
Zubeida C. Khan
zkhan@csir.co.za
Senior researcher @ CSIR

§  Introduction
§  Why modularise an ontology?
§  History of modularisation
§  What is lacking in modularisation?
§  Define modularisation
§  Classifying modules
§  A framework for ontology modularisation
§  Theories and techniques for modularisation
§  Evaluation metrics
§  New algorithms
§  Conclusion

§  Modularity: dividing, separating the components of a large system such that
modules can be recombined.

§  In CS, modular programming is about separating the functionality of a program into
independent, interchangeable modules for specific functions.

§  Ontology developers have been using modularisation to deal with large and
complex ontologies.

§  It is used to simplify/ downsize an ontology for a particular task.

§  What is modularity?

§  The possibility to perceive a large knowledge repository as a set of smaller
repositories or modules that together compose the entire repository [8].

§  There are many different types of ontology modules, such as language expressivity
modules, domain-specific modules, more/less-detailed modules, to name a few.

§  Reuse

§  Simplify

§  Scalability for processing

§  Scalability for management

§  In 1995, researchers proposed a ‘bottom-up’ approach for the development of a
chemical ontology [1].

§  In 2003, Rector proposed normalisation towards achieving ontology modularisation
[2].

§  In 2004, Stuckenschmidt and Klein proposed a partitioning algorithm for ontologies
based on hierarchy [4].

§  In 2004, Noy proposed the traversal method whereby based on an element of the
input vocabulary, relations in the ontology are traversed to gather concepts to be
included in a module [5].

§  In 2005, Keet proposed using abstraction to simplify ontology models by removing
unnecessary details for use cases based on a set of rules [6].

§  In 2005, Cuenca Grau et al. proposed a partitioning algorithm to generate ontology
modules from large ontologies [3].

§  In 2008, locality-based modules were proposed by Cuenca Grau et. al - given an
input signature seed, entities of the ontology that reference the signature seed are
preserved in the module [7].

§  In 2009, Parent and Spaccapietra defined several goals of modularity: scalability for
reasoning and maintenance, complexity management, understandability and reuse
[8].

§  In 2009, D’Aquin et. al reviewed existing tools in terms of modularity criteria e.g.,
local correctness, size of module, encapsulation, etc [9].

§  The method of splitting an ontology into ‘atoms’ by atomic decomposition was
proposed in 2011 by Del Vescovo [10].

§  In 2012, Abbés characterised ontology modules in terms of patterns [11].

§  In 2015, Khan and Keet began research on modularisation.

§  There is currently no foundation for modularity, i.e., a user has no guidance on :
§  how to initiate modularisation for a large ontology
§  which type of module to extract
§  which tool to use
§  how to determine if the module is of good quality

§  Problems with modularisation tools:
§  Some fail to partition large ontologies because they focus on preserving the logical

properties of the modules while others lose some of the relational properties of the
ontologies

§  Most generate views instead of module file output.

§  A Module M is a subset of a source ontology O, M ⊂ O, or M is an ontology existing in
a set such that, when combined, make up a larger ontology. M is created for some use-
case u ∈ U, number of u ≥ 1, and is of a particular type t ∈ T, number of t = 1. t is
classified by a set of distinguishing properties {p1, ..., pk} ∈ P, number of p ≥ 1, and is
created by using a specific modularisation technique mt ∈ MT, number of mt = 1, and
has a set of corresponding evaluation metrics {em1, ..., emk} ∈ EM, number of em ≥ 1,
which is used to assess the quality of M.

§  Modules have several dimensions:
§  Use-cases: Purposes or goals for modularisation.
§  Type: A way of classifying a module.
§  Properties: Something that a module exhibits.
§  Techniques: Used to create a module.
§  Evaluation metrics: How to measure a module. Is it good or bad?

§  U1: Maintenance

§  U2: Automated reasoning

§  U3: Validation

§  U4: Processing

§  U5: Comprehension

§  U6: Collaborative efforts

§  U7: Reuse

§  Functional modules: A large ontology is modularised by dividing it into functional
components/ subject domains.
§  T1: Ontology design patterns
§  T2: Subject domain modules
§  T3: Isolation branch modules
§  T4: Locality modules
§  T5: Privacy modules

§  Structural modules: Those that have been partitioned based on structure/
hierarchy.
§  T6: Domain coverage modules
§  T7: Ontology matching modules
§  T8: Optimal reasoning modules

§  Abstraction modules: Some detail is hidden to make a simpler view of the ontology.
§  T9: Axiom abstraction modules
§  T10: Entity type modules
§  T11: High-level abstraction modules
§  T12: Weighted modules

§  Expressiveness modules: An ontology is modularised according to a specific
ontology sub-language by removing some of its expressive power.
§  T13: Expressiveness sub-language modules
§  T14: Expressiveness feature modules

§  Properties of a module: Something that a module exhibits by itself.
§  P1: Seed signature
§  P2: Information removal
§  P3: Abstraction

§  P3.1: Breadth abstraction

§  P3.2: Depth abstraction

§  P4: Refinement
§  P5: Stand-alone
§  P6: Source ontology
§  P7: Proper subset
§  P8: Imports

§  Properties of a set of related modules: Thee properties that a set of modules exhibit
altogether, and in relation to one another.
§  P9: Overlapping
§  P10: Mutual exclusion
§  P11: Union equivalence
§  P12: Partitioning
§  P13: Inter-module interaction
§  P14: Pre-assigned number of modules

§  Graph theory approaches: Graph theory approaches are those that have been
designed to be applied to the general problem of community detection.
§  MT1: Graph partitioning
§  MT2: Modularity maximisation

§  Statistical approaches: Statistical approaches emphasise on using statistical
equations to create ontology modules.
§  MT3: Hierarchical clustering

§  Semantic approaches: The entities and axioms of the ontology are used for the
modularisation approach.
§  MT4: Locality modularity
§  MT5: Query-based modularity

§  MT6: Semantic-based abstraction
§  MT7: A priori modularity
§  MT8: Manual modularity
§  MT9: Language simplification

§  How do module types differ with respect to certain use-cases?

§  Which techniques can we use to create modules of a certain type?

§  Which techniques result in modules with certain properties?

§  1. Collect ontology modules

§  2. Classify each ontology module according to its use-cases, techniques,
properties, and types

§  3. Conduct a statistical analysis to determine the frequency of dimensions

§  A module’s use-case results in modules of a certain type. (How do module types
differ with respect to certain use-cases?)

§  A module of a certain type is created by a modularisation technique. (Which
techniques can we use to create modules of a certain type?)

§  Modularisation techniques result in modules with certain properties. (Which
techniques result in modules with certain properties?)

§  Problems with modules: insufficient information about how to assess/ evaluate.

§  Problems with tools:

§  Too strict on logical properties, completeness and correctness to allow for the
creation of smaller modules.

§  Mainly focus locality-based, graph partitioning, and language-based techniques.

§  EM4: Atomic size: An atom is a group of axioms within an ontology that have
dependencies between each other [10].

§  We define the atomic size as the average size of a group of inter-dependent axioms
in a module.

§  We formulate an equation to measure the atomic size of a module by using the
number of atoms and number of axioms present in the module.

§ Atomic size(M) = ​|𝐴𝑥𝑖𝑜𝑚|/|𝐴𝑡𝑜𝑚| 

§  Consider the example in the screenshot of an atomic decomposition [10]. The
number of atoms in the example is 6 and there are 7 axioms in total. The atomic size
is hence ​7/6 =1.17.

§  This tells us that there is an average of 1.17 axioms per atom for the example.

§  It is unclear which metrics should be used to evaluate which modules? (types)

§  To uncover this, we have created the Tool for Ontology Modularity Metrics
(TOMM).

§  TOMM is programmed with all the equations to calculate each metric.

§  Stand-alone, java file.

§  Determine which metrics can be used to evaluate which module types

§  How to tell if a module is of good quality.

§  1. Collect a set of modules

§  2. Run the TOMM tool for each module

§  3. Conduct an analysis

§  The current algorithms are lacking for creating certain types of modules.

§  We present 5 new algorithms
§  Axiom abstraction
§  Vocabulary abstraction
§  High-level abstraction
§  Weighted abstraction
§  Feature expressiveness

§  Implemented in NOMSA (Novel Ontology Modularisation SoftwAre).

§  Allows users to upload an ontology file, select an algorithm, and input parameters
and automatically generate a module.

§  Some axioms are removed according to an absolute/relative threshold value.

§  Consider the following axioms in a toy Burger ontology.

§  Let us assume we wish to create a module whereby we remove 25% of the entities.
To achieve this, we set the threshold value to 25%.

§  First, we we weigh each class in the ontology with its number of referencing axioms
and we store both the number of referencing axioms and each class in two arrays
with corresponding indices.

§  We sort the weight array values from low to high and the class array such that it
matches the weight array.

§  A limit variable is calculated as the product of the threshold percentage (.25) and
the number of classes in the ontology (21) which is rounded off to a value of 5.

§  The classes with the 5 lowest values are removed; these are deemed less-important
than the rest and are to be removed due to having the least number of referencing
axioms in the ontology.

§  The classes in bold font are those that are to be removed because they have the
least number of referencing axioms.

•  Algorithms implemented in NOMSA (Novel Ontology Modularisation SoftwAre).
•  Allows users to upload an ontology file, select an algorithm, and input parameters and

automatically generate a module.

§  Provided a new, exhaustive definition for modularisation

§  Identified dimensions for modularisation

§  Created dependencies between modularity dimensions

§  Determine how to evaluate a module

§  Improve modularisation techniques

§  Solved the problems that:
§  1. Existing techniques are not sufficient for modularisation

§  performing a classification on a set of ontology modules to determine which techniques are lacking
in tools

§  by designing and implementing novel algorithms to perform modularisation

§  2. A user has no guidance on how to initiate modularisation for an ontology
§  by identifying dimensions of modularity
§  classifying a set of modules with dimensions
§  linking various dimensions together to create dependencies

§  3. How to determine if the module is of good quality
§  by identifying new and existing evaluation metrics
§  providing equations for those that did not have any equations

§  the development of a tool to compute the metrics for an ontology module
§  performing an investigation to determine which metrics can be used to measure which module types

§  We provided a foundation for modularity encompassing:
§  a framework for modularity
§  new algorithms for modularisation
§  a method and tool for evaluating the quality of a module

§  The foundation successfully solves several problems concerning modularity.

§  [1] van der Vet, Paul E., and Nicolaas JI Mars. "Bottom-up construction of ontologies: the case of an ontology of pure substances." Memoranda
informatica (1995): 95-35.

§  [2] Rector, Alan L. "Modularisation of domain ontologies implemented in description logics and related formalisms including OWL." Proceedings of the
2nd international conference on Knowledge capture. ACM, 2003.

§  [3] Grau, Bernardo Cuenca, et al. "Modularity and Web Ontologies." KR. 2006.

§  [4] Stuckenschmidt, Heiner, and Michel Klein. "Structure-based partitioning of large concept hierarchies." International semantic web conference.
Springer, Berlin, Heidelberg, 2004.

§  [5] Noy, Natalya F., and Mark A. Musen. "Specifying ontology views by traversal." International Semantic Web Conference. Springer, Berlin, Heidelberg,
2004.

§  [6] Keet, C. Maria. "Using abstractions to facilitate management of large ORM models and ontologies." OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems". Springer, Berlin, Heidelberg, 2005.

§  [7] Grau, B. Cuenca, et al. "Modular reuse of ontologies: Theory and practice." Journal of Artificial Intelligence Research 31 (2008): 273-318.

§  [8] Parent, Christine, and Stefano Spaccapietra. "An overview of modularity." Modular ontologies. Springer, Berlin, Heidelberg, 2009. 5-23.

§  [9] d’Aquin, Mathieu, et al. "Criteria and evaluation for ontology modularization techniques." Modular ontologies. Springer, Berlin, Heidelberg, 2009.
67-89.

§  [10] Del Vescovo, Chiara, et al. "The modular structure of an ontology: Atomic decomposition." Twenty-Second International Joint Conference on Artificial
Intelligence. 2011.

§  [11] Abbes, Sarra Ben, et al. "Characterizing modular ontologies." 2012.

§  http://www.thezfiles.co.za/modularisation/

§  http://www.thezfiles.co.za/Modularity/TOMM.zip

