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We  introduce  model-surface  registration  and  iterative  closest  point  (ICP),  a  popular  solution  to  this 
problem,  with  reference  to  surveys  by  Rusinkiewicz  and  Levoy  [2001]  and  Salvi  et  al.  [2007].  
Implementations of  ICP using the Kinect for Xbox 360 are reviewed.  Hardware characteristics for the 
Kinect  and  other  commercial  sensors  (Leap  Motion,  Kinect  for  Xbox  One)  are  summarised.  Finally,  
limitations and requirements for academic reference material are discussed.
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1. INTRODUCTION

Registration of objects using range images

Computer vision is the study of techniques for processing image-based data. Data 
sources may include traditional images (monocular RGB bitmaps), but a wide range 
of sensors are available that produce richer or alternative datasets, also suitable for 
vision processing. A subset of these are range images, where the pixel value does not 
represent an RGB colour. Instead, it represents the distance of that pixel from the 
camera.  This  is  conceptually  equivalent  to  a  heightmap,  where  the  pixel  value 
represents the height of the pixel from a nominal surface. However, range images do 
not have to represent a top-down view (see Figure 1).

One interpretation of a range image is as a 3D surface: each depth pixel is 
equivalent to the <x,y,z> coordinate of a point, and together these points define a 
surface. This surface is a partial 3D view of the real-world scene (sometimes called a 
2.5D view). The collection of points from the sensor is known as the source cloud.
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Fig. 1. Example depth scan of a human face, taken from Lu et al. [2006]. (a) Traditional RGB bitmap. (b) 
Range image (false colour indicates depth). (c) Reconstruction based on range data. Note that the model is 

limited to the surface defined by the range image.

We might also have an independent point cloud defining a full 3D object, for 
example drawn in a 3D modelling tool. This collection of known points is called the 
reference cloud. Given these two datasets, we can consider locating the known model 
in the unknown surface. One way to do this is to align the two 3D datasets (so that 
partially visible surface of the object in the scene matches the corresponding surface 
of the full model).  This alignment task is known as  registration [Besl and McKay 
1992; Chen and Medioni 1991]. Model-surface registration is only one application of 
this technique. Another common application is generating a large surface by stitching 
smaller overlapping surfaces together, for example when performing large-scale 3D 
scans.

Salvi  et  al.  [2007]  distinguish  between coarse  and fine registration tasks. 
Coarse registration searches for an initial  estimate aligning the two point clouds. 
Local  solutions,  false  positives  and  false  negatives  should  be  avoided,  but  the 
accuracy of fit is not important. Fine registration relies on a good initial estimate, 
and refines this estimate such that the distance between corresponding cloud points 
is minimised, and the best fit is found.

2. ITERATIVE CLOSEST POINT

Iterative closest point (ICP) is a matching algorithm commonly used for fine model-
surface registration. The source and reference clouds are compared, with the closest 
reference  point  found  for  each  source  point.  The  distance  between  corresponding 
points is measured, and the mean squared error (MSE) of difference calculated. The 
source cloud is moved and rotated slightly to reduce the mean squared error. This 
process is iterated until the MSE is reduced to an acceptable level, or an iteration 
limit is reached. ICP has been shown to be geometry-preserving [Besl and McKay 
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1992], able to find at local solutions [Besl and McKay 1992], and have average case 
complexity of O(n log n) [Sharp et al. 2001].

Although  mathematically  reliable  [Besl  and  McKay  1992],  the  following 
limitations were identified in the ICP approach:

(1) Over-reliance on a good initial rotation [Besl and McKay 1992; Sharp et al. 2001]. 
Without a suitable intial rotation ICP may converge on an incorrect local solution. 
This  dependency  limits  its  application  when  full  automation  is  required,  but 
initial rotation is not known (for example, locating an object in an arbitrary scene) 
[Sharp et al. 2001].

(2)  Inability  to  account for  outliers  in the  datasets  [Besl  and McKay 1992].  This 
means it is not robust against noise generated by real-world surfaces and/or the 
sensor [Berger et al. 2013].

(3) Surfaces that differ in only fine detail may be subject to false registration. For 
example, two flat surfaces with light incisions, as might be found when performing 
a 3D scan of ancient inscriptions [Rusinkiewicz and Levoy 2001].

Chen et al.  [1991] is generally considered a variant of ICP (although it is 
classified by Salvi et al. [2007] as a distinct solution). Instead of measuring distance 
from point to corresponding point, distance is measured from point to the tangent 
plane of the corresponding point. This approach has been found to be more robust to 
local  solutions,  resulting  in  more  accurate  fits  [Rusinkiewicz  and  Levoy  2001]. 
Historically, Chen's variant relied on calculating normal values in order to obtain the 
tangent  planes,  which  reduced  its  speed,  but  since  c2006  depth  cameras  have 
typically included normal data in their output [Salvi et al. 2007]. Rusinkiewicz and 
Levoy  [2001]  use  Chen's  variant  and  increased  sampling  in  regions  where  the 
normals were similar, which improved the registration of inscribed surfaces, amongst 
others (see Figure 2).

Rusinkiewicz and Levoy [2001] also identified six stages of the generalised 
ICP algorithm:

(1) Selection. Selecting some or all points from each point cloud.
(2) Matching. Finding corresponding points in the two sets.
(3) Weighting. Applying a weighting measure to point pairs.
(4) Rejecting. Applying a validity constraint to point pairs.
(5) Measuring error. Calculating a measure of error based on the final set of pairs.
(6) Minimizing error. Performing a geometric transformation that reduces the error.
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Fig. 2. Increased sampling improves registration of light incisions. Contrast even sampling and resulting 
registration (a, c) with increased sampling in incised areas (b) and the more accurate registration (d) – 

demonstrated by crisper image and no duplicate lines [Rusinkiewicz and Levoy 2001]

By combining independently published improvements made to each stage of 
the algorithm they were able to optimize the speed of the implementation enough to 
suggest the feasibility of real-time registration from video input.

Despite  the  popularity  of  the  ICP algorithm,  only two approaches  (in  the 
period 1992-2003) meet the robustness criteria set out by Salvi et al. [2007]. This is 
only because they are reviewing ICP in contexts beyond surface-model registration, 
including motion detection and non-overlapping point clouds. For the surface-model 
problem,  they  consider  ICP  a  suitable  algorithm.  Robustness  is  still  a  widely 
recognised issue, though, and several improvements have been suggested. Broadly, 
these approaches can be categorized [Salvi et al. 2007] as those introducing statistical 
techniques (reducing the number of points sampled and/or the number of iterations 
based on statistical inferences and/or noise reduction) and those introducing coarse 
registration measures into the ICP distance calculation.

Of note is Sharp et al. [2001] who introduce invariant geometric features as a 
factor  in the  point-to-point  distance  calculation.  They  note  that,  for  example,  the 
curvature at a point is independent of its position in space. Thus if the curvature of 
corresponding  points  do  not  match,  we  know  that  these  points  do  not  in  fact 
correspond. Invariant features significantly improved the convergence rate of ICP.

In general, a coarse registration technique must be selected before invoking 
ICP. In non-automated systems, this could include user input [Besl and McKay 1992; 
Rusinkiewicz and Levoy 2001]. Surveys from c2000 [Rusinkiewicz and Levoy 2001; 
Salvi et al. 2007] consistently reference the potential of colour as a coarse registration 
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technique. As with invariant geometry, points of similar or dissimilar colours suggest 
correspondence or lack thereof.1 Thus, points under consideration are assigned 3D 
coordinates from the range image, and an RGB value from a regular image. The 
source data is then known as RGBD (RGB-plus-depth).

One potential application of RGBD registration is facial recognition. Lu et al.
[2006] use registration to construct a 3D facial model of the subject from 2.5D RGBD 
scans, storing this as the reference for the recognition task. They then retrieve a new 
2.5D image of the subject, and use a hybrid ICP algorithm2 to register the new source 
image against the reference model. Finally, RGB data is used to complete the facial 
recognition task. They note, however, that application is limited due to the cost of 3D 
data acquisition. The release of commodity RGBD sensors in 2010 led to an surge in 
computer vision publications that has not yet abated [Berger et al. 2013].

3. HARDWARE CONSIDERATIONS

3.1 Kinect for Xbox 360

The Kinect for Xbox 360 was a gaming accessory released in 2010. A side-effect of its 
availability  in  the  consumer market  was that  it  lowered  the  barrier  to  entry  for 
computer vision research [Berger et al. 2013]. The Kinect is a structured-light depth 
scanner  [Smisek  et  al.  2011].  It  projects  a  known  infrared  (IR)  pattern  into  the 
real-world scene, which is recorded by an IR camera. The geometry of the scene is 
derived from the deformation of the known pattern, and output as a range image 
[Berger et al. 2013; Smisek et al. 2011]. An RGB image is supplied from a separate 
camera, so that the final dataset is RGBD. The RGBD video stream is processed to 
locate human figures in the space in front of the sensor, and a decision-forest is used 
to identify these figures and the gestures they perform [Berger et al. 2013]. A high-
level  API  was  provided  so  that  developers  could  make  games  using  whole-body 
gestures as input, with sufficient abstraction from the underlying computer vision 
task.

However,  the  Kinect  sensor  (and  other  RGBD  cameras  in  the  consumer 
market) has become a popular tool for low-level computer vision tasks using just the 

1 Colour cannot be considered truly invariant, though, as it changes with lighting conditions [Salvi et al.  
2006]. But under similar lighting conditions, for example from one video frame to the next, it can provide a  
guide [Henry et al. 2012; Hu et al. 2012].

2 They use Besl and McKay [1992] to estimate fine registration, and Chen and Medioni [1991] to refine the  
estimation.
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RGBD  datastream.  This  raw  data  has  been  used  to  register  natural  and 
manufactured objects, both static and in motion, with appropriate compensations for 
environmental factors and image noise [Berger et al. 2013]. These implementations 
tend to use RGB data for coarse registration and ICP for fine registration, and rely on 
RGB registration as a fallback when ICP registration fails [Henry et al. 2012; Hu et 
al.  2012].  The  KinectFusion  system  achieved  real-time  3D  reconstruction  with  a 
parallelised, GPU-based implementation of ICP [Izadia et al. 2011].

The  range  imaging  technique  (structured-light  in  the  IR  spectrum)  puts 
certain  limitations  on  what  scenes  can  be  examined,  and  therefore  under  what 
conditions  vision  tasks  can  be  performed  [Berger  et  al.  2013].  In  some  cases 
compensations can be made, in others new techniques must be found, and in still 
others the sensor is simply unusable:

(1)  The  depth  sensor  cannot  perform  in  ranges  closer  than  1.8m  [Amon  and 
Fuhrmann 2014; Smisek et al. 2011].

(2) There is mild distortion towards the edge of the image, and the distortion pattern 
for the depth and RGB images differs [Smisek et al. 2011]. (See Figure 3.)

(3) Bright light, such as direct sunlight, interferes with the IR camera, limiting the 
sensor to evenly-lit indoor settings [Butkiewicz 2014].

(4) The IR pattern only appears on matte objects.  Transparent objects (such as a 
glass of water) and reflective objects (such as a mirror) do not reflect the light in 
the  normal  way.  Compensation  techniques  have  been  found  to  account  for 
transparent objects in some cases [Berger 2013].

(5) A viewing shadow is created by offset between the IR emitter and IR camera, and 
the offset between RGB camera and IR camera [Smisek et al. 2011]. The practical 
outcome is that depth is uncertain at the boundaries of objects [Berger 2013].

Fig. 3. Radial component of distortion for the Kinect for
Xbox 360 IR (depth) camera [Smisek et al. 2011]
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(6)  The  patterns  from  multiple  Kinect  sensors  used  at  once  interfere  with  one 
another's depth perception. Shutter mechanisms can compensate for this [Berger 
2013].

Thus, despite its popularity, the peculiarities of the hardware device must be 
taken  into  consideration  and  in  some  cases  are  discovered  only  by  empirical 
observation [Smisek et al. 2011]. The Kinect was itself part of a wave of gesture-
based gaming accessories that started with the Wiimote. Since 2010, other vision-
based consumer devices have been released, including the Leap Motion and Kinect 
for Xbox One. As one would expect, these have different camera characteristics, such 
as resolution, FOV and range depth. However, they also use different range imaging 
hardware, which has implications for their potential application.

3.2 Leap Motion

The Leap Motion uses a close-range stereoscopic infrared camera [Adhikarla et al. 
2015;  Guna  et  al.  2014],  and  provides  a  high-level  API  for  articulated  hand 
movements. For low-level processing, the device offers only a stereoscopic IR image 
and it was not designed as a generic range sensor [Leap Motion 2015c].

As with the Kinect, hardware characteristics determine the suitability of the 
Leap device:

(1) Effective depth detection is limited to 30cm. [Adhikarla 2015]
(2) Because it is a close-range device, the Leap suffers from image distortion that is 

extreme compared to the Kinect [Leap Motion 2015b].
(3)  There  is  poorer  performance  under  bright  and strong  IR  conditions.  (This  is 

somewhat accounted for with a "Robust Mode" for API-supported hand tracking, 
but even this has limitations [Leap Motion 2015d].)

Fig. 3. Visualization of the distortion present in a raw image from the
Leap Motion Controller [Leap Motion 2015b]
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 These limitations, the relatively recent release of the low-level API [He 2015], 
and the different underlying data set, probably account for the lack of publications 
applying computer vision techniques to Leap data. Recent publications tend to focus 
on applying the high-level API to hand-oriented tasks such as sign language [Potter 
et al. 2013], or augmenting Kinect data with finger position detail [Marin et al. 2014]. 
It is possible to generate mesh data from the stereoscopic images [Lahoz 2014], but 
this technique has not seen formal publication. Given the relative mobility of the 
Leap  device,  and  it's  imminent  compatibility  with  mobile  operating  systems 
[Buckwald 2015], investigation into it's application for geometric data may bear fruit 
for other close-range,  high-fidelity and/or mobile  applications.  On the other hand, 
another device explicitly designed as a close-range generic depth sensor may be more 
suitable.

Fig. 4. Human face reconstructed from raw Leap Motion data [Lahoz 2015].
Mesh based on stereo IR data. Note perspective distortion.

3.3 Kinect for Xbox One

The Kinect for Xbox One uses a time-of-flight range sensing [Amon and Fuhrmann 
2014; Sell and O'Connor 2014], which is recognised as a reliable, high-fidelity range 
imaging technique [Berger 2013]. It measures the time taken to receive the reflection 
of  an  IR  light  pulse.  The  high-level  API  expands  on  the  features  offered  by  the 
previous version, including detection of more participants and novel features such as 
heartbeat detection. As with the other sensors reviewed, the Kinect for Xbox One has 
a distinct set of distortion maps [Butkiewicz 2014].
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Fig. 5. Radial component of distortion for the Kinect for
Xbox One IR (depth) camera [Butkiewicz 2014]

Significant hardware characteristics of the Kinect for Xbox One include:
(1)  High-fidelity geometry in similar ranges to the Kinect for Xbox 360 [Amon and 

Fuhrmann 2014; Sell and O'Connor 2014]. This suggests that invariant geometry 
may be a viable coarse registration measure, and that registration of fine detail 
will be possible.

(2)  A viewing shadow between RGB and range images [Butkiewicz 2014],  but no 
viewing shadow in range images (due to the time-of-flight approach).

(3) Limited but improved performance in an outdoor setting [Butkiewicz 2014].
(4) Different noise model between time-of-flight and structured light [Berger 2013]. 

This means changes from research using the Kinect for Xbox 360 will need to be 
accounted for, but pre-Kinect research using time-of-flight noise models will again 
be directly applicable.

The Kinect for Xbox One was also released relatively recently, and there was 
some confusion around how convenient it might be to use in the non-gaming context 
[Orland 2014;  Machkovech  2014].  This  accounts  for  the  relatively  low number  of 
publications  currently  available  that  directly  investigate  its  characteristics.3 It  is 
reasonable to assume that as the 360 product line comes to an end, hardware begins 
to fail, and free software library support inevitably improves [Blake et al. 2015], at 
least some researchers investigating the same physical range will migrate to the new 
model.  Thus  it  is  worth  pursuing  comparative  and  device-specific  investigation 
[Butkiewicz 2014], or diving into applications in the same range [Marin et al. 2014].

3 Some of the referenced work is based on the discontinued but near-identical Kinect for Windows v2  
sensor [Machkovech 2014].
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3.4 Summary of hardware characteristics

The hardware characteristics of the three sensors under discussion are summarised 
below:

Table I. Summary of sensor hardware

Component K. Xbox 360 Leap Motion K. Xbox One
Technique Structured-

light
Stereoscopic 
infrared

Time-of-flight

Depth 
sensor

1.8 to 3.5m 3 to 30cm a 1.3 to 3.5m

IR depth 
image

320 x 240 - 512 x 424

Colour 
image

640 x 480 - 1920 x 1080

IR image - 640 x 240 
(stereo) b

512 x 424

Audio 4 kHz, 16-bit - 48 kHz, 16-bit
FOV 
horizontal

57 deg. 150 deg. c 70 deg.

FOV 
vertical

43 deg. - 60 deg.

Minimum 
latency

102 ms Unknown d 20-60 ms

Source: Summary of Kinect data from Amon and Fuhrmann 
[2014].
a Adhikarla [2015].
b As reported in [Derivative 2014] but unconfirmed.
c As stated by manufacturer in [Leap Motion 2015a]. 
Adhikararla [2015] summarises the range volume as an 
inverted pyramid extending 20cm behind the device, and 20cm 
in either direction laterally. Guna [2014] notes a decrease in 
accuracy as the point of interest moves away from the sensor.
d Guna [2014] notes that the rate of recognition is limited.

4. CONCLUSIONS

Even with a well-defined task (real-time model-surface registration), a well-known 
algorithm (ICP) and readily-available hardware, consideration of the research context 
is neccessary so that we can account for the characteristics of choices made at both 
the algorithmic and hardware levels.

Hardware  characteristics  in  particular  have  a  significant  influence  on 
potential  application  of  a  computer  vision  system.  They  may  even  influence  the 
computational  tasks  required  (for  example,  requiring  a  deformation  step  before 

Honours report, University of Cape Town. April 2015.



Limitations in Model-Surface Registration Using RGBD Sensors                                                                     1:11
                                                                                                                                        

registration can occur), which in turn influence the processing speed, which further 
influences potential application of the system.

Having  popular  sensors  available  in  the  consumer  market  means  that 
hardware-level  characterstics  can  be  measured  and  shared,  even  with  otherwise 
proprietary devices. For long-standing popular devices, this is of significant benefit to 
peers.  It  is  preferable  that  new  product  lines  are  evaluated  before  attempting 
application, a need which is heightened when old product lines are discontinued.
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