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ABSTRACT
We develop  a  wrapper  for  libpointmatcher,  a  C++ registration 
library, and use this wrapper to expose registration functionality to 
software developed in C# in the Unity game engine. Users of a 
tabletop registration system developed with this module and using 
a Kinect for Xbox One (K4X1) depth sensor report registration 
errors occurring in the late afternoon. We attempt to replicate this  
issue  in  the  morning  twilight  period,  but  fail  to  find  any 
connection between error  and ambient visible light,  or  ambient 
infrared light. We find that ambient infrared light, as perceived by 
the  depth  sensor,  remains  constant  even  while  visible  light 
increases. We recommend a review of the literature on infrared 
light, and suggest that additional sensor(s) may improve reliability 
for a tabletop system.
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1. INTRODUCTION
One  application  of  computer  vision  systems  is  as  supporting 
component in a tangible interfaces [Shaer and  Hornecker 2010]. 
We were tasked with the implementation of such a module, in the 
context of a tangible system intended for workplace use. In this 
system, users would place a plastic figurine on a desk, and expect 
to see its virtual counterpart appear in a 3D scene displayed on a 
monitor.  Multiple figures would be placed on the tabletop,  and 
they  should  appear  in  the  correct  relative  positions  and 
orientations: an accurate representation of the real-world tabletop 
scene.

One way to take an image of the tabletop scene would be to use an 
time-of-flight sensor such as the Kinect for Xbox One (K4X1). 
The  sensor  using  a  time-of-flight  mechanism  interrogates  the 
scene with infrared light, recording the depth rather than color of 
each pixel in view [Butkiewicz 2014]. The resultant image, known 
as a depthmap, contains a partial 3D surface of all objects in view, 
known as  a  2.5D image.  Given a  full  3D representation  of  an 

model  object,  known  to  be  in  the  scene,  we  can  align  that 
representation with the partial  scene surface,  effectively finding 
the actual position and orientation of the object in the scene.

This  process  is  known  as  model-surface  registration [Berger 
2013].  One  popular  algorithm for  this  task  is  iterative  closest  
point (ICP)  [Chen and  Medioni  1991;  Besl  and  McKay  1992; 
Salvi  2007],  which  requires  an  initial  estimate  to  start  the 
alignment process.  Result  accuracy is unfortunately sensitive to 
this initial  estimate  [Salvi  2007].  In the context of a prototype 
system, we can account for this limitation by placing constraints 
on the tabletop system. For example, requiring that all figurines 
are upright, so that our initial estimate does not need to consider 
rotations on all three axes.

However,  this  addresses  only  algorithmic  limitations  on  the 
registration  process.  The  proposed  setting  for  the  system  is  a 
workplace desk, and consideration must be made for the physical 
properties  of  the  system  components,  including  the  desk  and 
objects being sensed [Berger et al. 2013], the sensor [Butkiewicz 
2014] and ambient light [Butkiewicz 2014; Michelson and Morely 
1887].

2. PREVIOUS WORK
libpointmatcher1 [Pomerleau  et  al.  2011,  2013]  is  a  C++  ICP 
implementation  used  primarily  for  research  in  robotic  vision 
systems. (Robotic systems use ICP results to stitch multiple 2.5D 
surfaces  together,  thereby  navigating  and  mapping  unknown 
locations in a process  known an  simultaneous localization and  
mapping (SLAM) [Aulinas et al. 2008].) This library generalizes 
the  body of  ICP research  by  abstracting  the  ICP process  in  a  
sequence of data filters (filters applied to the 3D model data, 2.5D 
surface data and result data) and processing filters (parameterized 
algorithms that process and/or augment the data).

Previous  works  on  ICP  can  be  expressed  as  libpointmatcher 
filters, compared to one another, and selected based on suitability 
to a system's particular vision environment [Pomerleau et al. 2011, 
2013]. For example, Chen and Medioni [1991] proposed a point-
to-plane  alignment  algorithm,  which  performs well  in  artificial 
environments [Pomerleau et  al.  2011],  while   Besl  and McKay 
[1992] proposed point-to-point. Both are available as processing 
filters in libpointmatcher.

3. IMPLEMENTATION

3.1 Depthmap
The  K4X1  depthmap  is  non-uniformly  scaled,  the  depth 
dimension does not match the scaling of the XY plane. A visual 
assessment was used to scale the Z dimension down by a factor of 
4 in order to match the XY scaling.

1 https://github.com/ethz-asl/libpointmatcher
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The original intention for the K4X1 is as a game controller, and a 
game presents a player with a representation of themselves, the 
representation  is  presented  as  a  mirror  image.  In  other  words, 
when the player raises their right hand, their “reflection” raises its 
left hand. Because this is the universal use case for the K4X1, the 
depthmap and other image sources have an inverted X axis. In our 
case we needed a real-world representation, and the X axis needed 
to be counter-inverted.

Finally, before conceptualising a depthmap as 2.5D data, we must 
consider that it represents a perspective projection from the real 
world  onto  the  camera  frame.  Thus,  the  XY coordinates  must 
undergo  an  inverse  perspective  projection  (sometimes  called  a 
camera-to-world projection) so that our final XYZ point is placed 
in the correct location.

A common formula used for perspective projection is:

Bx = Ax * (Bz / Az)

where Bx is the result for the screen x-coordinate, Ax the actual x-
coordinate, Bz the known distance from the camera to screen and 
Az the actual distance from the camera. Substitute y for x for a 
similar formula for y-axis.

Given a  depthmap made up of Bx, By, Az values,  we want to 
reconstruct Ax and Ay. For the x-axis this would be:

Ax = Bx * (Az / Bz)

However, we do not know Bz, the distance from the K4X1 camera 
to the virtual screen. To determine this value, we placed a number 
of objects of equal height in a diagonal line in front of the sensor. 
The line stretched back along the Z dimension, so that the objects 
were distorted via perspective projection such that they did not 
appear to have an equal height in a depth map represention. We 
incrementally adjusted Bz via Newton's method until our inverse 
perspective projection resulted in objects of equal height.

We calculated Bz to be 400 for our accepted depthmap scale.

Visualising the data in this early in development was challenging, 
since  the  effects  of  scale  where  not  known  beforehand.  The 
libpointmatcher  team  recommend  ParaView2 for  3D  data 
visualization.  However,  ParaView  does  not  allow  on-the-fly 
manipulation  of  the  data,  and  does  not  have  an  orthogonal 
projection  view.  Although  we  see  and  arrange  objects  in 
perspective,  we  typically  reason  with  orthogonal  logic,  for 
example, knowing that a sequence of objects are the same height,  
even though they recede into the distance (see above). Therefore 
we  implemented  a  primitive  visualisation  tool  in  our  target 
platform  (Unity  53)  to  bootstrap  this  process.  Once  we  had 
achieved a world coordinate system, ParaView proved immensely 
useful for exploring datasets.

3.2 Wrapping for C#
Our target platform was the Unity 5 game engine and the K4X1 
sensor. Thus we required a software interface between Unity and 
the libpointmatcher, a C++ library. This interface was generated 
via a wrapper template (Appendix A) written for the Simplified 
Wrapper  and Interface Generator  (SWIG).  This  template  wraps 
only the high-level API provided by libpointmatcher. Challenges 
included  coordinating  the  compatibility  of  libpointmatcher 
compilation for Microsoft Visual C++ (required for our Windows 

2 http://www.paraview.org

3 http://unity3d.com

implementation) and SWIG's internal compiler, while maintaining 
compatbility with GCC (SWIG's primary compilation target). Not 
all API methods were eventually exposed some object members 
remain inaccessible,  but  the primary registration  methods  were 
successfully exposed. Having achieved this we were able to build 
LibPmSharp, a C# wrapper DLL for libpointmatcher, and develop 
_registration_module,  a  mesh  maintenance  and  registration 
module  for  Unity.  This  module  was  successfully  used  in  our 
original  visualization  tool,  a  tangible  tabletop  system  and  a 
sensor-based experiment (below).

3.3 Mesh coordination

The  module  coordinated  registration  between  meshes  that 
originated in 3D animation (leaving artefacts like invisble rigging, 
articulated eyeballs and mouth pockets) and then used to 3D print 
the models to be registered. MeshMixer's “Make solid” tool4 was 
used to reduce the number of points in the meshes, and return a  
mesh with an even distribution of points (eyeballs intially had a 
very large number of points).

In order to for registration results to be meaningful we reversed 
the intended meaning of reference and reading in libpointmatcher: 
we registered the 2.5D surface against the 3D model in order to 
answer the question “what transformation would place the model 
in  the  correct  position  and  rotation  within  the  surface?”  This 
transformation  was  used  to  place  a  virtual  object  in  the 
appropriate position in the virtual scene.

Models  were  reoriented  so  that  their  origin  point  fell  at  the 
midpoint of their base, matching the anchor point of their Unity 
counterparts.

3.4 Tabletop filters

Initial work revealed that wooden tabletops created scoop-shaped 
reflections  of  the  models  in  their  varnish,  which  confused 
registration attempts. We eliminated these by defining a bounding 
volume that models had to be placed in.

Models  also  presented  a  comet-like  artefact  trailing  from their 
surfaces into the Z-dimension. These outliers can be ignored using 
the TrimmedDistOutlierFilter, which drops points that fall beyond 
a user-determined outlier factor [Chetverikov 2002].

Augmenting the surface datapoints  with invariant  values called 
features [Sharp 2002] meant  that  the registration process could 
match pointclouds using these as well as XYZ coordinates.  We 
used normals oriented in the direction of the sensor. (The filters 
used  were  SurfaceNormalDataPointsFilter,  Observation-
DirectionDataPointsFilter and  OrientNormalsDataPointsFilter 
[Pomerleau et al. 2011]).  A full example of a data filter, as used 
for character models on a tabletop, is given in Appendix B.

4. AIMS

In  a  related  usability  study  that  makes  use  of 
_registration_module [Rix  2015],  users  reported  that  accuracy 
was negatively impacted under  low light  conditions in  the late 
afternoon. This is a surprising suggestion when considering the 
previously discussed basic  mechanism of  time-of-flight  sensors 
(see  Introduction).  However,  this  does  not  rule  out  some 
interaction between time of day and ambient infrared light.  We 
investigate this report by recreating an environment with changing 
sunlight levels.

4 http://www.meshmixer.com
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Hypothesis 1. Registration error (difference between reported and 
expected y-rotation angle) will decrease with increasing ambient 
visible light.

Hypothesis  2. Registration  error  will  decrease  with  increasing 
ambient infrared light.

5. METHODOLOGY

A stage area measuring 14 x 57 cm is marked out on a wooden 
tabletop.  The  stage  is  backed  by  two  panels  of  matte  gray 
chipboard  21cm  high.  A K4X1  depth  sensor  is  placed  on  a 
separate tabletop, 70.5cm away from the stage area. The sensor is 
directed  towards  the  stage,  facing  away  from  an  east-facing 
window.

Two pixel blocks are marked on the RGB image of the stage, such 
that each block covered the top half of a chipboard panel (A in 
Figure X). Ambient intensity of visible light was calculated as the 
average pixel intensity both blocks.

Two pixel blocks were similarly derived from the infrared image 
of the stage. Ambient intensity of infrared light was calculated as 
the average pixel intensity of both blocks.

Four  models  were placed upright  along the middistance of  the 
stage, facing 45º left (where 0º would be west-facing). The models 
were  3D  prints  of  character  assets  from  Big  Buck  Bunny 
[Goedegebure  et  al.  2008],  an  animated  short.  They  were  a 
convex-appearing  character5,  printed  once in  blue  plastic  (C in 
Figure  X)  and  once  in  white  (D),  and  a  concave-appearing 
character6 printed once in blue (E) and once in white (F).

Non-overlapping 3D bounding boxes were derived from the depth 
image of the stage, such that each model was uniquely associated 
with a bounding box.

Registration of a mesh was made against the live data found in the 
bounding box. The actual y-rotation of the registration result was 
compared to the expected value of 45º, and an error value derived. 
The error was normalised to lie between 0º and 180º inclusive (in  
other words, an error of -10º, +10º and +350º would be considered 
equivalent).

Registration attempts were made on all  4 models between 4:30 
AM  and  8:45  AM  (local  time).  This  time  period  covered  the 

5 Gamera  the  chinchilla.  She  appears  convex  from  most 
orientations.

6 Frankie  the  flying  squirrel.  His  hunched  pose  is  somewhat 
concave from this orientation (he would appear convex if his back 
was to the sensor).

twilight  period  that  accompanies  sunrise,  when  perceived 
visibility increases with ambient sunlight.

6. RESULTS

6.1 Effect of light

In  figure  X  we  observe  that  the  intensity  of  visible  light 
(calculated as the average of RGB pixel intensity) increases over 
the morning twilight period,  specifically between 5:18 AM and 
6:18 AM, as expected. The increase in non-linear. On the other 
hand, the intensity of infrared light (calculated as the average of 
infrared pixel intensity) is linear and near-constant.

In figure X, we note that registration error over the same period is 
erratic, and does not appear to decrease over the morning twilight 
period for any model.

These erratic   results  are  seen again when plotting registration 
error directly against visible light intensity in figure X.

Figure 3. Registration error over twilight period.

Figure 2. Intensity of visible and infrared light over twilight 
period.



The implied low correlation is confirmed by calculating Pearson's 
correlation coefficient between model error and intensity. These 
results are summarized in Table X. In all cases, no correlation was 
found.

Table 1. Correlation coefficient between
registration error and intensity

Model Visible Infrared

blue convex 0.148 -0.118

white convex 0.004 0.045

blue concave 0.034 0.142

white concave 0.150 -0.172

Potential interaction between shape 
and color

A two-way ANOVA assumes  that  variance between samples  is 
homogenous.  This  is  confirmed  with  Levene's  test  for 
homogeneity of variance. Brown-Forsythe's variation (centered at 
the  median  rather  than  the  mean)  is  robust  to  unusual 
distributions, and was used in this case.

For this sample, Df = 3, F = 90.022 and W = 508. W > F (p < 
0.001), rejecting the hypothesis that variance is homogenous, and 
a two-way ANOVA cannot be performed.

7. DISCUSSION

We  were  not  able  to  confirm  a  correlation  between  error  and 
ambient visible light (measured as the average intensity of RGB 
pixels)  or  ambient  infrared  light  (measured  as  the  average 
intensity of grayscale pixels from an infrared camera).

Possible explanations include differences between the setting of 
this  diagnostic  investigation  and  the  original  setting  where  the 
problem occurred. These include:

• Angle of sunlight. In the original setting, sunlight shone 
from  behind  the  models  towards  the  Kinect  sensor, 
whereas in our setting sunlight shone from behind the 
sensor onto the models.  Sunlight from behind models 
may silhouette them, or create significant local shadows 
(removing datapoints required for registration). Sunlight 
shining in the direction of the sensor may cause glare or 
other artefacts.

• Light  transition  pattern. It  could  be  that  the  light 
transition pattern of morning twilight  does not match 
the early-to-late afternoon light transition experienced in 
the  original  setting.  For  example,  mid-afternoon light 
may be significantly brighter and reduce error beyond 
the limits seen in our study.

• Distance  from  sensor. In  our  settings  models  were 
close  to  the  front  limit  of  the  stage,  whereas  in  the 
original  setting  users  had  a  deeper  stage  area,  and 
reported  that  bringing  models  closer  to  the  Kinect 
alleviated reported error somewhat. Increased distance 
necessarily reduces the 2D area a given model takes up 
on  a  depthmap,  and  therefore  reduces  the  number  of 
datapoints. It could be that this effect is exaggerated in 
lower light levels in relation to distance from the sensor. 
Similarly, size of the model may be a factor.

We were surprised to note that ambient infrared light, as measured 
off a chipboard panel, is near-constant and independent of ambient 
visible  light.  This  result  suggests  there  may  be  no  correlation 
between  visible  and  infrared  light  levels.  In  this  case,  no 
correlations with error were found because there was no change in 
the relevant light frequency, as recorded by the depth sensor. More 
technical detail on the infrared mechanism of the K4X1 and the 
infrared component of sunlight would be required to explore this 
phenomenon further.

If infrared levels are generally constant, it may be that light levels 
at  any  frequency  are  not  the  cause  of  error,  nor  the  erratic 
registration results in general. It could be that at for this particular  
combination of model size and distance, the depthmap data is too 
ambiguous for reliable registration, and the afternoon observation 
was a coincidence.

Changes to data filters improved registration results early in the 
development process. A more thorough study may reveal further 
refinements or alternatives that return more reliable results.

Synthesizing datapoints from one or more sensors (for example, a 
sensor  at  the  same  height  but  an  orthogonal  angle)  may 
significantly  reduce  the  ambiguity  of  pointclouds  and  return 
reliable registration results.

8. CONCLUSIONS

In a morning twilight study measuring registration error, we could 
not conclude that light level was the cause of the error, despite 
original reports from users that registration error increased in the 
late  afternoon.  We  did  observe  that  infrared  light  levels,  as 
perceived by the K4X1 sensor, remained constant for the duration 
of the study.

A technical review of the infrared component of sunlight and the 
K4X1's  infrared mechanism would be an essential  first  step in 
addressing  the  issue.  Disambiguation  data  from  additional 
sensor(s) would likely result in much more reliable results, even 
in limiting conditions.

9. FUTURE WORK

Future work should investigate the potential relationship between 
model shape,  size,  color,  distance from sensor,  any interactions 
and  their  relationship  with  registration  error.  Increased  size 
necessarily  increases  the  number  of  datapoints  captured by  the 
depth sensor. Of particular pertinence to applied computer vision 

Figure 4. Registration error against visible light intensity.



is the question of whether, and to what extent, added information 
improves registration accuracy.

On a related note, the use of additional sensors to provide multiple 
views  on  the  same  scene  could  help  to  resolve  otherwise 
ambiguous cases.

libpointmatcher  provides  a  highly  configurable  chain  of  ICP 
filters.  If  we  consider  these  to  be  the  genomes  of  registration 
implementations,  we  might  be  able  to  take  an  evolutionary 
approach  to  exploring  potential  filtersets  and  their  fitness  for 
particular computer vision applications. A virtual world might be a 
convenient testbed for such an exploration, although one would 
have to consider how closely, for example, results from a virtual 
sensor match sensor noise and other real-world attributes.
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Appendix A: libpm a SWIG template for libpointmatcher

%module libpm

%{

/* Includes the headers in the wrapper code (note: order matters) */

#include "pointmatcher\IO.h"

#include "pointmatcher\Timer.h"

#include "pointmatcher\PointMatcherPrivate.h"

#include "pointmatcher\PointMatcher.h"

#include "pointmatcher\Parametrizable.h"

#include "pointmatcher\Registrar.h"

%}

/* Gracefully handle all exceptions */

// from http://swig.org/Doc3.0/SWIGDocumentation.html#Library_stl_exceptions

%include "exception.i"

%exception {

  try {

    $action

  } catch (const std::exception& e) {

    SWIG_exception(SWIG_RuntimeError, e.what());

  }

}

/* Standard wrappers for other exceptions, strings and arrays */

%include "std_except.i"

%include "std_string.i"

%include "carrays.i"

%array_class(float, floatArray);

/* C# wrappers for array parameters */

%include "arrays_csharp.i"

%apply float INPUT[]  {float* array_in}

%apply float OUTPUT[] {float* array_out}

// wraps arrays used in helper functions mapArrayToMatrix and mapMatrixToArray

// (note that array_out seems unreliable and iteration over a floatArray is preferred;

// array_in works as expected)

// see also http://stackoverflow.com/questions/5822529/swig­returning­an­array­of­doubles

/* Prerequisite headers ­ SWIG definitions */

%rename(process) operator ();

%rename(shiftLeft) operator <<;

%rename(shiftRight) operator >>;



%rename(isEqual) operator ==;

// name C++­only operators

%ignore loggerMutex;

// SWIG .cxx compilation fails for this object

// (occurs when using underlying Boost library)

%ignore getNameParamsFromYAML;

// MSVC compilation of .cxx fails for this method

// (because the .cxx uses Parametrizable::Parameters instead of

// PointMatcherSupport::Parametrizable::Parameters)

/* Prerequisite headers ­ include header files */

#define NABO_VERSION "1.0.6"

#define NABO_VERSION_INT 10006

// last tested version (token definition required in headers below)

%include "../pointmatcher/Registrar.h"

%include "../pointmatcher/Parametrizable.h"

// parse the prerequisite header files

/* Primary API ­ SWIG definitions */

%ignore getFeatureViewByName;

%ignore getFeatureRowViewByName;

%ignore getDescriptorViewByName;

%ignore getDescriptorRowViewByName;

// SWIG .cxx compilation fails for these methods

// (occurs when instantiating Eigen:Block with PointMatcher<float>)

%ignore getLimitNames;

%ignore getConditionVariableNames;

// SWIG .cxx compilation fails for these methods

// (occurs when instantiating PointMatcher<float>::TransformationChecker::

// StringVector)

/* Primary API ­ header file */

#define WRAPPER_VERSION "0.3.0"

#define WRAPPER_VERSION_INT 00300

// version number for this interface file

%include "../pointmatcher/PointMatcher.h"

// parse the primary API

%template(PM) PointMatcher<float>;

// create a concrete class from the PointMatcher<T> template



Appendix B: Tabletop filter
readingDataPointsFilters:

  ­ IdentityDataPointsFilter

referenceDataPointsFilters:

  ­ SurfaceNormalDataPointsFilter

  ­ ObservationDirectionDataPointsFilter:

     x: 0

     y: 0

     z: 0

  ­ OrientNormalsDataPointsFilter:

     towardCenter: 1

matcher:

  KDTreeMatcher:

    knn: 1

    epsilon: 0

    searchType: 1

outlierFilters:

  ­ TrimmedDistOutlierFilter:

      ratio: 0.9

errorMinimizer:

  PointToPlaneErrorMinimizer

transformationCheckers:

  ­ CounterTransformationChecker:

      maxIterationCount: 40

  ­ DifferentialTransformationChecker:

      minDiffRotErr: 0.001

      minDiffTransErr: 0.01

      smoothLength: 3

inspector:

  NullInspector

logger:

  NullLogger


