
The effect of luminiferous aether on ICP registration in a
constrained tabletop environment

David Rix
University of Cape Town

ABSTRACT
We develop a wrapper for libpointmatcher, a C++ registration
library, and use this wrapper to expose registration functionality to
software developed in C# in the Unity game engine. Users of a
tabletop registration system developed with this module and using
a Kinect for Xbox One (K4X1) depth sensor report registration
errors occurring in the late afternoon. We attempt to replicate this
issue in the morning twilight period, but fail to find any
connection between error and ambient visible light, or ambient
infrared light. We find that ambient infrared light, as perceived by
the depth sensor, remains constant even while visible light
increases. We recommend a review of the literature on infrared
light, and suggest that additional sensor(s) may improve reliability
for a tabletop system.

CCS Concepts
• Computing methodologies ~ Computer vision • Computing
methodologies ~ Computer vision problems

Keywords
null result; registration; iterative closest point (ICP);
libpointmatcher; Kinect for Xbox One (K4X1); visible light;
infrared light

1. INTRODUCTION
One application of computer vision systems is as supporting
component in a tangible interfaces [Shaer and Hornecker 2010].
We were tasked with the implementation of such a module, in the
context of a tangible system intended for workplace use. In this
system, users would place a plastic figurine on a desk, and expect
to see its virtual counterpart appear in a 3D scene displayed on a
monitor. Multiple figures would be placed on the tabletop, and
they should appear in the correct relative positions and
orientations: an accurate representation of the real-world tabletop
scene.

One way to take an image of the tabletop scene would be to use an
time-of-flight sensor such as the Kinect for Xbox One (K4X1).
The sensor using a time-of-flight mechanism interrogates the
scene with infrared light, recording the depth rather than color of
each pixel in view [Butkiewicz 2014]. The resultant image, known
as a depthmap, contains a partial 3D surface of all objects in view,
known as a 2.5D image. Given a full 3D representation of an

model object, known to be in the scene, we can align that
representation with the partial scene surface, effectively finding
the actual position and orientation of the object in the scene.

This process is known as model-surface registration [Berger
2013]. One popular algorithm for this task is iterative closest
point (ICP) [Chen and Medioni 1991; Besl and McKay 1992;
Salvi 2007], which requires an initial estimate to start the
alignment process. Result accuracy is unfortunately sensitive to
this initial estimate [Salvi 2007]. In the context of a prototype
system, we can account for this limitation by placing constraints
on the tabletop system. For example, requiring that all figurines
are upright, so that our initial estimate does not need to consider
rotations on all three axes.

However, this addresses only algorithmic limitations on the
registration process. The proposed setting for the system is a
workplace desk, and consideration must be made for the physical
properties of the system components, including the desk and
objects being sensed [Berger et al. 2013], the sensor [Butkiewicz
2014] and ambient light [Butkiewicz 2014; Michelson and Morely
1887].

2. PREVIOUS WORK
libpointmatcher1 [Pomerleau et al. 2011, 2013] is a C++ ICP
implementation used primarily for research in robotic vision
systems. (Robotic systems use ICP results to stitch multiple 2.5D
surfaces together, thereby navigating and mapping unknown
locations in a process known an simultaneous localization and
mapping (SLAM) [Aulinas et al. 2008].) This library generalizes
the body of ICP research by abstracting the ICP process in a
sequence of data filters (filters applied to the 3D model data, 2.5D
surface data and result data) and processing filters (parameterized
algorithms that process and/or augment the data).

Previous works on ICP can be expressed as libpointmatcher
filters, compared to one another, and selected based on suitability
to a system's particular vision environment [Pomerleau et al. 2011,
2013]. For example, Chen and Medioni [1991] proposed a point-
to-plane alignment algorithm, which performs well in artificial
environments [Pomerleau et al. 2011], while Besl and McKay
[1992] proposed point-to-point. Both are available as processing
filters in libpointmatcher.

3. IMPLEMENTATION

3.1 Depthmap
The K4X1 depthmap is non-uniformly scaled, the depth
dimension does not match the scaling of the XY plane. A visual
assessment was used to scale the Z dimension down by a factor of
4 in order to match the XY scaling.

1 https://github.com/ethz-asl/libpointmatcher

David Rix. 2015. The effect of luminiferous aether on ICP registration in a
constrained tabletop environment. Honours report, University of Cape Town.
8 pages. November 2015. http://people.cs.uct.ac.za/~previz2015/registration/

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/

http://people.cs.uct.ac.za/~previz2015/registration/
https://github.com/ethz-asl/libpointmatcher
http://creativecommons.org/licenses/by%E2%80%91sa/4.0/
http://people.cs.uct.ac.za/~previz2015/registration/

The original intention for the K4X1 is as a game controller, and a
game presents a player with a representation of themselves, the
representation is presented as a mirror image. In other words,
when the player raises their right hand, their “reflection” raises its
left hand. Because this is the universal use case for the K4X1, the
depthmap and other image sources have an inverted X axis. In our
case we needed a real-world representation, and the X axis needed
to be counter-inverted.

Finally, before conceptualising a depthmap as 2.5D data, we must
consider that it represents a perspective projection from the real
world onto the camera frame. Thus, the XY coordinates must
undergo an inverse perspective projection (sometimes called a
camera-to-world projection) so that our final XYZ point is placed
in the correct location.

A common formula used for perspective projection is:

Bx = Ax * (Bz / Az)

where Bx is the result for the screen x-coordinate, Ax the actual x-
coordinate, Bz the known distance from the camera to screen and
Az the actual distance from the camera. Substitute y for x for a
similar formula for y-axis.

Given a depthmap made up of Bx, By, Az values, we want to
reconstruct Ax and Ay. For the x-axis this would be:

Ax = Bx * (Az / Bz)

However, we do not know Bz, the distance from the K4X1 camera
to the virtual screen. To determine this value, we placed a number
of objects of equal height in a diagonal line in front of the sensor.
The line stretched back along the Z dimension, so that the objects
were distorted via perspective projection such that they did not
appear to have an equal height in a depth map represention. We
incrementally adjusted Bz via Newton's method until our inverse
perspective projection resulted in objects of equal height.

We calculated Bz to be 400 for our accepted depthmap scale.

Visualising the data in this early in development was challenging,
since the effects of scale where not known beforehand. The
libpointmatcher team recommend ParaView2 for 3D data
visualization. However, ParaView does not allow on-the-fly
manipulation of the data, and does not have an orthogonal
projection view. Although we see and arrange objects in
perspective, we typically reason with orthogonal logic, for
example, knowing that a sequence of objects are the same height,
even though they recede into the distance (see above). Therefore
we implemented a primitive visualisation tool in our target
platform (Unity 53) to bootstrap this process. Once we had
achieved a world coordinate system, ParaView proved immensely
useful for exploring datasets.

3.2 Wrapping for C#
Our target platform was the Unity 5 game engine and the K4X1
sensor. Thus we required a software interface between Unity and
the libpointmatcher, a C++ library. This interface was generated
via a wrapper template (Appendix A) written for the Simplified
Wrapper and Interface Generator (SWIG). This template wraps
only the high-level API provided by libpointmatcher. Challenges
included coordinating the compatibility of libpointmatcher
compilation for Microsoft Visual C++ (required for our Windows

2 http://www.paraview.org

3 http://unity3d.com

implementation) and SWIG's internal compiler, while maintaining
compatbility with GCC (SWIG's primary compilation target). Not
all API methods were eventually exposed some object members
remain inaccessible, but the primary registration methods were
successfully exposed. Having achieved this we were able to build
LibPmSharp, a C# wrapper DLL for libpointmatcher, and develop
_registration_module, a mesh maintenance and registration
module for Unity. This module was successfully used in our
original visualization tool, a tangible tabletop system and a
sensor-based experiment (below).

3.3 Mesh coordination

The module coordinated registration between meshes that
originated in 3D animation (leaving artefacts like invisble rigging,
articulated eyeballs and mouth pockets) and then used to 3D print
the models to be registered. MeshMixer's “Make solid” tool4 was
used to reduce the number of points in the meshes, and return a
mesh with an even distribution of points (eyeballs intially had a
very large number of points).

In order to for registration results to be meaningful we reversed
the intended meaning of reference and reading in libpointmatcher:
we registered the 2.5D surface against the 3D model in order to
answer the question “what transformation would place the model
in the correct position and rotation within the surface?” This
transformation was used to place a virtual object in the
appropriate position in the virtual scene.

Models were reoriented so that their origin point fell at the
midpoint of their base, matching the anchor point of their Unity
counterparts.

3.4 Tabletop filters

Initial work revealed that wooden tabletops created scoop-shaped
reflections of the models in their varnish, which confused
registration attempts. We eliminated these by defining a bounding
volume that models had to be placed in.

Models also presented a comet-like artefact trailing from their
surfaces into the Z-dimension. These outliers can be ignored using
the TrimmedDistOutlierFilter, which drops points that fall beyond
a user-determined outlier factor [Chetverikov 2002].

Augmenting the surface datapoints with invariant values called
features [Sharp 2002] meant that the registration process could
match pointclouds using these as well as XYZ coordinates. We
used normals oriented in the direction of the sensor. (The filters
used were SurfaceNormalDataPointsFilter, Observation-
DirectionDataPointsFilter and OrientNormalsDataPointsFilter
[Pomerleau et al. 2011]). A full example of a data filter, as used
for character models on a tabletop, is given in Appendix B.

4. AIMS

In a related usability study that makes use of
_registration_module [Rix 2015], users reported that accuracy
was negatively impacted under low light conditions in the late
afternoon. This is a surprising suggestion when considering the
previously discussed basic mechanism of time-of-flight sensors
(see Introduction). However, this does not rule out some
interaction between time of day and ambient infrared light. We
investigate this report by recreating an environment with changing
sunlight levels.

4 http://www.meshmixer.com

http://www.meshmixer.com/
http://unity3d.com/
http://www.paraview.org/

Hypothesis 1. Registration error (difference between reported and
expected y-rotation angle) will decrease with increasing ambient
visible light.

Hypothesis 2. Registration error will decrease with increasing
ambient infrared light.

5. METHODOLOGY

A stage area measuring 14 x 57 cm is marked out on a wooden
tabletop. The stage is backed by two panels of matte gray
chipboard 21cm high. A K4X1 depth sensor is placed on a
separate tabletop, 70.5cm away from the stage area. The sensor is
directed towards the stage, facing away from an east-facing
window.

Two pixel blocks are marked on the RGB image of the stage, such
that each block covered the top half of a chipboard panel (A in
Figure X). Ambient intensity of visible light was calculated as the
average pixel intensity both blocks.

Two pixel blocks were similarly derived from the infrared image
of the stage. Ambient intensity of infrared light was calculated as
the average pixel intensity of both blocks.

Four models were placed upright along the middistance of the
stage, facing 45º left (where 0º would be west-facing). The models
were 3D prints of character assets from Big Buck Bunny
[Goedegebure et al. 2008], an animated short. They were a
convex-appearing character5, printed once in blue plastic (C in
Figure X) and once in white (D), and a concave-appearing
character6 printed once in blue (E) and once in white (F).

Non-overlapping 3D bounding boxes were derived from the depth
image of the stage, such that each model was uniquely associated
with a bounding box.

Registration of a mesh was made against the live data found in the
bounding box. The actual y-rotation of the registration result was
compared to the expected value of 45º, and an error value derived.
The error was normalised to lie between 0º and 180º inclusive (in
other words, an error of -10º, +10º and +350º would be considered
equivalent).

Registration attempts were made on all 4 models between 4:30
AM and 8:45 AM (local time). This time period covered the

5 Gamera the chinchilla. She appears convex from most
orientations.

6 Frankie the flying squirrel. His hunched pose is somewhat
concave from this orientation (he would appear convex if his back
was to the sensor).

twilight period that accompanies sunrise, when perceived
visibility increases with ambient sunlight.

6. RESULTS

6.1 Effect of light

In figure X we observe that the intensity of visible light
(calculated as the average of RGB pixel intensity) increases over
the morning twilight period, specifically between 5:18 AM and
6:18 AM, as expected. The increase in non-linear. On the other
hand, the intensity of infrared light (calculated as the average of
infrared pixel intensity) is linear and near-constant.

In figure X, we note that registration error over the same period is
erratic, and does not appear to decrease over the morning twilight
period for any model.

These erratic results are seen again when plotting registration
error directly against visible light intensity in figure X.

Figure 3. Registration error over twilight period.

Figure 2. Intensity of visible and infrared light over twilight
period.

The implied low correlation is confirmed by calculating Pearson's
correlation coefficient between model error and intensity. These
results are summarized in Table X. In all cases, no correlation was
found.

Table 1. Correlation coefficient between
registration error and intensity

Model Visible Infrared

blue convex 0.148 -0.118

white convex 0.004 0.045

blue concave 0.034 0.142

white concave 0.150 -0.172

Potential interaction between shape
and color

A two-way ANOVA assumes that variance between samples is
homogenous. This is confirmed with Levene's test for
homogeneity of variance. Brown-Forsythe's variation (centered at
the median rather than the mean) is robust to unusual
distributions, and was used in this case.

For this sample, Df = 3, F = 90.022 and W = 508. W > F (p <
0.001), rejecting the hypothesis that variance is homogenous, and
a two-way ANOVA cannot be performed.

7. DISCUSSION

We were not able to confirm a correlation between error and
ambient visible light (measured as the average intensity of RGB
pixels) or ambient infrared light (measured as the average
intensity of grayscale pixels from an infrared camera).

Possible explanations include differences between the setting of
this diagnostic investigation and the original setting where the
problem occurred. These include:

• Angle of sunlight. In the original setting, sunlight shone
from behind the models towards the Kinect sensor,
whereas in our setting sunlight shone from behind the
sensor onto the models. Sunlight from behind models
may silhouette them, or create significant local shadows
(removing datapoints required for registration). Sunlight
shining in the direction of the sensor may cause glare or
other artefacts.

• Light transition pattern. It could be that the light
transition pattern of morning twilight does not match
the early-to-late afternoon light transition experienced in
the original setting. For example, mid-afternoon light
may be significantly brighter and reduce error beyond
the limits seen in our study.

• Distance from sensor. In our settings models were
close to the front limit of the stage, whereas in the
original setting users had a deeper stage area, and
reported that bringing models closer to the Kinect
alleviated reported error somewhat. Increased distance
necessarily reduces the 2D area a given model takes up
on a depthmap, and therefore reduces the number of
datapoints. It could be that this effect is exaggerated in
lower light levels in relation to distance from the sensor.
Similarly, size of the model may be a factor.

We were surprised to note that ambient infrared light, as measured
off a chipboard panel, is near-constant and independent of ambient
visible light. This result suggests there may be no correlation
between visible and infrared light levels. In this case, no
correlations with error were found because there was no change in
the relevant light frequency, as recorded by the depth sensor. More
technical detail on the infrared mechanism of the K4X1 and the
infrared component of sunlight would be required to explore this
phenomenon further.

If infrared levels are generally constant, it may be that light levels
at any frequency are not the cause of error, nor the erratic
registration results in general. It could be that at for this particular
combination of model size and distance, the depthmap data is too
ambiguous for reliable registration, and the afternoon observation
was a coincidence.

Changes to data filters improved registration results early in the
development process. A more thorough study may reveal further
refinements or alternatives that return more reliable results.

Synthesizing datapoints from one or more sensors (for example, a
sensor at the same height but an orthogonal angle) may
significantly reduce the ambiguity of pointclouds and return
reliable registration results.

8. CONCLUSIONS

In a morning twilight study measuring registration error, we could
not conclude that light level was the cause of the error, despite
original reports from users that registration error increased in the
late afternoon. We did observe that infrared light levels, as
perceived by the K4X1 sensor, remained constant for the duration
of the study.

A technical review of the infrared component of sunlight and the
K4X1's infrared mechanism would be an essential first step in
addressing the issue. Disambiguation data from additional
sensor(s) would likely result in much more reliable results, even
in limiting conditions.

9. FUTURE WORK

Future work should investigate the potential relationship between
model shape, size, color, distance from sensor, any interactions
and their relationship with registration error. Increased size
necessarily increases the number of datapoints captured by the
depth sensor. Of particular pertinence to applied computer vision

Figure 4. Registration error against visible light intensity.

is the question of whether, and to what extent, added information
improves registration accuracy.

On a related note, the use of additional sensors to provide multiple
views on the same scene could help to resolve otherwise
ambiguous cases.

libpointmatcher provides a highly configurable chain of ICP
filters. If we consider these to be the genomes of registration
implementations, we might be able to take an evolutionary
approach to exploring potential filtersets and their fitness for
particular computer vision applications. A virtual world might be a
convenient testbed for such an exploration, although one would
have to consider how closely, for example, results from a virtual
sensor match sensor noise and other real-world attributes.

10. ACKNOWLEDGMENTS
I would like to acknowledge François Pomerleau, Stéphane
Magnenat and all contributors to the excellent libpointmatcher
library. I like to thank François in particular for answering my
many many questions.

I would also like to acknowledge Katherine Rix, my partner, for a
huge amount of assistance in determining suitable filters to use in
a tabletop environment, and for her implementation and
optimization of the Haussdorf measure of the fit of two surfaces.
This work would not have reached a point ready for research
within the available time without her help.

Finally, I would like to acknowledge my supervisor, Dr James
Gain who offered invaluable guidance on the mathy bits. I would
also like to thank Dr Patrick Marais for offering me the benefit of
his experience in more than one conversation.

11. REFERENCES
[1] Josep Aulinas, Yvan R. Petillot, Joaquim Salvi, and Xavier

Lladó. 2008. The SLAM problem: a survey. CCIA, 363-371.

[2] Kai Berger, Stephan Meister, Rahul Nair, and Daniel
Kondermann. 2013. A state of the art report on Kinect sensor
setups in computer vision. Time-of-Flight and Depth
Imaging. Sensors, Algorithms, and Applications (2013), 257-
272.

[3] Paul J. Besl and Neil D. McKay. 1992. Method for
registration of 3-D shapes. In IEEE Trans. Pattern Analysis
Mach. Intell. 14, 2 (February 1992), 239-256.

[4] Thomas Butkiewicz. 2014. Low-cost coastal mapping using
Kinect v2 time-of-flight cameras. Oceans – St. John's (14-19
September 2014), 1-9.

[5] Yung Chen and Gérard Medioni. 1991. Object modeling by
registration of multiple range images. Proceedings of the
IEEE International Conference on Robotics and Automation
3, 9-11 (April 1991), 2724-2729.

[6] Dmitry Chetverikov, Dmitry Svirko, Dmitry Stepanov, and
Pavel Krsek. 2002. The trimmed iterative closest point
algorithm. 16th International Conference on Pattern
Recognition (2002), 3, 545-548.

[7] Sacha Goedegebure, A. Goralczyk, E. Valenza, N. Vegdahl,
W. Reynish, B. V. Lommel, C. Barton, J. Morgenstern, and T.
Roosendaal. Big Buck Bunny (2008) Retrieved November 1
2015 from https://peach.blender.org

[8] Albert A. Michelson and Edward W. Morley. 1887. On the
Relative Motion of the Earth and of the Luminiferous Ether.
Sidereal Messenger, 6 (1887), 306-310.

[9] François Pomerleau, Stéphane Magnenat, Francis Colas,
Ming Liu, and Roland Siegwart. 2011. Tracking a depth
camera: Parameter exploration for fast ICP. IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2011), 3824-3829.

[10] François Pomerleau, Francis Colas, Roland Siegwart, and
Stéphane Magnenat. Comparing ICP variants on real-world
data sets. Autonomous Robots 34, 3 (2013), 133-148.

[11] Katherine Rix. 2015. Viability of a tangible tabletop for
industry storyboarding. Honours report, University of Cape
Town. 13 pages. November 2015. Retrieved November 1
2015 from http://people.cs.uct.ac.za/~previz2015/tangible/

[12] Joaquim Salvi, Carles Matabosch, David Fofi, and Josep
Forest. 2007. A review of recent range image registration
methods with accuracy evaluation. Image and Vision
computing 25, 5 (2007), 578-596.

[13] Orit Shaer and Eva Hornecker. 2010. Tangible user
interfaces: past, present, and future directions. Foundations
and Trends in Human-Computer Interaction 3, 1-2 (2010),
1-137.

[14] Gregory C. Sharp, Sang W. Lee, and David K. Wehe. ICP
registration using invariant features. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24, 1 (2002),
90-102.

http://people.cs.uct.ac.za/~previz2015/tangible.html
https://peach.blender.org/

Appendix A: libpm a SWIG template for libpointmatcher

%module libpm

%{

/* Includes the headers in the wrapper code (note: order matters) */

#include "pointmatcher\IO.h"

#include "pointmatcher\Timer.h"

#include "pointmatcher\PointMatcherPrivate.h"

#include "pointmatcher\PointMatcher.h"

#include "pointmatcher\Parametrizable.h"

#include "pointmatcher\Registrar.h"

%}

/* Gracefully handle all exceptions */

// from http://swig.org/Doc3.0/SWIGDocumentation.html#Library_stl_exceptions

%include "exception.i"

%exception {

 try {

 $action

 } catch (const std::exception& e) {

 SWIG_exception(SWIG_RuntimeError, e.what());

 }

}

/* Standard wrappers for other exceptions, strings and arrays */

%include "std_except.i"

%include "std_string.i"

%include "carrays.i"

%array_class(float, floatArray);

/* C# wrappers for array parameters */

%include "arrays_csharp.i"

%apply float INPUT[] {float* array_in}

%apply float OUTPUT[] {float* array_out}

// wraps arrays used in helper functions mapArrayToMatrix and mapMatrixToArray

// (note that array_out seems unreliable and iteration over a floatArray is preferred;

// array_in works as expected)

// see also http://stackoverflow.com/questions/5822529/swig­returning­an­array­of­doubles

/* Prerequisite headers ­ SWIG definitions */

%rename(process) operator ();

%rename(shiftLeft) operator <<;

%rename(shiftRight) operator >>;

%rename(isEqual) operator ==;

// name C++­only operators

%ignore loggerMutex;

// SWIG .cxx compilation fails for this object

// (occurs when using underlying Boost library)

%ignore getNameParamsFromYAML;

// MSVC compilation of .cxx fails for this method

// (because the .cxx uses Parametrizable::Parameters instead of

// PointMatcherSupport::Parametrizable::Parameters)

/* Prerequisite headers ­ include header files */

#define NABO_VERSION "1.0.6"

#define NABO_VERSION_INT 10006

// last tested version (token definition required in headers below)

%include "../pointmatcher/Registrar.h"

%include "../pointmatcher/Parametrizable.h"

// parse the prerequisite header files

/* Primary API ­ SWIG definitions */

%ignore getFeatureViewByName;

%ignore getFeatureRowViewByName;

%ignore getDescriptorViewByName;

%ignore getDescriptorRowViewByName;

// SWIG .cxx compilation fails for these methods

// (occurs when instantiating Eigen:Block with PointMatcher<float>)

%ignore getLimitNames;

%ignore getConditionVariableNames;

// SWIG .cxx compilation fails for these methods

// (occurs when instantiating PointMatcher<float>::TransformationChecker::

// StringVector)

/* Primary API ­ header file */

#define WRAPPER_VERSION "0.3.0"

#define WRAPPER_VERSION_INT 00300

// version number for this interface file

%include "../pointmatcher/PointMatcher.h"

// parse the primary API

%template(PM) PointMatcher<float>;

// create a concrete class from the PointMatcher<T> template

Appendix B: Tabletop filter
readingDataPointsFilters:

 ­ IdentityDataPointsFilter

referenceDataPointsFilters:

 ­ SurfaceNormalDataPointsFilter

 ­ ObservationDirectionDataPointsFilter:

 x: 0

 y: 0

 z: 0

 ­ OrientNormalsDataPointsFilter:

 towardCenter: 1

matcher:

 KDTreeMatcher:

 knn: 1

 epsilon: 0

 searchType: 1

outlierFilters:

 ­ TrimmedDistOutlierFilter:

 ratio: 0.9

errorMinimizer:

 PointToPlaneErrorMinimizer

transformationCheckers:

 ­ CounterTransformationChecker:

 maxIterationCount: 40

 ­ DifferentialTransformationChecker:

 minDiffRotErr: 0.001

 minDiffTransErr: 0.01

 smoothLength: 3

inspector:

 NullInspector

logger:

 NullLogger

