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Abstract

This thesis presents a Virtual Sculpting system, which addresses the problem of Free-Form
Solid Modelling. The disparate elements of a Polygon-Mesh representation, a Directly
Manipulated Free-Form Deformation sculpting tool, and a Virtual Environment are drawn
into a cohesive whole under the mantle of a clay-sculpting metaphor. This enables a
user to mould and manipulate a synthetic solid interactively as if it were composed of
malleable clay. The focus of this study is on the interactivity, intuitivity and versatility of
such a system. To this end, a range of improvements is investigated which significantly
enhances the efficiency and correctness of Directly Manipulated Free-Form Deformation,

both separately and as a seamless component of the Virtual Sculpting system.
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Chapter 1

Introduction

1.1 Solid Modelling

Solid Modelling is a significant subdiscipline of Computer Graphics concerned with de-
signing three-dimensional objects on computer. The field has diverse applications, both in
manufacturing, where, under the guise of Computer Aided Design (CAD), it is pervasive,
and as a component in most Computer Graphics creation pipelines. For instance, it is
critical to the design of cars, ships and aircraft, complex mechanical parts and architectural
structures, as well as Computer Animated models and Virtual Reality scenes. These two
spheres mirror the division of Solid Modelling into functional and free-form [Miller 1986].
Free-Form Modelling is concerned only with the aesthetics of the final shape. In contrast,
Functional Modelling considers factors such as aerodynamics, joint angles, volume, and
response to heat and stress, typically through mechanisms such as Finite Element Analysis.
This is not, however, a clear separation so much as a continuum of constraint. At one pole,
a computer sculptor is influenced only by his imagination and at the other, a gear train
may have to satisfy a plethora of constraints. Alternatively, the design of a motor vehicle’s
shell, which must link engineering considerations with a nebulous sleekness, would fall

somewhere in between.



Free-Form Solid Modelling is guided by three criteria:

1. Intuitivity. The user should be able to apply insight garnered from everyday tasks to

an unfamiliar modelling environment.

2. Interactivity. The response-time of the system should be such that delays do not

hinder creative design.

3. Versatility. The user should be able to convert intentions and requirements into a

designed result with ease and precision.

These principles exist in constant tension. Focusing on one aspect tends to wrench the
others out of balance. Enhanced versatility, for example, may increase conceptual and
computational complexity to the detriment of the intuitive and interactive facets of a system.

During construction, a modelling system must be measured constantly against these ideals.

1.2 Classification of Modelling Systems

Free-Form Solid Modellers can be separated into three components: Representation, Tools

and Environment. These correspond loosely to data-structures, algorithms and interfaces.

1.2.1 Representation

A Representation is a means of encoding the shape of a solid object. Some modelling
systems may capture properties such as colour and texture, but for free-form design, shape

is sufficient. There are four principle categories of representations [Foley et al 1991]:

1. Boundary Representations (B-Reps). Here, an object is defined by its topological
boundary and the internal structure is ignored. B-Reps may be either Polyhedral,
where the surface is a faceted approximation composed of adjoining polygons, or
Non-Polyhedral, where the surface is sewn from parametric bicubic patches. The

Polygon-Mesh is an example of a Polyhedral B-Rep. At its most elementary it
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consists of a list of faces, each of which is a sequence of pointers into a vertex list.
In contrast, the popular Non-Uniform Rational B-Spline (NURBS) supports a Non-
Polyhedral B-Rep. A NURBS patch is tersely defined by a web of control points

much as an elastic sheet is distorted by weights.

. Cell Decomposition. The solid is formed by "glueing" together primitive elements
which are themselves solids that may vary in size, shape and orientation. For example,
Spatial Occupancy Enumeration is a variant in which all the primitives are identical
cubes known as Voxels (Volume Elements) in analogy to Pixels (Picture Element).
These Voxels can be visualized as slotting into compartments in a three-dimensional

grid.

. Constructive Solid Geometry (CSG). Again a solid is built from primitives (spheres,
cylinders, etc.) but instead of simple non-intersecting adjacency they are combined
with Regularized Boolean Set Operations (union, intersection and difference). Typ-
ically CSG solids are stored as a tree structure, where the leaf nodes are primitives,

internal nodes are set operations, and the root solid is evaluated by a depth-first walk.

. Binary Space Partitioning (BSP). Here a solid is sliced out of world co-ordinate
space. Each slice is created by a plane which partitions space into two domains, one

within and the other outside the solid.

1.2.2 Tools

A tool metaphor is unusually appropriate when referring to methods of transforming solids.

A direct comparison can be made with a craftsman’s use of a range of tools in realizing a

design. A solid modeller would select techniques on the basis of the solid’s representation

and desired shape, just as a craftsman would employ different tools depending on his

materials and intentions.

Solid Modelling tools can be placed in three categories [Coquillart 1987]:

1. Modifiers. Modifiers are tools that perturb the shape of an existing object, either

within a limited area, or across the object’s entirety. Examples of the latter are the



tapering, twisting and bending tools [Barr 1984]. These are proportional applications
of the affine transformations (scaling, rotation and translation). By contrast, free-form
surface moulding falls in the former category and is a staple of Solid Modelling. At
its most primitive it involves displacing individual vertices and at its most advanced

it allows complex widespread deformations.

2. Combiners. These methods create a synthesis of objects. Foremost among them
are the Regularized Boolean Set Operations: Union, Intersection and Difference.
These are three-dimensional analogues of the familiar two-dimensional set opera-
tions, extended so as to encompass solids. Regularized Boolean Set Operations are
supported across the spectrum of Solid Modellers and their use is even mandated by

representations such as Constructive Solid Geometry.

3. Constructors. Unlike the other classes of tools that modify previously developed
objects, constructors build solids from nothing. At its most painstaking this entails
entering vertex co-ordinates directly and expecting the computer to interpolate these
values in creating a solid. Fortunately, there are less excruciating constructors such as
primitive instancing, sweeping and lofting. Primitive instancing allows the selection
of one of a family of parametrised three-dimensional primitives. A sweep object is
constructed by sliding a two-dimensional contour along a curved path, with a goblet
or wine glass being a typical result. Lofting forms objects by interpolating a series of

cross-sections and is often applied to the definition of hulls, fuselages and car-bodies.

1.2.3 Environment

There is a strong symbiotic relationship between Solid Modelling and Human Com-
puter Interaction, with each discipline feeding off innovations in the other. This is
probably because the design of three-dimensional shapes is an inherently difficult task
[Requicha and Rossignac 1992] which involves the user directly. Thus, design environ-
ments vary as widely as their application domains, and the range in 1O devices and interac-
tion styles is bewildering. Fortunately, modelling systems can be separated at a fundamental

level into two classes:



1. Two-Dimensional. Interaction is funnelled through two-dimensional media. A
typical interface would accept input from a mouse or light-pen and output a set of

orthogonal views.

2. Three-Dimensional. The environment is controlled by and responds with three-
dimensional mechanisms. Such systems are generally driven by six-degree-of-

freedom devices and display stereoscopic images.

Some environments span this division with a hybrid of two and three-dimensional tech-

niques.

1.3 Polygon-Mesh Representation

The Polygon-Mesh is the most elementary, stripped-down representation capable of unam-
biguously encoding a solid. It is an evaluated hierarchical structure of faces, edges and
vertices, which often serves as a link between the domains of modelling and rendering.
Typically, more sophisticated unevaluated representations are reduced to a Polygon-Mesh
before being piped to the rendering engine. The weaknesses of the Polygon-Mesh stem
from approximation. It breaks curved surfaces into planar subdivisions (polygonal facets)
that only hint at the intended curves. This is disastrous when accuracy is a prerequisite and
tolerances are hair-fine, as in many functional applications. However, Free-Form Modelling
does not enforce such rigour and benefits considerably from the speed and simplicity of the

Polygon-Mesh.

1.4 Sculpting Tools

There is a class of Free-Form Modifiers whose premise is the deformation of solids in a
physically realistic fashion. They loosely simulate carving or moulding inelastic substances,

such as modelling clay, Plasticine and silicone putty.

There is considerable research into adapting Finite Element Theory to this task. In essence
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the Finite Element Method subdivides a solid or its boundary into small regular elements,
imposes a set of forces such as gravity, inertia, internal stress and external pressure, and
then calculates an equilibrium of shape among the volume elements. This approach is
highly realistic, since it directly incorporates mechanics, but it is space and computation
intensive. For instance, the interaction of a hand and ball in a grasping task has been
modelled [Gourret et al 1989] down to the level of muscle, skin and bone flexion and de-
formation, but only in a Computer Animation context where individual frames may take
hours to process. Also, a variety of precise deformation phenomena have been developed
[Terzopoulos and Fleischer 1988], namely Viscoelasticity (where shape is fluid under sus-
tained pressure but reacts like solid rubber to transient force), Plasticity (where the solid
deforms irrevocably under pressure) and Fracture (which simulates tearing and shredding
in brittle substances). Again, this is utilized in Computer Animation although the au-
thors claim that "it should be possible to animate such inelastic dynamics in real-time in
three dimensions on a supercomputer” [Terzopoulos and Fleischer 1988]. Since then the
use of Finite Elements has been honed through a range of restrictions. The ShapeWright
[Celniker and Gossard 1991] paradigm restricts interactive deformation to toggling surface
parameters such as bending resistance and internal pressure. Here design is in three stages:
first the shape’s character lines are traced as curve segments, then the solid’s "skin" is
stretched between these curves, and finally surface parameters are adjusted. An alternative
approach is to limit the choice of initial shapes to simple primitives (spheres, ellipsoids, etc.)
while allowing sophisticated deformation [Metaxas and Terzopoulos 1992]. The pinnacle
of this trend is the merging of a Triangular B-Spline Patch Representation with physically
based Finite Element Methods [Qin and Terzopoulos 1995].

At the other end of the complexity spectrum are the proportional affine transformations
[Barr 1984] and Decay Functions [Bill and Lodha 1994]. The former mimics tapering by
scaling proportionally along an axis, twisting by progressive rotation along an axis and
bending by a combination of rotation and translation. The latter propagates the translation
of a vertex to its surrounding region according to a bell, cusp or cone-shaped template.
Both tools are extremely efficient but of limited utility. For example, Decay functions do
not cater for the complex interaction of a multiplicity of translated vertices and proportional

affine transformations offer only specific stylized alterations.

Between these extremes are the constraint-based tools of Variational Solid Modelling
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[Welch and Witkins 1992] and Directly Manipulated Free-Form Deformation

[Hsu et al 1992, Borrel and Bechmann 1992] that meld efficiency and versatility. Varia-
tional Surfaces are infinitely malleable and have no fixed controls. They are defined by a
collection of constraining points and curves, much as an elastic sheet would be stretched
over a bed of spikes. Later topology enhancements [Welch and Witkins 1994] snap, slice
and smooth these sheets together to form complex solids. Directly Manipulated Free-Form
Deformation (DMFFD) is less constructive and more modifying, and is based on an am-
bient space-warp controlled by dragging points on the solid’s surface. Both techniques
are independent of representation, but in a subtly different sense. Variational surfaces are
underlying and can be realized in any representation, while DMFFD is overlaying and can
be applied to any representation. At their core, both rely on Linearly Constrained Opti-
mization, a numerical scheme for optimizing an objective function (in this case a "fitness"
metric such as continuity) while obeying a set of linear constraints (the directly manipulated
points and curves). DMFFED has an edge in efficiency since it optimizes a sum of squares

while Variational Surfaces are forced to optimize a more general quadratic function.

1.5 Virtual Environments

Virtual Reality is a protean field with almost as many definitions as their are proponents.
These range from the pragmatic to the esoteric, but all include the key elements of inter-
action (the user and environment respond to each other in real-time) and immersion (the
user has the illusion of being inside the environment) [Rheingold 1991]. A good working
definition in this regard is:

"A human-computer interface where the computer and its devices create a sensory environ-
ment that is dynamically controlled by the actions of the individual so that the environment
appears real to the participant.” [Latta 1991]

In some circles Virtual Reality is regarded as a critical failure. This perception is due
to a handful of factors. Current environments are plagued by high latency (a jarring de-
lay between the user initiating an action and the system responding) and low resolution
(a grainy block-like display of the Virtual Environment). The title of the field itself has
contributed to overblown expectations, with the result that researchers now employ less

ambitious terminology, such as Virtual Environments and Augmented Reality. Despite
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this pessimism, the fledgling discipline is viewed by many [Requicha and Rossignac 1992,
Nielson 1993, Jacobson 1994] as an ideal interface for Solid Modelling due to its intrinsi-
cally three-dimensional and interactive nature. Virtual Reality is sometimes described as "a
solution in search of a problem" and one researcher [Requicha and Rossignac 1992] goes

so far as to attribute to Solid Modelling the role of the driving "problem".

There has been some nascent research in this area. Galyean’s Sculpting System
[Galyean and Hughes 1991] utilizes a Voxmap data-structure (in analogy to Bitmap) to
store a Cell Decomposition representation. A range of tools such as a "toothpaste tube",
which trails Voxels across the solid’s surface, a "heat gun", which deletes Voxels and "sand-
paper", which averages Voxels across the surface, are implemented and controlled with a

Polhemus Isotrak device, which locates the position and orientation of a sensor.

3-Draw [Sachs et al 1991] constructs skeletal objects by tracing curves and cross-sections
in three dimensions with two Polhemus trackers; one fastened to a pen, with which the

wireframe is sketched, and the other to a stylus, which serves as a frame of reference.

3DM (Three-Dimensional Modeller) [Butterworth et al 1992] borrows from the success of
two-dimensional drawing programs. The user selects from a virtual toolbox with extrusion,
sweeping, primitive instancing, cutting, pasting, and copying functions. The system em-
ploys a VPL Eyephone head-mounted display for stereoscopic viewing, a Polhemus tracker

mounted on head and hand, and a proprietary Pixel-Plane graphics rendering engine.

MOVE (Modelling Objects in a Virtual Environment) [Brijs et al 1993] focuses on improv-
ing depth perception (with devices such as virtual walls and workbenches) and feedback
(through sight, sound and tactile cues) in simple design tasks, such as scaling, connecting

and separating objects, and moving vertices.

DesignSpace [Chapin ef al 1994] is an ongoing project intended to support mechanical
design. The project has proceeded on two primary fronts: dextrous manipulation, where
hand-eye co-ordination in Virtual Reality is enhanced, and remote collaboration, where

several people participate simultaneously and interactively in a design.

THRED (Two Handed Refining Editor) [Shaw and Green 1994] incorporates both hands,

each tracked by a Polhemus sensor, into the process of modelling polygonal surfaces. The
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dominant hand selects and manipulates vertices, while the less dominant hand sets such

contexts as the position and orientation of the scene and level of subdivision of the surface.

These exploratory forays do not (with the exception of DesignSpace) exploit the true
potential of Virtual Reality in Solid Modelling, since deformation is either specified by
a single three-dimensional point (THRED, 3DM, 3-Draw, Galyean Sculpting) or limited
glove input (MOVE), and in most cases (THRED, MOVE, 3DM, 3-Draw), only rudimentary

modifiers are implemented.

1.6 Focus of Research

This project imposes a clay-sculpting metaphor on the Free-Form Solid Modelling process.
The intention is to link the familiar physical action of moulding clay to the unfamiliar task
of computerised shape design. The underlying concern in this project is the balance and
enhancement of the triad of Free-Form Modelling principles: interactivity, intuitivity and

versatility.

Three pivotal design decisions were made early in this research. The Polygon-Mesh, with its
uncluttered simplicity and efficiency, was chosen as a representation. Directly Manipulated
Free-Form Deformation was selected as a sculpting tool, because it is intuitive in its fluid,
graceful deformations, versatile in its scope of application, and comparatively interactive.
A Virtual Environment was picked as the interface because the elements of interaction and

immersion contribute a "hands-on" immediacy, and thus intuitivity, to modelling.

The Free-Form Solid Modelling system developed in this thesis can now be characterized. It
binds a Polygon-Mesh representation, Directly Manipulated Free-From Deformation tools
and a Virtual Environment within the cohesive framework of a clay-sculpting metaphor.

This thesis focuses on the interactivity, intuitivity and versatility of such a system.

14



1.7 Thesis Organisation

The remainder of this thesis is structured as follows:

e Chapter 2 (Foundations) presents the basics of Directly Manipulated Free-Form
Deformation and considers the innate strengths and weaknesses of the three tiers,
Splines, Free-Form Deformation and Direct Manipulation, that make up the tech-

nique.

e Chapter 3 (Least Squares Solution Methods) focuses on the efficiency of DMFFD.
The core computation, a linearly constrained least squares optimization, is examined,

and anew, considerably less space- and computation-intensive algorithm is developed.

e Chapter 4 (Topology and Correctness Issues) focuses on the correctness of DMFFD.
The situations in which DMFFD creates invalid self-intersecting solids are discussed.
Methods of refining and decimating the Polygon-Mesh in order to maintain a smooth

sculpted appearance are also considered.

e Chapter 5 (Applications) describes the RhoVeR (Rhodes Virtual Reality) system
which forms a testbed for Virtual Sculpting. Two illustrative applications, glove-

based moulding and dynamic surface sketching, are developed.

e Chapter 6 (Conclusion) presents concluding remarks and suggests directions for

future research.

e Appendix A (Colour Plates) displays the Virtual Reality equipment and illustrates
Glove-based Moulding.

e Appendix B (Directly Manipulated Free-Form Deformation Program Extracts)

lists pivotal sections of the Virtual Sculpting system code.

e Appendix C (Specification of the RhoVeR System) provides design and implemen-
tation details of the Rhodes Virtual Reality System.
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Chapter 2

Foundations

Free-Form Deformation, when coupled with Direct Manipulation, is a powerful and versatile
approach to Solid Modelling. The technique allows the displacement of one or more points
on a solid, with the surface surrounding these points conforming as if the solid were
composed of malleable clay. Directly Manipulated Free-Form Deformation (DMFED)
provides intuitive control and predictable, aesthetic results but is burdened by notorious
inefficiency. DMFFD relies on an intricate body of theory, built in three tiers: Splines, Free-
Form Deformation and Direct Manipulation. This chapter is devoted to an exploration of
this theory. The mathematics, data structures, algorithms and, most importantly, efficiency

concerns are examined at each level.

2.1 Splines

At the turn of the century the term spline was widespread only in ship design. It meant a
strip of flexible metal which had been contoured with weights to fit the shape of a boat’s

keel. Appropriately, when ship design was computerised, so too was the spline.

In its modern usage a spline is the basis for a curve that is regulated by a series of control
vertices. Splines fall into two categories: Interpolating, where the curve passes through

the control vertices and Approximating, where the vertices guide and channel the curve.
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A spline-based curve is a piecewise polynomial that is composited of segments joined
smoothly end to end. Each of these segments is a weighted sum of control vertices with the

weights determined by a spline-function.

This description will be clarified by the development of the Uniform Rational Basis-Spline,

a family of approximating splines with many useful properties [Bartels et al 1987].

2.1.1 Uniform Rational Basis-Splines

2.1.1.1 Linear (First Order)

Weight Accorded to V,

1
1
L
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

F=F=F=F=f=k=F=k=k=k=F=-F>

B R el e e e e > X

[A]

Figure 2.1: The Uniform Linear B-Spline. [A] An example curve. [B] The basis-functions.

A simple polygonal arc (a sequence of straight line-segments) can be considered a rudimen-
tary spline and will provide a foundation for higher-order generalizations. A line-segment
(();) can be parametrised with a control variable (u) so as to interpolate its endpoints (V;

and V,4,) as:
Qi) =u-Vipr+ (1 —u)-V u € [0,1] (2.1)

For instance, P = ()1(0.2) = 0.8 - V4 + 0.2 - V5 = (5.8.6) in figure 2.1. Now Equation 2.1

can be recast in summation notation.
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AW = Y BV, weln] 2)
Biw) = (1-u
Bi(u) = u

Bl and B] are the basis functions of the Uniform Linear B-Spline. The terminology of the
previous section can now be clarified. Each segment (();(u)) is a sum of control vertices
(V; and V1) weighted by a spline basis (B} and B{). The linearity of this spline manifests
itself in two ways: The bases are first-order (linear) polynomials in « and consequently

each segment ((),) is a linear function of .

2.1.1.2 Quadratic (Second Order)

Weight accorded to V

e e N e e

. ¢
\]0 V4
L il I e e el il I - X

[A]

Figure 2.2: The Uniform Quadratic B-Spline. [A] An example curve. [B] The basis-
functions.

Stepping up from linear to quadratic splines makes each segment dependent on an extra

vertex (notice the increase in the index of summation from equation 2.2 to 2.3).

Qi(u) = D BXu)- Vi u € [0,1] (2.3)
Bi(u) = % —u+ Ly?

Bi(u) = f+u—u?

Biw) = he

18



Each segment now traces a non-interpolating quadratic curve (as is clear from figure 2.2),
since the basis-functions (B2, B, B3) are second-order polynomials. The same number of
control vertices now define fewer segments, but each segment is smoother and more refined.
The polygonal arc joining the control vertices (V4 to V;) is termed a control polygon and
a segment is contained on or within the control polygon of its contributing vertices. Linear

B-Splines, for instance, coincide with their control polygon.

2.1.1.3 Cubic (Third Order)

Yz ‘Weight accorded to Vi+ :

L
0.66
A ¥
M * 73

e e N I -
<
)
%
S 3
I

Qo
—_

’

’

y \]0 . V4

0 1:0 100

L—|——>——>——>——>——>——>——>——>——>-—|-—>-—>——>-—>->X Qi(u) Qi+](u) Qi+2(u) Qi+3(u)
[B]

[A]

Figure 2.3: The Uniform Cubic B-Spline. [A] An example curve. [B] The basis-functions.

The generalization can be further extended to cubic splines, which produce even more

tapered effects.

Q) = Y B Ve uel0] 4
Biu) = é_(ol 3+ 3u% — )

Bi(u) = 1(4—6u?+3u?)

Bj(u) = 1(143u+3u?—3u?)

Biw) =

The pattern continues as each segment is influenced by 4 (order + 1) control vertices
(Vi, Vig1, Viga. Viga), each of which is scaled by a cubic basis-function (B3, B, B3, B3).
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2.1.1.4 Properties

With this background in place, the pivotal properties of Uniform B-Splines can be examined.

e Continuity. A piecewise curve is considered to be of " continuity if at every
point along the curve the n'" derivative exists and is continuous. In particular,
this condition must hold at the joints between segments. This provides a useful
measure of curve continuity. The basis-functions of figures 2.1, 2.2 and 2.3 track the
influence of a single control vertex across neighbouring segments. The continuity
of the basis-functions and the curves born of them are identical because each curve
segment is merely a linear combination of scaled basis-functions (as is evident from
equations 2.2 - 2.4). The basis-functions of figure 2.1 exhibit only C or positional
continuity, which explains the jagged appearance of their corresponding curves. In

contrast, quadratic and cubic B-splines produce C'! and C? continuity respectively.

e Local Control. Each segment of a curve is determined by a fixed subset (cardinality
order + 1) of control vertices. Conversely, a single control vertex affects only a
portion (order + 1 segments) of the curve. Thus B-Splines allow detailed design of

subsections of a curve.

e Convex Hull. Every segment lies entirely within its control polygon, and the entire
curve is confined within the convex hull of all control vertices. A convex hull can
be visualized as an elastic band snapped around the outside of the vertices. These

properties impart a useful degree of predictability to Uniform B-Splines.

e Efficiency. The inherent simplicity of the Uniform B-Spline family enhances their
speed above that of more convoluted splines. There are two key factors in this: (a) the
uniformity of the parametrisation of u which spans a set [0, 1] interval and (b) the
dedication of all free variables (order + 1 coefficients of each basis-function) to
attaining C'°"“"~1 continuity and none to extraneous concerns such as interpolation.
Evaluating the basis-functions for a given parameter value u becomes progressively
more costly from linear (1 addition) to cubic B-Splines (10 multiplications and 8
additions).
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2.1.2 Other Splines

Splines are a field of intense interest and frenetic research. There are many extensions to Uni-
form B-Splines, for instance Non-Uniform Rational B-Splines (NURBS) [Foley er al 1991],
which relax the uniform unit interval restriction and are much in vogue, as well as 3-Splines
[Bartels et al 1987], which introduce bias and tension parameters. Their collective purpose
is to allow finer control over the curve and increase the diversity of shape and continuity.
However, these enhancements are unnecessary in this context because splines are hidden
from the user under several layers of indirection. The enhanced splines invariably introduce
extra parameters, which would damage the illusion of sculpting because their effects are
often neither intuitive nor obvious. Further, this added complexity always carries a baggage

of extra calculation.

2.2 Free-Form Deformation

Free-Form Deformation (FFD) employs an unusual approach to Solid Modelling. It warps
the space surrounding an object and thereby transforms the object indirectly. An analogy
would be setting a shape inside a square of jelly and then flexing this jelly, resulting in a

corresponding distortion in the embedded shape.

This is achieved by imposing a lattice of control vertices on a portion of world co-ordinate
space. These can be pictured as hooks plunged into the jelly, which are used to distort its
shape. Any point in this demarcated space becomes a weighted sum of these lattice control

vertices.

The lattice is a direct extension of the splines introduced in the previous section. While
splines can be anchored in a space of any dimension, they remain strictly one-dimensional.
It is helpful to picture an infinitely thin ribbon twisting and contorting through the air.
This dichotomy arises from the different dimensions of the control vertices (1;), which
are points in the world co-ordinate space of the modelling application (generally two or
three-dimensional), and the basis-functions, which are reliant on a single parameter u and

are thus one-dimensional. FFD extends spline-curves to two-dimensional areas and three-
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dimensional volumes, so that the dimensions of the spline and its control vertices match.
At each step up in dimension an extra parameter is introduced, v for areas and then w for
volumes, and the control polygon becomes first a control grid, then a control lattice. Under

this generalization a spline volume is traced out by:

Qijr(uv,w) = Y 3> Bi(u) Bi(v) - B (w) « Vigrjys kst (2.5)
r=0 s=0 #=0
u,v,w € [0,1]
! = the order of the spline
1% = a vertex in the control lattice
B® = the basis functions, BY = linear, B! = quadratic, B? = cubic
u.,v,w = control variables
Q = apoint in the spline volume

Vi ,
) 1 Spline Area
---- Warpin U
eV, o Weftin V

D32

® Control Vertex

“eoV

b3,
\/171*_ |
Ve T [ SR °

0 2,0 3,0

Figure 2.4: Two-dimensional Cubic B-Spline Area defined by a Control Grid.

It is instructive to compare this with the curves of the previous section (equations 2.2 - 2.4).
Here the position of points trapped in the spline volume are dictated by (a + 1)* control
vertices instead of a mere (o + 1) and each control vertex is scaled by three basis-functions

rather than one.
Equation 2.5 is manifested in the distorted patch of figure 2.4. This is a two-dimensional
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area based on a cubic B-spline, so that the w parameter is dispensed with and the area is
determined by 16 (4 x 4) control vertices. For Example: P(0.2,0.0) = (1.143,0.938)
with V50 = (0.0,0.0) and V55 = (3.0, 3.0) in world co-ordinates.

The piecewise nature of spline-curves is maintained so that areas and volumes can be
stitched together. In the case of spline areas, adding (o + 1) control vertices in either
direction enlarges the surface by a cell in that direction. Spline volumes require a slice of

(a+ 1) x (a4 1) vertices to create adjoining cells.

=0 L]

® 0= io@-io-

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[1] [2]
[ ] [ ] [ ) [ ) [ ]
[ ]
. . ¢ Lattice Vertex
"""" Cell Boundary
e o o o )
— FFD Object
. ! . = Vertex Alteration
[ ]
[ ] [ ] [ ) [ ) [ ]

Figure 2.5: The Three Stages of FFD. [1] Embedding the Object, [2] Moving Lattice
Vertices, [3] Deforming the Object.

Now, the Free-Form Deformation process can be unfolded into three stages (as shown in
figure 2.5):

1. An undistorted or base-state lattice is generated. It has vertices spaced regularly
in orthogonal u.v.w directions. This demarcates a number of box-shaped (or
parallelpiped) spline volumes, hereafter referred to as cells. This is analogous

to taking a cube of jelly fresh from its mould. Then the surface points of the
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designed object are parametrised within this lattice. They are located within a cell
(referenced by the ¢, j. & index of its corner lattice vertex) and given local u. v, w co-
ordinates relative to the cell origin (0.0, 0.0, 0.0) and maximum extent (1.0. 1.0, 1.0).
If equation 2.5 is applied to a given parametrisation at this stage, the original point is

recaptured. In terms of the metaphor, the shape being squished is set inside the jelly.

2. A number of lattice vertices are displaced, with a consequent distortion of lattice

cells. This equates to flexing the jelly by wrenching on the embedded hooks.

3. The parametrised surface points (z. 7. k and u, v. w) are churned through equation 2.5
to spawn an altered shape, whose deformation mirrors that of the cells in which it

lies. So, by the analogy, the inset shape is warped along with its cocooning jelly.

; % : % é % i E . —— Deformable
O T S R R S S

. ! ! ! ! ! | 3 Zone
R R T EEE TEE TR ED

; : ! | | | ; ! . ---- Influenced
P "___+___ __.:___,' ......... . Zone
- R SR b S S Phantom
;.,,A....+___;__ __+__4:, ......... ‘ Zone
T S O S S

NS S0 S S SO U S

N NN SRRP A WY S SR S

Figure 2.6: A FFD lattice showing Deformable, Influenced and Phantom Zones.

The fringes of the lattice may, without careful attention, produce anomalous continuity
degradation. To prevent this, the lattice is partitioned into three rings. At the centre is the
deformable zone, with any number of vertices and their corresponding cells. Around this lies
the influenced zone of cells affected by the movement of control vertices in the deformable
zone. At the edges a phantom zone of static vertices guards against boundary conditions.
These phantom vertices are preferred to the tripling up of vertices previously proposed

[Hsu ef al 1992], since this introduces additional complexity into the FFD algorithm.

24



Figure 2.7: Free-Form Deformation
Purpose:  Displace object points with Free-From Deformation.

Given: V A 3D lattice of control vertices,
P A list of object points,
m The number of entries in P.
Return: An FFD-altered version of P.
Data

Structures: (4, j. k) Indices of a lattice cell,
(u, v, w) Co-ordinates within a lattice cell.

FORa=1.2,....m
IF P, lies within the influenced or deformable zones
of the lattice THEN
parametrise P, with (2, j. k) indices
and (u. v, w) co-ordinates
P, —(0.0.0.0,0.0)
FORr=20.....3

Py ——Po+ Vigrjgs kst X B2 (1) x B3(v) x B} (w)

A two-dimensional analogue of a multi-cell cubic B-spline lattice is detailed in figure 2.6,

and the FFD algorithm associated with this data structure is outlined in figure 2.7.

This highlights the inherent inefficiency of FFD. Every point of an object within the scope
of the lattice (potentially hundreds) undergoes 64 iterations involving 3 multiplications
and an addition. The basis-functions can be calculated outside the inner loop, but their
calculation, as well as the parametrisation of surface points, still adds significantly to this

inefficiency.

There are, however, several means of improving matters:

e In the original FFD [Sederberg and Parry 1986] and later extensions, the lattice is
allowed arbitrary orientation relative to the world co-ordinate (&, y and z) axes. This
does not increase the range of possible deformations and it substantially complicates
the evaluation of local co-ordinates. Instead, the (u.v.w) axes of the lattice are

oriented so that they lie parallel to the (z.y. 2) axes.

e There may be cells whose control vertices are unaltered and which do not perturb
points falling within them. Instead of executing the body of the FFD loop only to

return the original point unchanged, a Boolean index, which flags cells with altered
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vertices, can be consulted. In this way, if a lattice control vertex is moved, then the

64 cells influenced by this vertex are marked in the index.

e The Uniform Cubic B-Splines are the most efficient of all the splines with comparable
smoothness. However, if the user is willing to accept less tapered results, then the
Uniform Quadratic B-Splines of equation 2.3 can be substituted to good effect.
Now the inner loop has 27 (3 x 3 x 3) iterations and the calculation of the basis-
functions is almost twice as fast. Technically, this is downgrading from continuity of
second derivatives (class C'?) in the case of the Cubic B-Spline, to continuity of first

derivatives (class C'!) for the Quadratic B-Spline.

The Free-Form Deformation technique was first presented in a seminal paper
[Sederberg and Parry 1986], which has sparked widespread academic research and com-

mercial application. There are three primary avenues along which FFD has developed:

e Animation. FFD has cross-pollinated well with the discipline of Computer Anima-
tion. Layered Construction for Deformable Animated Characters
[Chadwick et al 1989] builds animated figures from their articulated skeletons out-
wards and FFD is utilized to simulate the flex and ripple of the muscle and tissue
layers. Animated Free-Form Deformation [Coquillart and Jancene 1991] gradually
translates objects through a distorted lattice to induce dynamic deformations. For

instance, a tube can be made to bulge and swell progressively down its length.

e Generalisation. There were two aspects of the original FFD

[Sederberg and Parry 1986] which invited generalisation: the base-state lattice with
its structure of vertices regularly spaced in a parallelpiped arrangement, and the Bezier
curve underpinnings. NURBS-Based Free-Form Deformations

[Lamousin and Waggenspack 1994] substitutes Non-Uniform Rational B-Splines in
place of Bezier curves and thus allows vertices to be unevenly spaced along the orthog-
onal axes of the initial lattice. Extended Free-Form Deformation [Coquillart 1990] in-
troduces complex configurations for base-state lattices, which fit more snugly around

the object being shaped and thereby establish greater control and predictability.

e Direct Manipulation. Deformation of N-Dimensional Objects

[Borrel and Bechmann 1992] provides a method for controlling the surface of an
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embedded solid directly. The same results were independently and more narrowly
formulated in Direct Manipulation of Free-Form Deformation [Hsu et al 1992]. It is

this last avenue which is explored in the next section.

2.3 Direct Manipulation

Controlling deformations by moving lattice vertices, while producing sculpted results, tends
to be cumbersome and counter-intuitive. Specifying even simple deformations requires a
good working knowledge of Splines and FFD. Also, the display of the lattice tends to
clutter the screen and obscure the object being created. It would be preferable for the user
to drag object points directly and have the surrounding points conform as if the object
were malleable clay. This is the intention behind the Direct Manipulation (DM) extensions
to FFD [Hsu ef al 1992, Borrel and Bechmann 1992]. For instance, pushing or pulling a
single object point will create dimples or mounds in the object’s surface. More complex
manipulation can be achieved by simultaneously moving several points and calculating the
lattice changes required to induce these effects. The general principle behind DMFFD is
first to reverse-engineer alterations in the lattice vertices, and then apply this new lattice to

the original object.

To achieve this some mathematical foundations must first be layed. The algorithm of

figure 2.7 can be concisely expressed in matrix form:
AX =8B

where is an m x 3 matrix formed directly from the list P,
with each row capturing the (z. y. z) co-ordinates of an object point.
is an n x 3 matrix of the co-ordinates of all the lattice vertices (V; ;)
that affect the points in 5. It can be formed by cycling through points in P
and placing in X, without duplication, all vertices that influence a point.
is an m x n matrix of blended basis functions with the weight entry in
column ¢ of A matched to its vertex in row ¢ of X. A particular (z, j) entry of A

is zeroed if the vertex in row j of X does not affect the point in row ¢ of B.
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EXAMPLE

The above diagram shows a two-dimensional base-state linear lattice with a triangle inset.
The triangle has points Fy. Py, P, with parametrisations of (ug. vg), (uy, vy). (ug. v2). The

equation below is in essence a recasting of equation 2.5.

Vo,o

V10
Bo,g(ug,va) Bi,olug:vo) 0 Bo.1(ug,vg) Bi,1(ug.vg) 0 v F
Bog(ui,v1) Biolui.vr) 0 Bo.1(u1,v1) Bial(ui.v) 0 ] VQ:O = [ Pl]
0 Bo,g(uz,v2) Bi,o(uz.v2) 0 Bo.1(u2,v2)  Bi,1(uz,v2) ij B

Vo

B ;(u,v) = Bil(u) X le(v)

Normally FFD evaluates the altered positions of object points (/) by multiplying the basis
matrix of spline weights (A) and the list of control vertices (.X), but Direct Manipulation
reverses this. The user specifies a selection of object points and their intended motion (5),
and the alteration in vertices (X)) is found. In mathematical terms we seek to find X in the

equation AX = B, given A and B. Figure 2.8 unfolds Direct Manipulation in three steps:

1. Setup A base-state lattice is established, the object is embedded and the user defines
a number of Direct Manipulation vectors of the form "move this object point from
here to there". In concrete terms matrices A and B are created. The algorithm for

this step is presented below in Figure 2.9.

2. Lattice Vertex Determination The alterations in Lattice Vertices necessary to satisfy
the DM vectors are reverse-engineered. This is an extremely involved task which

consumes by far the bulk of computation, and it is the focus of the next chapter.
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[1.]..... o)

"""""""" Lattice Grid

Object Boundary

—= Direct Manipulation
Vector

L Lattice Vertex

3]

Figure 2.8: Three Stage Direct Manipulation. [1] Setup, [2] Lattice Vertex Determination,
[3] Object Transformation.

3. Object Transformation The entire object undergoes FFD (as per the algorithm of
Figure 2.7). Notice from figure 2.8 how the twin demands of matching DM vectors

and a smooth clay-like deformation are satisfied.
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Figure 2.9: Direct Manipulation Setup

Purpose:  Prepare the Mathematical Foundations of Direct
Manipulation.

A 3D FFD lattice,

A set of Directly Manipulated object points,
D A set of Direct Manipulation vectors,

The number of DM points.

The matrix of Basis functions,

The DM vectors (A D) captured in matrix form,

An index matching lattice vertices

to columns of A4,

the length of 7 and number of columns in A.

Given:

Return:

~we s o=

3

Data
Structures: (7. j, k) Indices of a lattice cell,
(u, v, w) Co-ordinates within a lattice cell.

set I to empty
n—~2_0
FORa=1.2.....m
(1) Parametrise ), finding the cell address (z. j. k) and
local co-ordinates (u, v, w)in V.
(2) Assign the vector components of AD,, to B,,1, Ba,2, Ba,3
FORr=0.....3
FORs=0.....3
FOR{=0.....3
Find the position (8) of ¢ +r, 7+ s, k+1)in [
IF not found THEN
n—mn+1
fe—n
Li—(G+r,j+s k+1)
Aoy — BYw) - BY(v) - Bi(u)
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2.4 Concluding Remarks

The foundations of Directly Manipulated Free-Form Deformation (DMFFD), a sophisti-

cated sculpting tool, have been established. The approach carries considerable benefits:

e Aesthetic. Deformations are moulded and tapered due to the Uniform Rational B-
Spline substrate. This imparts a fluid clay-like consistency to the solid being modelled

and reinforces the sculpting metaphor.

e Intuitive. The "Pick-and-Drag" interface that Direct Manipulation overlays on Free-

Form Deformation is simple and effective.

e Local Control. The extent of deformations is dependent on the size and spread of
the FFD lattice. A fine lattice allows intricate, detailed deformation, while a coarse

lattice is needed for global changes.

e Representation Independence. Finding surface points is fundamental to all repre-
sentation schemes. Since FFD is point-based it is independent of the formulation of
its embedded solid [Sederberg and Parry 1986].

However, inefficiency remains a worrisome consideration, despite the range of improve-
ments presented thus far. The kernel of computation in DMFFD is the reverse-engineering

of the lattice and this is addressed in the next chapter.
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Chapter 3

Least Squares Solution Methods

At this juncture the foundations of Directly Manipulated Free-Form Deformation are in
place. However, the core computation, a reverse-engineering of lattice vertices, remains to

be considered. It is this calculation that is the principal source of inefficiency in DMFFD.

In the previous chapter DMFFD was considered in terms of the relationship between three
matrices: a basis matrix of spline weights (A), a matrix of lattice vertex co-ordinates (.X),
and a matrix of altered object points (5). In this chapter these matrices are arranged into a
system of linear equations AX = B and the problem is reduced to finding X, given A and
B, using a construction known as the Pseudo-inverse. These theoretical underpinnings are

discussed in the next section, culminating in a concise statement of the problem.

The bulk of the chapter is devoted to a discussion of four methods for solving this problem:
the Naive Pseudo-inverse [Noble 1969], Normal Equation [Lawson and Hanson 1974],
Greville [Greville 1960] and Householder [Lawson and Hanson 1974] schemes. These
approaches are outlined and compared with regard to efficiency, accuracy and space con-
sumption. Here efficiency is measured as the number of multiplications and divisions
required by an algorithm. Additions and subtractions are ignored in this evaluation since
they are of a similar order to, and consume less computation time than, multiplications and
divisions. Space consumption is measured as the amount of floating point storage over and
above that required for A, X and B. Finally, in considering accuracy, the degeneration in

the significant digits of the solution X relative to the matrix B is measured.
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The remainder of the chapter focuses on selecting one numerical scheme for DMFFD
according to these measures. An effective and novel enhancement is then made to the
chosen scheme by exploiting the structure of the basis matrix (A). Finally, this improved

DMFFD algorithm is presented in its entirety and its efficiency demonstrated.

3.1 Theoretical Underpinnings

3.1.1 Systems of Linear Equations

Direct Manipulation of Free-Form Deformation may be posed in terms of solving a system
of linear equations. Such systems are traditionally written in matrix notation as Ax = b.
Here A is an m x n matrix of coefficients and z and b are n-dimensional and m-dimensional
column vectors respectively. Both A and b are predetermined and the problem involves

finding solution values for the set of unknowns z.

This process is very well-defined when A is square (rn = n) and non-singular, that is an
inverse denoted by A~! exists. This inverse is constructed so that z can be solved explicitly
as © = A~'b. If the right-hand-side vector b is altered, a corresponding solution = can be
found without re-evaluating A=!. The inverse provides a theoretical underpinning for a

plethora of solution methods.

Less well documented are solutions to underdetermined and overdetermined systems.
In the former case there are more unknowns than equations (1 < n in A) and one or more
of the unknowns becomes free or variable, spawning an infinite number of solutions. In
the latter case there are more equations than unknowns (m > n in A) and there is no exact

solution, since not all of the constraints can be met.

A further complication is the rank of A. This can be defined as the dimension of the
row space of A [Johnson ef al 1993]. In concrete terms this is equivalent to the number of
nonzero rows that A has after it is reduced to row echelon form. Two further exigencies must
now be considered: A may have full rank (Rank(A) = m) so that every row contributes

constraints, or be rank deficient (Rank(A) < m) if some rows of A are linear combinations
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of others. Further, if A is rank deficient, so that one row is a constant multiple of another,
and the same relationship does not hold in corresponding entries of 4 then the system is
inconsistent. More strictly, consistency implies that the same linear dependence relations
that hold in A must also hold in b. If a rank deficient system is consistent then one or more

rows are redundant.

So, four classes of linear systems have been introduced: full rank underdetermined, rank
deficient underdetermined, full rank overdetermined, and rank deficient overdetermined
systems. None of these systems have solutions in the traditional sense of a single numerical
match for every entry of x. Overdetermined systems allow only approximate solutions and
underdetermined systems have an infinity of available solutions. In the overdetermined case,
a vector which minimizes the sum of squares (or norm) of the residual error ( ||Az — b|| )
is considered ideal [Lawson and Hanson 1974] since it is closest in a least squares sense to
an exact solution. In the underdetermined case a solution is selected to minimize the sum
of squares of the solution vector ( ||| ) and this corresponds to finding the closest solution

to the zero vector.

Direct Manipulation can be posed in terms of the underdetermined full rank least squares

problem, which can be simply stated:

The Underdetermined Full Rank Least Squares Problem
Minimize ||z|| (or equivalently 27 x) subject to Ax = b

where A € U™*" ,x € R". b € R™

and Z/™*" is the underdetermined 1 x n matrix space defined by
U™ C R, Rank(U™*™ ) = mand m < n.

3.1.2 The Pseudo-inverse

The Pseudo-inverse, represented by AT, extends the definition of the inverse A~! to under-
and overdetermined situations. Many of the properties of the inverse carry over in this
generalization. For instance, A% is dependent solely on the coefficient matrix A. The

explicit solution z = A*b coincides with the normal interpretation when A is square (ie.
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At = A~1), the solution vector with minimum norm when A is underdetermined, and the
norm of the residual error when A is overdetermined. The Pseudo-inverse thus solves the
underdetermined full rank least squares problem under consideration and can be evaluated
using the following result [Noble 1969]:

Theorem 3.1 [Noble 1969] For A € U™*" the solution of the equation Az = b that

Ty is & = Ab, where the Pseudo-inverse A is the unigue n x m matrix given

by A* = AT(AAT)-1,

minimizes x

Proof [Noble 1969]

The Method of Lagrange Multipliers states that minimizing ¢(z ) subject to
h(x) = 0 is equivalent to minimizing the Lagrange multiplier M = g(x) + Ah(x).

This method is employed to minimize =’ z subject to Az = b. We form
M = 272 + 20T (Ax — b), where A is an 1 x m row vector

of Lagrange multipliers with the factor 2 introduced for convenience.

Thishasaminimumwhen%zo r=1,....n
M — 22T —2ATA=0
=2 =ATA

= (a7)T = (AT A)T

and 2~ = 1=1.....m
AL =2(Az—b)=0

=[Az = b, (ii)

Now substitute (i) into (ii) to obtain
AATY =b
= )\ = (AAT)~1} (since AAT is nonsingular)
Substituting this expression for A into (i) yields
x = AT(AAT)~1b as required.
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Property 3.2 The Pseudo-inverse of a row vector v is vt = |jv]| " 7.
Proof

We have
ol = Y02 = o]

Property 3.3 If AX = Bwith A e U™, X € RV?, B € R"*? and X = ATB
then every column of X is a least squares solution to a system formed with corresponding

columns of B.

Proof

[1] Each column of B is an m x 1 column vector b;,2 = 1.....p and each column of X
isann x 1 column vector x;,2 = 1.....p.

[2] Now X = At Bisequivalentto z; = Atb;, ¢ = 1.....[ from the definition of
matrix multiplication.

[3] By Theorem 3.1 each x; is a least squares solution to the

underdetermined full rank least squares problem.

The central problem of DMFFD can now be stated:

Direct Manipulation Problem Statement
IfAX = Band A e U™, X € R"*P and B € R™*P

then a solution equivalent to X = A* B must be found.
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3.2 Solution Schemes

3.2.1 Naive Pseudo-inverse

The unknown matrix X can be naively found by a brute-force construction of the Pseudo-
inverse A*. From Theorem 3.1 we get X = AT(AAT)"!B. Here C = AAT is inverted
by the method of Gauss Reduction with backward substitution on an augmented matrix
(see figure 3.2) familiar from elementary linear algebra [Burden and Faires 1993]. The
inverse, while useful in theoretical contexts, is avoided in practical applications since it
carries a heavy computation overhead (notice the m? term contributed by the inversion in
the efficiency analysis of Figure 3.1). Later methods will circumvent this inversion in the

interests of speed.

Figure 3.1: Analysis of the Naive Pseudo-inverse

Efficiency:  [1] m*n
ANm+Im?—1im
2] 2 2
[3] m*n
4] mnp
=(2m*n +m> + mnp

Extra Space: C+ D+ F
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Figure 3.2: Naive Pseudo-inverse

Purpose:  Find a Least Squares Solutionto AX = B
by the Naive Pseudo-inverse method
derived from [Hsu et al 1992, Burden and Faires 1993].

Given: A, B Matrices of m x n and m x p dimensions
Return: X An n x p solution matrix.
Data

Structures: C, D, E Matrices of m x m, m x mand n x m
dimensions respectively.

[1]C — AAT

[2] (find D = C~1 explicitly and inefficiently by Gauss-Reduction with
partial pivoting on an augmented matrix)
De—1
FORh=1.2.....m
IF Cy,,;, = 0 THEN (pivot element is zero)
A—0
FORi=h+1.h+2,....m
IF C; 5, > A THEN
A—Csp
sSwp— 1
IF A = 0 THEN
ERROR: matrix C' is singular
ELSE
Exchange rows h and swp in C and D

FORi=h+1.h+2.....m (clear column)
re— —Cin/Chn
FORj=h+1.h+2,....m

Cij— Cij+1Ch;
FORj=1.2,....h

Djje— Dij+1rDp;

FORh=m.m—-1...., 1 (backward substitution)

FOR:i=m.m—-1,....1

m
Dip+— D;p — Z Cs.5Djn
j=itl
Dipn— Din/Csy

3] E— ATD
[4] X — EB
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3.2.2 Method of Normal Equations

The method of Normal Equations sidesteps explicit inversion by exploiting two structural
properties of C' = AAT: [1] C is symmetric and [2] C is non-negative definite since
it is symmetric and +7Cz > 0 [Lawson and Hanson 1974]. These two attributes are
requirements for Choleski Factorization [Burden and Faires 1993], a powerful technique
for solving square linear systems and implicitly building the inverse. Under the Method of
Normal Equations calculation of X = A*B = AT(AAT)~!B is subdivided into 3 steps
(see Figure 3.4):

1. C = AAT by matrix multiplication of the lower triangle and using symmetry to build

the remainder of C'.
2. D = C~'B by Choleski Factorization

3. X = AT D by matrix multiplication

The consequent improvement in speed is roughly fourfold as can be seen by comparing

Figure 3.1 and Figure 3.3.

Figure 3.3: Analysis of Method of Normal Equations

&)
=

Efficiency:
1

4 om? — %m + m sqrts [Burden and Faires 1993]

2p 4+ mp [Burden and Faires 1993]

S 3

Extra Space: C+ L+y+ D

Accuracy: This is proportional to the square of
the condition number of A [Golub and Van Loan 1989]
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Figure 3.4: Method of Normal Equations

Purpose:  Find a Least Squares Solutionto AX = B
by the Method of Normal Equations with a Choleski
Factorization found in [Burden and Faires 1993].

Given: A, B Matrices of m x n and m x p dimensions.
Return: X Ann x p solution matrix.
Data

Structures: C, D, L Matrices of m x m, 1m x fmand m x p

2
dimensions respectively.

[1] (form C — AAT)
FOR i = 1,2.....m (standard matrix multiplication of lower triangle)
FORj=1,2,...,1
n

Cig=— Y AixAjx
k=1
IF i # j THEN C;; «— C; ; upper triangle mirrors lower

[2] (find a lower triangular factorization L by Choleski Decomposition)
Lii+—+/Cia
FOR; =2.3.....m
Lix—Cja/lia
FOR:i=2,3,....m—1

=1
2
Lii— E Liy
k=1

Lii— /Cis — Li;
FORj =i+ 1.i+2.....m
i—1
Lis— Y LixLix
k=1
Lji— (Cjs — Lji)/Lis

m=1
Linam = 3 L
k=1
Lm:m — Cm:m - Lm:m

[3] (use the Choleski Factorization to solve for D)
FORE=1.2.....p
y1<— Bir/L1a
FOR:=1.2.....,m

i—1
Yi — ZLz’:jyj
i=1

Yi — (Bik — i)/ Lis
Dm:k — ym/Lm:m
FORi=m—-1.m—-2,....1

m
Dy p — Z LisDjp
Jj=i+1
Dy — (Y — Dir)/Lss

[4] X — ATD
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3.2.3 Greville’s Method

A touted alternative to the previous two schemes has been derived [Greville 1960]. Gre-
ville’s approach relies on a recursive decomposition of the Pseudo-inverse. This requires
some additional notation: Ay is the m x k submatrix encompassing the first & columns
of A, Af is the corresponding k& x m Pseudo-inverse and «y, is the m x 1 vector of the
k-th column of A. Now Theorem 3.4 provides a mechanism for successively introducing

columns of A and thereby recursively building At.

Theorem 3.4 [Greville 1960] Af, the Pseudo-inverse of the submatrix Ay, is dependent

solely on Af_,, Ax_y and ay. Their relationship is defined as follows:

At =

€

At — de ]

where d = A}_,ay
and e is determined by: ¢ = ap — Aj_1d
IF ¢ # 0 THEN
e=ct
ELSE IF ¢ = 0 THEN
e=(1+d'd)~tdt A},

Proof
This proof is too convoluted for presentation here (see [Greville 1960] for details).

Notice that we have a means of evaluating the Pseudo-inverse of a row vector v as

vt = |lv||7*v7 (from Property 3.2). This can be applied unchanged to column vectors.

Itis now possible to calculate At beginning from A} (the Pseudo-inverse of the first column

of A) and iterating until A (the Pseudo-inverse of A) is reached, as is done in figure 3.6.

The analysis of this algorithm (see figure 3.5) contradicts its purported strength
[Borrel and Bechmann 1992], especially in the light of its inefficiency. However, the

method has two redeeming attributes:
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e Column Updating and Downdating of A does not force a complete recalculation of
the Pseudo-inverse A*. Unfortunately Direct Manipulation is row oriented in this

respect and only ever requires adding or removing rows of A.

e The algorithm is independent of the relative dimensions of 1 and n in A so that it

can be applied unchanged to both the under- and overdetermined cases.

Figure 3.5: Analysis of Greville’s Method

Efficiency:  [1] 2m
[2] mn? — mn
[3a] 2mn — 2m OR
[30] 2mn? — Imn +mn —m+n* —n
[4] 2mn? — tmn
5] mnp
= %an + mnp

ExtraSpace: P+a+c+d+e
=mn+m+nt+m+m
:‘mn—l—Sm-l—n‘
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Figure 3.6: Greville’s Method

Purpose:  Find a Least Squares Solutionto AX = B
by Greville’s Method found in [Greville 1960].

Given: A, B Matrices of mm x n and m x p dimensions.
Return: X An n x p solution matrix.

Data

Structures: P An n x m Matrix which stores

the partial pseudo-inverse
a,c,d,e intermediate vectors

[1] (find the Pseudo-inverse of column 1 of A)

A—1/> (Air)?
i=1

FOR:i=1.2.....m
Pri— XA

Proy —1

(iterative calculation of P = Ag’)
FORk=2.3.....n
[2] FORi=1,2,....m

a; — A x
d— Pa
Acoi — k — 1 (A set temporarily to Ay_1)
c— Ad

FORi=1.2.....m

Ci—— Uy — ¢

[3¢)  IFc# (0 THEN

1
€ 7=C
llel®

[30]  ELSE (c=0)
a—1/(1+) d?)

=1
e— adfpP

[4] (determine AT )
FORi=1,2,... k—1
FORj=1,2,....m
P@':jb P@':j —d@fj
Prow &— Prow +1
FOR; =1.2.....m
Pk:j%Ej

[6] X — PB
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3.2.4 Householder QR Factorization

There is an alternative characterization of the Pseudo-inverse which is based on an orthog-
onal decomposition of A and which leads to an effective numerical scheme for least squares
solutions. Briefly a matrix () is orthogonal if Q7() = /. An orthogonal matrix () has the

property of preserving Euclidian length under multiplication, thus ||Qy| = ||y]|.
We are now in a position for an alternative definition of the Pseudo-inverse.

Theorem 3.5 [Lawson and Hanson 1974] Let A € U™*" . Given an orthogonal decom-

position A = H [ R 0 } KT, where H € R™*" and K € R"*" are orthogonal and

R € R"™*™ then the Pseudo-inverse is given by:

R-1
0

At is uniquely defined by A, and does not depend on the orthogonal decomposition of A.

At = K HT

It is important to remember that finding the inverse of a square, upper or lower triangular
matrix is particularly simple since it is already in row echelon form and the computationally
demanding Gauss Reduction step can be bypassed. So an orthogonal decomposition which

leaves I? in this form is ideal. Such a decomposition is called a QR factorization.

Theorem 3.6 [Lawson and Hanson 1974] If A € U™*" then there exists a factorization
of A such that A = 1, [ R 0 } QT where () is orthogonal and R is zero above the main

diagonal.

Notice that the decomposition A = 1, [ R 0 } Q7 satisfies all the conditions of theo-

R_l
rem 3.5 so that AT = () 0 1,,. An implicit algorithm for finding X, given the () R

orthogonal decomposition of theorem 3.6, can now be derived.
Derivation of figure 3.8

A=1,[R 0]Q"
=AQ=| R 0]Q"Q
:>AQ:[R O}I (Q is orthogonal and so Q7@ = 1)
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X = A*B
-1
=X=0 0 B (by theorem 3.5)
— R_l
=X=( (block multiplication)

[2]  [solve for Y in RY = B]

Bl | X=Q (Y = k~'B)

0

Further, there exists a stable method for determining () known as the Householder Factor-
ization [Lawson and Hanson 1974] which is used frequently in eigenvalue problems. It is

presented here without derivation.

Figure 3.7: Analysis of Householder QR Factorization

Efficiency: [l
[2
3

—m +m—n

—I—m —%m3—mn—%m
——mp-l—mp p
mnp — m?p + 2mp — 2np

n — %m3 — —m 2p 4 2mnp

w§'~§ s

e
)

}
]
]
]

3

Extra Space: Y + & (), R are stored over A except for h)

[ +1]

Accuracy: This is proportional to the Condition Number of A
[Golub and Van Loan 1989]

45



Figure 3.8: Householder QR Factorization

Purpose:  Find a Least Squares Solutionto AX = B
by Householder QR Factorization
found in [Lawson and Hanson 1974].

Given: A, B Matrices of m x n and m x p dimensions.
Return: X An n x p solution matrix.

Data

Structures: ¢} A Householder Decomposition

Y.R intermediate matrices
[1] Create () — Householder Decomposition
[2] R — AQ (apply householder decomposition)

[3] (solve for RY = B)
FOREk=1.....p
Yig— Bix/Aia
FOR i =2.3.....m
iz1
Yir— Bir — ZRz’:ij:k
7j=1
Yire— Yir/Ris

(X=[Y 0]

FOR:i=1.2.....m
Xig—Yip

FOR:i=m+1.m+2,....n
X@':kbo

[4] X —QX (apply householder decomposition to X )
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Figure 3.9:

Comparison of Numerical Schemes

Efficiency

Extra Space

Naive Pseudo-inverse

2m*n 4+ m? + mnp

Im? 4+ mn

Normal Equations

%mzn + ém3 + mzp + mnp

%mz—l—m-l—mp

Greville %an + mnp mn 4+ 3m+n
Householder m*n — %m3 — %me +2mnp | mp+n
3.2.5 Evaluation

In selecting an underdetermined least squares solution scheme, Greville’s Method and the
Naive Pseudo-inverse can be dismissed. The Naive Pseudo-inverse is in all ways an inferior
version of the Method of Normal Equations, and Greville’s Method excels only in a column
updating/downdating situation where A remains largely unaltered. As is apparent from

Figure 3.9, only the Method of Normal Equations and Householder QR Factorization are

serious contenders.

Householder QR factorization has two main advantages:

1. Itis a stable and accurate scheme and can thus be applied to a broader, more poorly-
conditioned class of matrices [Golub and Van Loan 1989]. Also the resolution of the

solution matrix X will not be markedly inferior to that of the right-hand-side matrix

B.

2. It is a remarkably compact approach since most intermediate steps of the algorithm
overwrite entries of the coefficient matrix A. This does not, however, apply to a
sparse matrix structure where zero entries of A are stored implicitly. Paradoxically

the Normal Equation method is stronger here. For example: Assume that A has %
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density (ie. 209 of matrix entries are nonzero) and dimensions m = 10, n = 100 and

p = 1. Then the Method of Normal Equations and Householder QR Factorization

will require 2m? 4+ 2m = 170 and =mn + m 4+ n = 910 extra floating-point

storage respectively. This occurs because the Householder scheme requires that A be

expanded into an explicit form.

The Method of Normal Equations has an edge in efficiency over Householder QR Fac-

torization. The literature claims that it is twice as efficient [Lawson and Hanson 1974]

but this is only true when 7 is far larger than m (n >> m) because then the m?” term in

the efficiency expression (refer to figure 3.9) becomes relatively insignificant. Accuracy

considerations (we need 72 precision to get the accuracy that Householder QR Factorization

could achieve with 7 precision [Lawson and Hanson 1974]), mean that this method must

rely on well-conditioned matrices.

In the final analysis the tradeoff is between the requirements of efficiency, in which the

Method of Normal Equations is paramount, and space and accuracy, where Householder

QR Factorization is preferable.

3.3 Direct Manipulation Specifics

At this stage, a least squares scheme is selected from those outlined and Direct Manipulation

specific enhancements are made to it. Finally, these improvements are incorporated in a

complete Direct Manipulation algorithm whose superior performance is demonstrated.

DMFEFD corresponds exactly to aleast squares solution of an underdetermined linear system.

The nuances of this equivalence can be summarized as follows:

Given a system of linear equations AX = B where

B

T =

is an m X p matrix of direct manipulation vectors,

is an n x p matrix of change vectors for lattice control vertices,

is an m x n basis matrix with spline coefficients that give weighting to entries of X,
is the number of directly manipulated (DM) points on the models surface

(between 0 and 64),

48



n  is the number of influenced lattice vertices
(ranging from 64 clustered around a single cell to potentially

over 4000 if DM points are widely scattered across the lattice), and

p  the number of axes in the modelling application (3-dimensional in this case).

Direct Manipulation aims to reverse-engineer X from values of A and B.

0.14 | | . | |
0.12 | Pseudo-inverse —— i
Greville -
Normal Equations -~
0.1 r Householder ——— |
3
=
§ 0.08 |
w2
R=
o i —
£ 0.06
F
0.04 |
0.02 |
0 10 20 30 40 .

Number of Directly Manipulated Points

Figure 3.10: An Efficiency Comparison of Least Squares Methods

In determining the required alteration in lattice vertices dictated by X, efficiency is the
primary concern and space consumption and accuracy are of secondary importance. As
long as they remain within generous limits they are subsumed in the interests of real-
time performance. With this in mind Figure 3.10 is a speed-based comparison of the
four approaches of the previous section in a representative Direct Manipulation context.
The methods were executed on a SPARCserver 10. All the directly manipulated points
(m ranging from 1 to 60 along the x-axis) are concentrated in a single cell (n is fixed
at 64). As expected, the Naive Pseudo-inverse and Greville’s Method perform poorly.

Less predictably perhaps, the Method of Normal Equations does not differ markedly from
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Householder QR Factorization. These results are not anomalous however, since they can
be arrived at independently via efficiency analysis. In order for a significant divergence to

occur between the two methods n must be an order of magnitude greater than m.

On the basis of this comparison the Method of Normal Equations is chosen over and above
the other schemes. However, the performance of this approach remains disturbing. For
example: 60 DM points seeded across 10 adjacent cells requires at least 0.132 seconds
to evaluate. This is equivalent, without even accounting for rendering overhead, to 7.6
frames per second, which is considerably below the interactivity cutoff of 15 frames per
second. To maintain real-time response, either the number of cells, or the number of directly
manipulated points would have to be severely curtailed, both of which would hamstring the

utility of Direct Manipulation.
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Figure 3.11: Enhanced Direct Manipulation

Purpose:  Reverse-engineer lattice vertices for Direct Manipulation
using the Method of Normal Equations [Lawson and Hanson 1974]
with special-purpose enhancements.

Given: V A 3D FFD lattice,
D A set of Directly Manipulated object points,
AD A set of Direct Manipulation vectors,
m The number of DM points.
Return:  An altered version of the 3D FFD lattice
Data
Structures: (4, j. k) Indices of a lattice cell,
(s.t.u) Co-ordinates within a lattice cell,
(5. 7T.U )Spllne storage arrays,
A B, C, D

Intermediate Matrices,
A Sparse basis matrix
Aindex An index of Lattice Cells corresponding to A

[1] (create compact basis matrix A and right-hand-side matrix B)
row «— 0
n+«—~0
FORa =1.2.....m
IF D, is within the scope of the lattice
(i) Parametrise D, finding the cell address (7. j, k) and
local co-ordinates (s, 7. u) in V.
(ii) Assign the vector components of AD,, t0 Byou.1, Brow.2, Brow.3
Aindex oy 1 — 1
Aindex, oy 0 — j
Aindexyoy 3 — k
FORa =1.2,....4
Sa — B3 s)
Ty — B3 (1)
Uy — B3(u)
FORa =1.2,....4
FOR b = 1 2 .4
FORc¢ =1, 2 .4
Arou:a:b:c — Sy x Ty x U
row «— row + 1
me— 10w
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[2] (form the normal equations C = AAT from A)
FOR row =1.2,....m
FORcol =1.2,.... 70w
FOR dim =1.2,3
(determine the degree of overlap in the current dimension)
overlap — Aindex, oy, dim — Aindex o, dim
IF overlap € [0, 3]
startrowg;y, — overlap
startcol gy — 0
extent gim — 4 — overlap
IF overlap € [—1. —3]
startrow gy, «— 0
startcol gy, — overlap x —1
extent g — 4 + overlap
OTHERWISE
extent gim — O
v +—~0
FORa =1..... extenty

FORbO=1..... extenis

FORc¢=1..... extents

ve— U+ Arou:a+startrou1:b+startroug:c+startrou3

X-Acol:a+startcoll b+startcols.c+starteols
Crou:col — U

Ccol:rou — U

[3] (find a lower triangular factorization L by Choleski Decomposition)

Lii—+/Cia

FOR; =2.3.....m
Lijai—Cja1/Lia
FOR:i =2.3.....m—1

=1
Ligj— Li;
k=1
Lis— /Cis — Li;

FORj=i+1.i4+2.....m
i—1

Lig— Y LixLin
k=1
Ljie— (Cjs—Ljs)/Lis
m—1
Linm — ZLTEnk
k=1

Lm:m — Cm:m - Lm:m
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[4] (use the Choleski Factorization to solve for D)
FOREk=1.2.....p
y1<— Bix/L11
FORi=1.2,....m

i—1
Yi — ZLi:jyj
7j=1

Yi — (Bix — ¥i)/Lis
Dm:k — ym/Lm:m
FORi=m—-1.m—-2,....1

m

Dy g — Z LisDjx

j=i+1

Dy — (s — Dip)/Ls s

[(]FORa=1.2,....m
FORa=1,2.....4
FORb=1.2.....4

FORc=1,2.....4
1 — Aindex, 1
Jj— Aindex, »
k — Aindex, 3
basis — Aq,ap,c
assign Dy 1, Da,2, Do 3 to delta
Vita—1,j+b—1k4c—1— delta

Fortunately, by exploiting the structure of the basis matrix A, the Method of Normal
Equations can be made independent of the number of lattice cells with little consequent
overhead. This crucial and novel enhancement is founded in the sparse construction of A
and is achieved by delaying the flattening of the 3-dimensional lattice and hence optimizing
the formation of C = AA7 (step [1] in Figure 3.4). Each row of A has 64 spline coefficient
entries, which are weights for a contiguous 4 x 4 x 4 block of lattice vertices, and the
remainder are zero filled. A is a sparse matrix. For example: 60 DM points spread across
10 adjacent cells leads to 30.8% density in A. It can thus benefit from compaction. A
is replaced by a sparse-matrix structure 4, which, for each row, stores the index and 64
spline weights of the lattice block. Originally each ¢, j entry of C' = AA” was formed by
multiplying corresponding entries in row 2 and j of A and summing across the row. In terms
of A, we intersect lattice cubes 2 and j and sum the multiplied vertices of the overlapping
region (step [2] of figure 3.11). After this, the method proceeds as before, until X = AT D

is reached, where allowance must again be made for .A. This algorithm appears both in
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figure 3.11 and the code of Appendix B.

Time in Seconds Ordinary

0.15
=
0.1 /
=
005p o o
=
0 <<~ ”
e il 10
9
Number of Cells

Number of Directly Manipulated Points 3560 !

Figure 3.12: Comparison of Ordinary and Improved versions of the Method of Normal
Equations for Direct Manipulation across Multiple Cells

Figure 3.12 demonstrates the efficacy of this algorithm. The unenhanced Method of Normal
Equations degrades exponentially in both space and time in proportion to the square of the
number of cells (O(cells?)). Tt takes 0.132 seconds with 60 DM points spanning 10 cells.

This is by no means an extreme or unrepresentative case.

In contrast the enhanced scheme is independent of the number of cells. It introduces some
calculation overhead so that it requires a 2 lattice cell spread to break even. Counter to
intuition, performance actually improves as the number of cells increases because lattice
cubes overlap less and there are hence fewer multiplications. The costliest operation
(reading off Figure 3.12) consumes 0.058 seconds at 60 DM points and a single cell. This

is well below the interactivity cutoff.
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3.4 Concluding Remarks

A DMFFD algorithm, which combines a new, compact construction of the basis (or coef-
ficient) matrix with a Choleski Factorization of Normal Equations has been developed in
this chapter. This is a considerable improvement on the Naive Pseudo-inverse of the origi-
nal [Hsu et al 1992]. In a representative deformation task, with sixty Direct Manipulation
vectors scattered across ten adjacent cells, it increases speed by over an order of magnitude
( Naive Pseudo-inverse = (0.4925s, Enhanced Normal Equations = 0.0365s, Speedup Factor
= 13.7). Most importantly, the technique has been made independent (in both speed and

time requirements) of the spread of Direct Manipulation vectors across lattice cells.
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Chapter 4

Topology and Correctness Issues

This chapter remedies the weaknesses in Directly Manipulated Free-Form Deformation.
There are two principal shortcomings that must be addressed: DMFFD can cause self-
intersecting shapes by folding a solid through itself, and the smoothness of the Polygon-
Mesh degrades under the constant flexing of DMFFD.

These problems and their solutions, are clarified in terms of the topology and correctness
of a Polygon-Mesh representation in the subsequent Definition of Terms. This is followed
by an investigation of the circumstances under which DMFFD contravenes correctness by
engendering self-intersecting solids. Finally refinement (subdividing faces) and decimation
(amalgamating faces), two complementary topology-altering schemes which sustain mesh

smoothness, are considered.

4.1 Definition of Terms

The terms topology and correctness need to be defined with reference to a Polygon-Mesh

representation.

A Polygon-Mesh is built out of vertices, edges and faces. Two vertices serve as the endpoints
of an edge, three edges in turn bound a face, and faces surround and enclose the volume of

the solid. The whole collection must obey the following rules in order to encode a valid
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solid:

1. Euler’s Formula must be satisfied:

V—_E+F=2

where V, F and F' are, respectively, the number of vertices, edges and faces in the

solid.
2. Each edge must connect two vertices.
3. Each edge must be shared by exactly two faces.
4. At least three edges must meet at each vertex.
5. Each face must be formed from a triangle of three edges.

6. Faces must not interpenetrate.

DMFEFED is considered correct if it maintains the validity of a solid, as circumscribed by
these six rules. The restrictions are slightly more rigorous than required [Foley et al 1991],
since the fifth rule can be relaxed to encompass more complex polygons. However, a
triangle will, by definition, always lie in a plane regardless of the contortion of its vertices.

The same does not apply to higher-order polygons.

Topology is the study of the characteristics of mathematical surfaces. Itis a rich and varied
field, which will receive only cursory treatment here. The primary topological concern in
this context is the number and relationship of vertices, edges, faces and holes in a solid.
DMFEFED is a "tweak" operator [Foley et al 1991], which shifts vertices but does not alter
the solid’s topology: an edge remains an edge, and a face remains a face, no matter how
contorted the edge or face becomes. Thus, a solid is said to be topologically invariant
under Directly Manipulated Free-Form Deformation. This implies that a doughnut can
be transformed into a topologically equivalent coffee cup through the agency of DMFFD.
Also, this topological invariance preserves the first five rules of validity under DMFFD. It

is only the precept that faces must not interpenetrate that may be contravened.
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4.2 Self-Intersection

Self-Intersection occurs when a solid is contorted to such an extent that it becomes folded
in on itself, with some faces interpenetrating, and the inner surface of the solid partially
exposed. Not only is this physically unrealistic but it also undermines the operations that
rely on the object’s validity. The rendering process, for example, becomes riddled with
artefacts and glitches. Unfortunately, solids are prone to self-intersection when acted on by
DMFEFD, a defect to which the author found no reference. To remedy this, a brief study is
made of the different circumstances under which DMFFD spawns self-intersection. This

work also prescribes guidelines for avoiding these situations.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.1: Overextension. [A] Initial solid and DM vector, [B] Self-intersection after
DMFED, [C] The DM vector and its zone of immediate influence.

CASE 1: Overextension. Local control is a valuable feature of FFD. It implies that a
DM vector anchored in a particular lattice cell will only significantly affect object points
in a bounded region surrounding that cell. So, only a limited volume of object points
is influenced, but these points may be dragged by the DM vector into undisturbed space
outside of this volume. Such an effect is illustrated in figure 4.1 and leads to the following

simple prohibition:

Direct-Manipulation vectors may not extend beyond their volume of immediate influence.
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Figure 4.2: Overconstraint. [A] Initial solid and DM vectors, [B] Self-intersection after
DMFED, [C] The DM vectors and their interaction.

CASE 2: Overconstraint. Despite this restriction, object points may still be displaced
through unaltered portions of the solid, if DM vectors are steeply constrained. This is evi-
denced in figure 4.2 where two closely-spaced object points are wrenched in diametrically
opposite directions. Self-intersection arises from attempting to interpolate the resulting
gradient. These anomalies can be detected as follows: two line segments are formed by
joining the heads and the tails of the DM vectors. The slope and length of these segments

are then compared. This is summed up in the following principle:

A set of Direct-Manipulation vectors must not constrain object points along too steep a path.

[A] (B] [C]

Figure 4.3: Folding. [A] Initial solid and DM vectors, [B] Self-intersection after DMFFD,
[C] The DM vectors and their Collision Zones.
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CASE 3: Folding. If two or more DM vectors clash they may inadvertently buckle FFD
space and generate self-intersection. Two such DM vectors are in conflict (see figure 4.3)
if their Collision Zones overlap. The Collision Zone of a vector is a surrounding volume
whose extent increases with lattice cell size and the angle between the DM vectors under
consideration. For example, the DM vectors of figure 4.3 push in opposite directions and

as a consequence have enlarged Collision Zones.

The Collision Zones of two Direct-Manipulation vectors must not overlap.

These three prohibitions are somewhat overexacting and will occasionally exclude a valid
set of DM vectors. They are also informal and heuristic and there is scope in this area for

further mathematically rigorous research.

4.3 Refinement

The Polygon-Mesh is, by nature, only an approximation of a smoothly sculpted solid.
Imagine covering a solid completely with large triangular tiles and then comparing this
shell against the original curved and intricate shape. A perfect sphere might, for example,
be roughly modelled by an octahedron. The symptoms of an inadequate approximation are a
jagged, sharp-edged appearance and the disappearance of smaller features. To compensate,
a fine mesh should cover the detailed, highly-curved areas while a coarser mesh spans the
remainder of the solid. But even an initially adequate mesh may fail under the contortions of
DMFED. Firstly, DMFFD forcibly stretches the Polygon-Mesh thereby expanding faces and
jeopardizing the smoothness of later deformations. Secondly, if the lattice is fine-grained
and the directly-manipulated vectors are tightly packed, relative to the size of faces, then

the intricacies of the deformation may be forfeit.

For these reasons, an adaptive refinement scheme is essential. Adaptive refinement
involves recursively subdividing faces in a Polygon-Mesh as required by a deformation.
It consists of two tasks: testing a face against some splitting criterion and if necessary

tessellating the face according to a subdivision method. Pre- and post-deformation images
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of the solid must be maintained. The splitting test is applied to a distorted face while its
undistorted version is required for actual subdivision, with new vertices then undergoing

deformation.

4.3.1 Splitting Criterion

&

Figure 4.4: The Distance to Averaging Plane Criterion

a - Averaging Plane

d - Distance to Plane

e - Edge

s - Edge Shadow cast
on Plane

One measure of the continuity of a portion of the Polygon-Mesh is the angle between
adjacent faces: the more acute the angle, the greater the discontinuity. This observation
is the basis for a modified distance to averaging plane [Schroeder et al 1992] splitting
criterion. A central vertex and its loop of adjacent vertices are considered (figure 4.4). A
plane which averages the loop is constructed and the distance from this plane to the focal
vertex is calculated. Then, the total area of all triangles within the loop is determined.
If the ratio of the distance and combined area is above some tolerance then the cycle of
triangles is a candidate for refinement. This is only a representative angle-based test; more

sophisticated and computationally exorbitant approaches are possible.

However, an elegant heuristic test is preferred. A single triangle is selected and its longest
edge compared against the extent of a lattice cell. The face is accepted for subdivision
according to the formula:

edgelength 1
cellextent = 4
Edge length is chosen in preference to face area since thin elongated triangles cause dis-
continuities disproportionate to their surface area. Also, cell extent is measured by the

shortest cell edge because lattice cells are parallelpiped and not square. While superfluous
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subdivision may sometimes result from this approach, it has the advantages of relying only
on information local to a single triangle, a predetermined degree of subdivision and sheer

simplicity.

4.3.2 Subdivision Methods

VV-Type VE-Type

Figure 4.5: I1l-Formed Triangles

A subdivision method, which partitions a triangle or cluster of triangles into smaller ele-
ments, must now be considered. Such a method will be selected according to the following

attributes:

e Validity Preservation. The subdivision must rigorously adhere to the rules prescrib-

ing a solid’s validity, as outlined previously.

e Efficiency Conservation. The subdivision process should be lean and efficient so
that the system’s interactivity is not hampered. Also, the growth in vertices and faces
should be curtailed, since each new vertex must undergo deformation and each new

face further burdens rendering.

e Regular Triangulation. The formation of thin needle-like triangles should be
avoided. There are two classes of ill-formed triangles [Shimada and Gossard 1995]:
vv-type, where two vertices lie in close proximity and ve-type, formed by moving
a vertex close to an edge (see figure 4.5). An optimal triangle obeys the Max-Min
Angle Principle [Schumaker 1993], which ensures that all angles in a triangle are

above a threshold value.
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e Minimal Propagation. Propagation is the spilling over of subdivision into adjacent
faces which is sometimes necessary to enforce triangularity. It may, however, lead to

complications if the neighbouring faces in turn require refinement.

These qualities are ranked in descending importance: Validity is crucial while minimal

propagation is merely desirable.

[A] Q
[B]v
YA

|

|

— OlId Edge

i Vertex

|
B

-

Figure 4.6: Subdivision Methods: [a] Section-Halving, [b] Quaternary Subdivision, [c]
Centre Subdivision, [d] Delauney Triangulation.

Four validity preserving subdivision methods are detailed in figure 4.6: Section-Halving,
Quaternary Subdivision, Centre Subdivision and Delauney Triangulation. Section-Halving
[Wordenweber 1983] involves connecting the midpoint of the longest edge to its opposite
vertex. A mirroring edge must be placed in the triangle incident on the bisected edge.
Thus, a vertex, two edges and two extra faces are introduced, and a single propagation is
mandated. In Quaternary Subdivision [Bill and Lodha 1994], a triangle is split into four

by dividing all the edges and joining the bisection vertices. Propagation under this method
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must expand to all adjacent faces. A Centre Subdivision [Wordenweber 1983] sets a new
vertex in the centre of the triangle, with edges radiating outwards to the corners. There is
no subsequent propagation. Delauney Triangulation is a powerful approach that imposes
an optimal mesh on a cloud of unstructured vertices. It can be harnessed to the current task
by first erasing all edges in a bounded portion of the mesh, then placing extra vertices inside

this region, and finally applying Delauney Triangulation to remesh the gap.

Of all these methods Delauney Triangulation is the most regular but also the most calculation
intensive. Centre Subdivision is the complete opposite: it is highly local and efficient but
proliferates narrow triangles. Section-Halving is more moderate but may still generate
ill-formed triangles when propagating. In contrast, Quaternary Subdivision functions well
in linking subdivisions across a premarked patch of faces. It also conserves efficiency and
promotes regularity. For these reasons, Quaternary Subdivision is fused with a Heuristic

splitting criterion into an adaptive refinement scheme, which is presented in figure 4.7.

4.4 Decimation

Polygon-Mesh decimation is the antithesis of refinement. Instead of inserting extra vertices,
edges and faces, they are whittled away, making the mesh coarser but also less complex.
There are several motives for this decimation. Firstly, the adaptive refinement scheme
introduced in the previous section is somewhat loose and sacrifices exactitude for efficiency.
A consequence is the insertion of superfluous faces which need to be pared away. Secondly,
if a mesh is too intricate, this will adversely affect the rendering rate. Sometimes mesh

complexity must be sacrificed in the interests of interactivity.

Many of the important properties of refinement apply equally to its complement. However,
while validity preservation, regular triangulation and minimal propagation remain vital,
efficiency conservation is relegated to a lesser role. The efficiency of Polygon-Mesh
decimation is not as critical because, unlike refinement, it is not tightly bonded to DMFFD,

and can be slotted between bouts of modelling when the system is relatively unencumbered.
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Figure 4.7: Adaptive Refinement

Purpose:  Check marked faces against a Heuristic Splitting
Criterion and if necessary subdivide these faces according
to Quaternary Subdivision.

Given: F a face list of n entries with deformed faces marked,
V a vertex list,
cut a heuristic constant,
cell the minimum length of a cell.
Return: altered face list F and vertex list V.
Data
Structures: B a bisection list whose entries correspond to faces in F,

€1.ea, egedge vectors of a face,
v1. U2, vgvertex indices of a face,
b1, bo, bz edge bisectors.

[1] (Test marked faces against the Heuristic Splitting Criterion)
FOR:=1,....n
IF F; is marked THEN
Get vy, va, v3 vertex indices of F;
€1 — Vo, = Vo,
€3 — Vo, = Vo,
€3 — Vo, = Vo4
len «—— maximum of |€7], |€3], |€3]
IF ({len/cell < cul) THEN
Unmark F;
(Now only those faces needing refinement are marked)
[2] (Subdivide those marked faces that remain)
FOR:=1,....n
IF F; is marked THEN
IF B@':l # 0 THEN
by — B;a
OTHERWISE
Ve (V'Cl + VLQ)/Q
Place v in the vertexlist V
by < new index of v
... Similarly determine bisectors by of edge vovs
and b3 of edge v3tq
Get vy . va, v3 vertex indices of F;
Create new faces bybobs, bytobs, bov3bs, bsv1by

Remove F;
Get adj; . adjs. adjs indices of faces adjacent to F;
FORE=1..... 3

Get vy, vo. v3 vertex indices of F 4,
IF by, bisects v1v5 edge THEN
IF adj;, is marked THEN
Badgjx.1+— bi
OTHERWISE
Create new triangles v1byvs, bptovs
Remove F 4,
.. Similarly check if by bisects vov3 or vgv1 and
either alter B or split 4, appropriately
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Figure 4.8: Deletion Criterion
Purpose:  Determine if a loop of triangles requires decimation.
Modified from [Schroeder et al 1992].
Given: A loop of triangles with

5 triangle normals,

z; triangle centres,

A; triangle areas,

1 central vertex,

cut a constant of elimination.
Return: PASS or FAIL on the deletion test.

Data
Structures: Area  total area of the triangle loop,
Dist  distance from the central vertex
to the averaging plane,

N averaging plane normal,

X point on the averaging plane.
Area — > A;
N— (_m Ay)/Area

X — (57 Ay)/Area
Dist — |N - (V = X))
IF (Dist/Area) < cut THEN
RETURN PASS
OTHERWISE
RETURN FAIL

The Polygon-Mesh decimation algorithm is adapted from research into reducing models
that are captured from scanned or sampled data [Schroeder er al 1992]. The method is
fourfold: (1) A vertex is selected, (2) it is tested against a deletion criterion which may
trigger (3) the removal of the vertex along with its incident edges and finally (4) the resulting

cavity is retriangulated.

The deletion criterion employed in this work is the enhanced distance to averaging plane
test, which appeared in the previous section. This was originally [Schroeder et al 1992]
applied to an evenly-spaced Polygon-Mesh extrapolated from such sources as computed
tomography and magnetic resonance scanning, where distance was an adequate measure of
angularity. It does not, however, suffice in the presence of adaptive refinement, since this
caters for sinuousity of miniscule triangles in a limited locale. This localized convolution

will be washed away unless the size of its faces are taken into account, as is done in the
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deletion criterion of figure 4.8.

[A] [B]

Invalid

Invalid —__

[C] [D]
Figure 4.9: Triangulating a Loop: [A] A loop of vertices, [B] Three speculative splits, [C]
Subsidiary loops, [D] A final triangulation.

In the final stage of decimation, a non-planar loop of vertices is retriangulated according
to a recursive loop splitting procedure [Schroeder er al 1992], shown in figure 4.9. At the
top level a split line, which joins two non-adjacent vertices and divides the loop in half,
is generated. A splitting plane orthogonal to the averaging plane and passing through this
split line, is then created. The speculative split becomes an edge in the final triangulation on
passing two tests. (1) The two subsidiary loops must fall on opposite sides of the splitting
plane. (2) No vertex of either loop should pass too close to the plane or ill-formed triangles
will result. Once a split is ratified, the subsidiary loops become candidates for triangulation.
This recursion proceeds until every loop is reduced to a triangle. In the event of failure,
the decimation procedure backtracks prior to vertex removal and then proceeds to a new

vertex. The algorithm associated with this procedure is shown in figure 4.10.
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Figure 4.10: Loop Splitting

Purpose:  Recursively triangulate a 3D loop of vertices

Extracted from [Schroeder et al 1992].

Given: Uk a loop of vertices,
k an ordered set selected from 1. ..., m,
cut a constant of aspect ratio.

Return: FAILURE or

Data

SUCCESS and a list of vertex pairs.

Structures: SP a splitting plane,

T1,T2 boolean test flags.

REPEATEDLY

Select a new two-element subset (4, j) from k in which:
<,
(ii) Z and 5 are not consecutive elements in k,
(iii) 7 must not be the last element of k& while j is the first
IF this is not possible THEN
RETURN FAILURE
OTHERWISE
Form S P a splitting plane orthogonal to the
averaging plane and passing through v;. v;

(Test for ill-formed triangles)
T2 — TRUE
FOR p = successive elements of &k
IF (p # i) AND (p # j) THEN
IF (distance from v, to SP) / (Iength of edge v; — v; < cut) THEN
T2 — FALSE

(Test the separation of subsidiary loops)
T1— TRUE
IF v, FOR p = successive elements of &k from¢+1,....57—1
are not on one side of SPP THEN
T1+—— FALSE
IF v, FOR p = successive elements of &£ from1....,s—1landj+1....,m
are not on the opposite side of SPP THEN
T1+— FALSE

IF T'1 AND T2 are both TRUE THEN

CALL Loop Splitting
passing (v, p = asubsetof k fromé¢+1,...,j— 1) and
returning a set of vertex pairs P1

CALL Loop Splitting
passing (v,, p = asubsetof k from1,....i—landj+1....,m)
returning a set of vertex pairs P2

IF both Loop Splits return SUCCESS THEN
RETURN SUCCESS along with P1, P2 and (i, j)
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4.5 Concluding Remarks

Over the span of this chapter, several disturbing failings in DMFFD have been raised
and resolved. Categories of self-intersection were identified, and specific restrictions
recommended in each case. Subsequently, Refinement and Decimation, two mechanisms

for balancing the smoothness and complexity of the Polygon-Mesh, were presented.
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Chapter 5

Applications

The preceding chapters presented a correct and efficient free-form sculpting tool. Attention
now devolves upon a Virtual Reality interface to support this tool. In this chapter, a
Virtual Testbed that uses the RhoVeR (Rhodes Virtual Reality) system is presented and two
sculpting applications are discussed: interactive surface sketching, where a solid’s shape
is captured on computer by tracing a tracker over its surface, and glove-based moulding,

where a virtual lump of clay is kneaded by a dataglove-directed virtual hand.

5.1 RhoVeR

The RhoVeR system is intended as a flexible foundation and springboard for designing
Virtual Environments. The central premise of the system, in keeping with previous work
at Rhodes University [Bangay 1993], is generality. This is apparent in the following

characteristics of RhoVeR:

e Distributed. The system harnesses multiple interconnected processors.

e Multiplatform. The system functions across arange of Unix-based operating systems

and hardware configurations. Currently Linux, SunOS and Solaris are supported.
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e Multiprogramming. The system allows independant processes to execute concur-

rently on a single machine.

An application can select from among these features. In its full generality, RhoVeR caters
for multiple processes executing on multiple machines, each with a different Unix-based

operating system resident.

These features are realized in RhoVeR with a modular event-driven scheme. Each process
is an instance of a module, be it of input, output, world or object type. The core of each
process is an event-handling loop which accepts, processes and generates events, to and
from other processes. Inter-process event-passing utilizes the Unix Socket, a sophisticated

mechanism for establishing pipe-like communication between processes across a network.

Data distribution is implemented as a combination of Virtual Shared Memory (VSM) and
local process cacheing. Logically, Virtual Shared Memory corresponds to the database
being replicated in every process. Physically, the database is only duplicated once on
every machine and processes have recourse to this data through Unix Shared Memory, a
mechanism for granting processes common access to a block of memory. The VSM stores
information which is of global significance, such as an object’s position and orientation.
Local data, such as an object’s shape, is cached in the associated process, and is only
accessible through a data request event. Further details on the implementation of RhoVeR

appear in Appendix C.

5.2 The Virtual Sculpting Testbed

The flexibility of RhoVeR is exploited in assembling a Virtual Sculpting Testbed, the
purpose of which is to experiment with Directly Manipulated Free-Form Deformation in a

Virtual Environment.
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