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ABSTRACT
Crowd simulations have become increasingly popular in films
over the last decade, appearing in large crowd shots of many
big name block-buster films. An important requirement for
crowd simulations in films is that they should be directable
both at a high and low level. As agent-based techniques
allow for low-level directability and more believable crowds,
they are typically used in this field. However, due to the
bottom-up nature of these techniques, to achieve high level
directability, agent-level parameters must be adjusted until
the desired crowd behavior emerges.

As manually adjusting parameters is a time consuming
and tedious process, this paper investigates a method for
automating this, using Neuro-Evolution. To this end, the
Conventional Neuro-Evolution (CNE), Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES), Neuro-Evolution
of Augmenting Topologies (NEAT), and Enforced Sub Pop-
ulations (ESP) algorithms are compared across a variety of
representative crowd simulation scenarios. Overall, it was
found that CMA-ES generally performs the best across the
selected simulations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent systems

Keywords
Entertainment and media; Simulation optimization; Genetic
algorithms; Multi-agent systems; Neural networks

1. INTRODUCTION
The short film Stanley and Stella in: Breaking the Ice,

shown at the Electronic Theater at SIGGRAPH ’87, show-
cased the revolutionary idea that complex group behavior
can be achieved by providing simple local rules to the agents
within the group, as opposed to using some set of enforced
global rules. Accompanying this short film was a technical
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paper detailing the technique used to simulate the flocking
behavior [21].

Much work has since been done on Crowd Simulations.
These can be roughly divided into two groups. Agent-based
[29, 19] techniques aim to simulate behavior at an agent
level, with the aggregate crowd behavior being emergent.
Group-based [20, 24] techniques aim to simulate behavior
at a group level, with the individual agent behaviors being
chosen so as to adhere to the rules of the group.

Agent-based techniques have the benefit that the agent
behaviors are much more heterogeneous, leading to more
believable scenes. Additionally, the behaviors of individual
agents within the crowd can be directed. Group-based tech-
niques, on the other hand, have the advantage of being less
computationally costly to simulate, allowing for both larger
crowds and interactive simulation speeds. The aggregate
behavior of crowds can also be directed much more easily
than with agent-based methods, which require the adjust-
ment of agent-level parameters in order to obtain the desired
emergent group behavior [25].

Crowd simulations have become increasingly popular in
films in the last decade, appearing in a plethora of movies
such as The Lord of the Rings Trilogy, World War Z, Rata-
touille, and Inception. Directors need these crowd simula-
tions to be both controllable and believable [25]. Group-
based techniques are not a viable choice as they often have
overly homogeneous behaviors, which leads to less believ-
ability, and lack low-level directability since the simulation
occurs at a group level. Thus, agent-based simulations are
used. However, this requires artists to perform the time
consuming and tedious work of adjusting agent parameters
until the desired crowd behavior emerges.

In order to alleviate this burden, it is possible to automate
the adjustment of these parameters. This can be achieved
with various machine learning algorithms. We investigate
one such technique in this context, namely Neuro-Evolution
(NE), which uses Evolutionary Algorithms (EAs) to train
Artificial Neural Networks (ANNs). We apply NE in order
to derive crowd behaviors that accomplish given tasks. That
is, agent controllers are ANNs adapted with EAs such that
crowd behavior conforming to user specifications is evolved.
NE has the advantage that it does not require a specific
rule-set for agent behaviors, allowing for an easier authoring
process.

Due to the variety of NE methods, and to the dearth of
work that applies NE to achieve user specified goals in the
context of crowd simulations designed for film [27], it is un-
known which algorithm yields the best results.
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The contribution of this paper is to present a prelimi-
nary comparative study for various NE methods applied to
representative crowd simulation tasks. The objective is to
ascertain if there is a single NE method that is appropri-
ate for automating crowd behavior design. Given the di-
versity of tasks tested, NE method efficacy is measured as
the best achieved fitness after a set number of fitness eval-
uations. The NE methods investigated are Conventional
Neuro-Evolution (CNE) [28], Covariance Matrix Adapta-
tion Evolutionary Strategy (CMA-ES) [11], Enforced Sub-
populations (ESP) [10], and Neuro-Evolution of Augmenting
Topologies (NEAT) [22]. These methods were chosen in or-
der to cover a range of different types of algorithms. Our
results show CMA-ES to be the best performing algorithm
across our simulation scenarios.

2. BACKGROUND AND RELATED WORK

2.1 Controlling Crowd Simulations
Methods for controlling crowd simulations can be sepa-

rated into two categories, high-level and low-level control
[25]. Low-level control deals with directing individual agents
within the scene. This is typically achieved by either mod-
ifying the variables associated with task or motor outputs
[4], or by building up a state tree for an agent, and then
traversing it to find the desired final state of the agent [9].

High-level control involves controlling the aggregate be-
havior of the crowd. Various group-based techniques have
been successfully applied for such high-level control. For ex-
ample, flow or potential fields can be used to steer agents
towards desirable areas, whilst steering them away from un-
desirable areas [26, 6], whereas crowd configurations can
be controlled through the traversal of motion graphs that
depict group, instead of agent configurations [15]. Addi-
tionally, while not considered full crowd simulation systems,
corridor-based path planning algorithms [13, 3] also repre-
sent a group-based approach to controlling group motion.

Agent-based techniques are also capable of providing high-
level crowd control, typically by using an additional phase
to learn the best parameters for achieving the desired be-
haviors. As an example, Anderson et al. [2] applied high-
level control to bird-flock movement. This was achieved by
performing a forward simulation of the flock, as well as a se-
ries of backward simulations that precisely satisfy the user
provided constraints. The backward simulation most simi-
lar to the forward simulation was then chosen as the final
output. In another method [12], the agent controllers are
represented using fuzzy controllers, with the membership
functions of these controllers being adjusted using Particle
Swarm Optimization [14] in order to satisfy a fitness func-
tion representing the desired final crowd behavior.

Despite its success, the method of Anderson et al. [2] suf-
fers from only being able to control the movement of crowds.
Additionally, it only works with bird flocks as it uses a bird-
flock specific wander element to measure the similarities be-
tween simulations. Jacka’s method [12], whilst being much
more general, is reliant on the artist constructing a well de-
signed fuzzy controller structure in order for the training to
be successful. NE is a promising alternative to these tech-
niques as it is general, but also does not require the complex
authoring process of fuzzy controllers, as users are merely re-
quired to specify the ANN structure, and the desired crowd
behaviors.

2.2 Crowd Simulations in Neuro-Evolution
Crowd simulations fall into the large field of Multi-Agent

Systems (MASs) [23], which have to take into account fac-
tors such as cooperation or competition between the agents,
agent communication, and role specialization. These factors
can be divided along two axes, namely communicative versus
non-communicative and homogeneous versus heterogeneous
[23].

There have been several studies of MASs in NE, such
as Bryant and Miikkulainen’s [5] work on role specializa-
tion of agents using homogeneous teams, which found that
agents can learn to have adaptive role specialization depen-
dent on their local context, and Yong and Miikkulainen’s
[30] work where ANN controllers learn to communicate via
stigmergy, the act of implicitly communicating through per-
ceived changes in the environment.

These works show that it is possible to use both homoge-
neous teams and stigmergy when dealing with communica-
tion and team composition in the design of our simulations.
Both are desired as they allow for significant reductions in
the problem dimensionality.

2.3 Neuro-Evolution Algorithms
NE methods can be divided up into three categories: sin-

gle population fixed topology; cooperative co-evolution; and
topology and weight evolving ANNs (TWEANNs) [7, 22,
18]. In order to test the viability of using NE to control
crowd simulations, we select and compare a well-established
algorithm from each category, in addition to Conventional
Neuro-Evolution (CNE) [28], which is used as a benchmark
to determine if the performance of more complex algorithms
is significantly better.

CNE [28] is the simplest of the NE methods used, where a
single population of fixed topology ANNs is evolved. These
ANNs are represented as vectors of real numbers, with each
real number corresponding to a weight within the ANN.

A different single population fixed topology approach is
the Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) [11]. Much like CNE, CMA-ES also represents
the ANNs as real valued vectors, however, it differs in the
generation of offspring. Offspring are produced in CMA-
ES through sampling a multi-variate distribution, with the
covariance matrix, step size, and mean being iteratively up-
dated so that the distribution covers high fitness areas of the
search space.

The cooperative co-evolution algorithm selected is En-
forced Sub-populations (ESP) [10]. In ESP, multiple sub-
populations of real valued vectors representing neurons are
evolved, as opposed to a single population of ANNs. In order
to evaluate the fitness of these neurons, a neuron is selected
from each sub-population to form an ANN, which can then
get evaluated. The fitness obtained by this ANN is then
shared across all participating neurons. Additionally, each
neuron is evaluated multiple times in order to remove noise.

Neuro-Evolution of Augmenting Topologies (NEAT) [22]
is the selected TWEANN. In NEAT, both the structures
and the weights of a single population of ANNs are evolved.
The evolution of the ANN structures is achieved by muta-
tion operators that add connections or nodes, and the evolu-
tion of the weights which is achieved by mutating connection
weights, and by reproduction, where the weight of the better
performing parent is chosen. NEAT also makes use of com-
plexification, which initializes the ANNs to their simplest
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Figure 1: An agent’s vision is simulated by casting rays, and
returning the distance to the closest intersected object for each
ray.

structure at the start of training, and speciation, which sep-
arates sufficiently different ANNs into different species, in
order to protect structural innovations and minimize struc-
ture size.

All of the algorithms selected for comparisons are direct
encoding methods [8], where the genotype has a direct map-
ping to the ANNs. A different approach would be to use
generative encodings [8], where genotypes are interpreted us-
ing some set of rules in order to obtain the ANNs. Although
comparing generative encodings lies outside the scope of this
paper, it remains a promising direction for future investiga-
tion.

3. METHOD
Our system is divided up into three sub-systems: Neuro-

Evolution, Simulation, and Rendering. The NE sub-system
is responsible for loading the initial ANN structure and for
running the NE methods, the simulation sub-system evalu-
ates the fitnesses of candidate solutions sent from the NE
sub-system within a given simulation scenario, and the ren-
dering sub-system is responsible for visualizing a given sim-
ulation with a candidate solution and for loading 3D models.

Full results and source code used for this paper can be
found in our online repository1. Additionally, videos of the
various simulation scenarios can be found on our YouTube
channel2.

3.1 Controlling Agents
Each agent performs four steps every simulation cycle in

order to update its behavior. It first perceives its local en-
vironment, using aspects such as vision (figure 1), agent ve-
locity, and agent goals. The agent’s ANN controller is then
evaluated using its perception as input values. We use Fully
connected Feed-Forward ANNs as our chosen ANN type as
we found that they performed sufficiently, thus eliminating
the need for using more complex ANN types. The output
values of the ANN are then passed back to the agent, which
then interprets them to determine what actions should be
performed. Finally, the agent acts according to these in-
structions.

1https://bitbucket.org/igorawratu/
ne-algorithm-comparison-paper
2https://www.youtube.com/channel/
UCInMj1UK-1XXEo-RLidNrtw

3.2 Team composition
We use a homogeneous per species approach when assign-

ing ANN controllers to agents, where all agents within a
species use the same ANN controller. These species are
used to represent different agent types, such as mice and
robots, or different desired roles, such as defenders and at-
tackers. The homogeneous teams approach is beneficial to
crowd simulations as it allows for better search space scal-
ability, as simulations can consist of tens to hundreds of
thousands of agents. Species allow for simulations to have
different agent types with differing inputs and outputs, and
to have the same types of agents adopt different roles.

3.3 Fitness Evaluation
The fitness function of a given simulation is represented

as a set of objectives, encoding the desired behaviors for the
crowd. Examples of these objectives are reaching a physical
goal location, or having a specific amount of agents alive at
the end of a battle.

In order to evaluate a candidate solution, a simulation is
run for a specified amount of time with the given solution,
with the crowd’s behavior being evaluated against the given
objectives. After the simulation has completed, these ob-
jectives are then combined as a weighted sum in order to
obtain the final fitness value. Fitness function weightings
were obtained through exploratory experiments.

4. EXPERIMENT
Our crowd simulation testbed consists of eight different

scenarios: Car Bridge Crossing; Car Race; Car Crash; War
Robot Battle; Mouse Escape; Space-Ship Turnback; Space-
Ship Obstacle; and Space-Ship Obstacle Field. Four differ-
ent agent types were used in these scenarios, namely: Car,
War-Robot, Mouse, and Space-Ship. This section elaborates
on these scenarios and agents, as well as the parameters and
experimental setup for our tests.

4.1 Agents
There are four different agent types used in our simula-

tions. The Car agent is an agent that moves in a two-
dimensional plane, with the ANN controller determining
both its linear and angular acceleration. In order to simu-
late this agent’s vision, eight rays are cast uniformly around
the Car, thus simulating aspects such as rear and side-view
mirrors.

Much like the Car agent, the Mouse agent’s movement
is also two-dimensional, with the ANN determining both
its linear and angular acceleration. The Mouse agent also
has the additional behavior that it can sense if there is an
obstacle in front of it, and if so, it will come to a halt. The
vision of this agent is simulated by casting eight rays in a
cone in front of the Mouse.

The War Robot agent is another agent whose movement
is on a two-dimensional plane, with the ANN controlling the
linear and angular accelerations of the agent. The war-robot
is also capable of sensing if there is an enemy in front of it,
and if there is, it will fire and destroy it. The vision of
this agent is similar to the Car agent, where rays are cast
uniformly around the agent. However, it differs in that in
addition to distance, the type of obstacle is also returned,
with possible types being friendly, neutral, and enemy.

The Space Ship agent moves in three-dimensional space,
with the ANN controller determining its x and y angular ac-
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celeration (allowing it to rotate around both x and y axis),
and its linear acceleration. Although it is typical for these
types of agents to also rotate around the z axis, we elim-
inated this as we found that the agents evolved a visually
unpleasant behavior, where they achieved the desired objec-
tives very inefficiently by spiraling towards the goals. The
vision of this agent is simulated by casting rays in a forward
facing 5x5 grid.

In addition to vision, the agents are also provided with a
variety of other inputs. However, as these inputs are simu-
lation specific, they will be discussed in section 4.2. Addi-
tionally, all ANN controllers have six hidden nodes, which
was found to work consistently well (we experimented with
ANNs with 0 to 10 nodes). However, no hidden nodes were
used for the initial ANN structure when using NEAT, to
allow complexification.

4.2 Simulations
There are a total of eight different simulations used in our

tests. While these simulations are not representative of all
possible crowd simulation use cases in films, they do provide
a reasonably diverse set with which to evaluate NE.

A set of common objectives were used across all of our
simulations:

• D - The sum of the distances of all the agents to their
final goal at the end of a simulation;

• A - Accumulated angular velocities of all agents through-
out the simulation, used to eliminate oscillating agent
movement;

• C - Total number of collisions occurring throughout
the simulation;

• P - Difference between desired and actual population
size of a crowd.

In addition to these, there are a couple of specific objectives,
which are further explained within their respective simula-
tion sections.

We also define a fitness threshold for each simulation.
This threshold represents what a candidate solution’s fit-
ness should achieve in order to display acceptable behavior
in the given simulation. These thresholds were obtained by
viewing the simulations at various fitnesses, and then se-
lecting a value close to an acceptable simulation’s achieved
fitness.

In the Car Bridge Crossing (CBC) simulation, ten Car
agents starting in a wide area are tasked to cross a narrow
bridge area within 10 seconds whilst avoiding collisions with
both the environment and other agents. The Car agents, in
addition to vision, also provide the ANN with their current
position, the finish line that they must cross, current linear
velocity, and current angular velocity. The fitness of a geno-
type is calculated using f = 2D + 2C + A. The acceptable
fitness threshold of this simulation is 100.

In the Car Race (CR) simulation, ten Car agents are
tasked to complete a race course within 13 seconds while
avoiding collisions, where the agent at the back must come-
back and win the race. The Car agents are provided with
additional inputs in the form of position, the points defin-
ing the finishing line, velocity, the desired winner’s position,
and a flag specifying whether or not they are the desired
winner. The fitness for this simulation is calculated using

f = C +D+ 20W where W is the distance of the underdog
to the actual winner of the race at the time the first Car
crosses the finish line. The fitness threshold defined for this
simulation is 250.

In the Car Crash (CC) simulation, two groups of 10
Cars each are initialized opposite to each other in a narrow
corridor, with the aim being that they need to move to the
opposite end of the corridor within 10 seconds, while avoid-
ing collisions between both the environment and other Cars.
Additional inputs for an agent include its position, the finish
line for its respective group, and its velocity. The fitness is
calculated with f = 5D + C. The fitness threshold for this
simulation is 250.

In the War Robot Battle (WRB) scenario, two groups
of 40 War Robot agents are tasked to battle each other for 10
seconds. One group is initialized behind various buildings,
whereas the other is initialized in an open field. The aim of
this simulation is to have between nine and 11 agents left on
each side at the end of the simulation. The additional inputs
for the War Robot agents are position and velocity. The
fitness for this simulation is calculated using f = C + 20P .
The fitness threshold defined for this simulation is 150.

In the Mouse Escape (ME) simulation, thirty-five Mouse
agents are tasked to escape from five robot agents, with the
aim of there being between 11 and 13 Mouse agents escaping
by the end of a 15 second simulation, with the rest of the
mice having been killed by the robots. The Mouse agents
are initialized on one side of the environment, behind various
buildings which act as cover, and have to cross a finish line
situated at the opposite end of the environment in order to
count as having escaped. The Mouse agents have additional
inputs of position, linear velocity, and the finishing line. The
War Robot agents have additional inputs of position and ve-
locity. The fitness of the simulation is calculated by using
f = 4D + 25P + C. Fitnesses under 100 are regarded as
acceptable for this simulation.

In the Space Ship Turn back (SSTB) simulation, 40
Space Ship agents are tasked to move towards a goal sphere,
which is initialized behind their starting position, within 10
seconds. In order to enforce cohesion amongst the crowd, an
extra goal sphere with a significantly larger radius is used.
Although it is also possible to instead use the sum of the
distances to the crowd centroid as an objective, we found
using the extra goal spheres to be a much simpler method.
The Space Ship agents are provided the additional inputs
in the form of current agent position, position of the goal
spheres, current linear velocity, and the magnitude of their
angular velocity. The fitness for this simulation is calculated
using f = 10C+2G1+2G2+0.2A whereG1 is the goal sphere
andG2 is the extra goal sphere used to enforce cohesion. The
fitness threshold for this simulation is 750.

The Space Ship Obstacle (SSO) simulation is identical
to the Space Ship turn back simulation, with the exception of
the goal spheres and the environment. The goal spheres are
placed in front of the agent, with a large obstacle in between
the goal point and the agent starting positions. Additionally,
the fitness threshold of this simulation is higher than that
of the turnback simulation due to the presence of the extra
obstacle, leading it to be defined at 1000.
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Table 1: Mean fitness after 20,000 fitness evaluations achieved by
the NE methods across the various simulations. Bolded fitness
values achieved better values than the fitness threshold. Accept-
able thresholds for each simulation can be found in section 4.2.

Simulation NEAT CMA-ES CNE ESP
CBC 7.87 60.14 3.35 43.14
CC 946.78 389.03 752.48 935.16
CR 401.85 147.59 171.34 265.68
ME 17.82 5.64 1.70 7.75
WRB 72.09 74.39 90.2 108.72
SSTB 428.63 47.8 203.21 101.93
SSO 1262.45 773.99 1273.87 2190.49
SSOF 891.21 675.13 847.42 1031.02

The Space Ship Obstacle Field (SSOF) simulation
is identical to the Space Ship obstacle simulation, with the
exception of there being a field of small obstacles instead
of one large one. The fitness threshold of this simulation is
defined at 1000.

4.3 Parameters and Operators
The operators used for our experiments are: Linear Rank-

Based Selection for CNE, NEAT, and ESP; Blend crossover
for CNE and ESP with α = 0.5 and a crossover probability
of 0.8; and Gaussian weight mutation for CNE, NEAT, and
ESP, with a mutation probability of 0.2, and a mutation
probability of 0.02 for CNE and ESP, and 0.8 for NEAT.
Additionally, the add node and add connection mutation
probabilities for NEAT were 0.03 and 0.05 respectively, and
the compatibility threshold was set at 0.5. We used popula-
tions of 100 for CNE and NEAT, and sub-populations of 50
with each neuron being evaluated 5 times for ESP, with 5%
elitism for CNE, ESP, and NEAT. We used an initial step
size of 0.2 for CMA-ES. We run burst mutation on an ESP
sub-population after it has stagnated, which we detect by
seeing if it has not improved after 20 generations. These op-
erators were determined through preliminary experiments.

4.4 Experimental Setup
Each of the four NE methods were run for 20,000 fitness

evaluations 30 times each on every simulation, with the best
fitness obtained by each algorithm being sampled every 10
fitness evaluations. We then plot the averages of the fitness
values obtained, using the one-tailed Mann Whitney U test
[16] to test if the distributions are significantly different us-
ing a confidence interval of 95% and a significance threshold
of p=0.05.

5. RESULTS AND DISCUSSION
As shown in tables 1 and 2, CMA-ES was found to ei-

ther perform the best, or perform comparably to the best
algorithm. The one exception is the Mouse Escape simu-
lation. However, this simulation proved very easy for all
algorithms to learn, with the differences in mean fitness be-
ing negligible. One problem that we found with CMA-ES is
that its computational cost far exceeds the other three al-
gorithms on problems with higher dimensions, with thethe
mean time taken to execute CMA-ES being between 2-4
times that of the other three3 (table 3) on some of the sim-

3Processor: i5-3570 @ 3.4GHz

Table 2: Mann-Whitney U test p-values of the various algorithms
when compared to the algorithm that achieved the lowest mean
after 20,000 fitness evaluations in each simulation scenario. N/A
is used to signify the algorithm with the lowest mean.

Simulation NEAT CMA-ES CNE ESP
CBC 9.5e-4 0.21 N-A 2.2e-3
CC 1.1e-10 N-A 3.8e-9 1.6e-11
CR 1.1e-10 N-A 0.47 6.6e-5
ME 2.4e-7 3.1e-6 N-A 4e-5
WRB N-A 0.39 1.6e-4 7.7e-10
SSTB 6e-11 N-A 1.8e-8 2.5e-8
SSO 3.7e-10 N-A 6.2e-5 5.4e-10
SSOF 4.5e-8 N-A 2.8e-4 4.1e-7

Table 3: Mean execution times of the NE algorithms across the
various simulation scenarios when evolved for 20,000 fitness eval-
uations.

Simulation NEAT CMA-ES CNE ESP
CBC 280.1s 305.3s 231.3s 241.4s
CC 514.1s 602.5s 538.9s 531.1s
CR 385.8s 1402.1s 372.2s 356.4s
ME 1356.6s 2590.8s 955.6s 961.4s
WRB 2671.1s 5671.2s 2612.1s 2659.7s
SSTB 1086.4s 2201.4s 1013.4s 1017.7s
SSO 1062.5s 2185.8s 1021.3s 1000.1s
SSOF 1261.9s 2383.5s 1256.2s 1170.1s

ulations. This increased computational cost is mainly due
to the Eigen-decomposition step of the algorithm, which is
O(n3). In order to verify this we used CMA-ES in a simu-
lation where 4 agents were tasked to complete a race track
within a given time limit, with the team setups being het-
erogeneous, 1 ANN for every 2 agents, and homogeneous.
The execution times found for these team compositions were
3689.02s, 1398.85s, and 283.86s respectively.

CNE performed above expectations and achieved the best
mean fitness for two out of eight of the simulations. It was
also one the second best performing algorithm for four out of
eight of the simulations. This high performance was mainly
unexpected due to its simplicity, and to it achieving poorer
results than the other algorithms in previous works [22, 10].
In addition to the algorithm’s high task performance, it is
also the least computationally intensive, leading to it being
an attractive option for evolving ANN controllers to con-
trol crowd behaviors. One issue with CNE is that its task
performance deteriorated on higher dimensional problems.
This may lead to it performing poorly in more heterogeneous
team setups, however, further investigation is required.

NEAT’s task performance was average compared to the
other algorithms, often being either the second or third best
performer. One unique benefit to NEAT, however, is that it
is not necessary to predetermine an effective ANN structure,
as both structure and weights are evolved.

ESP was shown to be the worst performing algorithm in
our simulations. On the other hand, as shown in figure 2,
ESP is often still improving at the end of our preset 20,000
fitness evaluation limit. Thus it may be possible that it
will perform significantly better given longer evolution run
times. This is most likely due to our use of sub-population
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Figure 2: Mean fitness values of the NE methods across the various simulation scenarios using a population of 30 samples throughout
20,000 fitness evaluations for each simulation
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sizes of 50 with five fitness evaluations per neuron, causing
ESP to run for less than half the number of generations of
NEAT and CNE, and less than 10 times the amount of gen-
erations of CMA-ES for the same number of fitness evalua-
tions. Additionally, ESP’s performance increased relative to
the other algorithms on higher dimensional problems, such
as the space-ship turn back scenario, possibly due to its co-
operative nature. This increased performance makes ESP a
worthwhile avenue of investigation when researching more
heterogeneous controller setups.

Of the eight test simulations, we found that the Car Bridge
Crossing, Mouse Escape, Space-Ship Turn Back, and War
Robot Battle scenarios to be the easiest to evolve effective
controllers for, with all the algorithms ultimately achieving
acceptable final crowd behaviors. Scenarios of moderate dif-
ficulty were the Space-Ship Obstacle, Space-Ship Obstacle
Field, and the Car Race simulation as only 1-3 algorithms
(depending on the actual simulation) were able to achieve
the target fitness thresholds for those scenarios.

The one simulation that all algorithms struggled with is
the Car Crash scenario, with none of the algorithms able to
achieve a mean fitness below the threshold. The difficulty of
learning this simulation is due to the close proximity of the
agents, as well as the extremely narrow corridor, resulting in
the agents having to evolve near perfect movement in order
to avoid collisions. One way to deal with this is to have an
ANN controller for each group as opposed to a single ANN
controller for both groups, which would allow each group of
agents to adopt different avoidance strategies.

In addition to dealing with the Car Crash scenario, inves-
tigating more heterogeneous controller setups is also desir-
able for generating more diverse behaviors amongst agents,
as we found that in certain simulations with sparse envi-
ronments, such as the War Robot Battle, agents tend to
adopt very homogeneous behaviors. This is undesirable for
films as it leads to the crowds being less believable. This
issue can be attributed to many of the ANN inputs being
the same, resulting in identical outputs for multiple agents.
We hypothesize that using more heterogeneous controller
setups may result in more heterogeneous behaviors, leading
to more believable scenes. Additionally, this would also al-
low for the use of pareto-based multi-objective optimization
to evolve differing but optimal agents [1]. This is achieved
by selecting sufficiently different candidate solutions on the
pareto-front as agent controllers for the simulation.

A different approach to achieve more heterogeneous be-
havior is to instead employ a hierarchical model [20, 17],
where an agent’s high level goals and cognition are separated
from their low level motor functionalities. The ANN would
then control the cognitive-level functions of the agents, as
opposed to the direct motor behaviors as in our current sim-
ulations. This approach may allow for more complex agent
behaviors, whilst keeping the problem dimensionality low.
However, the additional behavioral layers could result in the
crowds being more difficult to control.

6. CONCLUSIONS AND FUTURE WORK
This paper evaluated the task performance of Conven-

tional Neuro-Evolution (CNE), Covariance Matrix Adapta-
tion Evolutionary Strategy (CMA-ES), Neuro-Evolution of
Augmenting Topologies (NEAT), and Enforced Sub-populations
(ESP) in the domain of controlling emergent crowd behav-
iors for film across eight different simulation scenarios. Over-
all, we found that CMA-ES achieves the best task perfor-
mance. However, it comes at the cost of computational com-
plexity, as it performs significantly slower than the other
three algorithms on higher-dimensional scenarios. For this
reason, it may be desirable to instead use CNE, which com-
bines good task performance and cheap computation cost.
Nonetheless, we found that CNE’s mean fitness is poorer in
our higher dimensional scenarios relative to lower-dimensional
ones. Thus, further investigation is required in order to de-
termine how well it performs on higher dimensionality prob-
lems.

Future directions of research include investigating more
heterogeneous controller setups, exploring various genera-
tive encoding NE methods, performing user evaluations on
the believability of the generated crowds, using pareto-based
multi-objective optimization in order to generate more het-
erogeneous behaviors, and investigating the use of NE with
more hierarchical agent behavior models.
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