
Ontology-Based Data Access of Animals with Ontop
– A Tutorial –

Frances Gillis-Webber
Department of Computer Science

University of Cape Town
South Africa

C. Maria Keet
Department of Computer Science

University of Cape Town
South Africa

The aim of this tutorial is to demonstrate the concept of Ontology-Based Data Ac-
cess (OBDA), where one queries the data residing in a database through the ontology.
We use the Ontop framework for this, which is compatible with the Protégé ontology
development environment (ODE), and MySQL is used as the relational database. The
following tasks are demonstrated in this tutorial:

• the implementation of Ontop and the connection to a data source;

• the creation of a mapping in the mapping layer;

• using the virtualised data to (a) query in SPARQL and (b) materialise as non-
virtualised triples.

The remainder of this tutorial is structured as follows: Section 1 presents a brief
overview; the installation of Ontop in Protégé is described in Section 2, and Section
3 demonstrates the mapping process. Section 4 concludes with a demonstration of
the use of the data from Section 3. Note: similar tutorial material (and on which
the general instructions of this tutorial are based) for a subject domain other than
elephants inhabiting one of the 10 largest national parks in the world can be found at
https://github.com/ontop/ontop/wiki and https://ontop-vkg.org/tutorial/.

1 Introduction

Ontology-Based Data Access (OBDA) connects the TBox of the ontology to the ABox
with the data that is stored in a relational database (rather than that in an OWL file),

1

https://github.com/ontop/ontop/wiki
https://ontop-vkg.org/tutorial/


with a mapping layer as the intermediary. The relational data which is retrieved as
results to a query can then be returned as-is or it can be virtualised into RDF by way
of mappings, to generate a knowledge graph [3]. This thus transforms the composite
into a knowledge base, with data independence between the TBox and the ABox, but
without losing the ability to query this data using SPARQL.

Motivations for this type of architecture, as well as the technical details, are de-
scribed in Chapter 8 of the ontology engineering textbook.

2 Installing Ontop in Protégé

In this section, where to download Ontop is specified, as well as other required software
for Microsoft Windows. The section is concluded with a description of the processes
required to install Ontop and set up a connection to the database.

2.1 What to download

The following material is required for this tutorial:

• Protégé 5.x, which can be downloaded from https://protege.stanford.edu/.

• Java Runtime Environment (JRE) 8.x.

• Ontop, which can be downloaded from https://github.com/ontop/ontop/

releases.

• African Wildlife Ontology for ODBA (AWO), version 4obda.owl, which is
downloadable from https://people.cs.uct.ac.za/~mkeet/OEbook/ontologies/

or http://www.meteck.org/teaching/OEbook/ontologies/.

• Animals database (ADB), which is downloadable from https://www.movebank.

org/movebank/#page%3Dstudies%2Cpath%3Dstudy736029750 (the DOI for the
data is 10.5441/001/1.403h24q5.).

• MySQL. If installing ADB on your localhost: https://dev.mysql.com/downloads/
mysql/.

2.2 Setting up Ontop

The steps required to implement Ontop are shown below. It is assumed that Protégé
has already been installed.

1. Go to the most stable release of Ontop on Github.

2. Scroll down to the Assets sub-section and download the it.unibz.inf.ontop.protege-
[version].jar file.

2

https://protege.stanford.edu/
https://github.com/ontop/ontop/releases
https://github.com/ontop/ontop/releases
https://people.cs.uct.ac.za/~mkeet/OEbook/ontologies/
http://www.meteck.org/teaching/OEbook/ontologies/
https://www.movebank.org/movebank/#page%3Dstudies%2Cpath%3Dstudy736029750
https://www.movebank.org/movebank/#page%3Dstudies%2Cpath%3Dstudy736029750
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/


3. If Protégé is open, close the application.

4. Go to the Protégé directory and navigate to the plugins folder.

5. Move the downloaded .jar file to this folder.

6. After opening Protégé, Ontop should now be visible in the menu bar.

7. In the menu bar, click on Window and then Tabs.

8. Select Ontop Mappings, and then select Ontop SPARQL. Both tabs should
now display in the main window, as shown in Figure 1.

Figure 1: Ontop installed in Protégé

2.3 Setting up the JDBC driver

Ontop uses the Java DataBase Connectivity Framework (JDBC) to connect to data
sources. Before setting up the database connection, the JDBC driver needs to be in-
stalled. Installing the JDBC driver for MySQL is described below; for other databases,
go to https://github.com/ontop/ontop/wiki/ObdalibPluginJDBC.

1. In your web browser, search for the MySQL Connector/J driver. At time of
writing, it can be found at: https://dev.mysql.com/downloads/connector/

j/.

2. For the Windows and Mac operating system (OS), select Platform Indepen-
dent from the Operating System dropdown.

3. Download the compressed file appropriate for your OS, uncompress it, and save
it to a location of your choice.

4. Open Protégé, and go to File > Preferences (Windows) or Protégé > Preferences
(Mac).

5. In the pane that opens, select the JDBC Drivers tab.

6. If the JDBC driver for MySQL is not visible, then click the Add button.

3

https://github.com/ontop/ontop/wiki/ObdalibPluginJDBC
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/


7. In the Description field, enter a descriptor, for eg. ‘MySQL JDBC Driver’.

8. Select com.mysql.jdbc.Driver in the Class Name dropdown.

9. Browse to the .jar file of the driver downloaded in Section 3.2 and then click OK.

10. Your installed driver should have a status of ready in Protégé, as shown in
Figure 2.

11. Click OK to exit the Preferences pane.

Figure 2: Ontop installed in Protégé

2.4 Setting up the database connection in Protégé

The database first needs to be installed. The database can be hosted in the cloud or
it can be installed on your localhost. If installing locally, make sure MySQL server
is set up and running. Connect to MySQL server and run/import the ADB script.
This script will create the database (with the name ‘animals’), its structure and it will
populate the tables with data. Before proceeding, check that the database has been
set up and you can query the data therein.

The connection URL in Protégé for MySQL is of the following format:

4



jdbc:mysql://hostname:port/animals?sessionVariables=sql mode='ANSI'

These tasks describe how to write the correct connection URL for the animals database
we will be using.

1. Replace hostname with the database server name. If you are hosting the
database locally, then replace hostname with localhost.

2. If the port number is known, replace port with this number. If not used, then
remove :port.

3. The text animals is the name of the database. Make sure to keep the querystring
parameters unchanged.

To set up the connection in Protégé:

1. Open AWO in Protégé.

2. Select the Ontop Mappings tab, and then the Datasource manager tab.

3. Enter the connection URL tailored to your configuration in the field provided.

4. Enter the username and password in the Database Username and Password
fields.

5. Select com.mysql.jdbc.Driver from the Driver class dropdown.

6. Click the Test Connection button.

7. If there is a successful connection, a Connection is OK message should be
shown, as shown in Figure 3.

3 The mapping process

In this section, an exercise is presented on creating mapping axioms between the
database and the tutorial ontology. That is, we are going to link elements from the
ontology to queries over the database. First,

1. Open the ontology (the OBDA version of AWO) in Protégé.

2. Choose some vocabulary element you wish to retrieve the instances of (e.g., Ele-
phant).

Creating a mapping axiom is then a three-step process in Protégé:

5



Figure 3: A successful connection to MySQL

1. Source: write an SQL query that will retrieve the instances (or tuples) from the
database that are the instances of the chosen element (all elephants, in this case),
and then test this query to verify it is the correct query. This is the body of the
mapping.

2. Target: map the fields returned in the SQL query to a triples template. This is
the head of the mapping.

3. Save: edit the mapping ID to a unique, more memorable identifier (optional),
and then save the mapping.

In AWO, there is a class Elephant. This is the common name of the mammal,
Loxodonta africana. Likewise, there are other sub-classes of Animal in AWO (see
Figure 4), such as Giraffe, Lion and Warthog.

ADB contains data of animals tagged (collared) for scientific research in national
parks in South Africa [1], whose data analysis has been published recently [2]. There
are five tables: speciesList, studies, nationalParks, countries, animals and animalTags.
The table speciesList lists the animals from the class Animal in AWO. The table studies
contains the list of studies included in this database. The table nationalParks contains
the parks in which these studies were conducted. The table countries contains the
countries in which the parks are located. The table animals lists the animals which
have been tagged. The table animalTags lists the tags associated with an animal from
the animals table. An animal may have one or more tags during its lifetime.

6



Figure 4: The class Animal

GOAL
Using SPARQL, we want to retrieve all tagged elephants. To do this, we need to do
the following:

1. Create a mapping axiom in Protégé.

2. Write a SPARQL query to query this data.

3.1 Writing the SQL query for the body of the mapping

1. In Protégé, select the Ontop Mappings tab, and then the Mapping manager
tab.

2. Click the Create button.

3. In the Source (SQL Query) box, enter the SQL query as shown in Listing 1.

4. Then click the Test SQL Query button.

5. If the results returned are similar to those shown in Figure 5, proceed to the next
section, otherwise go back to point 3.

SELECT animals.id FROM animals

INNER JOIN speciesList ON speciesList.scientificName = animals.taxon

WHERE speciesList.class = 'Elephant '
ORDER BY animals.id

Listing 1: Example SQL query for retrieving elephants

7



Figure 5: A mapping for Elephant.

3.2 Writing the triples template for the head of the mapping

1. In the Target (Triples Template) box, enter the triples as shown in Listing 2.
The completed mapping should look similar to that shown in Figure 5.

2. If desired, edit the Mapping ID to MAPID-instanceElephants, and then click
the Update button.

3. The newly created mapping will now show in the Mapping manager pane (see
Figure 6).

:Animal{id} a :Elephant .

Listing 2: Example triples template

The column returned in the SQL query is mapped to the equivalent {column} in
the triples template.

Points to note:

8



• The order of each mapped column in the triples template must match the order
of the column names returned in the SQL query.

• A column from the SQL query can only be mapped once in the triples template.

• Only inner joins are currently supported by Ontop.

Figure 6: A mapping in Mapping manager

Now that the mapping between ADB and AWO has been created, the virtualised
data can be queried using SPARQL.

3.3 Querying the data using SPARQL

1. In Protégé, select the Ontop SPARQL tab.

2. In the Query Editor box, enter the prefix declarations and the SPARQL query
as shown in Listing 3.

3. Click Reasoner in the menu bar.

4. Make sure the Ontop x.x reasoner is selected, and then click Start reasoner.

5. Go back to the Query Editor box in the Ontop SPARQL tab and click the
Execute button. The results should look similar to those in Figure 7.

6. If you edit your SPARQL query, go back to Reasoner in the menu bar and click
Synchronise reasoner before executing the query.

PREFIX : <http :// www.meteck.org/teaching/OEbook/ontologies/

AfricanWildlifeOntology4obda.owl#>

SELECT DISTINCT *

WHERE { ?animalId a :Elephant }

Listing 3: A SPARQL query using the template from the created mapping

9



The triple pattern enclosed within the curly braces:

?animalId a :Elephant

is the same pattern as that used in the triples template:

:Animal{id} a :Elephant .

The mapped values from the database are now replaced by SPARQL variables.
The goal was to retrieve all tagged elephants. Using the data from ADB, this has

returned 14 elephants (as instances of the Elephant class).

Figure 7: Querying virtual triples using SPARQL, which for our sample database lists
the collared (tagged) elephants in the bottom pane.

4 Advanced Goal

Building on the tasks from the previous sections, we now move onto a more advanced
goal. We want to identify, using SPARQL, the instances of Elephant which were
collared for scientific research within South African national parks. To do this, we
need to do the following:

1. Create virtual instances of the sub-class SouthAfricaNationalPark from the na-
tionalParks table in ADB.

2. Create virtual triples using the tagged-in property from the instances of the Ele-
phant class to the relevant instances of the SouthAfricaNationalPark sub-class.

10



4.1 Virtual instances of SouthAfricaNationalPark

1. Create a new mapping in the Mapping Manager.

2. In the Source (SQL Query) box, enter the SQL query as shown in Listing 4.

3. In the Target (Triples Template) box, enter the triples as shown in Listing 5.

4. Edit the Mapping ID to MAPID-instanceSouthAfricaNationalParks, and
then click the Accept button.

5. The newly created mapping will now show in the Mapping manager pane.

SELECT nationalParks.shortName from nationalParks

WHERE nationalParks.countriesId = 1

Listing 4: SQL query for South African National Parks

:{ shortName}NationalPark a :SouthAfricaNationalPark .

Listing 5: Triples template for SouthAfricaNationalPark instances

4.2 Virtual triples using the tagged-in object property

1. Create a new mapping in the Mapping Manager.

2. In the Source (SQL Query) box, enter the SQL query as shown in Listing 6.

3. In the Target (Triples Template) box, enter the triples as shown in Listing 7.

4. Edit the Mapping ID to MAPID-triplesTaggedIn, and then click the Accept
button.

5. The newly created mapping will now show in the Mapping manager pane.

SELECT animals.id , nationalParks.shortName FROM animalTags

INNER JOIN animals ON animals.id = animalTags.animalsId

INNER JOIN speciesList ON speciesList.scientificName = animals.taxon

INNER JOIN studies ON studies.id = animalTags.studiesId

INNER JOIN nationalParks ON nationalParks.id = studies.nationalParksId

WHERE speciesList.class = 'Elephant '
ORDER BY animals.id

Listing 6: SQL query for the tagged-in object property

:Animal{id} :tagged -in :{ shortName}NationalPark .

Listing 7: Triples template for the tagged-in object property

There should be three mappings in Protégé:

11



1. MAPID-instanceElephants

2. MAPID-instanceSouthAfricaNationalParks

3. MAPID-triplesTaggedIn

The virtualised data between ADB and AWO can now be queried using SPARQL.

4.3 Querying the data using SPARQL

1. In the SPARQL Query Editor box, enter the prefix declarations and the
SPARQL query as shown in Listing 8.

2. Click Reasoner in the menu bar, and then click Start / Synchronize rea-
soner.

3. Go back to the Query Editor box in the Ontop SPARQL tab and click the
Execute button. The results should look similar to those in Figure 8.

PREFIX : <http :// www.meteck.org/teaching/OEbook/ontologies/

AfricanWildlifeOntology4obda.owl#>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT DISTINCT *

WHERE {

?nationalPark a :SouthAfricaNationalPark .

?animalId a :Elephant ; :tagged -in ?nationalPark .

}

Listing 8: The SPARQL query to retrieve the elephants tagged in SA national parks.

5 Working with the virtualised data

5.1 Materialising the triples

The data from the mappings does not have to remain virtualised, it can be materialised
as well.

1. In Protégé, click Ontop in the menu bar.

2. Then click Materialize triples.

3. In the window that opens, the user is presented with the option to add the vir-
tualised triples to the current ontology or dump the ontology and the virtualised
triples to an external file.

12



Figure 8: OBDA query in SPARQL (top pane) with the instances (bottom pane), being
the tagged elephants in SA national parks.

4. Select a preferred option and follow the screen prompts.

Figure 9 shows an example of materialised triples of a virtual instance, dumped to
an external file, using the mapping from Section 3.2.

Figure 9: Materialised triples of a virtual instance

References

[1] Slotow, R., Thaker, M., Vanak, A.: Data from: Fine-scale tracking of ambi-
ent temperature and movement reveals shuttling behavior of elephants to water
(2019), retrieved from Movebank Data Repository, https://doi.org/10.5441/

001/1.403h24q5

[2] Thaker, M., Gupte, P.R., Prins, H.H.T., Slotow, R., Vanak, A.T.: Fine-scale track-
ing of ambient temperature and movement reveals shuttling behavior of elephants
to water. Front. Ecol. Evol. 7(4) (2019). https://doi.org/10.3389/fevo.2019.00004

[3] Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: An
overview of systems and use cases. Data Intelligence 1, 201–223 (2019)

13

https://doi.org/10.5441/001/1.403h24q5
https://doi.org/10.5441/001/1.403h24q5

	Introduction
	Installing Ontop in Protégé
	What to download
	Setting up Ontop
	Setting up the JDBC driver
	Setting up the database connection in Protégé

	The mapping process
	Writing the SQL query for the body of the mapping
	Writing the triples template for the head of the mapping
	Querying the data using SPARQL

	Advanced Goal
	Virtual instances of SouthAfricaNationalPark
	Virtual triples using the tagged-in object property
	Querying the data using SPARQL

	Working with the virtualised data
	Materialising the triples


