
Volume xx (200y), Number z, pp. 1–11

Distance Ranked Connectivity Compression of Triangle
Meshes

Patrick Marais, James Gain
�
, Dave Shreiner

�

Dept of Computer Science, University of Cape Town

Abstract

We present a new, single-rate method for compressing the connectivity information of a connected 2-manifold
triangle mesh with or without boundary. Traditional compression schemes interleave geometry and connectivity
coding, and are thus typically unable to utilise information from vertices (mesh regions) they have not yet pro-
cessed. With the advent of competitive point cloud compression schemes, it has become feasible to develop sep-
arate connectivity encoding schemes which can exploit complete, global vertex position information to improve
performance.
Our scheme demonstrates the utility of this separation of vertex and connectivity coding. By traversing the mesh
edges in a consistent fashion, and using global vertex information, we can predict the position of the vertex which
completes the unprocessed triangle attached to a given edge. We then rank the vertices in the neighbourhood
of this predicted position by their Euclidean distance. The distance rank of the correct closing vertex is stored.
Typically, these rank values are small, and the set of rank values thus possesses low entropy and compresses very
well. The sequence of rank values is all that is required to represent the mesh connectivity — no special split or
merge codes are necessary.
Results indicate improvements over traditional valence-based schemes for more regular triangulations. Highly
irregular triangulations or those containing a large number of slivers are not well modelled by our current set
of predictors and may yield poorer connectivity compression rates than those provided by the best valence-based
schemes.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous: connec-
tivity coding

1. Introduction

Triangle meshes are widely used to represent 3D surface
models since they are well suited to computer rendering
hardware. The development of powerful consumer display
cards has been accompanied by a corresponding growth in
the size and complexity of 3D models. Naturally this com-
plexity comes at the cost of greater storage requirements,
and this has fuelled research into techniques that compress
both the geometry (vertex positions) and the connectivity in-
formation of triangle meshes.

�
e-mail: {patrick,jgain}@cs.uct.ac.za�
e-mail: shreiner@siggraph.org

The earliest approaches [Dee95] exploited the adjacency
structure of a triangle mesh to avoid storing unnecessary
connectivity information and applied simple quantisation
and delta encoding to represent vertex positions. In gen-
eral, the issue of connectivity compression is deemed more
pressing, since, while it is possible to quantise vertex po-
sitions quite coarsely and still maintain a good surface ap-
proximation, connectivity information must be represented
exactly, which usually requires many bits per triangle. Sub-
sequent techniques [TR98, Ros99] thus focused on ways to
reduce the cost of encoding the mesh topology. Great strides
have been made in this area. Edgebreaker [Ros99] is a “face-
based” scheme, which reduces the cost of encoding connec-
tivity to at most 2 bits per triangle, or equivalently, 4 bits
per vertex (bpv). Subsequent improvements [Ros01] have

submitted to COMPUTER GRAPHICS Forum (12/2006).

2 Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes

Rank

1

2

3

>3

Figure 1: Distance Ranked compression. (a) highly regular, torus (0 bpv), (b) regular, fandisk (0.65 bpv) (c) irregular, feline
(1.95 bpv)) (d) pathological, star (6.67 bpv). The colours indicate the distance rank code for each triangle.

refined this bound. The next great breakthrough arrived with
“valence-based” schemes [TG98], which use the number of
edges attached to a vertex to derive a compact coding algo-
rithm which, in most cases, provides far better results than
face-based techniques. In these schemes, however, one can-
not derive a general bound for the cost of connectivity en-
coding without some simplifying assumptions [KADS01].
Valence-based schemes generate roughly half the num-
ber of codes compared to face-based schemes (per vertex,
rather than per triangle). Valence-based connectivity encod-
ing works well because the entropy of the valence codes typ-
ically tracks the mesh valence entropy, which is often very
low, particularly for highly regular meshes, as demonstrated
by the excellent results obtained [TG98, KADS01, LAD02].
However, there are many meshes which are irregular, and for
which the valence entropy is commensurately higher.

To improve on these results we need to look for additional
sources of prior information to reduce the code size. The en-
coding of geometry and connectivity information are usually
interleaved: the mesh is rebuilt step by step, with new ver-
tices continually added according to the decoded connectiv-
ity information. Consequently, a significant source of prior
geometric information, the set of mesh vertices, is not avail-
able in these methods. We propose the use of global ver-
tex information to produce our compact coding. The recent
development of algorithms to compress vertex information
separately [DG00, MMG06], at rates competitive with inter-
leaved encoding, makes this approach feasible.

For a given edge of a processed mesh triangle, we need
to find the vertex which completes the attached triangle. If
the underlying triangulation is highly regular, we can sim-
ply reflect the third vertex of the current triangle through
this edge and assume the closest neighbouring vertex is the
one we seek. If this is not the case, then the second closest
vertex is probably the one we need. We can continue in this
fashion, checking nearest neighbours until a match is found.
Thus we are reduced to predicting a point from the informa-
tion we have, and storing a “distance rank”. In the ideal case,
such as a smooth surface composed of regular triangles, all

these ranking codes will be one (the 1st closest point will
close each triangle) and the entropy of the sequence will ap-
proach zero. When we do not have such a regular mesh, we
need to use the vertices we have not yet processed to further
constrain our prediction.

The remainder of the paper is structured as follows: Sec-
tion 2 discusses related work. In Section 3, we present the
compression algorithm, along with a motivation for the pre-
dictors we employ and a brief discussion of issues pertaining
to entropy coding. This is followed by an analysis of the re-
sults in Section 4. Finally, we present our conclusions and
suggest areas for future work in Section 5.

2. Related Work

There is a large and growing literature on triangle mesh com-
pression - the interested reader is referred to [AG03] for a
summary.

We confine our discussion to single-rate compression con-
nectivity schemes, since our connectivity compression tech-
nique falls into this category. Such schemes generally come
in two flavours: face-based and valence-based. Face schemes
are usually derivatives of Edgebreaker [Ros99, AFSR03],
while valence schemes are modifications or extensions
of Touma and Gotsman’s valence-based encoder [TG98,
KADS01, KPRW05].

Our approach assumes separate encoding for vertex and
connectivity information, and that the entire quantised ver-
tex set is available for both the encoding and decoding steps.
Although there has been little work in this area, the notion of
geometry-driven connectivity encoding has seen some sup-
port. The work of Coors and Rossignac [CR04] provides
such a scheme in which Edgebreaker is modified to predict
the next symbol based on the geometry and connectivity of
the processed mesh. However, less regular meshes tend to
generate a large number of incorrect guesses, which incurs a
substantial bit code penalty. Valence encoders will perform
much better in such cases.

submitted to COMPUTER GRAPHICS Forum (12/2006).

Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes 3

Another approach which uses geometry to drive the con-
nectivity encoding is Angle Analyzer [LAD02]. This tech-
nique adopts an Edgebreaker-like traversal strategy and ex-
ploits the intrinsic properties of quad and triangle meshes to
reduce the number of codes required for such meshes. Their
technique improves on the best valence scheme in many
instances, but for very regular meshes other valence-based
techniques perform better. The recently developed Freelence
technique of Kälberer et al. [KPRW05] uses a clever traver-
sal scheme to further reduce the cost of valence coding.
There is also an associated geometry compression compo-
nent which yields very impressive results. Unfortunately the
paper only presents geometry results based on manually op-
timized quantization parameters and the generality of the
scheme can thus not be easily established.

Inspired by their earlier success with vertex encoding
[DG00], Gandoin and Devillers [GD02] introduce a pro-
gressive encoding scheme for geometry and connectivity en-
coding. The progressivity arises from the space subdivision
scheme they use to encode their vertex data — this struc-
ture is augmented with additional topological codes to pro-
gressively recover connectivity as new vertices are extracted.
Subsequent work by Peng et al. [PK05] improved on these
results by introducing a clever traversal of a standard octree,
and combining this with a compact progressive encoding of
mesh connectivity. While the results they achieve are good in
relation to other progressive schemes, they lag behind single-
rate compression approaches.

It should be noted that all these strategies interleave ge-
ometry and connectivity encoding, and cannot therefore use
global mesh information.

The area of point cloud compression has seen renewed ac-
tivity with the increased interest in point-based rendering. A
number of point cloud compression schemes [LK00, OS04,
FCOAS03] resample the input point set in some way, which
renders them unsuitable for our purposes. The progressive
scheme presented by [DG00] uses a space subdivision to
achieve good lossless compression over a range of meshes.
However, we prefer a single rate compressor, since we are
only interested in lossless geometry representations. Taubin
and Rossignac [TR98] introduced a single-rate vertex span-
ning tree compressor. Unfortunately this requires that par-
tial connectivity information be available at decompression.
Gumhold et al. [GKIS04] present a spanning tree represen-
tation for compressing points without connectivity informa-
tion. A simple prediction scheme is used to reduce the size
of the error correction term. Merry et al. [MMG06] also
use a spanning tree but combine this with a more sophis-
ticated prediction mechanism to achieve results comparable
to triangle-based geometry predictors. Particularly good re-
sults are achieved for regularly sampled point sets such as
those obtained from laser range scans. As an alternative to
spanning tree techniques, Schnabel et al. [SK06] have re-
cently introduced an octree spatial decomposition which is

t

p
x

v0

v1

v2 e0
e1

e2
eL

eR

Figure 2: Distance ranked prediction. Give the current pro-
cessed triangle, � v0 � v1 � v2 � , we estimate the closing vertex,
p. Vertex t is the point we are trying to find — this is the sec-
ond closest vertex to p, the closest being x. We thus generate
the code 2, and enqueue the new edges eL and eR to allow
further traversal of the mesh surface.

similar in spirit to [PK05]. However, unlike the latter, this is
a point compression scheme and does not use or require any
connectivity information. While the results are rather sparse,
they are encouraging and provide evidence that the compres-
sion of point geometry alone can be done effectively.

For those cases in which a set of points is triangulated
using a specific algorithm, such as Delaunay triangulation,
one can dispense with coding the connectivity all together,
provided one has a scheme to code the vertex locations.
Similarly, if the triangulation deviates in only a small way
from some canonical triangulation, one can encode the con-
nectivity difference between the two. The work of Kim et
al. [KPJC99] illustrates this. The authors encode the con-
nectivity of a Triangular Irregular Network (a 2.5D surface
mesh) using an average of 0.2 bpv. While such results are
impressive, and outperform general triangle encoders, they
are aimed at a very specific kind of mesh (which is very
close to a Delaunay triangulation, in this case) and cannot
be expected to perform well in general.

3. The Algorithm

Distance rank connectivity encoding involves only one fun-
damental operation: estimating the point that completes the
triangle on the current edge. Figure 2 shows the steps in-
volved in encoding an edge from a given base triangle. The
encoding and decoding algorithms are presented in Table 1
and Table 2, respectively.

We choose an initial triangle on the surface and place the
edges, using a consistent ordering, onto an edge queue. This
queue is in fact double ended (a deque): although we al-
ways remove candidate edges from the front of the queue,
we allow insertion on both ends. For each edge we wish to
identify the vertex (from the set of all vertices) which com-
pletes the attached triangle. This is accomplished by using

submitted to COMPUTER GRAPHICS Forum (12/2006).

4 Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes

Build kd Tree //using quantised vertices
Q = null
Read in start Triangle (V0 � V1 � V2)
Q.push_back: Edge(V0 � V1), Edge(V1 � V2), Edge(V2 � V0)
Initialise edge counts
while Q �� empty

E 	 Q.pop_front
� Vi � V j � 	 OrientedEdgeVertices(E)
PTarget 	 ClosingVertexId(E)
if E is boundary

ENCODE_SYMBOL 0
else if E is OPEN // triangle required

P 	 PredictPoint(V, ProcessedMesh)
I 	 ClosestPointRank(P, PTarget, V)
ENCODE_SYMBOL I
Update edge counts // used for vertex culling
Q.push_front: Edge(Vi � PTarget)
Q.push_back: Edge(PTarget � V j)

Table 1: The Encoding Algorithm

a prediction scheme based on the parts of mesh already vis-
ited and (potentially) the complete set of vertices. Given a
predicted estimate for the closing vertex position, we rank
the neighbouring vertices based on their Euclidean distance
from the predicted point and record the rank which corre-
sponds to the correct closing vertex. Identifying the closing
triangle produces two new (consistently ordered) edges: Left
and Right. Initially we placed these new edges on the back
of a regular queue, which yields a standard breadth-first (BF)
traversal of the mesh triangles. However, a BF traversal tends
to visit triangles in a non-local manner. Some preliminary
experimentation showed that a better approach, which im-
proves compression performance by 5
 6% on average, is to
try and process all the triangles attached to a local vertex be-
fore moving to more distant parts of the mesh. To this end,
we adopt a traversal in which the Left edge is inserted at the
front of the queue, while the Right edge is placed on the back
of the queue.

If the prediction is accurate the (first) closest vertex will
be correct, otherwise we will need to examine vertices with
successively larger ranking numbers. In any event, a single
integer value will be generated for each such edge, and for
the most part these values will be quite small. If the edge
happens to be a boundary edge, the escape code 0 is gener-
ated. Any positive value is assumed to correspond to a dis-
tance rank value. Each edge has an associated edge count
which indicates how many triangles are associated with that
edge. Prior to encoding the mesh, we flag all boundary edges
and set the edge counts to 0 on all edges except the starting

Build kd Tree // using encoded vertices
Q = empty
Read in start Triangle (V0 � V1 � V2)
Q.push_front: Edge(V0 � V1), Edge(V1 � V2), Edge(V2 � V0)
Initialise edge counts
while Q �� empty

E 	 Q.pop_front
� Vi � V j � 	 OrientedEdgeVertices(E)
if (E is OPEN) // fetch an rank code

K 	 DECODE_SYMBOL
if (K == 0) // boundary edge

continue
else

P 	 PredictPoint(V, ProcessedMesh)
VT 	 KthClosestPoint(P, K, V)
InsertTriangle(Vi � V j � VT)
Update edge counts
if (Edge(Vi � VT) is OPEN)

Q.push_front: Edge(Vi � VT) // Left
if (Edge(VT � V j) is OPEN)

Q.push_back: Edge(VT � V j) // Right

Table 2: The Decoding Algorithm

3 edges in the queue, which are assigned an edge count of 1.
As each new triangle is added, the boundary flags and edge
counts are used to ensure that only valid edges are placed
on the queue. If a flagged (boundary) edge is added to the
queue, it will not be expanded at a later stage - however,
pushing such a redundant edge onto the queue allows us to
simplify the encode/decode logic. The decode phase mirrors
the encode phase - this is why we need to write out 0 codes
for boundary edges: the decoder will not know which edges
are simply “open” (unprocessed) or boundary edges, so we
have to provide this information in the encoded stream. It
is important to emphasize that we only use information in
the encoder which would be available to the decoder at that
particular step.

By keeping track of the edge counts we can can also ap-
propriately prune the edge traversal and ensure that each tri-
angle is processed only once. The scheme thus generates
T � 1 integer values for a closed surface, where T is the
number of triangles. If the surface has B boundary edges,
then each boundary edge will generate an additional 0 value,
and we will need to encode T � B � 1 integers.

To recover the connectivity information, we simply re-
verse the process: we start off with the same initial trian-
gle (which is specified) and then build the edge queue in the
same way. For each edge, we compute the predicted point
and search for the Kth nearest neighbour (K is the value of
the ranking code) to this predicted point in the complete ver-

submitted to COMPUTER GRAPHICS Forum (12/2006).

Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes 5

tex set. We then add the new edges (if any) and continue
processing the edge queue until it is empty.

We use edge information to decide whether a vertex re-
turned from a closest point query is admissible. We cull a
vertex from future edge searches if all the edges attached to
that vertex are closed (have triangles on either side) or if the
only open edges are boundary edges (which are explicitly
coded). By eliminating these points we reduce the maximum
size of the ranking codes, and thus reduce the overall entropy
of the code sequence.

Figure 3 demonstrates the full algorithm for a small trian-
gulation with boundary. The encoding and decoding phases
are essentially mirror images of each other. The scheme au-
tomatically deals with holes and boundaries, but cannot deal
with non-manifold triangulations.

3.1. Numerical Issues

We assume that the input mesh vertices are quantized in the
standard way:

1. a bounding box (which encloses the vertex set) is com-
puted;

2. a fixed number of bits (usually 12) is used to quantize
each coordinate;

3. no two vertices share the same quantized coordinates. If
this is not true, the quantization can either be refined, or
the degenerate triangles can be removed in a preprocess
step.

When computing distance rankings, it is possible that sev-
eral points may be located at the same distance from a given
query point. To deal with this problem, we use the vertex in-
dices to disambiguate our selection. We assume that the ver-
tex compression scheme will preserve the vertex ordering,
so that both the encoding and decoding steps will have con-
sistently numbered vertices. If this is not the case, a simple
lexicographical sort on the vertex coordinates can be used
to reorder the data in a consistent manner. We first order the
points that map to unique distances using their computed dis-
tance values. Then, we insert the points with duplicate dis-
tances into this sequence, at the appropriate distance value,
ordered by their unique vertex indices. This has the effect of
increasing the range of the rank values since there are more
distance values to consider and the matching point position
may be further down in the sequence. Fortunately, for a sen-
sible choice of predictor (cf. Section 3.2), this does not hap-
pen very often. To avoid issues with floating point precision
in our distance calculations, we perform all calculations us-
ing double precision floating point arithmetic and then cast
the results to IEEE754 single precision floats before making
comparisons.

3.2. Distance rank codes

The success of the closest-point coding scheme depends on
our ability to construct good predictions for a range of dif-

p

c
b

v0

v1

Figure 4: Correcting for surface curvature. Given the pre-
diction edge � v0 � v1 � , we predict the closing vertex as p. We
search in a neighbourhood about p to find a small number
of mesh vertices within a fixed radius, and compute the cen-
troid, c, of this set. In many cases the centroid will lie close to
the underlying mesh surface, and the set of points � v0 � v1 � c �
thus describe a crude planar approximation the local trian-
gle mesh surface. To compute the final predicted point, b, we
rotate p about � v0 � v1 � onto the plane spanned by � v0 � v1 � c � .

x

s

E

Figure 5: Triangle size changes. We predict our closing
vertex p. Then, we search for the first vertex which lies in the
region ahead of E, bounded by 2 planes parallel to the pre-
diction direction. In this case, we find the vertex x. We then
scale the prediction in this direction to form the final predic-
tion, s. α can be used to widen the search region, and may
be determined empirically across a wide range of models.

ferent mesh classes. We can identify three core attributes of
triangle mesh geometry that affect our ability to make accu-
rate predictions: triangle regularity, surface curvature and
triangle size.

1. Triangle Regularity If the triangulation is very regular
(triangles are similar), then a simple parallelogram rule,
as used in [TG98], can be employed to predict the clos-
ing vertex, using the 3 vertices of the base triangle. If the
mesh consists of many different triangle shapes, a paral-
lelogram rule will generally yield a poor prediction. If the

submitted to COMPUTER GRAPHICS Forum (12/2006).

6 Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes

1

f g

c

d e

1

0

0

i

j

0

e 1h
i

f
0

0

1g

h

j

c

Q: (a b c)

a Q.pop

Dist_Rank(a) = 0 // Bndry

Codes: (0)

Q: (b c)

b Q.pop

Dist_Rank(x, b) = 1

Codes: (0 1)

Q: (d c e)

d Q.pop

Dist_Rank(x, d) = 1

Codes: (0 1 1)

Q: (f c e g)

f Q.pop

Dist_Rank(f) = 0 // Bndry

Codes: (0 1 1 0)

Q: (c e g)

c Q.pop

Dist_Rank(c) = 0 // Bndry

Codes: (0 1 1 0 0)

Q: (e g)

e Q.pop

Dist_Rank(x, e) = 1

Codes: (0 1 1 0 0 1)

Q: (h g i)

h Q.pop

Dist_Rank(x, h) = 1

Codes: (0 1 1 0 0 1 1)

Q: (g i j) // g not pushed

g Q.pop

g is closed continue

Q: (i j)

i Q.pop

Dist_Rank(i) = 0 // Bndry

Codes: (0 1 1 0 0 1 1 0)

Q: (j)

j Q.pop

Dist_Rank(j) = 0 // Bndry

Codes: (0 1 1 0 0 1 1 0 0)

Q: (a b c)

Codes: (0 1 1 0 0 1 1 0 0)

Codes.pop = 0; a Q.pop

Bndry continue

Q: (b c)

Codes: (1 1 0 0 1 1 0 0)

Codes.pop = 1; b Q.pop

insert (b, d, e)

Q: (d c e)

Codes: (1 0 0 1 1 0 0)

Codes.pop = 1; d Q.pop

insert (d, f, g)

Q: (f c e g)

Codes: (0 0 1 1 0 0)

Codes.pop = 0; f Q.pop

Bndry continue

d e

1

c

1

0

0
j

0

1g

h

e 1

f
0

0
c

Q: (c e g)

Codes: (0 1 1 0 0)

Codes.pop = 0; c Q.pop

Bndry continue

Q: (e g)

Codes: (1 1 0 0)

Codes.pop = 1; e Q.pop

insert (e, h, i)

Q: (h g i)

Codes: (1 0 0)

Codes.pop = 1; h Q.pop

insert (h, g, j); g closed

Q: (g i j)

Codes: (0 0)

ignore closed; g Q.pop

Q: (i j)

Codes: (0 0)

Codes.pop = 0; i Q.pop

Bndry continue

Q: (j)

Codes: (0)

Codes.pop = 0; j Q.pop

Bndry done

ENCODE DECODE

c

g

i

i

Figure 3: Encode: We begin with the 3 edges a, b and c placed on the queue and proceed by always popping edges off the
front of the queue. A vertex prediction is computed and the distance rank (the boxed number) is established. Each new closed
triangle produces a left and right edge which are pushed onto the front and back, respectively, of the queue and edge counts are
updated. A square (rather than circular) vertex indicates that the vertex will not be considered when calculating the distance
rank. Boundary edges have a distance rank of 0. Edge counts are indicated by the thickness of the triangle line (thick lines have
a count of 2) and the shaded triangles are those which are processed at each step. Decode: We start with the edges of the initial
triangle, a, b and c. We then then form a prediction and search for the Nth closest point, ignoring processed/flagged vertices,
where N is given by the distance rank code. A closing vertex creates a new triangle which is inserted into the mesh, triggering
updates of the appropriate edge counts. The codes are examined before the edge queue; if an edge is determined to be closed
(either by a 0 code or because its edge count is 2), we proceed to the next edge immediately.

submitted to COMPUTER GRAPHICS Forum (12/2006).

Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes 7

Armadillo Blob Bunny Dinosaur

Horse Nefertiti Rabbit Venus

Figure 6: Model Test Set. The models depicted here are commonly used in benchmarking compression performance. Some
models are ommitted: fandisk and feline appear in figure 1 and venus-lres and horse-lres are simply lower resolution versions
of the venus and horse models.

mesh has little or no regularity, then all one can reason-
ably say is that the prediction is most likely to lie some
distance in front of the prediction edge. We have devel-
oped what we call the midpoint predictor, which predicts
the closing vertex as being along a ray perpendicular to
the midpoint of the base edge such that, initially at least,
an equilateral triangle is formed. For a highly regular
mesh, a prediction based on a parallelogram suffices, oth-
erwise we use the midpoint predictor.

2. Surface Curvature If the surface curves unexpectedly,
a prediction based on the recovered mesh will perform
poorly. Fortunately, in our scheme one can use the distri-
bution of the points ahead of the prediction front to con-
strain the prediction. By using the centroid of the points
clustered ahead of the prediction edge to define an aver-
aging plane for the upcoming surface, and then bending
the prediction onto this plane, we can largely overcome
this problem — see figure 4. Of course, the position of the
centroid will depend on the number of points chosen. In
order to keep the prediction local we limit the neighbour-
hood to a maximum of 10 points lying no further away
than four times the current edge length.
We also implemented higher order surface fitting along
the same lines as Gumhold and Amjoun [GA03], by fit-
ting a quadric surface to the upcoming points and then
intersecting it with a tangential circle centred on the cur-
rent edge to arrive at a prediction, but the results were
unpredictable (ranging from a 3
 8% improvement to a

2
 2% degradation, with an average improvement of only
0
 32%) and did not justify the computational expense.

3. Triangle Size The final ingredient for a good prediction
scheme is the ability to deal with rapidly changing trian-
gles sizes. It is self-evident that a parallelogram predic-
tion based on a small triangle will provide a very poor es-
timate if the closing triangle is very large. We overcome
this problem by scaling along the prediction direction by
an amount that places the predicted point close to the first
vertex it encounters in a “frustum” centred on the base
prediction edge. See figure 5. While this is not always
optimal, it tends to deal well with abrupt transitions in
triangle size and has a significant impact on compression
(with an average improvement of 50% and up to 70% on
meshes with abrupt size changes).

We implemented the parallelogram and midpoint predic-
tors. Both use the mesh vertex set to deal with curvature and
triangle scaling. The midpoint predictor generally places the
prediction point along the ray perpendicular to the midpoint
of the prediction edge. However, for meshes with highly
symmetric vertex sets, such as triangulated quad meshes, the
midpoint placement leads to a “tie” for closest point, which
inflates the distance codes. To deal with this issue, the mid-
point position is biased slightly in a direction that follows the
triangle skew of the adjacent processed triangles. This gen-
erally ensures that if the closest point is not the target vertex,
then the second closest point will be.

submitted to COMPUTER GRAPHICS Forum (12/2006).

8 Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes

Model 0 1 2 3 4 5 6 7 8 9 10

armadillo 0.932 0.066 0.001

blob 0.872 0.114 0.009 0.003 0.001 0.001

bunny 0.003 0.956 0.039 0.001

dinosaur 0.913 0.070 0.011 0.003 0.001 0.001

fandisk 0.943 0.056 0.001

feline 0.804 0.145 0.031 0.010 0.005 0.002 0.001 0.001 0.001

horse 0.947 0.048 0.003 0.001

horse-lres 0.970 0.026 0.002 0.001

nefertiti 0.057 0.861 0.056 0.019 0.003 0.003 0.002

rabbit 0.928 0.068 0.003 0.001

venus 0.828 0.124 0.029 0.010 0.004 0.002 0.001 0.001

venus-lres 0.772 0.146 0.045 0.020 0.008 0.004 0.002 0.002

Table 3: Histogram of arithmetic compression codes. This table shows the distribution of symbols submitted for arithmetic
compression. A 0 code is only output on open edges and the only open models are bunny and nefertiti. Note the significant
clustering of first and second closest point symbols (in the 1 and 2 columns). Symbols with an occurrence less than 0
 001 have
been ommited.

In order to choose the appropriate predictor, we apply the
same triangle traversal to the mesh and approximate the pre-
dictor solutions, Pi, using only the attached triangle. This
local information is enough to estimate the scaling and cur-
vature behaviour referred to above, without any expensive
closest point queries. We maintain a counter, Ci, for each
predictor. We increment Ci if Pi is closer to the target vertex,
T , than any vertices attached to T . If none of the Pi satisfy
this condition (note that both can), we increment the counter
for the predictor closest to T . The predictor with the highest
counter is chosen to encode the surface.

The ranking values we generate typically span the first
few positive integers, with a probability distribution heavily
skewed towards small values (see table 3). We use a standard
adaptive arithmetic coder [MNW98] to compress the con-
nectivity sequence. In general, the probability of the symbols
1 or 2 occurring is far higher than any other symbol, and this
is quickly picked up by the adaptive arithmetic coder. How-
ever, the conditional probability of a 1 following a 2 (and
the 3 other permutations of 1 and 2) is also generally useful
and not simply random. We have found that by storing the
conditional probabilities P � 1 2 � , P � 2 1 � , P � 2 2 � and P � 1 1 �
and using these to modify the probability estimates we can
improve compression performance by 1%-5%.

4. Results and Discussion

To allow for comparison with other triangle mesh compres-
sion schemes, and since there is no standard test corpus,
we have used the same models where possible (see fig-
ure 6). Model sizes range from 300 to 170K vertices, and
the test corpus contains CAD models, scanned models and
simplified models. Only connectivity and geometry are com-
pressed: we do not address the issue of compressing other
mesh attributes. Model vertices are quantized to 12 bits per
coordinate, the value that most other authors use.

While there is currently no point-cloud compressor that
provides universally superior results, we have opted to use
the compressor of Merry et al. [MMG06] since this per-
forms well on meshes without a large number of slivers or
widely varying triangle sizes. Such triangulations are gen-
erally avoided in computer graphics since they can lead to
bad shading artifacts. It is likely that other point-cloud com-
pressors (e.g. [GKIS04,SK06]) would yield better results on
irregular meshes. However, since this paper primarily ad-
dresses connectivity compression, and the issue of point-
cloud compression is addressed by others, we provide only
a small set of illustrative geometry compression results - Ta-
ble 5. This shows that the overall compression results for
regular models compare well with baseline valence schemes.
Given the growing interest in point based representations we
anticipate a significant amount of future research in the area

submitted to COMPUTER GRAPHICS Forum (12/2006).

Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes 9

Model V Nopt TG FL AA DR Gain Time
VDr % s

armadillo 172974 1.65 1.83 0.74 55 18.9

blob 8036 1.70 1.28 25 0.8

bunny 34834 1.07 1.29 0.59 45 3.4

dinosaur 14070 2.25 2.39 1.44 1.69 1.04 28 1.4

fandisk 6475 0.93 1.08 0.74 0.65 12 0.5

feline 49864 2.20 2.38 1.23 1.50 1.95 -58 5.1

horse 48485 1.33 1.51 0.70 47 5.2

horse-lres 19851 2.25 2.34 0.96 1.35 0.44 54 1.8

nefertiti 299 2.37 2.83 2.42 1.66 30 0.0

rabbit 67039 1.47 1.66 0.80 45 6.3

venus 50002 2.05 2.20 1.73 1.79 -3 5.2

venus-lres 8268 2.71 2.82 1.95 2.30 -17 0.8

Table 4: Connectivity compression results. Results for a number of popular connectivity coders are presented where possible
— AA [LAD02], FL [KPRW05], Nopt [KADS01], TG [TG98] and VDr [AD01]. For Nopt/VDr we choose the better of the two
listed results; if one result is missing, we list the available data in bold print. The DR columns present our results. Results in bold
font indicate where our scheme improves performance over the best reported results. The compression gain (as a percentage)
and average encode/decode times are presented in the last two column.

Model TG Conn TG Geom TG tot DR Conn DR Geom DR Tot

armadillo 1.83 12.25 14.08 0.74 11.84 12.58

bunny 1.29 13.62 14.91 0.59 11.68 12.27

fandisk 1.08 14.84 15.92 0.65 12.79 13.44

horse 1.51 12.63 14.14 0.70 11.09 11.79

rabbit 1.66 12.46 14.12 0.80 9.86 10.66

Table 5: Combined compression results. We have used the point cloud compressor of Merry et al. [MMG06] to produce a
combined geometry and connectivity bit rate. This compressor is designed for point clouds with regular structure and thus works
well for regularly distributed triangle mesh vertices. For comparison, we have presented the standard Touma and Gotsman
[TG98] valence encoder with results for both connectivity and geometry. It can be seen that the proposed scheme performs well
for regular models, easily outperforming the reference scheme. All geometry was quantized to 12-bit accuracy.

submitted to COMPUTER GRAPHICS Forum (12/2006).

10 Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes

of point cloud compression. Since we have decoupled the
connectivity and geometry encoding, our technique will ben-
efit immediately from any future improvements in this area.

Tests were run on a P4 3GHz machine with 512MB of
memory and all meshes were processed in memory. A kd-
tree [MA97] is used to accelerate nearest neighbour queries.
This kd-tree implementation does not support incremental
queries. Since each new point query is independent of its
predecessors, the system run times are significantly higher
than a properly optimised implementation would allow.

Table 4 presents our results for connectivity encoding.

The encode and decode times differ by only a few percent;
we have thus presented the average encode/decode time for
each mesh to avoid further clutter in Table 4. As expected,
the (de)compression time scales linearly with the number
of triangles. The header information required by the algo-
rithm (the four prior probabilities, starting vertices for the
initial triangle and a few flags) typically amounts to about
30 bytes for a single component mesh, and is not included in
the compression cost. For every separate triangulated com-
ponent, another 3 integers are required to specify the starting
triangle.

The predictor selection scheme outlined in Section 3.2
was used to automate the selection of the appropriate pre-
dictor rule for each triangle. The “midpoint” predictor was
used most frequently, which demonstrates that a simple par-
allelogram rule is often a poor predictor of mesh geometry.

A quick perusal of the results shows that the scheme per-
forms very well on meshes which display regularity (fig-
ure 1(a), 1(b)), generally reducing the connectivity informa-
tion to less than 1 bpv. It should be noted that the valences
in these meshes may be arbitrary — it is the regularity of the
triangulation that matters. In all cases the results are much
lower than the valence entropy.

For irregular meshes (those with a wide mix of different
triangles types) the gains are somewhat smaller, and some of
the other schemes perform better — figure 1(c). This is par-
ticularly true when there are a large number of slivers in the
mesh, since the algorithm is most likely to predict vertices
in the region ahead of the current edge. This is the case for
the venus and feline meshes which appear to have been ar-
bitrarily triangulated. The current predictors do not perform
optimally for such meshes although they remain competitive
with a number of other valence-based schemes. It should be
noted, however, that one could develop a predictor tailored to
meshes with a high proportion of slivers. In fact, one strength
of our method is that one can continue to add predictors to
deal with a host of different mesh types. The predictor spec-
ification then requires an additional integer in the header.

There are some “pathological” meshes (figure 1(d) for
example) on which the two predictors fare poorly. These
meshes are distinguished by having a large number of thin
triangles (slivers), which are closed by vertices lying some

distance to either side of the base edge. While the results are
poor in this case, models such as these are not very common
since most triangulations of surfaces tend to yield triangula-
tions with some degree of regularity.

There is no useful theoretical bound on the compression
performance of the scheme, unless one makes very restric-
tive assumptions about the underlying mesh structure. In
fact, given the nature of the prediction scheme, it is pos-
sible, although highly unlikely, to generate a ranking code
equal to the size of the vertex set. Of course, as vertices are
culled, this maximum value will shrink. The lack of a theo-
retical bound does not, however, detract from the utility of
this approach, as illustrated by the results.

5. Conclusion and Future Work

We have presented a simple geometry-driven approach for
encoding the connectivity information of a triangle mesh.
The technique is based on a prediction operation which es-
tablishes a distance ranking to connect each new triangle
into the mesh during a breadth-first surface traversal. Our ap-
proach departs from the traditional interleaving of vertex and
connectivity compression: we have access to the entire ver-
tex data set prior to encoding and decoding of mesh connec-
tivity. The availability of this global information allows us
to construct good predictors which yield small ranking val-
ues and produce a connectivity code with very low entropy.
Although face-based, the low entropies arising from the pre-
diction scheme ensure that the technique remains competi-
tive with valence-based schemes. For meshes with a regular
structure, we consistently achieve results of less than 1 bpv
and generally outperform the best results reported in the lit-
erature. Meshes with irregular triangles produce results that
are on par with most valence-based schemes, although they
fall short of the best reported results.

There are a number of ways in which the scheme can be
extended. Our predictors make limited use of global vertex
data and a single predictor is chosen based on a global es-
timate. Some experimentation shows that a more compact
code results if one can choose the predictor on a per face ba-
sis. One possibility is to use a learning technique to switch
predictors as more of the mesh is processed. The current
mesh traversal strategy does not utilise information from the
processed mesh regions; a better strategy may be to traverse
the mesh according to some fitness metric which explores
regular regions first, deferring the processing of irregular re-
gions until later.

The algorithm can readily be generalised to handle tetra-
hedral meshes. Furthermore, the notion of distance rank cod-
ing can also be applied to general polygonal meshes, al-
though in this case one requires a degree code for each face,
in addition to the ranking codes required to insert each ver-
tex.

submitted to COMPUTER GRAPHICS Forum (12/2006).

Patrick Marais, James Gain, Dave Shreiner / Distance Ranked Connectivity Compression of Triangle Meshes 11

6. Acknowledgements

This research was supported by a National Research Founda-
tion Grant (No: 2053416). We hereby acknowledge the var-
ious institutions and research groups which hold copyright
over the test corpus we used.

References

[AD01] ALLIEZ P., DESBRUN M.: Valence-driven con-
nectivity encoding for 3D meshes. In EG 2001 Proceed-
ings, Chalmers A., Rhyne T.-M., (Eds.), vol. 20(3). Black-
well Publishing, 2001, pp. 480–489.

[AFSR03] ATTENE M., FALCIDIENO B., SPAGNUOLO

M., ROSSIGNAC J.: Swingwrapper: Retiling triangle
meshes for better edgebreaker compression, 2003.

[AG03] ALLIEZ P., GOTSMAN C.: Recent advances in
compression of 3D meshes. In Proceedings of the Sympo-
sium on Multiresolution in Geometric Modeling (2003).

[CR04] COORS V., ROSSIGNAC J.: Delphi: geometry-
based connectivity prediction in triangle mesh compres-
sion. The Visual Computer, 20 (2004), 1–14.

[Dee95] DEERING M.: Geometry compression. In Pro-
ceedings of the 22nd annual conference on Computer
graphics and interactive techniques (1995), ACM Press,
pp. 13–20.

[DG00] DEVILLERS O., GANDOIN P.-M.: Geometric
compression for interactive transmission. In Proceedings
of the conference on Visualization ’00 (2000), IEEE Com-
puter Society Press, pp. 319–326.

[FCOAS03] FLEISHMAN S., COHEN-OR D., ALEXA

M., SILVA C. T.: Progressive point set surfaces. ACM
Trans. Graph. 22, 4 (2003), 997–1011.

[GA03] GUMHOLD S., AMJOUN R.: Higher order pre-
diction for geometry compression. In Shape Modeling
International (2003), IEEE Press, pp. 59–66.

[GD02] GANDOIN P.-M., DEVILLERS O.: Progressive
lossless compression of arbitrary simplicial complexes. In
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (2002), ACM Press,
pp. 372–379.

[GKIS04] GUMHOLD S., KARNI Z., ISENBURG M., SEI-
DEL H.-P.: Predictive point-cloud compression. In
ACM SIGGRAPH Conference Abstracts and Applications
(2004).

[KADS01] KHODAKOVSKY A., ALLIEZ P., DESBRUN

M., SCHROEDER P.: Near-optimal connectivity encod-
ing of 2-manifold polygon meshes, 2001.

[KPJC99] KIM Y.-S., PARK D.-G., JUNG H.-Y., CHO

H.-G.: An improved tin compression using delaunay
triangulation. In PG ’99: Proceedings of the 7th Pa-
cific Conference on Computer Graphics and Applications

(Washington, DC, USA, 1999), IEEE Computer Society,
p. 118.

[KPRW05] KAELBERER F., POLTHIER K., REITEBUCH

U., WARDETZKY M.: Freelence — coding with free va-
lences. In Eurographics (2005).

[LAD02] LEE H., ALLIEZ P., DESBRUN M.: Angle-
analyzer: A triangle-quad mesh codec, 2002.

[LK00] LEE E.-S., KO H.-S.: Vertex data compression
for triangular meshes. In Proceedings of the 8th Pa-
cific Conference on Computer Graphics and Applications
(2000), IEEE Computer Society, p. 225.

[MA97] MOUNT D., ARYA S.: Ann: A library for approx-
imate nearest neighbor searching, 1997.

[MMG06] MERRY B., MARAIS P., GAIN J.: Compres-
sion of dense and regular point clouds. In Proceedings
of the 4th international conference on Computer Graph-
ics, Virtual Reality, Vizualisation and Interaction in Africa
(2006), ACM Press.

[MNW98] MOFFAT A., NEAL R. M., WITTEN I. H.:
Arithmetic coding revisited. ACM Trans. Inf. Syst. 16,
3 (1998), 256–294.

[OS04] OCHOTTA T., SAUPE D.: Compression of point-
based 3D models by shape-adaptive wavelet coding of
multi-height fields. In Proceedings of Symposium on
Point-Based Graphics 2004 (Zürich, Switzerland, June
2004), Eurographics.

[PK05] PENG J., KUO C.-C. J.: Geometry-guided pro-
gressive lossless 3d mesh coding with octree (ot) decom-
position. ACM Trans. Graph. 24, 3 (2005), 609–616.

[Ros99] ROSSIGNAC J.: Edgebreaker: Connectivity com-
pression for triangle meshes. IEEE Transactions on Visu-
alization and Computer Graphics 5, 1 (/1999), 47–61.

[Ros01] ROSSIGNAC J.: 3D compression made simple:
Edgebreaker with zip&wrap on a corner-table. In Pro-
ceedings of the International Conference on Shape Mod-
eling & Applications (2001), IEEE Computer Society,
p. 278.

[SK06] SCHNABEL R., KLEIN R.: Octree-based point-
cloud compression. In Proceedings of Symposium on
Point-Based Graphics 2006 (July 2006), Botsch M., Chen
B., (Eds.), Eurographics.

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh com-
pression. In Proceedings of Graphics Interface (1998).

[TR98] TAUBIN G., ROSSIGNAC J.: Geometric compres-
sion through topological surgery. ACM Transactions on
Graphics 17, 2 (1998), 84–115.

submitted to COMPUTER GRAPHICS Forum (12/2006).

