Zub%ida C. Khan
zkhan@csir.co.za
Senior researcher @ CSIR

OUTLINE

= Introduction

= Why modularise an ontology?

= History of modularisation

= What is lacking in modularisation?

= Define modularisation

= Classifying modules

= A framework for ontology modularisation
= Theories and techniques for modularisation
= Evaluation metrics

= New algorithms

= Conclusion

INTRODUCTION

= Modularity: dividing, separating the components of a large system such that
modules can be recombined.

A

= In CS, modular programming is about separating the functionality of a program into
independent, interchangeable modules for specific functions.

INTRODUCTION

= Ontology developers have been using modularisation to deal with large and
complex ontologies.

= It is used to simplify/ downsize an ontology for a particular task.
= What is modularity?

= The possibility to perceive a large knowledge repository as a set of smaller
repositories or modules that together compose the entire repository [8].

= There are many different types of ontology modules, such as language expressivity
modules, domain-specific modules, more/less-detailed modules, to name a few.

WHY MODULARISE AN
ONTOLOGY?

= Reuse
= Simplify
= Scalability for processing

= Scalability for management

HISTORY OF
MODULARISATION

= In 1995, researchers proposed a ‘bottom-up’ approach for the development of a
chemical ontology [1].

= In 2003, Rector proposed normalisation towards achieving ontology modularisation
[2].

= In 2004, Stuckenschmidt and Klein proposed a partitioning algorithm for ontologies
based on hierarchy [4].

= In 2004, Noy proposed the traversal method whereby based on an element of the
input vocabulary, relations in the ontology are traversed to gather concepts to be
included in a module [5].

= In 2005, Keet proposed using abstraction to simplify ontology models by removing
unnecessary details for use cases based on a set of rules [6].

= In 2005, Cuenca Grau et al. proposed a partitioning algorithm to generate ontology
modules from large ontologies [3].

HISTORY OF
MODULARISATION

= In 2008, locality-based modules were proposed by Cuenca Grau et. al - given an
input signature seed, entities of the ontology that reference the signature seed are
preserved in the module [7].

= In 2009, Parent and Spaccapietra defined several goals of modularity: scalability for
reasoning and maintenance, complexity management, understandability and reuse

[8].

= In 2009, D’ Aquin et. al reviewed existing tools in terms of modularity criteria e.qg.,
local correctness, size of module, encapsulation, etc [9].

= The method of splitting an ontology into ‘atoms’ by atomic decomposition was
proposed in 2011 by Del Vescovo [10].

= In 2012, Abbés characterised ontology modules in terms of patterns [11].

= In 2015, Khan and Keet began research on modularisation.

WHAT IS LACKING?

= There is currently no foundation for modularity, i.e., a user has no guidance on:
= how to initiate modularisation for a large ontology
= which type of module to extract
= which tool to use
= how to determine if the module is of good quality

= Problems with modularisation tools:

= Some fail to partition large ontologies because they focus on preserving the logical
properties of the modules while others lose some of the relational properties of the
ontologies

= Most generate views instead of module file output.

DEFINE MODULARISATION

= A Module M is a subset of a source ontology O,M C O, or M is an ontology existing in
a set such that, when combined, make up a larger ontology. M is created for some use-
case u € U number ofu 2 1, and is of a particular type t € T, number of t = 1. tis
classified by a set of distinguishing properties {p,, ..., P} € P numberofp = 1, and is
created by using a specific modularisation technique mt € MT, number of mt = 1, and
has a set of corresponding evaluation metrics {em,, ..., em,} € EM, number of em 2 1,
which is used to assess the quality of M.

DIMENSIONS FOR
MODULARISATION

= Modules have several dimensions:
= Use-cases: Purposes or goals for modularisation.

= Type: A way of classifying a module.

= Properties: Something that a module exhibits.

= Techniques: Used to create a module.

= Evaluation metrics: How to measure a module. Is it good or bad?

USE-CASES

= Ul: Maintenance

= U2: Automated reasoning
= U3:Validation

= U4: Processing

= U5: Comprehension

= U6: Collaborative efforts
= U7: Reuse

TYPES

= Functional modules: A large ontology is modularised by dividing it into functional
components/ subject domains.

= T1: Ontology design patterns
= T2: Subject domain modules
= T3: Isolation branch modules
= T4: Locality modules

= T5: Privacy modules

= Structural modules: Those that have been partitioned based on structure/
hierarchy.
= T6: Domain coverage modules

= T7: Ontology matching modules
= T8: Optimal reasoning modules

TYPES

= Abstraction modules: Some detail is hidden to make a simpler view of the ontology.
= T9: Axiom abstraction modules
= T10: Entity type modules
= T11: High-level abstraction modules
= T12:Weighted modules

= Expressiveness modules: An ontology is modularised according to a specific
ontology sub-language by removing some of its expressive power.

= T13: Expressiveness sub-language modules
= T14: Expressiveness feature modules

PROPERTIES

= Properties of a module: Something that a module exhibits by itself.

= Pl:Seed signature

= P2: Information removal

= P3: Abstraction
= P3.1: Breadth abstraction
= P3.2: Depth abstraction

= P4: Refinement

= P5: Stand-alone

= P6: Source ontology

= P7: Proper subset

= P8: Imports

PROPERTIES

= Properties of a set of related modules: Thee properties that a set of modules exhibit
altogether, and in relation to one another.

= P9: Overlapping

= P10: Mutual exclusion

= P11: Union equivalence

= P12: Partitioning

= P13: Inter-module interaction

= P14: Pre-assigned number of modules

TECHNIQUES

= Graph theory approaches: Graph theory approaches are those that have been
designed to be applied to the general problem of community detection.

= MT1: Graph partitioning
= MT2: Modularity maximisation

= Statistical approaches: Statistical approaches emphasise on using statistical
equations to create ontology modules.

= MTS3: Hierarchical clustering

= Semantic approaches: The entities and axioms of the ontology are used for the
modularisation approach.
= MT4: Locality modularity

= MT5: Query-based modularity

TECHNIQUES

= MT6: Semantic-based abstraction
= MT7: A priori modularity

= MT8: Manual modularity

= MT9: Language simplification

CLASSIFYING MODULES: AN
EXPERIMENTAL EVALUATION

= How do module types differ with respect to certain use-cases?
= Which techniques can we use to create modules of a certain type?

= Which techniques result in modules with certain properties?

= 1. Collect ontology modules

= 2. Classify each ontology module according to its use-cases, techniques,
properties, and types

= 3. Conduct a statistical analysis to determine the frequency of dimensions

RESULTS

B No. of use-case instances M No.of use-casesinstances m No. of use case instances
forallmodules for natural modules for artificially created modules

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00% -
10.00%

The frequency of each use-case for the set of 189 modules.

RESULTS

® No. of type nstances for B No. of type instances for m No. of type instances for
allmodules natural modules artfically created modules
50.00%
4500%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00% -
5.00%
0.00% - . . '-l - '- __'__- '-_,._.'_
F ST T IESF T I FS
S N v < ey & & &° cﬂe \e"' ¥ & A
& © O 4 FN ¥ & X FONE R
& & & & & 8

The frequency of each type for the set of 189 modules; exp. = expressiveness,
abs. = abstraction.

RESULTS

® No.oftechnique Instances m No. of technigue instances B No. of technique instances

for all modules for natural modules for artificially created modulkes

0.00%
50.00%
40.00%
30.00%
20.00% -
10.00% -

0.00%

A priori Manual Graph partitioning

The frequency of each technique for the set of 189 modules.

RESULTS

W No. of property instances for ® No. of property instances for ¥ No. of property nstances for
all mocules natural modules artfioally created modules
20 005
70008
50.00%
50005
40.00%
30.00%
20 005
10.008%¢
000% - T —
0 \
S o~& f £ g
496 & P “' 3:’ ¢ c’
¢ & 48 '4‘° & Q& ¢
&
«

The frequency of each property among modules.

FRAMEWORK FOR
MODULARISATION

= A module’s use-case results in modules of a certain type. (How do module types
differ with respect to certain use-cases?)

= A module of a certain fype is created by a modularisation technique. (Which
techniques can we use to create modules of a certain type?)

= Modularisation techniques result in modules with certain properties. (Which
techniques result in modules with certain properties?)

Use-case Type Technique Property

A high-level view of the framework for modularity.

DEPENDENCIES BETWEEN

— Sublangusge

sxXpressivensess

— Faaturs
expressiveness

— Optimal ressoning

— Subjsct coman

coversgs
— Subsect gomaln
Privacy
— Axlom =Ds. — Domain coverage
— Entity type abs. — Ontology mstching
— Hign-leval 2bs.
— \Weighted =0s. — ODPs
— Sucssct goman
— |golation branch
— Locality
— Privacy

The dependencies between use-cases and module types; abs = abstraction,
ODP = ontology design pattern.

DEPENDENCIES BETWEEN
TYPE AND TECHNIQUE

Structural Functional
Domain | Ontology | Optimal .| Subject Isolation .

¥ Graph ! Locality- ¥
partitioning based

Manual

A

Sub-language Feature Weighted
expressiveness | expressiveness . . . abs.

Expressiveness

The dependencies between module types and techniques; abs — abstrac
tion, ODP = ontology design pattern.

DEPENDENCIES BETWEEN
TECHNIQUE AND PROPERTY

ioning|] ~ Graph

partitioning

THEORIES AND TECHNIQUES
FOR MODULARISATION

= Problems with modules: insufficient information about how to assess/ evaluate.

= Problems with tools:

= Too strict on logical properties, completeness and correctness to allow for the
creation of smaller modules.

= Mainly focus locality-based, graph partitioning, and language-based techniques.

EVALUATION METRI

A summary of the set of evalnation metrics with their expected value

range and values that are considered good. For the good values, we use a 4-point
scale of small (0-0.25), medium (0.25-0.5), moderate (0.51-0.75), and large (0.75-1),

and true/false values.

Evaluation metric Value range | Value type | Good value
EMI: Size 1 =0 integer
EM2: Relative size 122120 decimal small to medium
EM3: Appropriateness 12220 decimal large
EM4: Atomic size 122120 decimal
EM5: Intra-module distance | 1 =0 decimal
EM6: Relative intra . .
module distance 120 Integer
EMT7: Cohesion 122120 decimal small
EMS: Correctness true or false | boolean true
EM9: Completness true or false | boolean true
EMI10: Inter- module distance | 1 = () decimal
EM11: Coupling 1 =0 decimal small
EM12: Redundancy 12120 decimal small to medium
EM13: Encapsulation 12220 decimal large
- EM14: Independence true or false | boolean Ctrue
EM15: Attribute richness 1 =0 decimal
EM16: Inheritance richness 1 =0 decimal

CS

EVALUATION METRICS

= EM4: Atomic size: An atom is a group of axioms within an ontology that have
dependencies between each other [10].

= We define the atomic size as the average size of a group of inter-dependent axioms
in a module.

= We formulate an equation to measure the atomic size of a module by using the
number of atoms and number of axioms present in the module.

= Atomic SiZG(M) — |Axiom|/|Atom|

EVALUATION METRICS

= Consider the example in the screenshot of an atomic decomposition [10]. The
number of atoms in the example is 6 and there are 7 axioms in total. The atomic size
is hence 7/6 =1.17.

= This tells us that there is an average of 1.17 axioms per atom for the example.

vy = ‘Animal _ (= lhasGender.T), o 1
ay — ‘Animal T (> lhasHabitat. |)’ ;:'u;{: (ay) ;:u.-,:':;
ir3 = ‘Person _ Animal’, o ‘j’ e
@ty — ‘Vegan = Person || Yeats.(Vegetable _| Mushroom)’, (a2
a5 = ‘TeeTotaller = Person || vdrinks.NonAlcoholicThing’, T
oG = ‘Student L Person 7 JhasHabitat.University’, (ap
a7 — ‘GraduateStudent = Student | ' —hasDegree.{BA, BS}’ =

Here the l-atoms in the AD contain the following axioms respectively: a;, =

{og, 02}, a2 = {os]. a3 = {04}, ag = {as], a5 = {06}, ag = {o7}.

TOMM METRICS TOOL

= [t is unclear which metrics should be used to evaluate which modules? (types)

= To uncover this, we have created the Tool for Ontology Modularity Metrics
(TOMM).

= TOMM i1s programmed with all the equations to calculate each metric.

= Stand-alone, java file.

' —

Processing metrics for kisao.ow ... A
Metrics savedto C\Users\Zubeida\Logs\kisao.owl.ixt
Processing metrics for kisao_parttiont.owl ...

Metrics saved to C:\Users\Zubeida\Logs\kisao_partitio

2. Processing metrics for kisao_parttion2.owl ...

Metrics saved to C:\Users\Zubeida\Logs\kisao_pariitio &

3, - <« J T

1

The interface of TOMM.

CLASSIFYING QUALITY OF
MODULES: EXPERIMENTAL
EVALUATION

etermine wh rics can be used to evaluate which module types

= How to tell if a module is of good quality.

= 1. Collect a set of modules
= 2. Run the TOMM tool for each module

= 3. Conduct an analysis

RESULTS

Averages for the structural metrics of the set of modules.

No. of - Relative | No. of | Appropr- | Atomic Intra F{elatlve . .
Type Size - . . . module intra-module | Cohesion

modules Size axioms | iateness | size . :

distance | distance

T1 13 11.08 0.10 410.00 | 0.38 5.35 17.00 20.69 0.04
T2 42 125.62 | - 400.19 | 0.64 518 16080.50 - 0.03
T3 7 85.43 0.79 367.86 | 0.24 6.31 8595.00 0.99 0.09
T4 3 29.00 0.34 261.67 | 0.47 10.10 853.33 63.65 0.09
TH 2 33.50 0.30 168.50 | 0.61 7.20 714.00 1.04 0.11
T6 10 41720 | 0.21 9225 0.49 3.17 504773.90 | 0.03 0.13
T7 90 2.26 0.02 14.02 0.009 1.33 0.97 248 0.15
T8 4 84475 | 0.60 2166.75 3.77 163319.00 | 1.03 0.01
T9 1 94.00 1.00 8834.00 |- 2.89 12322.00 - 0.07
T10 |1 103.00 | 0.56 257.00 | 0.99 421 23596.00 1.04 0.07
T11 | 3 27967 | 0.51 71567 | 0.89 3.72 1767.67 (.88 0.01
T12 |3 158.00 | 0.41 582.00 | 0.02 H.84 23304.30 1.93 0.03
T3 | 6 30550 | 1.00 1019.17 | 0.46 4.35 233449.00 | 1.00 0.02
T14 1 1360.00 | 0.97 4369.00 5.57 1396298.00 | 1.00 0.02

RESULTS

Average, median, and boolean values for the logical, richness. information hiding, and relational criteria.

Logical criteria

Richness criteria

Type | Correctness Completeness Attribute richness | Inheritance richness
True False True | False Average | Median | Average | Median
T1 0% 100% 100% | 0% 0.83 0.67 1.48 1.00
T2 - - - - 1.45 1.27 2.37 1.94
T3 29% 1% 0% 100% 0.84 0.92 2.30 242
T4 100% 0% 3% | 67T% 3.61 1.47 1.79 1.40
TS 0% 100% 0% 100% 0.87 0.87 2.45 2.45
T6 60% 40% 60% | 40% 0.10 0.00 54.32 4.32
T7 52% 48% 1% 9% 0.05 0.00 1.19 1.00
T8 100% 0% 0% 100% 0.71 0.56 3.15 2.55
T9 100% 0% 0% 100% 0.00 0.00 2.38 2.38
T10 | 100% 0% 0% 100% 0.00 0.00 3.06 3.06
T11 | 33% 67% 0% 100% 0.58 0.67 244 2.57
T12 | 33% 67% 3% | 67T% 1.05 0.84 2.89 2.59
T13 | 83% 17% 0% 100% 0.73 0.76 2.72 2.49
T14 | 0% 100% 0% 100% 1.78 1.78 3.04 3.04
Information hiding criteria Relational criteria
Type | Encapsulation Independence Coupling Redundancy
Average | Median True False | Average | Median | Average Median
T2 0.95 0.95 9% 91% | 0.00 0.00 0.14 0.12
T6 0.99 0.99 70% 30% | 0.0000256 | 0.00015 | 0.00065 0.00065
T7 1.00 1.00 100% 0% 0.00 0.00 0.00 0.00
T8 0.47 0.46 0% 100% | 0.00 0.00 0.50 0.50

ETWEEN

DEPENDENCIES

o ek Y A N P N Y R 4 o Rajmm fpuEsy [R Sy
T1: Ontology design T2: Subject domain modules T3: Isolation branch modules T4: Locallty modules T5: Privacy modules
pattern modules

Coheslon: small Coheslon: small Relative size: medium Relative size: medium

Relative size: small Encapsulation: large Size: 18 - 141 Cohesion: small Cohesilon: small

Cohesion: small Coupling: small Relative size: large Correctness: true Size: 22 - 45
Completeness: true Redundancy: small No. of axioms: 127 - 431 Size:1-51 No. of axioms: 79 -259
Size:1-10 Size: 10- 1103 Appropriatenass: small No. of axloms: 127 - 491 Appropriateness: moderate
No. of axioms: 46 - 3954 Atomic size: 5.23 - 7.49 Appropriatensss. medium Atomic size: 5.05 - 9.36
Intramodule distance: 496 - 13942 Atomic size: 1- 2432 Intramodule distance: 102 - 1326
Intramodule distance: 0 - 1556 Relative intramodule distance: 1.01- 1.08
Correciness: false

Relative intramodule distance: 0.94 -1
Completeness: lalse
Aftribute richness: 0 - 1.87

No. of axioms: 50 - 410
Appropnateness: madium
Atomic size:3.5-6.9

Appropeiatenass: moderate
Alomic size. 342 - 7.68
Intramodule distance: 0 - 340383

Completeness: lalse
Attribute richness: 0.69 - 1.05
Inharitance richnass: 1.71 - 3.18

Relative intramodule distance: 1 - 126,31
Attribute rnichness: 0.07 - 9.3
Inhertance richness: 0.47 - 3.5

Inframodule distance: 0 - 87
Attribute richness: 0 - 3.44
Inheritance richness: 1.77 - 2.75

Relative intramodule distance: 11 - 30,38
Corraciness: false Inhentance richness: 1 - 6.44
Attribute richness: 0 - 3
Inheritanca richness: 1 -4
I ————— - ————— . type
T7: Ontology matching T8: Optimal reasoning T9: Axiom abstraction T10: Entity Iabstracﬂon
T6: Domain coverage modules modules modules modules RoCHee
Relative size: small Relalive size: small Cohesion: small Cohesion: small Appropriateness: large
Cohes'on: smal Cohesion: small Correctness: true Correctness: true Conesion: smal
Encapsulation: large Encapsulation: large Encepeulalion: large Stoo:4 Comu_:tn”m true
Soupling:small Independence: true Coupling: small Relative size: large . Size 102
Redundancy:small Coupling: small Rodundancs;'modlum No. of axdioms: 684 Relative size: moderate
N Sze 10 Moy Redundancy:emall Size:662 - 1155 Atomic size: 2.89 N s oy
0. of axiams. 18 - 5554 Size:1 - 10 Relative size: moderate Intramodule distance:0.07 Intramodule distance: 23596
APpIOpeiaiences: mociem No. of axioms: 6 - 36 No. of axioms: 1376 - 3409 Completeness: false e i elance:
Alomic size: 263-429 Appropriatenass: small Alomic size: .85 - 4 96 Altribute richnees: 0 Ralative intramodule distance: 1.04
Intramadule distance: 0 - 3323816 Atomic size: 1-2.1 Intr. ule distance: 0.009 - 0.02 Inherilance richness: 2.38 Completeness 1a{se
Relative intramodule distanca: 0 - 0.03 Intramodule distance: 0 - 9 Flelaua‘ve' Odimramo dule déw‘noe' 1-1.08 Attribute nchness_. 0
Attribute richness: 0 - 0.67 Relative intramodule distance: 0 - 6 OCompleisnae: talse : Inheritanca richness: 3.06
nhertance Aenness: 2.25 - 4.52 Attibute richness: 0 - 2 Attribte richness: 0.16 - 1.54
Inhenitance richness: 1 - 2 Inheritance richness: 1.86 - 5.66
Independence: false
T11: High-level T12: Weighted abstraction T13: Expressiveness sub- T14: Expressiveness feature
abstraction modules modules language modules modules
Coheslon: small Cohesion: small
Size: 758

Appropriateness: large
Cohesion: small
Sized - 45
Relative size: moderate
No. of axioms: 184 - 1751
Atomic size: 3.61-3.78
Intramodule distance: 133 - 4854
Relative mtramodule distance: 0.61 - 1.02
Completeness: lalse
Attribute richness: 0.33 - 0,73

Inheritance richness: 2 - 2.75

Relative size: medium
Cohesion: small
Size: 45 - 147
No. of axioms: 479 - 687
Appropriatenass: small
Atomic slze: 3.81 - 7.62
Intramodule distance: 3539 - 62 743
Relative mtramodule distance: 0,88 - 2.73
Attribute richness: 0 - 2,31
Inharitance richness 2,56 - 3.5

Size: 81 -1401
Relative size: large
No. of axioms: 323 - 4214
Appropriatenass: medium
Atomic size: 3.85 - 4.94
Intramodule distance: 457 - 1388343
Relative intramodule distance: 1 - 1.002
Completeness: false
Attribute richness: 0 - 1,27
Inheritance richness: 1.93-3.75

Relative size: large
No. of axioms: 4369
Atomic size: 557
Intramodule distance: 1396298
Relative intramodule distance: 1.001
Correctness: lalse
Completeness. lalse
Attribute richness: 1.78
Inheritance rchness: 3,04

NEW ALGORITHMS

= The current algorithms are lacking for creating certain types of modules.

= We present 5 new algorithms
= Axiom abstraction
= Vocabulary abstraction
= High-level abstraction
= Weighted abstraction
= Feature expressiveness

= Implemented in NOMSA (Novel Ontology Modularisation SoftwAre).

= Allows users to upload an ontology file, select an algorithm, and input parameters
and automatically generate a module.

WEIGHTED ABSTRACTION
ALGORITHM

= Some axioms are removed according to an absolute/relative threshold value.

= Consider the following axioms in a toy Burger ontology.

BeefPatty C Patty (1) WellDone C PattyCook (19)
Beefburger = HamBurger (2) WhiteBun C BurgerBun (20)
Beefburger C Burger (3) WholeWheatBun C BurgerBun (21)

Cheapburger C < 1 hasFilling.Filling (4) WholeWheatBun C <WhiteBun (22)
Cheapburger L Burger (5) Func(hasBun) (23)
Cheese L Filling (6) 1 hasBun. T C Burger (24)

Chef L Person (7) T L YhasBun.BurgerBun (25)

Customer L Person (%) I hasPatty. T . Burger (26)
HamBurger = Beefburger (9) I C VhasPatty. Patty (27)
HamBurger L Burger (10) | hasPattyCook. T L Patty (28)

HealthyBurger L VhasFilling.(Lettuce L Tomato) (11) I L VhasPattyCook, PattyCook (20)
HealthyBurger C Burger (12) MarthasBurger # MyBurger (30)
Lettuce C Filling (13) MarthasBurger : Burger (31)
Medium C PattyCook (14) MyBurger : Beefburger (32)
PattyCook = Medium L! Rare LI WellDone (15) MyBurger : Burger (33)
Rare C PattyCook (16) MyBurger : Beefburger (34)

Sauce C Filling (17) ChefRose : Chef (35)
Tomato L Filling (18) cookedBy(MyBurger, ChefRose) (36)

WEIGHTED ABSTRACTION
ALGORITHM

= Let us assume we wish to create a module whereby we remove 25% of the entities.
To achieve this, we set the threshold value to 25%.

= First, we we weigh each class in the ontology with its number of referencing axioms
and we store both the number of referencing axioms and each class in two arrays
with corresponding indices.

= We sort the weight array values from low to high and the class array such that it
matches the weight array.

= A limit variable is calculated as the product of the threshold percentage (.25) and
the number of classes in the ontology (21) which is rounded off to a value of 5.

= The classes with the 5 lowest values are removed; these are deemed less-important

than the rest and are to be removed due to having the least number of referencing
axioms in the ontology.

WEIGHTED ABSTRACTION
ALGORITHM

= The classes in bold font are those that are to be removed because they have the
least number of referencing axioms.

WhiteBun 2 | Medium 3 | Patty 1
Customer 2 | Lettuce 3 | BeefBurger 4
Cheese 2 | HealthyBurger 3 | BurgerBun |
Sauce 2 | BeefPatty 3 | Hamburger 4
Chef 2 | Tomato 3 | Filling 5
WholeWheatBun | 2 | WellDone 3 | PattyCook 6
Person 3 | Rare 3 | Burger 7

NOMSA

» Algorithms implemented in NOMSA (Novel Ontology Modularisation SoftwAre).
» Allows users to upload an ontology file, select an algorithm, and input parameters and

automatically generate a module.
' Ty e ——

Li’)
Steps
N 0 M S A. Load the ontology you wish to modularise
B. Selecta methodfrom1-5

Novel Ontology C. Modularise

Modularisation

SoflwAre

A. . loadontology | C. [modularise j

J 1. Axiom abstraction () 3. High-level abstraction 3 levels
B. _ 2 Entity type abstraction (@ 4. Weighted abstraction

Tick to remove | Explain threshold values J
' _J Threshold (absolute) '5 . axioms
' Object Propert @ Threshold (relative) 5o o
' ta () 5. Feature expressiveness

Loaded module: DOLCE-Lite.owl

|| Success
|| Module saved to: C:\Users\ZKhan/modularised/DOLCE-Lite.owl-module OWL

The interface of NOMSA.

NOMSA EVALUATION

nparison of three features of several modularisation tools against NOMSA and the average running times of the respective algorithms for the test
ologies (excluding the time of manual modularisation tasks such as loadine the ontoloev and settine the parameters).
Level of Algorithm . Time Level of Algorithm . Tim
. . . Technique A)) Technique
interaction complexity (seconds) interaction complexity (sec
DOP semi- Protégé semi ‘
se . . rotege semi-

. . quadrat,l(: 1()(7}lllty—b}l§3(?d 1 N) unknown laneuagce-based 1

orithm 1 | automatic Algorithm 4 | automatic Anguage-De
. . [X utomatic & - 1t10 :

)) automatic quadratic graph-partition 6 TaxoPart automatl linear graph partiion ! -
yrithm 2 PATO automatic unknown graph-partition 16
L module | semi- . . NOMSA . . semantic- .
. L. quadratic locality-based 1 automatic linear . 3
actor automatic AxAbs based abstraction

user- NOMSA . . semantic-
IMPT . unknown query-based - automatic linear) . 2
driven VocAbs based abstraction
tégé semi-) NOMSA . . semantic-

:) unknown locality-based 1 automatic uadratic) 2
orithm 1 | automatic M HLAbDs 9 based abstraction
Legé t ti k 1 I 1 1 NOMSA wtomatic linear semantic- 1

. . automatic unknown anguage-basec . automatic %) !
orithm 2| °) anguage-be WeiAbs based abstraction
tégé semi-) NOMSA . . .

.) . unknown locality-based 1 automatic quadratic language-based 3
orithm 3 | automatic - FeatExp

SUMMARY OF
CONTRIBUTIONS FOR

a ¥rov1;ej a nLvJ; élﬂﬁaus’twR;j jeéfion:[; !no;ulusation

» Jdentified dimensions for modularisation
= Created dependencies between modularity dimensions
= Determine how to evaluate a module

= Improve modularisation techniques

CONCLUSION

= Solved the problems that:
= 1. Existing techniques are not sufficient for modularisation

= performing a classification on a set of ontology modules to determine which techniques are lacking
in tools

= by designing and implementing novel algorithms to perform modularisation
= 2. A user has no guidance on how to initiate modularisation for an ontology
= by identifying dimensions of modularity
= classifying a set of modules with dimensions
= linking various dimensions together to create dependencies
= 3. How to determine if the module is of good quality
= by identifying new and existing evaluation metrics
= providing equations for those that did not have any equations

= the development of a tool to compute the metrics for an ontology module
= performing an investigation to determine which metrics can be used to measure which module types

CONCLUSION

= We provided a foundation for modularity encompassing:
= a framework for modularity

= new algorithms for modularisation
= a method and tool for evaluating the quality of a module

= The foundation successfully solves several problems concerning modularity.

REFERENCES

[1} van der Vet, Paul E., and Nicolaas JI Mars. "Bottom-up construction of ontologies: the case of an ontology of pure substances." Memoranda
nformatica (1995): 95-35.

LZ] Rector, Alan L. "Modularisation of domain ontologies imglemented in description logics and related formalisms including OWL." Proceedings of the
nd international conference on Knowledge capture. ACM, 2003.

[3] Grau, Bernardo Cuenca, et al. "Modularity and Web Ontologies." KR. 2006.

£4] Stuckenschmidt, Heiner, and Michel Klein. "Structure-based partitioning of large concept hierarchies." International semantic web conference.
pringer, Berlin, Heidelberg, 2004.

L%]OIZIOY’ Natalya F., and Mark A. Musen. "Specifying ontology views by traversal." International Semantic Web Conference. Springer, Berlin, Heidelberg,

[6] Keet, C. Maria, "Using abstractions to facilitate management of large ORM models and ontologies." OTM Confederated International Conferences"” On
'he Move to Meaningful Internet Systems". Springer, Berlin, Heidelberg, 2005.

[7] Grau, B. Cuenca, et al. "Modular reuse of ontologies: Theory and practice." Journal of Artificial Intelligence Research 31 (2008): 273-318.
[8] Parent, Christine, and Stefano Spaccapietra. "An overview of modularity." Modular ontologies. Springer, Berlin, Heidelberg, 2009. 5-23.

£97] éig’Aquin, Mathieu, et al. "Criteria and evaluation for ontology modularization techniques." Modular ontologies. Springer, Berlin, Heidelberg, 2009.

1 tO]HDel Vescz%vlo Chiara, et al. "The modular structure of an ontology: Atomic decomposition." Twenty-Second International Joint Conference on Artificial
ntelligence. .

[11] Abbes, Sarra Ben, et al. "Characterizing modular ontologies." 2012.

THANK YOU

» http://www.thezfiles.co.za/modularisation/

» http://www.thezfiles.co.za/Modularity/TOMM.zip

