we use a hash table that maps each external
vertex key to a clump that contains it. We update the data
structures by iterating over the external vertices: If a vertex
key already appears in the table then we can merge
components; otherwise, we update the table.

The final step in Phase 2 is to move each clump out-of-
core by writing it to temporary files. In this step, we also
eliminate external vertices that have already been written.

In Phase 3, we use the disjoint set data structure to
identify the components. The data structure is augmented
to track the number of vertices in each component, so we
can quickly determine which components should be
eliminated. Then, we write the clumps that are in retained
components to the output file. This involves yet another
reindexing operation, as the final position of vertices in the
output is not known until this point.

5 SCALABILITY

We can further improve performance by utilizing multiple
GPUs. Note that this will only accelerate Phase 2, as Phases
1 and 3 do not use GPUs. The degree of acceleration will
depend on the extent to which Phase 2 is GPU-bound
(rather than I/ O-bound), but we have obtained good results
with up to eight GPUs.

5.1 Single Machine, Multiple GPUs

Our binning scheme makes multi-GPU support almost
trivial. In Fig. 2, we replace the single thread for GPU
processing with a separate thread per GPU. No inter-GPU
communication is required, and in fact we use a separate
OpenCL context for each GPU. It is even possible to use a
heterogeneous configuration combining GPUs and CPUs,
although we found that, in practice, this starves the other
CPU threads and leads to load balancing issues due to the
large mismatch in performance. Heterogeneous environ-
ments also risk introducing cracks at the boundaries between
bins, due to variations in floating-point computation.

Input
samples

Y Y
Load Compute and
bins | pin batch bins

bins i batches

bins — ping
|GPU| |GPU |
ZEV ZEV : ZEV Identify
[Download F-2me] entl
=

Clumps

Index

Slave Master

Fig. 10. Phase 2 data flow in a cluster. Each dotted box represents one
node in the cluster and the double arrows show data passed by MPI
messages. Only one of the slaves is shown. The master may also act as
a slave if it has GPUs. Color-coding is as for Fig. 2.

Because memory is not shared, each GPU has a separate
queue for incoming work. A dedicated upload thread
blocks until any GPU queue has sufficient space for the next
bin, and then transfers it. If there are multiple options, the
emptiest queue is selected. This tie-breaker is mainly
important when starting up, to ensure that the GPUs are
all given some work as soon as possible.

5.2 Distributed Memory Clusters

We further extended our implementation to run on a cluster
using MPI [30]. All three phases are distributed across
nodes. Because the system is designed for out-of-core
operation, most large-scale data movement occurs impli-
citly through the shared filesystem, with MPI messages
used for passing control messages.

Phase 1 is almost trivially parallelizable: The splats are
partitioned, and each node loads and processes its assigned
portion of the splats. This produces a separate index file per
node. Rather than stitching these files back into a single
index, we keep them separate and iterate over them during
Phase 2.

In Phase 2, we compute the bins on only the master node,
as this is reasonably fast and would be complex to
distribute. As before, the master node batches bins into
groups that are more efficient to load, but it does not
actually perform the loading. Instead, it sends the metadata
for a batch (bounding boxes and splat ID ranges) to the next
available slave node. The slave loads the splats and
processes them on its GPU(s). At the end of the pipeline,
the mesh is sent back to the master for component detection
and to be written to file. This is shown in Fig. 10.

In Phase 3, we use one of two parallelization strategies,
depending on whether the results are being split into
multiple output files (see Section 5.3). If they are, then each
node takes responsibility for a subset of the output files. If
not, then each node takes responsibility for a subset of the
clumps, and the MPI-IO routines are used to ensure safe
parallel access to the single output file.
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TABLE 1
Data Sets Used, Tuning Parameters, and Statistics for a Single GPU
Name Samples  Size Bounding box Grid Output Output ~ Time  Peak mem
(x10%)  (GiB) (m) (mm) Verts (x10%)  (GiB) (s) (GiB)
Amman Tower 13 0.4 15 x 15 x 7 10 4 11 0.4 19 4.40
Pisa Cathedral 157 41 119 x 89 x 55 20 5 192 6.7 251 7.42
Siq 5654  163.2 580 x 1,195 x 165 20 4 3,243 114.0 8,628 8.61
Songo Mnara 6,248  180.4 332 x 291 x 24 10 4 3,107 108.3 20,791 10.09

The peak memory measures only host memory allocated by our code: Additional memory is used by the OpenCL driver, libraries, OS and so on.

These design choices are sufficient to achieve good
scaling on the small number of GPU-equipped nodes
available in our cluster, but we expect that for larger scale
use (dozens of GPUs) it may be necessary to move more of
the mesh processing onto the slave nodes.

5.3 Chunked Output

Many software tools do not operate out-of-core and so are
unable to handle very large output files. To allow the
output of our system to be used with such tools, we have

(a) Part of Rujm Al-Malfoouf watch-
tower in Amman, Jordan

implemented the ability to split the output into chunks
using a regular grid, with each chunk written to a separate
file. Boundary vertices are duplicated so that every triangle
appears in exactly one output file.

When one GPU is used, this requires only a few minor
changes to the pipeline. We choose bins independently for
each chunk in the grid, and the chunk ID is passed down
the pipeline. We write each output file in turn before
starting on the next one (although there is some overlap
because we use asynchronous 1/0).

(d) Ruins of Songo Mnara in Tanzania

Fig. 11. Reconstructions produced by our system. Left column: overview shots of the whole model. Right: fine detail is captured.
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Fig. 12. Time breakdown. Phase 2 is subdivided into time spent in the
GPU thread (“Compute”) and time spent waiting either for more input to
arrive or for more space in the output buffer (“Wait”). “Other” is time not
accounted for in any of the phases, particularly freeing of resources.

When using multiple GPUs, bins do not necessarily
complete in the same order as they are dispatched, which
causes the intermediate storage of the clumps for a single
output file to be noncontiguous. We found that, particularly
on a cluster, this severely affects I/O performance. We
experimented with placing barriers in the queues to
constrain ordering, but these barriers became a bottleneck
that prevented full utilization of the GPUs. Instead, we use
a reordering buffer: before the intermediate results are written
to disk, they are stored in an in-memory buffer. Once the
buffer size exceeds a threshold it is flushed to disk, with the
clumps written in order of increasing output chunk ID. This
does not completely order the intermediate data, but it
improves it to the point where OS-level caching is effective.

6 RESULTS

For testing we used two systems. The first is a desktop
machine with a Core i7-2600 (four cores, eight threads,
3.4 GHz), 16 GiB RAM, two 3 TB hard drives with software
RAID-0 giving read speeds of 250 MiB/s, and a single
NVIDIA GeForce GTX 480. The second system is a GPU
cluster, where each node has two Xeon E5530 CPUs (four
cores, eight threads, 2.4 GHz), 12 GiB of usable RAM, and
up to three Tesla C2070 GPUs; the nodes are connected to
storage using Infiniband and the filesystem can deliver up
to 3 GiB/s of read bandwidth.

Table 1 lists the data sets we used in our experiments.
The Pisa Cathedral data set came without density estimates,
so we used Meshlab [28] to estimate them on a per-scan
basis and then clamped them to 100 mm to prevent outliers
from causing artifacts. We also used a larger smoothing
factor for Pisa to handle registration errors. Fig. 11 shows
our reconstructions.

The times in Table 1 are total running time for the
desktop system. Fig. 12 shows how this time is split across
the phases. It is clear that Phase 2 dominates the running
time. In most cases, Phase 2 is GPU-bound, but for the Siq,
Phase 2 is at times I/O-bound on splat loading. This

TABLE 2
Memory Usage for Songo Mnara on the Desktop System

CPU RAM  GPU RAM
Usage

(MiB) (MiB)
Input file buffer 32.0
Splat loading buffer 1,024.0
Binning 808.4
Binned splats 2,048.0 256.0
Pinned memory 128.0
Octree construction 384.1
Octree 128.4
Distance field 6.2
Isosurface extraction 87.4
Mesh data 512.0 56.6
External vertices 2,847.1
Reorder buffer 4,032.0
Output file buffer 34.6
Other 449.5
Peak total usage 10,332.0 918.7

Bold indicates a tuning parameter while italics indicate an allocation
whose size is unbounded. The CPU memory is not all allocated
simultaneously and so the peak usage is less than the sum of the
individual allocations.

suggests that the input files have less spatial coherence than
in the other data sets.

Unfortunately, we found the driver support for OpenCL
event profiling to be unreliable, so we cannot provide an
accurate profile of GPU activity. Discarding obviously
invalid profiling results suggests that distance field com-
putations dominate GPU execution time (75-95 percent),
with the remaining time more-or-less evenly split between
octree construction and isosurface extraction.

Table 2 shows how memory is allocated for the largest
data set. We have allocated a large buffer to hold splats, but
this could be reduced if necessary at the expense of more
scattered I/O. The unbounded allocations are dominated by
the data held for each external vertex. Most of this is
consumed by hash table overheads: Each external vertex
requires 24 bytes of storage, but the hash tables consume
130 bytes per external vertex. It is, thus, possible to reduce
memory requirements by using a slower but more memory-
efficient data structure.

Table 3 compares performance against that of previous
work. Since results are sensitive to hardware, data sets
and tuning parameters, this is only useful for order-of-
magnitude comparisons. It is clear that GPU acceleration
gives an order-of-magnitude speedup. Our implementation
is significantly faster than previous out-of-core systems,
and has comparable performance with in-core-only GPU-
accelerated Poisson reconstruction.

We can more directly measure the speedup due to the
GPU by running our code using a CPU-based OpenCL
implementation. This took 5,399 s, indicating a 21.5x
speedup on the GPU. It should be noted that while the
kernels execute across all CPU cores, they have been tuned
for a Fermi GPU and are likely to be suboptimal for a CPU.

Fig. 13 shows the effect of using multiple GPUs and
nodes, on Phase 2 and on the total runtime. It is clear that
scalability is best for the larger and slower data sets—which
are the ones where acceleration is the most valuable. We
believe this variation is due to the coarse-grained distribu-
tion of work and the deep queues: Once there is no further
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TABLE 3
Comparison of Output Rates against Previous Work
; GPU Rate
Method Algorithm Out-of-core accelerated Hardware (KVert/s)
Bolitho et al. [2] Poisson Yes No Not specified 0.7 — 1.2
Kazhdan and Hoppe [31] (@« =4)  Screened Poisson No No Quad-core Core i7 21.8 - 254
Kazhdan and Hoppe [31] (¢« = 0)  Poisson No No Quad-core Core i7 245 - 295
Cuccuru et al. [15] MLS Yes No Core 2 Quad 2.4GHz 31.0- 406
Zhou et al. [3] Poisson No Yes GeForce 8800 Ultra 240.2 - 601.7
Ours MLS Yes Yes GeForce GTX 480 1494 - 763.4
Ours (Phase 2 only) MLS No Yes GeForce GTX 480 165.4 — 1402.3

The rates are based on reported results, so vary substantially in the hardware and data sets used. We also list the rate for Phase 2 of our method,
which is useful for comparison to in-core methods that do not include the I/O time in their results.

work to distribute, some nodes will drain their queues
earlier than others and will then sit idle. For larger data sets,
this is a smaller proportion of the total time and so has less
impact. The smaller data sets do particularly badly on the 7
and 8 GPU configurations because these are unbalanced:
They each add a node with only one GPU, so it is much more
likely that the two 3-GPU nodes will finish early and sit idle.

7 CoONCLUSIONS AND FUTURE WORK

We have presented a complete system for GPU-accelerated
reconstruction of extremely large range-scanned surfaces—
to our knowledge, the first such system. Although MLS
surfaces are not an ideal fit for the data-parallel execution
model of modern GPUs, we still achieve an order-of-
magnitude speed-up over a multicore CPU implementation.
Our approach is also easy to adapt to multiple GPUs, and it
scales well, at least for the relatively small number of GPUs
in our cluster. Spatial binning provides a hard bound on the
GPU memory required, and thus GPU memory does not
limit the sizes of models that can be processed.

The main barrier to scalability is currently the memory
required for external vertices. With the right data structures,
it is likely that external vertices could be kept on disk and
loaded only as needed for stitching. When a bin is
completed, only its neighbors” external vertices are relevant
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Fig. 13. Speedup of Phase 2 (solid) and overall (dashed) with multiple
GPUs. For up to three GPUs, a single node is used. The remaining
data points use two, three, and four nodes, respectively. There are two
3-GPU and two 1-GPU nodes.

to stitching, and these could be loaded from disk on-
demand. Thus, the relatively large amount of memory for
external vertices seen in Table 2 should not be seen as a
barrier to processing larger data sets.

The quality of our approach is limited by the single-
resolution isosurface extraction. In particular, areas that are
sampled at low density can actually slow down extraction,
because the total volume of the spheres of influence scales
inversely with density. It would, thus, be useful to use
variable-resolution isosurface extraction. This will compli-
cate the implementation, as cells on the face of each bin may
be affected by the size of their neighbors in adjacent bins. A
totally unconstrained octree [32] may also be difficult to
handle in a data-parallel way: Performance may be im-
proved by constraining each bin to a single resolution.
Because sampling the distance function currently dominates
the GPU time, we expect that using variable resolution will
improve performance in spite of the overheads.

It would be interesting to apply our bin-based approach
to other reconstruction algorithms, particularly Poisson
reconstruction. The main challenge is that the Poisson
equation is a global linear system, and current out-of-core
solutions [2], [9] are tightly coupled with the plane sweep
used to stream the data.
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