

Proposal for evaluating the effectiveness of semaphoric-tangible and virtual reality interfaces for a previsualisation activity

Joshua Ramsbottom • Katherine Rix • David Rix Supervisor: Dr James Gain

PREVIZ
2015

Animation process

storyboard → **production**

Animation process

storyboard -> production

Animation process

storyboard -> previz -> production

Previsualization

A low-fidelity (rough) animation used to plan:

- scene arrangement
- camera angles
- timing

Previsualization

User defines a sequence of **keyframes**.

The system **interpolates** the keyframes to generate a rough animation.

Task analysis

- Model placement
- Camera placement
- Keyframe CRUD (create/read/update/delete)
- Timeline navigation

Existing

• Trained animators

Potential

- Directors
- Producers
- Casual users

(No training in traditional WIMP-based software.)

Problem statement

Traditional animation software:

- requires training
- constrained to deskbound mouse and keyboard interactions

Is there an alternative?

Proposed alternatives

Virtual reality (VR)

- places user in 3D virtual environment
- immersive and natural interactions

Tangible user interface (TUI)

 user manipulates data by manipulating physical object

Proposed Systems

Virtual reality

- User wears a head-mounted display
 - Oculus Rift DK2
- User **immersed** in the virtual scene
- Manipulates scene using input device
 - Input device undecided

Related work

- Large amounts of research into 3DUIs with VR
- 3DUIs are **efficient and natural**
 - Headmounted displays [Butterworth et al. 1992]
 - CAVE-based [Hughes et al. 2013, Ponto et al. 2013]

Related work

Problems identified

- Focused on 3D modelling task
- Trained participants
- Text/numeric data capture is difficult
 - alleviated by combined 2D/3D input [Wang and Lindeman 2014]

Tabletop system

- **3D printed models** and model camera
- Models placed on tabletop
- Vision sensor registers
 positions
- User controls system with semaphores
- Simple GUI displays results

Related work

- Multimodal interfaces **free the user** to focus on the operational task [Oviatt et al. 2004]
- Tangible interfaces are **easy to learn and use** (and well-researched) [Ishii 2008]
- Semaphoric modality is **complementary** [Jacob 2007]

Comparison

- Base WIMP system
- Compare alternate systems to base system

Stretch goal

• Compare alternate systems to one another

Experiments

Research questions

Hypothesis 1

Each interface will generate **fewer user errors** than the WIMP interface.

Hypothesis 2

Users will report that each interface is **more usable** than, and preferable to, the WIMP interface.

Hypothesis 3

All subtasks will take **more time** with an alternate interface compared to a WIMP interface.

Evaluation

Preliminary evaluation (completed)

• confirms user acceptance

Iterative user-centred development

- 3 development cycles
- First cycle: Heuristic evaluation by 3-5 HCI experts
- Remainder: Evaluation by industry experts

Final user evaluation

40 non-animators perform the same activity, made up of multiple animation subtasks.

We will be measuring:

- Time taken
- Error rate (undos)
- Usability
- Correctness of final animation

Vision subsystem

[Lu et al. 2007]

Vision subsystem

- High-fidelity, time-of-flight Kinect for Xbox One range sensor
- Surface-model registration
- Iterative closest point algorithm
 - Appropriate coarse registration
 - Time-of-flight noise model
 - Sensor-specific distortion map

Research questions

Hypothesis 1

At a range of 5–6m, the sensor will be able to correctly register a single 3D printed model.

Hypothesis 2

At the same range, the sensor will register multiple 3D printed models.

Hypothesis 3

At the same range, the sensor will re-register multiple 3D printed models after occlusion by a human subject.

Project planning

Implementation strategy

- Initial design informed by well-established research areas
- Task analysis performed for paper prototype
- Core functionality implemented in base WIMP system
- Iterative development cycle for alternate systems

Development platform

Choices driven by **hardware compatibility** and **team knowledgebase**...

Development platform

Challenges and risks

- Eskom
- Team coordination
- Code coordination
- Relatively new hardware and SDKs
 - Hardware requirements
- Appropriate assets
 - 3D, printable, compatible
 - Big Buck Bunny

Code ownership

reusable code, repeatable experiment, less paperwork

Ethical issues

- Low-risk experiments
- Simulation sickness (nausea)
 - informed consent

Project plan

- Base WIMP system
 - functionality baseline
- Rapid iterative development
- Emphasise feasibility milestone

Questions?

Image credits

Big Buck Bunny [CC BY]

Wikimedia Commons [CC BY-SA]

Logos trademarked their respective owners

Peter Ramsey Rise of the Guardians

Jennifer Lee Frozen

Nina Paley Sita Sings the Blues

Hayao Miyazaki Spirited Away

Participate in our experiment to find out!